1
|
Hu Y, Xv D, Xie C, Lu X. Smart self-healing hydrogel wound dressings for diabetic wound treatment. Nanomedicine (Lond) 2025; 20:737-754. [PMID: 39964000 PMCID: PMC11970768 DOI: 10.1080/17435889.2025.2466414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/10/2025] [Indexed: 04/02/2025] Open
Abstract
Diabetic wounds are difficult to treat clinically because they heal poorly, often leading to severe complications such as infections and amputations. Hydrogels with smart self-healing properties show great promise for treating diabetic wounds. These hydrogels are capable of continuously and dynamically responding to changes in the wound environment, feature improved mechanical qualities and the capacity to self-heal damage. We explore the latest developments in smart self-healing hydrogels for diabetic wound healing in this review. First, we systematically summarize the obstacles in treating diabetic wounds. We then highlighted the significance of smart self-healing hydrogels, explaining their stimulus-responsive mechanisms and self-healing design approaches, along with their applications in addressing these challenges. Finally, we discussed the unresolved obstacles and potential avenues for future research. We anticipate that this review will facilitate the continued refinement of smart self-healing hydrogels for diabetic wound dressings, aiming for broader clinical adoption.
Collapse
Affiliation(s)
- Yuelin Hu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Dejia Xv
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Deng P, Shi Z, Fang F, Xu Y, Zhou LA, Liu Y, Jin M, Chen T, Wang Y, Cao Y, Su L, Liang H, Liu Q. Wireless matrix metalloproteinase-9 sensing by smart wound dressing with controlled antibacterial nanoparticles release toward chronic wound management. Biosens Bioelectron 2025; 268:116860. [PMID: 39489012 DOI: 10.1016/j.bios.2024.116860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Chronic wounds cause serious health and economic burdens on patients and society. Herein, a wireless and flexible smart wound dressing was developed for matrix metalloproteinase-9 (MMP-9) monitoring and antimicrobial treatment toward chronic wound management. The highly sensitive radio frequency MMP-9 sensor was realized based on a bioresponsive hydrogel with the bioactive peptide sequences. Taking advantage of the flexible inductive-capacitive (LC) circuit and bioresponsive hydrogel, the wireless and wearable smart wound dressing offered an efficient strategy for in-situ wound analysis. Besides, the controlled release of silver nanoparticles (AgNPs) from the degradable hydrogel exhibited significant antimicrobial efficacy against typical bacteria in wound infection including Escherichia coli and Staphylococcus aureus. The analysis of MMP-9 in wound exudate from diabetic foot ulcer (DFU) patients demonstrated good accuracy cross-validated with gold-standard fluorescent measurements, providing great potential for personalized wound management.
Collapse
Affiliation(s)
- Peixue Deng
- Life Sciences Institute, Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou, 318000, PR China
| | - Zhenghan Shi
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou, 318000, PR China; Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Feiyue Fang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yi Xu
- Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Li-Ang Zhou
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Ye Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Meng Jin
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Tao Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yuzhen Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Lingkai Su
- Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Hao Liang
- Life Sciences Institute, Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Qingjun Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou, 318000, PR China; Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
3
|
Yue W, Guo Y, Lee JC, Ganbold E, Wu JK, Li Y, Wang C, Kim HS, Shin YK, Liang JG, Kim ES, Kim NY. Advancements in Passive Wireless Sensing Systems in Monitoring Harsh Environment and Healthcare Applications. NANO-MICRO LETTERS 2025; 17:106. [PMID: 39779609 PMCID: PMC11712043 DOI: 10.1007/s40820-024-01599-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing, particularly in challenging environments for monitoring industry and healthcare applications. These systems are equipped with battery-free operation, wireless connectivity, and are designed to be both miniaturized and lightweight. Such features enable the safe, real-time monitoring of industrial environments and support high-precision physiological measurements in confined internal body spaces and on wearable epidermal devices. Despite the exploration into diverse application environments, the development of a systematic and comprehensive research framework for system architecture remains elusive, which hampers further optimization of these systems. This review, therefore, begins with an examination of application scenarios, progresses to evaluate current system architectures, and discusses the function of each component-specifically, the passive sensor module, the wireless communication model, and the readout module-within the context of key implementations in target sensing systems. Furthermore, we present case studies that demonstrate the feasibility of proposed classified components for sensing scenarios, derived from this systematic approach. By outlining a research trajectory for the application of passive wireless systems in sensing technologies, this paper aims to establish a foundation for more advanced, user-friendly applications.
Collapse
Affiliation(s)
- Wei Yue
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Yunjian Guo
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronic Convergence Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Jong-Chul Lee
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronic Convergence Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Enkhzaya Ganbold
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Jia-Kang Wu
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yang Li
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- School of Microelectronics, Shandong University, Jinan, 250101, People's Republic of China
| | - Cong Wang
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Hyun Soo Kim
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Young-Kee Shin
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea.
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea.
| | - Jun-Ge Liang
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea.
- Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Eun-Seong Kim
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea.
| | - Nam-Young Kim
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea.
- Department of Electronics Engineering, Kwangwoon University, Seoul, 01897, South Korea.
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
4
|
Kassanos P, Hourdakis E. Implantable Passive Sensors for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2024; 25:133. [PMID: 39796923 PMCID: PMC11723123 DOI: 10.3390/s25010133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
In recent years, implantable sensors have been extensively researched since they allow localized sensing at an area of interest (e.g., within the vicinity of a surgical site or other implant). They allow unobtrusive and potentially continuous sensing, enabling greater specificity, early warning capabilities, and thus timely clinical intervention. Wireless remote interrogation of the implanted sensor is typically achieved using radio frequency (RF), inductive coupling or ultrasound through an external device. Two categories of implantable sensors are available, namely active and passive. Active sensors offer greater capabilities, such as on-node signal and data processing, multiplexing and multimodal sensing, while also allowing lower detection limits, the possibility to encode patient sensitive information and bidirectional communication. However, they require an energy source to operate. Battery implantation, and maintenance, remains a very important constraint in many implantable applications even though energy can be provided wirelessly through the external device, in some cases. On the other hand, passive sensors offer the possibility of detection without the need for a local energy source or active electronics. They also offer significant advantages in the areas of system complexity, cost and size. In this review, implantable passive sensor technologies will be discussed along with their communication and readout schemes. Materials, detection strategies and clinical applications of passive sensors will be described. Advantages over active sensor technologies will be highlighted, as well as critical aspects related to packaging and biocompatibility.
Collapse
Affiliation(s)
| | - Emmanouel Hourdakis
- School of Electrical and Computer Engineering, National Technical University of Athens, 15772 Athens, Greece;
| |
Collapse
|
5
|
Zhang M, Li M, Xu W, Zhang F, Yao D, Wang X, Dong W. Soft Wireless Passive Chipless Sensors for Biological Applications: A Review. BIOSENSORS 2024; 15:6. [PMID: 39852057 PMCID: PMC11764421 DOI: 10.3390/bios15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025]
Abstract
Soft wireless passive sensors have been applied in biological, engineering, and other fields due to their advantages in powerless supply and remote data transmission. External information is obtained by soft wireless passive sensors via the external coils based on electromagnetic induction. The purpose of this review paper is to outline the biological applications of soft wireless passive chipless sensors and provide a classification of wireless passive sensors and an overall explanation of the main work. Three kinds of soft wireless sensors, soft wireless passive LC-resonant sensors, soft wireless radio frequency (RF) sensors, and soft wireless surface acoustic wave (SAW) sensors, are introduced with their working principles, equitant circuits, and biological applications. Soft wireless passive sensors with integrated LC-resonant units are applied to physical quantity measurements for denoting the mapping relationship between the frequency resonance and the monitored object. Utilizing the electromagnetic field principle, RF sensors enable wireless measurements and data exchange of physical parameters. SAW sensors with piezoelectric substrates are applied to physical parameter monitoring using guided waves in monitoring objects. Soft wireless passive sensors aim to monitor biological health without an external power supply or wired data communication, which would bring increased convenience to the lives of the people who use them.
Collapse
Affiliation(s)
- Mingguang Zhang
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China; (M.Z.); (M.L.); (W.X.); (D.Y.); (X.W.)
| | - Mengyun Li
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China; (M.Z.); (M.L.); (W.X.); (D.Y.); (X.W.)
| | - Wei Xu
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China; (M.Z.); (M.L.); (W.X.); (D.Y.); (X.W.)
| | - Fan Zhang
- Department of Mechanical and Electrical Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China;
| | - Daojin Yao
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China; (M.Z.); (M.L.); (W.X.); (D.Y.); (X.W.)
| | - Xiaoming Wang
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China; (M.Z.); (M.L.); (W.X.); (D.Y.); (X.W.)
| | - Wentao Dong
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China; (M.Z.); (M.L.); (W.X.); (D.Y.); (X.W.)
| |
Collapse
|
6
|
Jia B, Dong Z, Ren X, Niu M, Kong S, Wan X, Huang H. Hydrogels composite optimized for low resistance and loading-unloading hysteresis for flexible biosensors. J Colloid Interface Sci 2024; 671:516-528. [PMID: 38815387 DOI: 10.1016/j.jcis.2024.05.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
With the advancement of wearable and implantable medical devices, hydrogel flexible bioelectronic devices have attracted significant interest due to exhibiting tissue-like mechanical compliance, biocompatibility, and low electrical resistance. In this study, the development and comprehensive performance evaluation of poly(acrylic acid)/ N,N'-bis(acryloyl) cystamine/ 1-butyl-3-ethenylimidazol-1-ium:bromide (PAA/NB/IL) hydrogels designed for flexible sensor applications are introduced. Engineered through a combination of physical and chemical cross-linking strategies, these hydrogels exhibit strong mechanical properties, high biocompatibility, and effective sensing capabilities. At 95 % strain, the compressive modulus of PAA/NB/IL 100 reach up to 3.66 MPa, with the loading-unloading process showing no significant hysteresis loop, indicating strong mechanical stability and elasticity. An increase in the IL content was observed to enlarge the porosity of the hydrogels, thereby influencing their swelling behavior and sensing functionality. Biocompatibility assessments revealed that the hemolysis rate was below 5 %, ensuring their suitability for biomedical applications. Upon implantation in rats, a minimal acute inflammatory response was observed, comparable to that of the biocompatibility control poly(ethylene glycol) diacrylate (PEGDA). These results suggest that PAA/NB/IL hydrogels hold promise as biomaterials for biosensors, offering a balance of mechanical integrity, physiological compatibility, and sensing sensitivity, thereby facilitating advanced healthcare monitoring solutions.
Collapse
Affiliation(s)
- Ben Jia
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China; School of Civil Aviation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muwen Niu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuzhen Kong
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaopeng Wan
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China; School of Civil Aviation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
7
|
Pan J, Li X, Sun R, Xu Y, Shi Z, Dai C, Wen H, Han RPS, Ye Q, Zhang F, Liu Q. Hydrogel-based radio frequency H 2S sensor for in situ periodontitis monitoring and antibacterial treatment. Biosens Bioelectron 2024; 259:116404. [PMID: 38772248 DOI: 10.1016/j.bios.2024.116404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
Periodontitis, a chronic disease, can result in irreversible tooth loss and diminished quality of life, highlighting the significance of timely periodontitis monitoring and treatment. Meanwhile, hydrogen sulfide (H2S) in saliva, produced by pathogenic bacteria of periodontitis, is an important marker for periodontitis monitoring. However, the easy volatility and chemical instability of the molecule pose challenges to oral H2S sensing. Here, we report a wearable hydrogel-based radio frequency (RF) sensor capable of in situ H2S detection and antibacterial treatment. The RF sensor comprises an agarose hydrogel containing conjugated silver nanoparticles-chlorhexidine (AG-AgNPs-CHL hydrogel) integrated with split-ring resonators. Adhered to a tooth, the hydrogel-based RF sensor enables wireless transmission of sensing signals to a mobile terminal and a concurrent release of the broad-spectrum antibacterial agent chlorhexidine without complex circuits. With the selective binding of the AgNPs to the sulfidion, the RF sensor demonstrates good sensitivity, a wide detection range (2-30 μM), and a low limit of detection (1.2 μM). Compared with standard H2S measurement, the wireless H2S sensor can distinguish periodontitis patients from healthy individuals in saliva sample tests. The hydrogel-based wearable sensor will benefit patients with periodontitis by detecting disease-related biomarkers for practical oral health management.
Collapse
Affiliation(s)
- Jingying Pan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xin Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Rujing Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yi Xu
- Stomatology Hospital, School of Stomatology, School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Zhenghan Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chaobo Dai
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Wen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ray P S Han
- Cancer Research Center, College of Computer Science, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Qing Ye
- Cancer Research Center, College of Computer Science, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
8
|
Dia KKH, Escobar AR, Qin H, Ye F, Jimenez A, Hasan MA, Hajiaghajani A, Dautta M, Li L, Tseng P. Passive Wireless Porous Biopolymer Sensors for At-Home Monitoring of Oil and Fatty Acid Nutrition. ACS APPLIED BIO MATERIALS 2024; 7:5452-5460. [PMID: 39031088 DOI: 10.1021/acsabm.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Dietary oils─rich in omega-3, -6, and -9 fatty acids─exhibit critical impacts on health parameters such as cardiovascular function, bodily inflammation, and neurological development. There has emerged a need for low-cost, accessible method to assess dietary oil consumption and its health implications. Existing methods typically require specialized, complex equipment and extensive sample preparation steps, rendering them unsuitable for home use. Addressing this gap, herein, we study passive wireless, biocompatible biosensors that can be used to monitor dietary oils directly from foods either prepared or cooked in oil. This design uses broad-coupled split ring resonators interceded with porous silk fibroin biopolymer (requiring only food-safe materials, such as aluminum foil and biopolymer). These porous biopolymer films absorb oils at rates proportional to their viscosity/fatty acid composition and whose response can be measured wirelessly without any microelectronic components touching food. The engineering and mechanism of such sensors are explored, alongside their ability to measure the oil presence and fatty acid content directly from foods. Its simplicity, portability, and inexpensiveness are ideal for emerging needs in precision nutrition─such sensors may empower individuals to make informed dietary decisions based on direct-from-food measurements.
Collapse
Affiliation(s)
- Kazi Khurshidi Haque Dia
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Alberto Ranier Escobar
- Department of Biomedical Engineering, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Huiting Qin
- Material and Manufacturing Technology Program, University of California, Irvine, California 92617, United States
| | - Fan Ye
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Abel Jimenez
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Md Abeed Hasan
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Amirhossein Hajiaghajani
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Manik Dautta
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Lei Li
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Peter Tseng
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| |
Collapse
|
9
|
Li X, Sun R, Pan J, Shi Z, An Z, Dai C, Lv J, Liu G, Liang H, Liu J, Lu Y, Zhang F, Liu Q. Rapid and on-site wireless immunoassay of respiratory virus aerosols via hydrogel-modulated resonators. Nat Commun 2024; 15:4035. [PMID: 38740742 PMCID: PMC11091083 DOI: 10.1038/s41467-024-48294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Rapid and accurate detection of respiratory virus aerosols is highlighted for virus surveillance and infection control. Here, we report a wireless immunoassay technology for fast (within 10 min), on-site (wireless and battery-free), and sensitive (limit of detection down to fg/L) detection of virus antigens in aerosols. The wireless immunoassay leverages the immuno-responsive hydrogel-modulated radio frequency resonant sensor to capture and amplify the recognition of virus antigen, and flexible readout network to transduce the immuno bindings into electrical signals. The wireless immunoassay achieves simultaneous detection of respiratory viruses such as severe acute respiratory syndrome coronavirus 2, influenza A H1N1 virus, and respiratory syncytial virus for community infection surveillance. Direct detection of unpretreated clinical samples further demonstrates high accuracy for diagnosis of respiratory virus infection. This work provides a sensitive and accurate immunoassay technology for on-site virus detection and disease diagnosis compatible with wearable integration.
Collapse
Affiliation(s)
- Xin Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China
| | - Rujing Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jingying Pan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Zhenghan Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zijian An
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chaobo Dai
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jingjiang Lv
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guang Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China.
| |
Collapse
|
10
|
Ahmed B, Reiche CF, Magda JJ, Solzbacher F, Körner J. Smart Hydrogel Swelling State Detection Based on a Power-Transfer Transduction Principle. ACS APPLIED POLYMER MATERIALS 2024; 6:5544-5554. [PMID: 38752016 PMCID: PMC11091848 DOI: 10.1021/acsapm.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Stimulus-responsive (smart) hydrogels are a promising sensing material for biomedical contexts due to their reversible swelling change in response to target analytes. The design of application-specific sensors that utilize this behavior requires the development of suitable transduction concepts. The presented study investigates a power-transfer-based readout approach that is sensitive to small volumetric changes of the smart hydrogel. The concept employs two thin film polyimide substrates with embedded conductive strip lines, which are shielded from each other except at the tip region, where the smart hydrogel is sandwiched in between. The hydrogel's volume change in response to a target analyte alters the distance and orientation of the thin films, affecting the amount of transferred power between the two transducer parts and, consequently, the measured sensor output voltage. With proper calibration, the output signal can be used to determine the swelling change of the hydrogel and, consequently, to quantify the stimulus. In proof-of-principle experiments with glucose- and pH-sensitive smart hydrogels, high sensitivity to small analyte concentration changes was found along with very good reproducibility and stability. The concept was tested with two exemplary hydrogels, but the transduction principle in general is independent of the specific hydrogel material, as long as it exhibits a stimulus-dependent volume change. The application vision of the presented research is to integrate in situ blood analyte monitoring capabilities into standard (micro)catheters. The developed sensor is designed to fit into a catheter without obstructing its normal use and, therefore, offers great potential for providing a universally applicable transducer platform for smart catheter-based sensing.
Collapse
Affiliation(s)
- Benozir Ahmed
- Department
of Electrical & Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Christopher F. Reiche
- Department
of Electrical & Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Jules J. Magda
- Department
of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Florian Solzbacher
- Department
of Electrical & Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Julia Körner
- Faculty
of
Electrical Engineering & Computer Science, Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
11
|
Li S, Lu D, Li S, Liu J, Xu Y, Yan Y, Rodriguez JZ, Bai H, Avila R, Kang S, Ni X, Luan H, Guo H, Bai W, Wu C, Zhou X, Hu Z, Pet MA, Hammill CW, MacEwan MR, Ray WZ, Huang Y, Rogers JA. Bioresorbable, wireless, passive sensors for continuous pH measurements and early detection of gastric leakage. SCIENCE ADVANCES 2024; 10:eadj0268. [PMID: 38640247 PMCID: PMC11029800 DOI: 10.1126/sciadv.adj0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
Continuous monitoring of biomarkers at locations adjacent to targeted internal organs can provide actionable information about postoperative status beyond conventional diagnostic methods. As an example, changes in pH in the intra-abdominal space after gastric surgeries can serve as direct indicators of potentially life-threatening leakage events, in contrast to symptomatic reactions that may delay treatment. Here, we report a bioresorbable, wireless, passive sensor that addresses this clinical need, designed to locally monitor pH for early detection of gastric leakage. A pH-responsive hydrogel serves as a transducer that couples to a mechanically optimized inductor-capacitor circuit for wireless readout. This platform enables real-time monitoring of pH with fast response time (within 1 hour) over a clinically relevant period (up to 7 days) and timely detection of simulated gastric leaks in animal models. These concepts have broad potential applications for temporary sensing of relevant biomarkers during critical risk periods following diverse types of surgeries.
Collapse
Affiliation(s)
- Shuo Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Di Lu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shupeng Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jiaqi Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Yameng Xu
- The Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ying Yan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jorge Zárate Rodriguez
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hedan Bai
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Shuming Kang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Xinchen Ni
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Haiwen Luan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Hexia Guo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Changsheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xuhao Zhou
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Mitchell A. Pet
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chet W. Hammill
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew R. MacEwan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wilson Z. Ray
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
12
|
Muñoz-Urtubia N, Vega-Muñoz A, Estrada-Muñoz C, Salazar-Sepúlveda G, Contreras-Barraza N, Salinas-Martínez N, Méndez-Celis P, Carmelo-Adsuar J. Wearable biosensors for human health: A bibliometric analysis from 2007 to 2022. Digit Health 2024; 10:20552076241256876. [PMID: 38882252 PMCID: PMC11179482 DOI: 10.1177/20552076241256876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Abstract
Objective This study aimed to determine the status of scientific production on biosensor usage for human health monitoring. Methods We used bibliometrics based on the data and metadata retrieved from the Web of Science between 2007 and 2022. Articles unrelated to health and medicine were excluded. The databases were processed using the VOSviewer software and auxiliary spreadsheets. Data extraction yielded 275 articles published in 161 journals, mainly concentrated on 13 journals and 881 keywords plus. Results The keywords plus of high occurrences were estimated at 27, with seven to 30 occurrences. From the 1595 identified authors, 125 were consistently connected in the coauthorship network in the total set and were grouped into nine clusters. Using Lotka's law, we identified 24 prolific authors, and Hirsch index analysis revealed that 45 articles were cited more than 45 times. Crosses were identified between 17 articles in the Hirsch index and 17 prolific authors, highlighting the presence of a large set of prolific authors from various interconnected clusters, a triad, and a solitary prolific author. Conclusion An exponential trend was observed in biosensor research for health monitoring, identifying areas of innovation, collaboration, and technological challenges that can guide future research on this topic.
Collapse
Affiliation(s)
- Nicolás Muñoz-Urtubia
- International Graduate School, University of Extremadura, Caceres, Spain
- Instituto de Ciencias de la Educación, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro Vega-Muñoz
- Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- Facultad de Ciencias Empresariales, Universidad Arturo Prat, Iquique, Chile
| | - Carla Estrada-Muñoz
- Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Guido Salazar-Sepúlveda
- Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Facultad de Ingeniería y Negocios, Universidad de Las Américas, Concepción, Chile
| | | | - Nicolás Salinas-Martínez
- Facultad de Ciencias Económicas, Administrativas y Contables, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | | | | |
Collapse
|
13
|
Wang X, Huo H, Xu C, Lin H, Wang Q, Yang J, Vogel F, Wang X, Lin Z, Cao L, Li W, Zhang P. A sensitive non-enzymatic dual-conductive biosensor for continuous glucose monitoring. Anal Chim Acta 2023; 1279:341845. [PMID: 37827656 DOI: 10.1016/j.aca.2023.341845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Diabetes and diabetic wound management have always been urgent issues for global healthcare. In the demand for blood glucose monitoring and wound management, phenylboronic acid (PBA)-based glucose biosensors are effective assistance due to their excellent glucose specificity, high sensitivity, and response stability. Nevertheless, PBA-based glucose biosensors still have challenges in terms of wide linearity and large deformation requirements. Therefore, it is necessary to develop PBA-based glucose biosensors with satisfactory mechanical properties, high response sensitivity, excellent stability, and wide linearity. RESULTS In this work, a glucose-responsive PBA-based biosensor was successfully synthesized for the first time. The sensor materials exhibited excellent mechanical properties with an elongation at break reached up to 1000%, and the healing efficiency was over 90% within 30 min at 45 °C. Furthermore, the biosensor exhibited exceptional electromechanical responsiveness, stability, high sensitivity, and wide linearity due to the specificity of phenylboronic acid to glucose and the construction of a special HCNT/PEDOT:PSS dual conductive structure. In addition, the assembled biosensor displayed remarkable glucose, pH and temperature responses, exhibiting a linear response to glucose concentration range from 0.20 mM to 2.0 mM, with a sensitivity coefficient of 47.11 mA mM-1 and regression coefficient of 0.942. Moreover, the sensor materials showed satisfactory cytocompatibility, hemocompatibility, and antibacterial properties against Escherichia coli and Staphylococcus aureus. SIGNIFICANCE For the first time, a dual conductive structural glucose biosensor based on PBA-based copolymer was synthesized. In addition to excellent glucose sensitivity and response stability, the biosensor has a wide linearity range, excellent self-healing property, and satisfactory mechanical performance. As a promising substitute for non-enzymatic glucose biosensors, this new material with special structure and characteristics would also be beneficial to wound management in diabetic patients.
Collapse
Affiliation(s)
- Xiao Wang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Haoling Huo
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Congjie Xu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Huaijun Lin
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Qiwei Wang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Junjie Yang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Florian Vogel
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Xiaoying Wang
- College of Life Science and Technology, Biomedical Engineering Department, Jinan University, Guangzhou, 510632, China
| | - Zhidan Lin
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Lin Cao
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China.
| | - Wei Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China.
| | - Peng Zhang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
14
|
Han JH, Kim CR, Min CH, Kim MJ, Kim SN, Ji HB, Yoon SB, Lee C, Choy YB. Microneedles coated with composites of phenylboronic acid-containing polymer and carbon nanotubes for glucose measurements in interstitial fluids. Biosens Bioelectron 2023; 238:115571. [PMID: 37562343 DOI: 10.1016/j.bios.2023.115571] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
A microneedle (MN) sensor coated with a sensing composite material was proposed for measuring glucose concentrations in interstitial fluid (ISF). The sensing composite material was prepared by blending a polymer containing glucose-responsive phenylboronic acid (PBA) moieties (i.e., polystyrene-block-poly(acrylic acid-co-acrylamidophenylboronic acid)) with conductive carbon nanotubes (CNTs). The polymer exhibited reversible swelling behavior in response to glucose concentrations, which influenced the distribution of the embedded CNTs, resulting in sensitive variations in electrical percolation, even when coated onto a confined surface of the MN in the sensor. We varied the ratio of PBA moieties and the loading amount of CNTs in the sensing composite material of the MN sensor and tested them in vitro using an ISF-mimicking gel with physiological glucose concentrations to determine the optimal sensitivity conditions. When tested in animal models with varying blood glucose concentrations, the MN sensor coated with the selected sensing material exhibited a strong correlation between the measured electrical currents and blood glucose concentrations, showing accuracy comparable to that of a glucometer in clinical use.
Collapse
Affiliation(s)
- Jae Hoon Han
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Cho Rim Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Hee Min
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Ji Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Se-Na Kim
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Han Bi Ji
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Bin Yoon
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul 03122, Republic of Korea; ToBIOs Inc, 214 Yulgok-ro, Jongno-gu, Seoul 03122, Republic of Korea.
| |
Collapse
|
15
|
He D, Cui Y, Ming F, Wu W. Advancements in Passive Wireless Sensors, Materials, Devices, and Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:8200. [PMID: 37837030 PMCID: PMC10575307 DOI: 10.3390/s23198200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
In recent years, passive wireless sensors have been studied for various infrastructure sectors, making them a research and development focus. While substantial evidence already supports their viability, further effort is needed to understand their dependability and applicability. As a result, issues related to the theory and implementation of wireless sensors still need to be resolved. This paper aims to review and summarize the progress of the different materials used in different passive sensors, the current status of the passive wireless sensor readout devices, and the latest peripheral devices. It will also cover other related aspects such as the system equipment of passive wireless sensors and the nanogenerators for the energy harvesting for self-powered sensors for applications in contemporary life scenarios. At the same time, the challenges for future developments and applications of passive wireless are discussed.
Collapse
Affiliation(s)
- Denghui He
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China; (D.H.); (F.M.)
| | - Yuanhui Cui
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China; (D.H.); (F.M.)
| | - Fangchao Ming
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China; (D.H.); (F.M.)
| | - Weiping Wu
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 390 Qinghe Road, Jiading District, Shanghai 201800, China
- Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 390 Qinghe Road, Jiading District, Shanghai 201800, China
| |
Collapse
|
16
|
Carr AR, Chan YJ, Reuel NF. Contact-Free, Passive, Electromagnetic Resonant Sensors for Enclosed Biomedical Applications: A Perspective on Opportunities and Challenges. ACS Sens 2023; 8:943-955. [PMID: 36916021 DOI: 10.1021/acssensors.2c02552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Inexpensive and accurate tools for monitoring conditions in enclosed environments (through garments, bandages, tissue, etc.) have been a long-standing goal of medicine. Passive resonant sensors are a promising solution for such wearable health sensors as well as off-body diagnostics. They are simple circuits with inherent inductance and capacitance (LC tank) that have a measurable resonant frequency. Changes in local parameters, e.g., permittivity or geometry, effect inductance and capacitance which cause a resonant frequency shift response. This signal transduction has been applied to several biomedical applications such as intracranial pressure, hemodynamics, epidermal hydration, etc. Despite these many promising applications presented in the literature, resonant sensors still do not see widespread adoption in biomedical applications, especially as wearable or embedded sensing devices. This perspective highlights some of the current challenges facing LC resonant sensors in biomedical applications, such as positional sensitivity, and potential strategies that have been developed to overcome them. An outlook on adoption in medicine and health monitoring is presented, and a perspective is given on next steps for research in this field.
Collapse
Affiliation(s)
- Adam R Carr
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Yee Jher Chan
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Nigel F Reuel
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| |
Collapse
|
17
|
Ahmed B, Reiche CF, Solzbacher F, Magda J, Körner J. Physics-Based Circuit Modeling of the Impedance Characteristics of a Smart Hydrogel-Actuated Bending Sensor. SENSORS AND ACTUATORS. A, PHYSICAL 2022; 347:113954. [PMID: 39310816 PMCID: PMC11415276 DOI: 10.1016/j.sna.2022.113954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Smart hydrogels are stimuli-responsive polymers which exhibit a volume-phase transition in response to external influences. This makes them promising candidates for sensing elements, especially in a biomedical context due to their easily achievable biocompatibility. The main challenge in harnessing the smart polymer's potential for sensor applications lies in a reliable transduction of the swelling change into an electrical signal. A novel platform approach is based on a bending sensor where the smart hydrogel acts as an actuator on a thin film with embedded metal traces. Mechanical deformation due to the hydrogel volume change alters the traces' electric impedance. However, besides deformation, the medium surrounding the sensor structure will also affect the impedance. For sensor design it is therefore crucial to understand the complex interdependencies between electric sensor properties, influences of the surrounding medium and mechanical deformation. Here, an electric circuit model is presented which considers all these contributions through a minimum number of lumped elements and is strictly based on physical considerations. By employing measured impedance spectra from an experimental sensor implementation subjected to different surrounding media and mechanical deformation, the validity of the simplified model is demonstrated. A detailed analysis and discussion give insights into the determination of the different model parameters and how external influences can clearly be attributed to specific circuit elements. This work provides a general approach for deducing minimalistic but strictly physics-based circuit models which can still adequately replicate the actual behavior of such types of impedance-based bending sensors.
Collapse
Affiliation(s)
- Benozir Ahmed
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher F. Reiche
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Florian Solzbacher
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Jules Magda
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Julia Körner
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Electrical Engineering & Computer Science, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
18
|
Zhao J, Lu S, Bastos-Arrieta J, Palet C, Sun Y, Wang R, Qian Z, Fan S. Enhanced terahertz sensitivity for glucose detection with a hydrogel platform embedded with Au nanoparticles. BIOMEDICAL OPTICS EXPRESS 2022; 13:4021-4031. [PMID: 35991910 PMCID: PMC9352292 DOI: 10.1364/boe.461414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
We presented a strategy for enhancing the sensitivity of terahertz glucose sensing with a hydrogel platform pre-embedded with Au nanoparticles. Physiological-level glucose solutions ranging from 0 to 0.8 mg/mL were measured and the extracted absorption coefficients can be clearly distinguished compared to traditional terahertz time domain spectroscopy performed directly on aqueous solutions. Further, Isotherm models were applied to successfully describe the relationship between the absorption coefficient and the glucose concentration (R2 = 0.9977). Finally, the origin of the sensitivity enhancement was investigated and verified to be the pH change induced by the catalysis of Au nanoparticles to glucose oxidation.
Collapse
Affiliation(s)
- Jingjing Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
- Contributed equally to this work
| | - Shaohua Lu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
- Contributed equally to this work
| | - Julio Bastos-Arrieta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Recerca de l’Aigua (IdRA), University of Barcelona, 08028 Barcelona, Spain
| | - Cristina Palet
- Group of Separation Techniques in Chemistry, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalunya, Spain
| | - Yiling Sun
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
| | - Renheng Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
| | - Zhengfang Qian
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
| | - Shuting Fan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
| |
Collapse
|
19
|
Shafaat A, Žalnėravičius R, Ratautas D, Dagys M, Meškys R, Rutkienė R, Gonzalez-Martinez JF, Neilands J, Björklund S, Sotres J, Ruzgas T. Glucose-to-Resistor Transduction Integrated into a Radio-Frequency Antenna for Chip-less and Battery-less Wireless Sensing. ACS Sens 2022; 7:1222-1234. [PMID: 35392657 PMCID: PMC9040053 DOI: 10.1021/acssensors.2c00394] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To maximize the potential of 5G infrastructure in healthcare, simple integration of biosensors with wireless tag antennas would be beneficial. This work introduces novel glucose-to-resistor transduction, which enables simple, wireless biosensor design. The biosensor was realized on a near-field communication tag antenna, where a sensing bioanode generated electrical current and electroreduced a nonconducting antenna material into an excellent conductor. For this, a part of the antenna was replaced by a Ag nanoparticle layer oxidized to high-resistance AgCl. The bioanode was based on Au nanoparticle-wired glucose dehydrogenase (GDH). The exposure of the cathode-bioanode to glucose solution resulted in GDH-catalyzed oxidation of glucose at the bioanode with a concomitant reduction of AgCl to highly conducting Ag on the cathode. The AgCl-to-Ag conversion strongly affected the impedance of the antenna circuit, allowing wireless detection of glucose. Mimicking the final application, the proposed wireless biosensor was ultimately evaluated through the measurement of glucose in whole blood, showing good agreement with the values obtained with a commercially available glucometer. This work, for the first time, demonstrates that making a part of the antenna from the AgCl layer allows achieving simple, chip-less, and battery-less wireless sensing of enzyme-catalyzed reduction reaction.
Collapse
Affiliation(s)
- Atefeh Shafaat
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö 205 06, Sweden
- Biofilms−Research Center for Biointerfaces, Malmö University, Malmö 205 06, Sweden
| | - Rokas Žalnėravičius
- State Research Institute, Centre for Physical Sciences and Technology, Saulėtekio av. 3, Vilnius LT-10257, Lithuania
| | - Dalius Ratautas
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, Vilnius LT-10223, Lithuania
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio al. 11, Vilnius LT-10223, Lithuania
| | - Marius Dagys
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, Vilnius LT-10223, Lithuania
| | - Rolandas Meškys
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, Vilnius LT-10223, Lithuania
| | - Rasa Rutkienė
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, Vilnius LT-10223, Lithuania
| | - Juan Francisco Gonzalez-Martinez
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö 205 06, Sweden
- Biofilms−Research Center for Biointerfaces, Malmö University, Malmö 205 06, Sweden
| | - Jessica Neilands
- Department of Oral Biology, Faculty of Odontology, Malmö University, Malmö 205 06, Sweden
| | - Sebastian Björklund
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö 205 06, Sweden
- Biofilms−Research Center for Biointerfaces, Malmö University, Malmö 205 06, Sweden
| | - Javier Sotres
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö 205 06, Sweden
- Biofilms−Research Center for Biointerfaces, Malmö University, Malmö 205 06, Sweden
| | - Tautgirdas Ruzgas
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö 205 06, Sweden
- Biofilms−Research Center for Biointerfaces, Malmö University, Malmö 205 06, Sweden
| |
Collapse
|
20
|
Wang T, Song J, Liu R, Chan SY, Wang K, Su Y, Li P, Huang W. Motion Detecting, Temperature Alarming, and Wireless Wearable Bioelectronics Based on Intrinsically Antibacterial Conductive Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14596-14606. [PMID: 35293735 DOI: 10.1021/acsami.2c00713] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogels have attracted considerable interest in developing flexible bioelectronics such as wearable devices, brain-machine interface products, and health-monitoring sensors. However, these bioelectronics are always challenged by microbial contamination, which frequently reduces their service life and durability due to a lack of antibacterial property. Herein, we report a class of inherently antibacterial conductive hydrogels (ACGs) as bioelectronics for motion and temperature detection. The ACGs were composed of poly(N-isopropylacrylamide) (pNIPAM) and silver nanowires (AgNWs) via a two-step polymerization strategy, which increased the crosslink density for enhanced mechanical properties. The introduction of AgNWs improved the conductivity of ACGs and endowed them with excellent antibacterial activity against both Gram-positive and -negative bacteria. Meanwhile, pNIPAM existed in ACGs and exhibited a thermal responsive behavior, thereby inducing sharp changes in their conductivity around body temperature, which was successfully employed to assemble a temperature alarm. Moreover, ACG-based sensors exhibited excellent sensitivity (within a small strain of 5%) and the capability of capturing various motion signals (finger bending, elbow bending, and even throat vibrating). Benefiting from the superiority of ACG-based sensors, we further demonstrated a wearable wireless system for the remote control of a vehicle, which is expected to help disabled people in the future.
Collapse
Affiliation(s)
- Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Jiang Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Rongjun Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Yang Su
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| |
Collapse
|
21
|
Dautta M, Hajiaghajani A, Ye F, Escobar AR, Jimenez A, Dia KKH, Tseng P. Programmable Multiwavelength Radio Frequency Spectrometry of Chemophysical Environments through an Adaptable Network of Flexible and Environmentally Responsive, Passive Wireless Elements. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Manik Dautta
- Department of Electrical Engineering and Computer Science University of California Irvine Engineering Hall #3110 Irvine CA 92697 USA
| | - Amirhossein Hajiaghajani
- Department of Electrical Engineering and Computer Science University of California Irvine Engineering Hall #3110 Irvine CA 92697 USA
| | - Fan Ye
- Department of Electrical Engineering and Computer Science University of California Irvine Engineering Hall #3110 Irvine CA 92697 USA
| | - Alberto Ranier Escobar
- Department of Biomedical Engineering University of California Irvine Engineering Hall #3110 Irvine CA 92697 USA
| | - Abel Jimenez
- Department of Electrical Engineering and Computer Science University of California Irvine Engineering Hall #3110 Irvine CA 92697 USA
| | - Kazi Khurshidi Haque Dia
- Department of Electrical Engineering and Computer Science University of California Irvine Engineering Hall #3110 Irvine CA 92697 USA
| | - Peter Tseng
- Department of Electrical Engineering and Computer Science University of California Irvine Engineering Hall #3110 Irvine CA 92697 USA
- Department of Biomedical Engineering University of California Irvine Engineering Hall #3110 Irvine CA 92697 USA
| |
Collapse
|
22
|
Reddy VS, Agarwal B, Ye Z, Zhang C, Roy K, Chinnappan A, Narayan RJ, Ramakrishna S, Ghosh R. Recent Advancement in Biofluid-Based Glucose Sensors Using Invasive, Minimally Invasive, and Non-Invasive Technologies: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1082. [PMID: 35407200 PMCID: PMC9000490 DOI: 10.3390/nano12071082] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
Biosensors have potentially revolutionized the biomedical field. Their portability, cost-effectiveness, and ease of operation have made the market for these biosensors to grow rapidly. Diabetes mellitus is the condition of having high glucose content in the body, and it has become one of the very common conditions that is leading to deaths worldwide. Although it still has no cure or prevention, if monitored and treated with appropriate medication, the complications can be hindered and mitigated. Glucose content in the body can be detected using various biological fluids, namely blood, sweat, urine, interstitial fluids, tears, breath, and saliva. In the past decade, there has been an influx of potential biosensor technologies for continuous glucose level estimation. This literature review provides a comprehensive update on the recent advances in the field of biofluid-based sensors for glucose level detection in terms of methods, methodology and materials used.
Collapse
Affiliation(s)
- Vundrala Sumedha Reddy
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Bhawana Agarwal
- Department of Chemical Engineering, BITS Pilani-Hyderabad Campus, Hyderabad 500078, India;
| | - Zhen Ye
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Chuanqi Zhang
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Kallol Roy
- Centre for Advanced 2D Materials, National University of Singapore, Singapore 117546, Singapore;
| | - Amutha Chinnappan
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA;
| | - Seeram Ramakrishna
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Rituparna Ghosh
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| |
Collapse
|
23
|
Dong P, Ko BS, Lomeli KA, Clark EC, McShane MJ, Grunlan MA. A Glucose Biosensor Based on a Phosphorescence Lifetime Sensing and a Thermoresponsive Membrane. Macromol Rapid Commun 2022; 43:e2100902. [DOI: 10.1002/marc.202100902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ping Dong
- Department of Biomedical Engineering Texas A&M University College Station TX 77843‐3120 USA
| | - Brian S. Ko
- Department of Biomedical Engineering Texas A&M University College Station TX 77843‐3120 USA
| | - Kayllie A. Lomeli
- Department of Biomedical Engineering Texas A&M University College Station TX 77843‐3120 USA
| | - Emily C. Clark
- Department of Biomedical Engineering Texas A&M University College Station TX 77843‐3120 USA
| | - Michael J. McShane
- Department of Biomedical Engineering Department of Materials Science & Engineering and Center for Remote Health Technologies Systems Texas A&M University College Station TX 77843‐3003 USA
| | - Melissa A. Grunlan
- Department of Biomedical Engineering Department of Materials Science & Engineering Department of Chemizstry and Center for Remote Health Technologies Systems Texas A&M University College Station TX 77843‐3003 USA
| |
Collapse
|
24
|
Dong P, Singh KA, Soltes AM, Ko BS, Gaharwar AK, McShane MJ, Grunlan MA. Silicone-containing thermoresponsive membranes to form an optical glucose biosensor. J Mater Chem B 2022; 10:6118-6132. [DOI: 10.1039/d2tb01192a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glucose biosensors that could be subcutaneously injected and interrogated without a physically connected electrode and transmitter affixed to skin would represent a major advancement in reducing the user burden of...
Collapse
|
25
|
Yue W, Kim ES, Zhu BH, Chen J, Liang JG, Kim NY. Permittivity-Inspired Microwave Resonator-Based Biosensor Based on Integrated Passive Device Technology for Glucose Identification. BIOSENSORS 2021; 11:bios11120508. [PMID: 34940265 PMCID: PMC8699625 DOI: 10.3390/bios11120508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 05/10/2023]
Abstract
In this study, we propose a high-performance resonator-based biosensor for mediator-free glucose identification. The biosensor is characterized by an air-bridge capacitor and fabricated via integrated passive device technology on gallium arsenide (GaAs) substrate. The exterior design of the structure is a spiral inductor with the air-bridge providing a sensitive surface, whereas the internal capacitor improves indicator performance. The sensing relies on repolarization and rearrangement of surface molecules, which are excited by the dropped sample at the microcosmic level, and the resonance performance variation corresponds to the difference in glucose concentration at the macroscopic level. The air-bridge capacitor in the modeled RLC circuit serves as a bio-recognition element to glucose concentration (εglucoseC0), generating resonant frequency shifts at 0.874 GHz and 1.244 GHz for concentrations of 25 mg/dL and 300 mg/dL compared to DI water, respectively. The proposed biosensor exhibits excellent sensitivity at 1.38 MHz per mg/dL with a wide detection range for glucose concentrations of 25-300 mg/dL and a low detection limit of 24.59 mg/dL. Additionally, the frequency shift and concentration are highly linear with a coefficient of determination of 0.98823. The response time is less than 3 s. We performed multiple experiments to verify that the surface morphology reveals no deterioration and chemical binding, thus validating the reusability and reliability of the proposed biosensor.
Collapse
Affiliation(s)
- Wei Yue
- Radio Frequency Integrated Circuit (RFIC), Kwangwoon University, Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea; (W.Y.); (E.-S.K.); (B.-H.Z.); (J.C.)
| | - Eun-Seong Kim
- Radio Frequency Integrated Circuit (RFIC), Kwangwoon University, Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea; (W.Y.); (E.-S.K.); (B.-H.Z.); (J.C.)
| | - Bao-Hua Zhu
- Radio Frequency Integrated Circuit (RFIC), Kwangwoon University, Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea; (W.Y.); (E.-S.K.); (B.-H.Z.); (J.C.)
| | - Jian Chen
- Radio Frequency Integrated Circuit (RFIC), Kwangwoon University, Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea; (W.Y.); (E.-S.K.); (B.-H.Z.); (J.C.)
| | - Jun-Ge Liang
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
- Correspondence: (J.-G.L.); (N.-Y.K.)
| | - Nam-Young Kim
- Radio Frequency Integrated Circuit (RFIC), Kwangwoon University, Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea; (W.Y.); (E.-S.K.); (B.-H.Z.); (J.C.)
- Correspondence: (J.-G.L.); (N.-Y.K.)
| |
Collapse
|
26
|
|
27
|
Lucío MI, Cubells-Gómez A, Maquieira Á, Bañuls MJ. Hydrogel-based holographic sensors and biosensors: past, present, and future. Anal Bioanal Chem 2021; 414:993-1014. [PMID: 34757475 DOI: 10.1007/s00216-021-03746-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/25/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Hydrogel-based holographic sensors consist of a holographic pattern in a responsive hydrogel that diffracts light at different wavelengths depending on the dimensions and refractive index changes in the material. The material composition of hydrogels can be designed to be specifically responsive to different stimuli, and thus the diffraction pattern can correlate with the amount of analyte. According to this general principle, different approaches have been implemented to achieve label-free optical sensors and biosensors, with advantages such as easy fabrication or naked-eye detection. A review on the different approaches, sensing materials, measurement principles, and detection setups, and future perspectives is offered.
Collapse
Affiliation(s)
- María Isabel Lucío
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, Camino de Vera s/n, 5M, 46022, Valencia, Spain
| | - Aitor Cubells-Gómez
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, Camino de Vera s/n, 5M, 46022, Valencia, Spain
| | - Ángel Maquieira
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, Camino de Vera s/n, 5M, 46022, Valencia, Spain
- Department of Chemistry, Polytechnic University of Valencia, Camino de Vera s/n, 5M, 46022, Valencia, Spain
| | - María-José Bañuls
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, Camino de Vera s/n, 5M, 46022, Valencia, Spain.
- Department of Chemistry, Polytechnic University of Valencia, Camino de Vera s/n, 5M, 46022, Valencia, Spain.
| |
Collapse
|
28
|
Guo H, Bai M, Wen C, Liu M, Tian S, Xu S, Liu X, Ma Y, Chen P, Li Q, Zhang X, Yang J, Zhang L. A Zwitterionic-Aromatic Motif-Based ionic skin for highly biocompatible and Glucose-Responsive sensor. J Colloid Interface Sci 2021; 600:561-571. [PMID: 34030011 DOI: 10.1016/j.jcis.2021.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022]
Abstract
Electronic skins that can sense external stimuli have been of great significance in artificial intelligence and smart wearable devices in recent years. However, most of current skin materials are unable to achieve high biocompatibility and anti-bacterial activity, which are particularly critical to wearable sensors for neonatal/premature monitoring or tissue-interfaced biosensors (such as electronic wound dressing and smart contact lens). Herein, a zwitterionic-aromatic motif-based conductive hydrogel with electrostatic and π-π interactions is designed for the development of ionic skin sensors. The hydrogel possesses high biocompatibility, anti-bacterial activity, especially glucose-responsive property which has not been achieved by previous ionic skins. Due to its unique molecular design, the zwitterionic-aromatic skin sensor exhibits excellent mechanical properties (robust elasticity and large stretchability) and high-sensitive pressure detection (including a gentle finger touch, small water droplets, and vocal cord vibration). More importantly, aromatic motives in phenylboronic acid segments endow the skin with glucose-responsive property. This skin sensor not only shows great potential in wearable e-skins, but also possesses a promising property for the tissue-interfaced and implantable continuous-glucose-monitor biosensors such as smart wound dressing with a high demand of biocompatibility.
Collapse
Affiliation(s)
- Hongshuang Guo
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Ming Bai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Chiyu Wen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Min Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Shu Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Sijia Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Xinmeng Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Yiming Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Pengguang Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Xiangyu Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China.
| |
Collapse
|
29
|
Zhou J, Zhao X, Huang G, Yang X, Zhang Y, Zhan X, Tian H, Xiong Y, Wang Y, Fu W. Molecule-Specific Terahertz Biosensors Based on an Aptamer Hydrogel-Functionalized Metamaterial for Sensitive Assays in Aqueous Environments. ACS Sens 2021; 6:1884-1890. [PMID: 33979138 DOI: 10.1021/acssensors.1c00174] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metamaterial-inspired terahertz (THz) biosensors are devoted to developing high-sensitivity and label-free biosensing strategies. However, most meaningful molecular signals are obscured by the strong THz absorption of solvent water. Most reported THz biosensors require the tested samples to be tediously dried or replaced with a low-absorption medium, which impairs the original bioactivity and the distribution homogeneity of targets. As described in this proposed strategy, a molecule-specific THz biosensor was fabricated from an aptamer hydrogel-functionalized THz metamaterial. Benefitting from the strong interaction with the localized electric field of the metamaterial, trace thrombin-induced variations in the hydration state of the hydrogel can be sensitively probed, which was investigated experimentally and theoretically. The optimized THz biosensor exhibited remarkable specificity for actual serum sample assays and excellent sensitivity, with a relatively low detection limit of 0.40 pM in the human serum matrix. The proposed strategy could serve as a model system to develop various molecule-specific THz biosensors for aqueous molecule sensing.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Guorong Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yang Zhang
- Department of Laboratory Medicine, Chongqing University Cancer Hospital, Chongqing 400038, China
| | - Xinyu Zhan
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Huiyan Tian
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Xiong
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yunxia Wang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
30
|
Chen S, Huang J, Zhou Z, Chen Q, Hong M, Yang S, Heqing Fu. Highly Elastic Anti-fatigue and Anti-freezing Conductive Double Network Hydrogel for Human Body Sensors. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00610] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shaoxian Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P.R. China
| | - Jianren Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P.R. China
| | - Zhaoxi Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Qihui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P.R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P.R. China
| | - Shuibin Yang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Xingang Road 2, Huanggang 438000, P. R. China
| | - Heqing Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P.R. China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| |
Collapse
|
31
|
Dautta M, Jimenez A, Dia KKH, Rashid N, Abdullah Al Faruque M, Tseng P. Wireless Qi-powered, Multinodal and Multisensory Body Area Network for Mobile Health. IEEE INTERNET OF THINGS JOURNAL 2021; 8:7600-7609. [PMID: 33969145 PMCID: PMC8098718 DOI: 10.1109/jiot.2020.3040713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wireless, battery-free Body Area Networks (BAN) enable reliable long-term health monitoring with minimal intervention, and have the potential to transform patient care via mobile health monitoring. Current approaches for achieving such battery-free networks are limited in the number, capability, and positioning of sensing nodes-this is related to constraints in power supply, data rate, and working distance requirements between the wireless power source and sensing nodes. Here, we investigate a Qi-based, near-field power transfer scheme that can effectively drive wireless, battery-free, multi-node and multi-sensor BAN over long distances. This consists of a single Qi power source (such as a cellphone), a detached/untethered Passive Intermediate Relay (PIR) (facilitates power transfer from a central Qi source to multiple nodes on the body), and finally individual/detached sensing nodes placed throughout the body. Alongside this power scheme we implement the star network topology of a Gazell protocol to enable the continuous connection of one host to many sensing nodes while minimizing data loss over long temporal periods. The high-power transmission capabilities of Qi enables wireless support for a multitude of sensors (up to 12), and sensing nodes (up to 6) with a single transmitter at long distances (60 cm) and a sample rate of 20 Hz. This scheme is studied both in-vitro and in-vivo on the body.
Collapse
Affiliation(s)
- Manik Dautta
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, USA - 92697
| | - Abel Jimenez
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, USA - 92697
| | - Kazi Khurshidi Haque Dia
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, USA - 92697
| | - Nafiul Rashid
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, USA - 92697
| | - Mohammad Abdullah Al Faruque
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, USA - 92697
| | - Peter Tseng
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, USA - 92697
| |
Collapse
|
32
|
Saleh G, Ateeq IS, Al-Naib I. Glucose Level Sensing Using Single Asymmetric Split Ring Resonator. SENSORS 2021; 21:s21092945. [PMID: 33922285 PMCID: PMC8122804 DOI: 10.3390/s21092945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/30/2022]
Abstract
In this article, a biosensor composed of a single metamaterial asymmetric resonator is specifically designed for sensing the glucose level of 1 µL of solution. The resonator has two gaps, and one of them ends with a semicircle shape on which the glucose solution is placed. This design helps in confining the drops of glucose solutions in a specific area where the field is maximally confined in order to enhance the electromagnetic wave-matter interaction. Six samples of glucose solutions with concentrations that cover hypoglycemia, normal and hyperglycemia conditions that vary from around 41 to 312 mg/dL were prepared and examined by this biosensor. The resonance frequency redshift was used as a measure of the changes in the glucose level of the solutions. Without glucose solution, an excellent agreement between the measured and simulated transmission amplitude was observed. The increase in glucose concentrations exhibited clear and noticeable redshifts in the resonance frequency. This biosensor revealed a 0.9997 coefficient of determination, which implies an excellent prediction fitting model. More importantly, a sensitivity of 438 kHz/(mg/dL) was observed over the range of concentrations of the aqueous solution.
Collapse
|
33
|
Zhou J, Wang X, Wang Y, Huang G, Yang X, Zhang Y, Xiong Y, Liu L, Zhao X, Fu W. A novel THz molecule-selective sensing strategy in aqueous environments: THz-ATR spectroscopy integrated with a smart hydrogel. Talanta 2021; 228:122213. [PMID: 33773748 DOI: 10.1016/j.talanta.2021.122213] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 01/29/2023]
Abstract
Terahertz (THz) spectroscopy, with fascinating advantages for biomedical applications, is still in its infancy in terms of the selective detection of aqueous biomolecules because the strong absorption of solvent water always obscures the THz spectroscopic features of biomolecules. Nevertheless, solvent water is not a passive spectator but a useful indicator, as this proposed strategy describes. This strategy utilizes THz attenuated total reflection (THz-ATR) spectroscopy to probe the glucose-induced hydration state changes of smart hydrogels for label-free and selective detection of aqueous glucose. A notable dramatic increase in both the THz absorption coefficient and hydration state (calculated by weighing) of the smart hydrogel was observed with increasing aqueous glucose concentration, which was further verified by a simple two-component model. For aqueous glucose sensing, this method surpasses individual THz-ATR devices and exhibits suitable sensitivity, ideal selectivity and excellent reusability. Moreover, the proposed strategy may provide an alternative option for the selective detection of various aqueous molecules by THz spectroscopy.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xuemei Wang
- Department of Laboratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China
| | - Yunxia Wang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Guorong Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Zhang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yu Xiong
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lu Liu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
34
|
Recent Applications of Point-of-Care Devices for Glucose Detection on the Basis of Stimuli-Responsive Volume Phase Transition of Hydrogel. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00001-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Li H, Ma Y, Huang Y. Material innovation and mechanics design for substrates and encapsulation of flexible electronics: a review. MATERIALS HORIZONS 2021; 8:383-400. [PMID: 34821261 DOI: 10.1039/d0mh00483a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Advances in materials and mechanics designs have led to the development of flexible electronics, which have important applications to human healthcare due to their good biocompatibility and conformal integration with biological tissue. Material innovation and mechanics design have played a key role in designing the substrates and encapsulations of flexible electronics for various bio-integrated systems. This review first introduces the inorganic materials and novel organic materials used for the substrates and encapsulation of flexible electronics, and summarizes their mechanics properties, permeability and optical transmission properties. The structural designs of the substrates are then introduced to ensure the reliability of flexible electronics, including the patterned and pre-strained designs to improve the stretchability, and the strain-isolation and -limiting substrates to reduce the deformation. Some emerging encapsulations are presented to protect the flexible electronics from degradation, environmental erosion or contamination, though they may slightly reduce the stretchability of flexible electronics.
Collapse
Affiliation(s)
- Haibo Li
- Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China.
| | | | | |
Collapse
|
36
|
Baghdasaryan Z, Babajanyan A, Odabashyan L, Lee JH, Friedman B, Lee K. Visualization of microwave near-field distribution in sodium chloride and glucose aqueous solutions by a thermo-elastic optical indicator microscope. Sci Rep 2021; 11:2589. [PMID: 33510224 PMCID: PMC7843988 DOI: 10.1038/s41598-020-80328-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
In this study, a new optical method is presented to determine the concentrations of NaCl and glucose aqueous solutions by using a thermo-elastic optical indicator microscope. By measuring the microwave near-field distribution intensity, concentration changes of NaCl and glucose aqueous solutions were detected in the 0-100 mg/ml range, when exposed to microwave irradiation at 12 GHz frequency. Microwave near-field distribution intensity decreased as the NaCl or glucose concentration increased due to the changes of the absorption properties of aqueous solution. This method provides a novel approach for monitoring NaCl and glucose in biological liquids by using a CCD sensor capable of visualizing NaCl and glucose concentrations without scanning.
Collapse
Affiliation(s)
- Zhirayr Baghdasaryan
- Department of Physics, Sogang University, Seoul, 121-742, Korea
- Department of Radiophysics, Yerevan State University, 0025, Yerevan, Armenia
| | - Arsen Babajanyan
- Department of Radiophysics, Yerevan State University, 0025, Yerevan, Armenia
| | - Levon Odabashyan
- Department of Radiophysics, Yerevan State University, 0025, Yerevan, Armenia
| | - Jung-Ha Lee
- Department of Life Science, Sogang University, Seoul, 121-742, Korea
| | - Barry Friedman
- Department of Physics, Sam Houston State University, Huntsville, TX, 77341, USA
| | - Kiejin Lee
- Department of Physics, Sogang University, Seoul, 121-742, Korea.
| |
Collapse
|
37
|
Ye J, Fu S, Zhou S, Li M, Li K, Sun W, Zhai Y. Advances in hydrogels based on dynamic covalent bonding and prospects for its biomedical application. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110024] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Comprehensive characterization of elastomeric polyhydroxyalkanoate and its sensor applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111091. [DOI: 10.1016/j.msec.2020.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 11/22/2022]
|
39
|
Liu Q, Zhong H, Chen M, Zhao C, Liu Y, Xi F, Luo T. Functional nanostructure-loaded three-dimensional graphene foam as a non-enzymatic electrochemical sensor for reagentless glucose detection. RSC Adv 2020; 10:33739-33746. [PMID: 35519067 PMCID: PMC9056722 DOI: 10.1039/d0ra05553k] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Non-enzymatic and reagentless electrochemical sensors for convenient and sensitive detection of glucose are highly desirable for prevention, diagnosis and treatment of diabetes owing to their unique merits of simplicity and easy operation. Facile fabrication of a three-dimensional (3D) sensing interface with non-enzymatic recognition groups and an immobilized electrochemical probe remains challenge. Herein, a novel non-enzymatic electrochemical sensor was developed for the sensitive and reagentless detection of glucose by loading functional nanostructure on 3D graphene. Monolithic and macroporous 3D graphene (3DG) foam grown by chemical vapor deposition (CVD) served as the electrode scaffold. Prussian blue (PB) and gold nanoparticles (AuNPs) were first co-electrodeposited on 3DG (3DG/PB-AuNPs) as immobilized signal indicator and electron conductor. After a polydopamine (PDA) layer was introduced on 3DG/PB-AuNPs via facile self-polymerization of dopamine to stabilize internal PB probes and offer chemical reducibility, the second layer of AuNPs was in situ formed to assemble the recognition ligand, mercaptobenzoboric acid (MPBA). Owing to the high stability of PB and good affinity between MPBA and glucose, the non-enzymatic sensor was able to be used in reagentless detection of glucose with high selectivity, wide linear range (5 μM–65 μM) and low detection limit (1.5 μM). Furthermore, the sensor was used for the detection of glucose level in human serum samples. A non-enzymatic electrochemical sensor was fabricated by loading functional nanostructure on three-dimensional graphene foam for reagentless detection of glucose with high sensitivity and stability.![]()
Collapse
Affiliation(s)
- Qianshi Liu
- Guangxi Medical University Cancer Hospital
- Nanning 530021
- PR China
| | - Huage Zhong
- Guangxi Medical University Cancer Hospital
- Nanning 530021
- PR China
| | - Miao Chen
- Guangxi Medical University Cancer Hospital
- Nanning 530021
- PR China
| | - Chang Zhao
- Guangxi Medical University Cancer Hospital
- Nanning 530021
- PR China
| | - Yan Liu
- Guangxi Medical University Cancer Hospital
- Nanning 530021
- PR China
| | - Fengna Xi
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou
- PR China
| | - Tao Luo
- Guangxi Medical University Cancer Hospital
- Nanning 530021
- PR China
| |
Collapse
|