1
|
Bhavsar A, Pati F, Chakraborty P. Supramolecular Conductive Hydrogels for Tissue Engineering Applications. Chembiochem 2025; 26:e202400733. [PMID: 39462202 DOI: 10.1002/cbic.202400733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Owing to their unique attributes, including reversibility, specificity, directionality, and tunability, supramolecular biomaterials have evolved as an excellent alternative to conventional biomaterials like polymers, ceramics, and metals. Supramolecular hydrogels, in particular, have garnered significant interest because their fibrous architecture, high water content, and interconnected 3D network resemble the extracellular matrix to some extent. Consequently, supramolecular hydrogels have been used to develop biomaterials for tissue engineering. Supramolecular conductive hydrogels combine the advantages of supramolecular soft materials with the electrical properties of metals, making them highly relevant for electrogenic tissue engineering. Given the versatile applications of these hydrogels, it is essential to periodically review high-quality research in this area. In this review, we focus on recent advances in supramolecular conductive hydrogels, particularly their applications in tissue engineering. We discuss the conductive components of these hydrogels and highlight notable reports on their use in cardiac, skin, and neural tissue engineering. Additionally, we outline potential future developments in this field.
Collapse
Affiliation(s)
- Aashwini Bhavsar
- Centre for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| |
Collapse
|
2
|
Campione P, Rizzo MG, Bauso LV, Ielo I, Messina GML, Calabrese G. Osteoblastic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells on P3HT Thin Polymer Film. J Funct Biomater 2025; 16:10. [PMID: 39852566 PMCID: PMC11765816 DOI: 10.3390/jfb16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Bone defects restoration has always been an arduous challenge in the orthopedic field due to the limitations of conventional grafts. Bone tissue engineering offers an alternative approach by using biomimetic materials, stem cells, and growth factors that are able to improve the regeneration of bone tissue. Different biomaterials have attracted great interest in BTE applications, including the poly(3-hexylthiofene) (P3HT) conductive polymer, whose primary advantage is its capability to provide a native extracellular matrix-like environment. Based on this evidence, in this study, we evaluated the biological response of human adipose-derived mesenchymal stem cells cultured on P3HT thin polymer film for 14 days. Our results suggest that P3HT represents a good substrate to induce osteogenic differentiation of osteoprogenitor cells, even in the absence of specific inductive growth factors, thus representing a promising strategy for bone regenerative medicine. Therefore, the system provided may offer an innovative platform for next-generation biocompatible materials for regenerative medicine.
Collapse
Affiliation(s)
- Paola Campione
- Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy;
| | - Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (M.G.R.); (L.V.B.); (I.I.)
| | - Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (M.G.R.); (L.V.B.); (I.I.)
| | - Ileana Ielo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (M.G.R.); (L.V.B.); (I.I.)
| | - Grazia Maria Lucia Messina
- Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy;
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (M.G.R.); (L.V.B.); (I.I.)
| |
Collapse
|
3
|
Guruge AG, Makki H, Troisi A. Structural properties of conductive polymer blends interfaced with water: computational insights from PEDOT:PSS. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:19245-19257. [PMID: 39465130 PMCID: PMC11497116 DOI: 10.1039/d4tc03066d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
In various bioelectronic applications, conductive polymers come into contact with biological tissues, where water is the major component. In this study, we investigated the interface between the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and water, focusing on how the morphology of the PEDOT:PSS is altered by water permeation. We constructed well-equilibrated PEDOT:PSS-water systems in both PEDOT- and PSS-rich phases. Our findings show that water permeates into the polymer through a complex network of water channels, which exhibit a similar pore size distribution in both PEDOT- and PSS-rich phases, leading to similar water intake in these phases. Compared to the dry state of the polymer, water permeation leads to the formation of smaller, less ordered, and distantly located lamella crystallites, potentially resulting in reduced conductivity. Therefore, we argue that these structural changes from the dry state of the polymer to the wet state may be the origin of the significant conductivity reduction observed experimentally in PEDOT:PSS in water or PEDOT:PSS hydrogels.
Collapse
Affiliation(s)
- Amali G Guruge
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Hesam Makki
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| |
Collapse
|
4
|
Wang W, Fu C, Du Y, Zheng H, Zhang Y, Song Y, Sun W, Wang X, Ma Q. Aqueous-Aqueous Triboelectric Nanogenerators Empowered Multifunctional Wound Healing System with Intensified Current Output for Accelerating Infected Wound Repair. Adv Healthc Mater 2024; 13:e2401676. [PMID: 38896055 DOI: 10.1002/adhm.202401676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Triboelectric nanogenerators (TENGs) have emerged as promising devices for generating self-powered therapeutic electrical stimulation over multiple aspects of wound healing. However, the challenge of achieving full 100% contact in conventional TENGs presents a substantial hurdle in the quest for higher current output, which is crucial for further improving healing efficacy. Here, a novel multifunctional wound healing system is presented by integrating the aqueous-aqueous triboelectric nanogenerators (A-A TENGs) with a functionalized conductive hydrogel, aimed at advancing infected wound therapy. The A-A TENGs are founded on a principle of 100% contact interface and efficient post-contact separation of the immiscible interface within the aqueous two-phase system (ATPS), enhancing charge transfer and subsequently increasing current performance. Leveraging this intensified current output, this system demonstrates efficient therapeutic efficacies over infected wounds both in vitro and in vivo, including stimulating fibroblast migration and proliferation, boosting angiogenesis, enhancing collagen deposition, eradicating bacteria, and reducing inflammatory cells. Moreover, the conductive hydrogel ensures the uniformity and integrity of the electric field covering the wound site, and exhibits multiple synergistic therapeutic effects. With the capability to realize accelerated wound healing, the developed "A-A TENGs empowered multifunctional wound healing system" presenting an excellent prospect in clinical wound therapy.
Collapse
Affiliation(s)
- Weijiang Wang
- School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Chongyang Fu
- College of Physics, Qingdao University, Qingdao, 266071, China
| | - Yanfeng Du
- College of Physics, Qingdao University, Qingdao, 266071, China
| | - Huiyuan Zheng
- School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Yage Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518055, China
| | - Yang Song
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Xiaoxiong Wang
- College of Physics, Qingdao University, Qingdao, 266071, China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
5
|
El Guerraf A, Ziani I, Ben Jadi S, El Bachiri A, Bazzaoui M, Bazzaoui EA, Sher F. Smart conducting polymer innovations for sustainable and safe food packaging technologies. Compr Rev Food Sci Food Saf 2024; 23:e70045. [PMID: 39437198 DOI: 10.1111/1541-4337.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Biofilm formation on food packaging surfaces is a major issue in the industry, as it leads to contamination, reduces shelf life, and poses risks to human health. To mitigate these effects, developing smart coatings that can actively sense and combat microbial growth has become a critical research focus. This study is motivated by the need for intelligent packaging solutions that integrate antimicrobial agents and sensors for real-time contamination detection. It is hypothesized that combining conducting polymers (CPs) with nanomaterials can enhance antimicrobial efficacy while maintaining the mechanical integrity and environmental stability required for food packaging applications. Through the application of numerous technologies like surface modification, CP-nanoparticle integration, and multilayered coating, the antimicrobial performance and sensor capabilities of these materials were analyzed. Case studies showed a 90% inhibition of bacterial growth and a tenfold decrease in viable bacterial counts with AgNPs incorporation, extending strawberries' shelf life by 40% and maintaining fish freshness for an additional 5 days. Moreover, multilayered CP coatings in complex systems have been shown to reduce oxidative spoilage in nuts and dried fruits by up to 85%, while maintaining the quality of leafy greens for up to 3 weeks under suboptimal conditions. Environmental assessments indicated a 30% reduction in carbon footprint when CP coatings were combined with biodegradable polymers, contributing to a more transparent and reliable food supply chain. CP-based films integrated with intelligent sensors exhibit high sensitivity, detecting ammonia concentrations below 500 ppb, and offer significant selectivity for sensing hazardous gases. These findings indicate that CP-based smart coatings markedly enhance food safety and sustainability in packaging applications.
Collapse
Affiliation(s)
- Abdelqader El Guerraf
- Laboratory of Applied Chemistry and Environment, Department of chemistry, Faculty of Sciences and Technologies, Hassan First University, Settat, Morocco
- International Society of Engineering Science and Technology, Nottingham, UK
| | - Imane Ziani
- International Society of Engineering Science and Technology, Nottingham, UK
- Laboratory of Applied Chemistry and Environment, Department of chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Sana Ben Jadi
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- Cité de l'innovation Souss Massa, Agadir, Morocco
| | - Ali El Bachiri
- Laboratory of Applied Chemistry and Environment, Department of chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Mohammed Bazzaoui
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- Cité de l'innovation Souss Massa, Agadir, Morocco
| | - El Arbi Bazzaoui
- Laboratory of Applied Chemistry and Environment, Department of chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
6
|
Mirzajani H, Kraft M. Soft Bioelectronics for Heart Monitoring. ACS Sens 2024; 9:4328-4363. [PMID: 39239948 DOI: 10.1021/acssensors.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Cardiovascular diseases (CVDs) are a predominant global health concern, accounting for over 17.9 million deaths in 2019, representing approximately 32% of all global fatalities. In North America and Europe, over a million adults undergo cardiac surgeries annually. Despite the benefits, such surgeries pose risks and require precise postsurgery monitoring. However, during the postdischarge period, where monitoring infrastructures are limited, continuous monitoring of vital signals is hindered. In this area, the introduction of implantable electronics is altering medical practices by enabling real-time and out-of-hospital monitoring of physiological signals and biological information postsurgery. The multimodal implantable bioelectronic platforms have the capability of continuous heart sensing and stimulation, in both postsurgery and out-of-hospital settings. Furthermore, with the emergence of machine learning algorithms into healthcare devices, next-generation implantables will benefit artificial intelligence (AI) and connectivity with skin-interfaced electronics to provide more precise and user-specific results. This Review outlines recent advancements in implantable bioelectronics and their utilization in cardiovascular health monitoring, highlighting their transformative deployment in sensing and stimulation to the heart toward reaching truly personalized healthcare platforms compatible with the Sustainable Development Goal 3.4 of the WHO 2030 observatory roadmap. This Review also discusses the challenges and future prospects of these devices.
Collapse
Affiliation(s)
- Hadi Mirzajani
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450 Turkey
| | - Michael Kraft
- Department of Electrical Engineering (ESAT-MNS), KU Leuven, 3000 Leuven, Belgium
- Leuven Institute for Micro- and Nanoscale Integration (LIMNI), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
7
|
Eom T, Ozlu B, Ivanová L, Lee S, Lee H, Krajčovič J, Shim BS. Multifunctional Natural and Synthetic Melanin for Bioelectronic Applications: A Review. Biomacromolecules 2024; 25:5489-5511. [PMID: 39194016 DOI: 10.1021/acs.biomac.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Emerging material interest in bioelectronic applications has highlighted natural melanin and its derivatives as promising alternatives to conventional synthetic conductors. These materials, traditionally noted for their adhesive, antioxidant, biocompatible, and biodegradable properties, have barely been used as conductors due to their extremely low electrical activities. However, recent studies have demonstrated good conductive properties in melanin materials that promote electronic-ionic hybrid charge transfer, attributed to the formation of an extended conjugated backbone. This review examines the multifunctional properties of melanin materials, focusing on their chemical and electrochemical synthesis and their resulting structure-property-function relationship. The wide range of bioelectronic applications will also be presented to highlight their importance and potential to expand into new design concepts for high-performance electronic functional materials. The review concludes by addressing the current challenges in utilizing melanin for biodegradable bioelectronics, providing a perspective on future developments.
Collapse
Affiliation(s)
- Taesik Eom
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- KIURI Center for Hydrogen Based Next Generation Mechanical System, Inha University, 36 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, South Korea
| | - Busra Ozlu
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - Lucia Ivanová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-612 00 Brno, Czech Republic
| | - Seunghyeon Lee
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - HyeonJeong Lee
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - Jozef Krajčovič
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-612 00 Brno, Czech Republic
| | - Bong Sup Shim
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| |
Collapse
|
8
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Wang Z, Xiao M, Li Z, Wang X, Li F, Yang H, Chen Y, Zhu Z. Microneedle Patches-Integrated Transdermal Bioelectronics for Minimally Invasive Disease Theranostics. Adv Healthc Mater 2024; 13:e2303921. [PMID: 38341619 DOI: 10.1002/adhm.202303921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Wearable epidermal electronics with non- or minimally-invasive characteristics can collect, transduce, communicate, and interact with accessible physicochemical health indicators on the skin. However, due to the stratum corneum layer, rich information about body health is buried under the skin stratum corneum layer, for example, in the skin interstitial fluid. Microneedle patches are typically designed with arrays of special microsized needles of length within 1000 µm. Such characteristics potentially enable the access and sample of biomolecules under the skin or give therapeutical treatment painlessly and transdermally. Integrating microneedle patches with various electronics allows highly efficient transdermal bioelectronics, showing their great promise for biomedical and healthcare applications. This comprehensive review summarizes and highlights the recent progress on integrated transdermal bioelectronics based on microneedle patches. The design criteria and state-of-the-art fabrication techniques for such devices are initially discussed. Next, devices with different functions, including but not limited to health monitoring, drug delivery, and therapeutical treatment, are highlighted in detail. Finally, key issues associated with current technologies and future opportunities are elaborated to sort out the state of recent research, point out potential bottlenecks, and provide future research directions.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Fangjie Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Huayuan Yang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- Health Industry Innovation Center, Xin-Huangpu Joint Innovation Institute of Chinese Medicine, 81 Xiangxue Middle Avenue, Huangpu District, Guangzhou, Guangdong Province, 510799, China
| |
Collapse
|
10
|
Nasser RA, Arya SS, Alshehhi KH, Teo JCM, Pitsalidis C. Conducting polymer scaffolds: a new frontier in bioelectronics and bioengineering. Trends Biotechnol 2024; 42:760-779. [PMID: 38184439 DOI: 10.1016/j.tibtech.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/08/2024]
Abstract
Conducting polymer (CP) scaffolds have emerged as a transformative tool in bioelectronics and bioengineering, advancing the ability to interface with biological systems. Their unique combination of electrical conductivity, tailorability, and biocompatibility surpasses the capabilities of traditional nonconducting scaffolds while granting them access to the realm of bioelectronics. This review examines recent developments in CP scaffolds, focusing on material and device advancements, as well as their interplay with biological systems. We highlight applications for monitoring, tissue stimulation, and drug delivery and discuss perspectives and challenges currently faced for their ultimate translation and clinical implementation.
Collapse
Affiliation(s)
- Rasha A Nasser
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Sagar S Arya
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Khulood H Alshehhi
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Jeremy C M Teo
- Mechanical and Biomedical Engineering Department, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE; Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE.
| |
Collapse
|
11
|
Jeon SH, Ozlu B, Shim BS. Multifunctional Poly(3,4-ethylenedioxythiophene)/Crystalline Nanofibrous Cellulose Composites for Eco-Friendly and Sustainable Electronics. Biomacromolecules 2024; 25:644-654. [PMID: 38170167 DOI: 10.1021/acs.biomac.3c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Nanocellulose constitutes promising resources for next-generation electronics, particularly when incorporated with conductive polymers due to their abundance, renewability, processability, biodegradability, flexibility, and mechanical performance. In this study, electrically conducting cellulose nanofibers were fabricated through in situ chemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) on the surface of sulfuric acid-treated cellulose nanofibers (SACN). The utilization of highly crystalline SACN extracted from tunicate yielded synergistic effects in PEDOT polymerization for achieving a highly conductive and molecularly uniform coating. Polymerization parameters, such as monomer concentration, molar ratio with oxidants, and temperature, were systematically investigated. High electrical conductivity of up to 57.8 S cm-1 was obtained without utilizing the classical polystyrenesulfonate dopant. The resulting nanocomposite demonstrates the unique advantages of both electrically conductive PEDOT and mechanically robust high-crystalline cellulose nanofibers. As a proof-of-applicational concept, an electrical circuit was drawn with SACN-PEDOT as the conductive ink on flexible paper using a simple commercial extrusion-based printer. Furthermore, the flame-retardant property of SACN-PEDOT was demonstrated owing to the high crystallinity of SACN, effective char formation, and high conductivity of PEDOT. The multifunctional SACN-PEDOT developed in this study shows great promise to be employed in versatile applications as a low-cost, ecofriendly, flexible, and sustainable electrically conductive material.
Collapse
Affiliation(s)
- So Hui Jeon
- Department of Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Busra Ozlu
- Program in Biomedical Science & Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Bong Sup Shim
- Department of Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
12
|
Hu X, Wang J, Song S, Gan W, Li W, Qi H, Zhang Y. Ionic conductive konjac glucomannan/liquid crystal cellulose composite hydrogels with dual sensing of photo- and electro-signals capacities as wearable strain sensors. Int J Biol Macromol 2024; 258:129038. [PMID: 38154724 DOI: 10.1016/j.ijbiomac.2023.129038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
The ionic conductive hydrogel-based sensor exhibits wide applications in wearable electronic devices. However, the strength and ductility trade-off, multimodal requirements, and water-soluble polymer alternatives are significant challenges for the hydrogel-based sensor. Herein, a stretchable and conductive hydrogel is developed with a double network formed by incorporating polyacrylamide and ionic liquid into the konjac glucomannan network. The hydrogel displays significantly enhanced mechanical properties, and good tear/puncture resistance owing to the existence of covalent and non-covalent interactions. In addition, by the introduction of nematic liquid crystal hydroxypropyl cellulose, the hydrogel/cellulose-based strain sensor demonstrates excellent sensing performance in monitoring human motions and writing recognition ability with optical and electrical bimodal sensing response. This work provides new insights to further expand the options of hydrogel-based sensor matrix and to construct bimodal sensors.
Collapse
Affiliation(s)
- Xintong Hu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Jianhua Wang
- Suzhou Institute of Green Fiber Technology, Jiangsu Guowang High-tech Fiber Co., Ltd., Suzhou, Jiangsu 215221, PR China
| | - Shiqiang Song
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China; Suzhou Institute of Green Fiber Technology, Jiangsu Guowang High-tech Fiber Co., Ltd., Suzhou, Jiangsu 215221, PR China; State Key Laboratory for Metal Matrix Composite Materials, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Wenjun Gan
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Weizhen Li
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Hechuang Qi
- School of Mechanical and Automobile Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Yong Zhang
- State Key Laboratory for Metal Matrix Composite Materials, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
13
|
Li TT, Wang S, Li J, Zhang Y, Liu X, Liu L, Peng HK, Ren HT, Ling L, Lin JH, Lou CW. Braided scaffolds with polypyrrole/polydopamine/hydroxyapatite coatings with electrical conductivity and osteogenic properties for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2498-2515. [PMID: 37795599 DOI: 10.1080/09205063.2023.2265134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023]
Abstract
When impaired bones are grafted with bone scaffolds, the behaviors of osteoblast are dependent on the implant materials and surface morphology. To this end, we modulated the surface morphology of scaffolds that promote cell growth. In this study, ice-template and spraying method methods are employed to coat different proportions of PDA and PPy over the PLA/PVA weaving scaffolds, after which HA is Coated over via the electrochemical deposition, forming weaving scaffolds with electrically conductive PDA/PPy/HA coating. The test results indicate that with a PPy/PDA concentration ratio is 30, the PPy particles are more uniformly distributed on the fiber surface. The scaffolds are wrapped in a HA coating layer with a high purity, and calcium and phosphorus elements are evenly dispersed with a Ca/P ratio being 1.69. Owing to the synergistic effect between PDA and PPy coating, the scaffolds demonstrate excellent electrochemical stability and electrochemical activity. The biological activity of the scaffold increased to 274.66% under electrical stimulation. The new thinking proposed by this study extends the worth of applying textile structure to the medical field, the application of which highly increases the prospect of bone tissue engineering.
Collapse
Affiliation(s)
- Ting-Ting Li
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
| | - Shiqi Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Jiaxin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Ying Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Xing Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Liyan Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Hao-Kai Peng
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
| | - Hai-Tao Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
| | - Lei Ling
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, China
| | - Jia-Horng Lin
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
- College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
- Department of Medical Research, China Medical University Hospital China Medica University, Taichung City, Taiwan
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou, China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City, Taiwan
| | - Ching-Wen Lou
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
- College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
- Department of Medical Research, China Medical University Hospital China Medica University, Taichung City, Taiwan
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou, China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City, Taiwan
| |
Collapse
|
14
|
Corrado F, Bruno U, Prato M, Carella A, Criscuolo V, Massaro A, Pavone M, Muñoz-García AB, Forti S, Coletti C, Bettucci O, Santoro F. Azobenzene-based optoelectronic transistors for neurohybrid building blocks. Nat Commun 2023; 14:6760. [PMID: 37919279 PMCID: PMC10622443 DOI: 10.1038/s41467-023-41083-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/21/2023] [Indexed: 11/04/2023] Open
Abstract
Exploiting the light-matter interplay to realize advanced light responsive multimodal platforms is an emerging strategy to engineer bioinspired systems such as optoelectronic synaptic devices. However, existing neuroinspired optoelectronic devices rely on complex processing of hybrid materials which often do not exhibit the required features for biological interfacing such as biocompatibility and low Young's modulus. Recently, organic photoelectrochemical transistors (OPECTs) have paved the way towards multimodal devices that can better couple to biological systems benefiting from the characteristics of conjugated polymers. Neurohybrid OPECTs can be designed to optimally interface neuronal systems while resembling typical plasticity-driven processes to create more sophisticated integrated architectures between neuron and neuromorphic ends. Here, an innovative photo-switchable PEDOT:PSS was synthesized and successfully integrated into an OPECT. The OPECT device uses an azobenzene-based organic neuro-hybrid building block to mimic the retina's structure exhibiting the capability to emulate visual pathways. Moreover, dually operating the device with opto- and electrical functions, a light-dependent conditioning and extinction processes were achieved faithful mimicking synaptic neural functions such as short- and long-term plasticity.
Collapse
Affiliation(s)
- Federica Corrado
- Institute of Biological Information Processing IBI-3 Bioelectronics, Forschungszentrum Juelich, 52428, Juelich, Germany
- Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, 52074, Aachen, Germany
- Tissue Electronics, Center fo Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125, Naples, Italy
| | - Ugo Bruno
- Tissue Electronics, Center fo Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125, Naples, Italy
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, 80125, Naples, Italy
| | - Mirko Prato
- Materials Characterization Facility, Istituto Italiano di Tecnologia, 16163, Genoa, Italy
| | - Antonio Carella
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Valeria Criscuolo
- Institute of Biological Information Processing IBI-3 Bioelectronics, Forschungszentrum Juelich, 52428, Juelich, Germany
- Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, 52074, Aachen, Germany
- Tissue Electronics, Center fo Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125, Naples, Italy
| | - Arianna Massaro
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Michele Pavone
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Ana B Muñoz-García
- Dipartimento di Fisica "E. Pancini", Università degli Studi di Napoli "Federico II", Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Stiven Forti
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, 56127, Pisa, Italy
| | - Camilla Coletti
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, 56127, Pisa, Italy
| | - Ottavia Bettucci
- Tissue Electronics, Center fo Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125, Naples, Italy.
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center - MIB-Solar, University of Milano-Bicocca, 20125, Milano, Italy.
| | - Francesca Santoro
- Institute of Biological Information Processing IBI-3 Bioelectronics, Forschungszentrum Juelich, 52428, Juelich, Germany.
- Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, 52074, Aachen, Germany.
- Tissue Electronics, Center fo Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125, Naples, Italy.
| |
Collapse
|
15
|
Shokrollahi P, Omidi Y, Cubeddu LX, Omidian H. Conductive polymers for cardiac tissue engineering and regeneration. J Biomed Mater Res B Appl Biomater 2023; 111:1979-1995. [PMID: 37306139 DOI: 10.1002/jbm.b.35293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Cardiovascular diseases, such as myocardial infarction, are considered a significant global burden and the leading cause of death. Given the inability of damaged cardiac tissue to self-repair, cell-based tissue engineering and regeneration may be the only viable option for restoring normal heart function. To maintain the normal excitation-contraction coupling function of cardiac tissue, uniform electronic and ionic conductance properties are required. To transport cells to damaged cardiac tissues, several techniques, including the incorporation of cells into conductive polymers (CPs) and biomaterials, have been utilized. Due to the complexity of cardiac tissues, the success of tissue engineering for the damaged heart is highly dependent on several variables, such as the cell source, growth factors, and scaffolds. In this review, we sought to provide a comprehensive overview of the electro CPs and biomaterials used in the engineering and regeneration of heart tissue.
Collapse
Affiliation(s)
- Parvin Shokrollahi
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Luigi X Cubeddu
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
16
|
Ziai Y, Zargarian SS, Rinoldi C, Nakielski P, Sola A, Lanzi M, Truong YB, Pierini F. Conducting polymer-based nanostructured materials for brain-machine interfaces. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1895. [PMID: 37141863 DOI: 10.1002/wnan.1895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
As scientists discovered that raw neurological signals could translate into bioelectric information, brain-machine interfaces (BMI) for experimental and clinical studies have experienced massive growth. Developing suitable materials for bioelectronic devices to be used for real-time recording and data digitalizing has three important necessitates which should be covered. Biocompatibility, electrical conductivity, and having mechanical properties similar to soft brain tissue to decrease mechanical mismatch should be adopted for all materials. In this review, inorganic nanoparticles and intrinsically conducting polymers are discussed to impart electrical conductivity to systems, where soft materials such as hydrogels can offer reliable mechanical properties and a biocompatible substrate. Interpenetrating hydrogel networks offer more mechanical stability and provide a path for incorporating polymers with desired properties into one strong network. Promising fabrication methods, like electrospinning and additive manufacturing, allow scientists to customize designs for each application and reach the maximum potential for the system. In the near future, it is desired to fabricate biohybrid conducting polymer-based interfaces loaded with cells, giving the opportunity for simultaneous stimulation and regeneration. Developing multi-modal BMIs, Using artificial intelligence and machine learning to design advanced materials are among the future goals for this field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Yasamin Ziai
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Antonella Sola
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Business Unit, Clayton, Victoria, Australia
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | - Yen Bach Truong
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Business Unit, Clayton, Victoria, Australia
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
17
|
Kim JS, Kim J, Lim JW, Kim DJ, Lee JI, Choi H, Kweon H, Lee J, Yee H, Kim JH, Kim B, Kang MS, Jeong JH, Park SM, Kim DH. Implantable Multi-Cross-Linked Membrane-Ionogel Assembly for Reversible Non-Faradaic Neurostimulation. ACS NANO 2023; 17:14706-14717. [PMID: 37498185 DOI: 10.1021/acsnano.3c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Neural interfaces play a major role in modulating neural signals for therapeutic purposes. To meet the demand of conformable neural interfaces for developing bioelectronic medicine, recent studies have focused on the performance of electrical neurostimulators employing soft conductors such as conducting polymers and electronic or ionic conductive hydrogels. However, faradaic charge injection at the interface of the electrode and nerve tissue causes irreversible gas evolution, oxidation of electrodes, and reduction of biological ions, thus causing undesired tissue damage and electrode degradation. Here we report a conformable neural interface engineering based on multicross-linked membrane-ionogel assembly (termed McMiA), which enables nonfaradaic neurostimulation without irreversible charge transfer reaction. The McMiA consists of a genipin-cross-linked biopolymeric ionogel coupled with a dopamine-cross-linked graphene oxide membrane to prevent ion exchange between biological and synthetic McMiA ions and to function as a bioadhesive forming covalent bonds with the target tissues. In addition, the demonstration of bioelectronic medicine via the McMiA-based neurostimulation of sciatic nerves shows the enhanced clinical utility in treating the overactive bladder syndrome. As the McMiA-based neural interface is soft, robust for bioadhesion, and stable in a physiological environment, it can offer significant advancement in biocompatibility and long-term operability for neural interface engineering.
Collapse
Affiliation(s)
- Joo Sung Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Junho Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jun Woo Lim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Dong Jun Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jong Ik Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Hanbin Choi
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyukmin Kweon
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jiho Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyeono Yee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Ji Hong Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Bokyung Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Moon Sung Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
- Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea
| | - Jae Hyun Jeong
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Sung-Min Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Do Hwan Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
18
|
Zhao Q, Zhu M, Tian G, Liang C, Liu Z, Huang J, Yu QY, Tang S, Chen J, Zhao X, Zeng Q, Guo C, Qi D. Highly Sensitive and Omnidirectionally Stretchable Bioelectrode Arrays for In Vivo Neural Interfacing. Adv Healthc Mater 2023; 12:e2203344. [PMID: 36974567 DOI: 10.1002/adhm.202203344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Flexible electrode array, a new-generation neural microelectrode, is a crucial tool for information exchange between living tissues and external electronics. Till date, advances in flexible neural microelectrodes are limited because of their high impedance and poor mechanical consistency at tissue interfaces. Herein, a highly sensitive and omnidirectionally stretchable polymeric electrode array (PEA) is introduced. Micropyramid-nanowire composite structures are constructed to increase the effective surface area of PEA, achieving an exponential reduction in impedance compared with gold (Au) and flat polypyrrole electrodes. Moreover, for the first time, a suspended umbrella structure to enable PEA with omnidirectional stretchability of up to ≈20% is designed. The PEA can withstand 1000 cycles of mechanical loads without decrease in performance. As a proof of concept, PEA is conformally attached to a rat heart and tibialis anterior muscle, and electrophysiological signals (electrocardiogram and electromyogram) of the rat are successfully recorded. This strategy provides a new perspective toward highly sensitive and omnidirectionally stretchable PEA that can facilitate the practical application of neural electrodes.
Collapse
Affiliation(s)
- Qinyi Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Ming Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Gongwei Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Cuiyuan Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Zhiyuan Liu
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jianping Huang
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qianheng Yuan Yu
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Shuanglong Tang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Jianhui Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Xizheng Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Qi Zeng
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Chongshen Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
- State Key Laboratory of Urban Water Resource and Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
19
|
Wei L, Wang S, Shan M, Li Y, Wang Y, Wang F, Wang L, Mao J. Conductive fibers for biomedical applications. Bioact Mater 2023; 22:343-364. [PMID: 36311045 PMCID: PMC9588989 DOI: 10.1016/j.bioactmat.2022.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
Abstract
Bioelectricity has been stated as a key factor in regulating cell activity and tissue function in electroactive tissues. Thus, various biomedical electronic constructs have been developed to interfere with cell behaviors to promote tissue regeneration, or to interface with cells or tissue/organ surfaces to acquire physiological status via electrical signals. Benefiting from the outstanding advantages of flexibility, structural diversity, customizable mechanical properties, and tunable distribution of conductive components, conductive fibers are able to avoid the damage-inducing mechanical mismatch between the construct and the biological environment, in return to ensure stable functioning of such constructs during physiological deformation. Herein, this review starts by presenting current fabrication technologies of conductive fibers including wet spinning, microfluidic spinning, electrospinning and 3D printing as well as surface modification on fibers and fiber assemblies. To provide an update on the biomedical applications of conductive fibers and fiber assemblies, we further elaborate conductive fibrous constructs utilized in tissue engineering and regeneration, implantable healthcare bioelectronics, and wearable healthcare bioelectronics. To conclude, current challenges and future perspectives of biomedical electronic constructs built by conductive fibers are discussed.
Collapse
Affiliation(s)
- Leqian Wei
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Shasha Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Mengqi Shan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yimeng Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yongliang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao City, Shandong Province, 266071, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
20
|
Duan D, Wang J, Han P, Liu X, Zhao L, Ma S. Dual-monomer molecularly imprinted electrochemical sensor based on amino-functionalized MOFs and graphene for trace determination of taurine. Mikrochim Acta 2023; 190:162. [PMID: 36988765 DOI: 10.1007/s00604-023-05751-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
A molecularly imprinted electrochemical sensor (MIECS) for trace determination of taurine was developed. The sensor was constructed by electropolymerizing dopamine and o-phenylenediamine as dual monomers on the surface of amino-functionalized iron-based MOFs and graphene composite-modified electrode. The porous structure and large specific surface area of amino-functionalized iron-based MOFs not only increase the number of imprinted sites, but also facilitate the binding of molecularly imprinted films. The presence of dual monomers can increase the binding sites during the formation of imprinted films. The linear range of this sensor for taurine detection is 1.00 × 10-14-1.00 × 10-8 mol L-1 with a determination limit of 3.20 × 10-15 mol L-1. The proposed MIECS was successfully applied to quantify the amount of taurine in human serum sample with good recovery values from 97.3 to 113%.
Collapse
Affiliation(s)
- Dingding Duan
- Nanyang Institute of Technology, Nanyang, Henan, China.
| | - Jun Wang
- Nanyang Institute of Technology, Nanyang, Henan, China
| | - Pengxin Han
- Nanyang Institute of Technology, Nanyang, Henan, China
| | - Xin Liu
- Nanyang Institute of Technology, Nanyang, Henan, China
| | - Luhang Zhao
- Nanyang Institute of Technology, Nanyang, Henan, China
| | - Shenao Ma
- Nanyang Institute of Technology, Nanyang, Henan, China
| |
Collapse
|
21
|
Rinoldi C, Ziai Y, Zargarian SS, Nakielski P, Zembrzycki K, Haghighat Bayan MA, Zakrzewska AB, Fiorelli R, Lanzi M, Kostrzewska-Księżyk A, Czajkowski R, Kublik E, Kaczmarek L, Pierini F. In Vivo Chronic Brain Cortex Signal Recording Based on a Soft Conductive Hydrogel Biointerface. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6283-6296. [PMID: 36576451 DOI: 10.1021/acsami.2c17025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In neuroscience, the acquisition of neural signals from the brain cortex is crucial to analyze brain processes, detect neurological disorders, and offer therapeutic brain-computer interfaces. The design of neural interfaces conformable to the brain tissue is one of today's major challenges since the insufficient biocompatibility of those systems provokes a fibrotic encapsulation response, leading to an inaccurate signal recording and tissue damage precluding long-term/permanent implants. The design and production of a novel soft neural biointerface made of polyacrylamide hydrogels loaded with plasmonic silver nanocubes are reported herein. Hydrogels are surrounded by a silicon-based template as a supporting element for guaranteeing an intimate neural-hydrogel contact while making possible stable recordings from specific sites in the brain cortex. The nanostructured hydrogels show superior electroconductivity while mimicking the mechanical characteristics of the brain tissue. Furthermore, in vitro biological tests performed by culturing neural progenitor cells demonstrate the biocompatibility of hydrogels along with neuronal differentiation. In vivo chronic neuroinflammation tests on a mouse model show no adverse immune response toward the nanostructured hydrogel-based neural interface. Additionally, electrocorticography acquisitions indicate that the proposed platform permits long-term efficient recordings of neural signals, revealing the suitability of the system as a chronic neural biointerface.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw02-106, Poland
| | - Yasamin Ziai
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw02-106, Poland
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw02-106, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw02-106, Poland
| | - Krzysztof Zembrzycki
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw02-106, Poland
| | - Mohammad Ali Haghighat Bayan
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw02-106, Poland
| | - Anna Beata Zakrzewska
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw02-106, Poland
| | - Roberto Fiorelli
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw02-106, Poland
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum University of Bologna, Bologna40136, Italy
| | | | - Rafał Czajkowski
- Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw02-093, Poland
| | - Ewa Kublik
- Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw02-093, Poland
| | - Leszek Kaczmarek
- Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw02-093, Poland
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw02-106, Poland
| |
Collapse
|
22
|
Sun F, Jiang H, Wang H, Zhong Y, Xu Y, Xing Y, Yu M, Feng LW, Tang Z, Liu J, Sun H, Wang H, Wang G, Zhu M. Soft Fiber Electronics Based on Semiconducting Polymer. Chem Rev 2023; 123:4693-4763. [PMID: 36753731 DOI: 10.1021/acs.chemrev.2c00720] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Fibers, originating from nature and mastered by human, have woven their way throughout the entire history of human civilization. Recent developments in semiconducting polymer materials have further endowed fibers and textiles with various electronic functions, which are attractive in applications such as information interfacing, personalized medicine, and clean energy. Owing to their ability to be easily integrated into daily life, soft fiber electronics based on semiconducting polymers have gained popularity recently for wearable and implantable applications. Herein, we present a review of the previous and current progress in semiconducting polymer-based fiber electronics, particularly focusing on smart-wearable and implantable areas. First, we provide a brief overview of semiconducting polymers from the viewpoint of materials based on the basic concepts and functionality requirements of different devices. Then we analyze the existing applications and associated devices such as information interfaces, healthcare and medicine, and energy conversion and storage. The working principle and performance of semiconducting polymer-based fiber devices are summarized. Furthermore, we focus on the fabrication techniques of fiber devices. Based on the continuous fabrication of one-dimensional fiber and yarn, we introduce two- and three-dimensional fabric fabricating methods. Finally, we review challenges and relevant perspectives and potential solutions to address the related problems.
Collapse
Affiliation(s)
- Fengqiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yueheng Zhong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiman Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yi Xing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Muhuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Key Laboratory of Lightweight Structural Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Jun Liu
- National Key Laboratory on Electromagnetic Environment Effects and Electro-Optical Engineering, Nanjing 210007, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
23
|
Acosta M, Santiago MD, Irvin JA. Electrospun Conducting Polymers: Approaches and Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248820. [PMID: 36556626 PMCID: PMC9782039 DOI: 10.3390/ma15248820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 05/14/2023]
Abstract
Inherently conductive polymers (CPs) can generally be switched between two or more stable oxidation states, giving rise to changes in properties including conductivity, color, and volume. The ability to prepare CP nanofibers could lead to applications including water purification, sensors, separations, nerve regeneration, wound healing, wearable electronic devices, and flexible energy storage. Electrospinning is a relatively inexpensive, simple process that is used to produce polymer nanofibers from solution. The nanofibers have many desirable qualities including high surface area per unit mass, high porosity, and low weight. Unfortunately, the low molecular weight and rigid rod nature of most CPs cannot yield enough chain entanglement for electrospinning, instead yielding polymer nanoparticles via an electrospraying process. Common workarounds include co-extruding with an insulating carrier polymer, coaxial electrospinning, and coating insulating electrospun polymer nanofibers with CPs. This review explores the benefits and drawbacks of these methods, as well as the use of these materials in sensing, biomedical, electronic, separation, purification, and energy conversion and storage applications.
Collapse
Affiliation(s)
- Mariana Acosta
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
| | - Marvin D. Santiago
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Jennifer A. Irvin
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
- Correspondence:
| |
Collapse
|
24
|
Mediate neurite outgrowth of PC-12 cells using polypyrrole-assisted laser-induced graphene flexible composite electrodes combined with electrical stimulation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Lee S, M Silva S, Caballero Aguilar LM, Eom T, Moulton SE, Shim BS. Biodegradable bioelectronics for biomedical applications. J Mater Chem B 2022; 10:8575-8595. [PMID: 36214325 DOI: 10.1039/d2tb01475k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biodegradable polymers have been widely used in tissue engineering with the potential to be replaced by regenerative tissue. While conventional bionic interfaces are designed to be implanted in living tissue and organs permanently, biocompatible and biodegradable electronic materials are now progressing a paradigm shift towards transient and regenerative bionic engineering. For example, biodegradable bioelectronics can monitor physiologies in a body, transiently rehabilitate disease symptoms, and seamlessly form regenerative interfaces from synthetic electronic devices to tissues by reducing inflammatory foreign-body responses. Conventional electronic materials have not readily been considered biodegradable. However, several strategies have been adopted for designing electroactive and biodegradable materials systems: (1) conductive materials blended with biodegradable components, (2) molecularly engineered conjugated polymers with biodegradable moieties, (3) naturally derived conjugated biopolymers, and (4) aqueously dissolvable metals with encapsulating layers. In this review, we endeavor to present the technical bridges from electrically active and biodegradable material systems to edible and biodegradable electronics as well as transient bioelectronics with pre-clinical bio-instrumental applications, including biodegradable sensors, neural and tissue engineering, and intelligent drug delivery systems.
Collapse
Affiliation(s)
- Seunghyeon Lee
- Program in Biomedical Science & Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. .,Department of Chemical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Saimon M Silva
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia. .,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Lilith M Caballero Aguilar
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia. .,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Taesik Eom
- Program in Biomedical Science & Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. .,Department of Chemical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia. .,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Bong Sup Shim
- Program in Biomedical Science & Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. .,Department of Chemical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| |
Collapse
|
26
|
Nguyen DM, Wu Y, Nolin A, Lo CY, Guo T, Dhong C, Martin DC, Kayser LV. Electronically Conductive Hydrogels by in Situ Polymerization of a Water-Soluble EDOT-Derived Monomer. ADVANCED ENGINEERING MATERIALS 2022; 24:2200280. [PMID: 36275121 PMCID: PMC9586015 DOI: 10.1002/adem.202200280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 05/30/2023]
Abstract
Electronically conductive hydrogels have gained popularity in bioelectronic interfaces because their mechanical properties are similar to biological tissues, potentially preventing scaring in implanted electronics. Hydrogels have low elastic moduli, due to their high water content, which facilitates their integration with biological tissues. To achieve electronically conductive hydrogels, however, requires the integration of conducting polymers or nanoparticles. These “hard” components increase the elastic modulus of the hydrogel, removing their desirable compatibility with biological tissues, or lead to the heterogeneous distribution of the conductive material in the hydrogel scaffold. A general strategy to transform hydrogels into electronically conductive hydrogels without affecting the mechanical properties of the parent hydrogel is still lacking. Herein, a two‐step method is reported for imparting conductivity to a range of different hydrogels by in‐situ polymerization of a water‐soluble and neutral conducting polymer precursor: 3,4–ethylenedioxythiophene diethylene glycol (EDOT‐DEG). The resulting conductive hydrogels are homogenous, have conductivities around 0.3 S m−1, low impedance, and maintain an elastic modulus of 5–15 kPa, which is similar to the preformed hydrogel. The simple preparation and desirable properties of the conductive hydrogels are likely to lead to new materials and applications in tissue engineering, neural interfaces, biosensors, and electrostimulation.
Collapse
Affiliation(s)
- Dan My Nguyen
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716, United States
| | - Yuhang Wu
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Abigail Nolin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Chun-Yuan Lo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716, United States
| | - Tianzheng Guo
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Charles Dhong
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - David C Martin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Laure V Kayser
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| |
Collapse
|
27
|
Guo J, Wang Y, Zhang H, Zhao Y. Conductive Materials with Elaborate Micro/Nanostructures for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110024. [PMID: 35081264 DOI: 10.1002/adma.202110024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Bioelectronics, an emerging field with the mutual penetration of biological systems and electronic sciences, allows the quantitative analysis of complicated biosignals together with the dynamic regulation of fateful biological functions. In this area, the development of conductive materials with elaborate micro/nanostructures has been of great significance to the improvement of high-performance bioelectronic devices. Thus, here, a comprehensive and up-to-date summary of relevant research studies on the fabrication and properties of conductive materials with micro/nanostructures and their promising applications and future opportunities in bioelectronic applications is presented. In addition, a critical analysis of the current opportunities and challenges regarding the future developments of conductive materials with elaborate micro/nanostructures for bioelectronic applications is also presented.
Collapse
Affiliation(s)
- Jiahui Guo
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100101, China
| |
Collapse
|
28
|
See Me, Feel Me, Touch Me, Heal Me: A Contextual Overview of Conductive Polymer Composites as Synthetic Human Skin. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6050141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fields of polymer science, conductive composites, materials engineering, robotics, and human perception intersect at the development and application of synthetic human skin. To be accepted by human users, artificial human skin must meet several requirement benchmarks. Synthetic human skin must look realistic, but not be eerie or creepy, upsetting those using or interacting with the material. Synthetic skin must feel like human skin, including mechanical response, thermal conductivity, and tactile properties. Realistic synthetic human skin must be electrically conductive, so that the user may experience accurate sensations of touch and feel. Finally, synthetic human skin should possess some degree of self-healing behavior. This review provides a brief description of advances in these disparate aspects of synthetic skin science, from the perspective of a practicing conductive polymer composite scientist and engineer.
Collapse
|
29
|
Dumbravă O, Popovici D, Vasincu D, Popa O, Ochiuz L, Irimiciuc ȘA, Agop M, Negură A. Impact of the Liquid Crystal Order of Poly(azomethine-sulfone)s on the Semiconducting Properties. Polymers (Basel) 2022; 14:1487. [PMID: 35406361 PMCID: PMC9003125 DOI: 10.3390/polym14071487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Organic semiconductors are an attractive class of materials with large application in various fields, from optoelectronics to biomedicine. Usually, organic semiconductors have low electrical conductivity, and different routes towards improving said conductivity are being investigated. One such method is to increase their ordering degree, which not only improves electrical conduction but promotes cell growth, adhesion, and proliferation at the polymer-tissue interface. The current paper proposes a mathematical model for understanding the influence of the ordering state on the electrical properties of the organic semiconductors. To this end, a series of aromatic poly(azomethine)s were prepared as thin films in both amorphous and ordered states, and their supramolecular and electrical properties were analyzed by polarized light microscopy and surface type cells, respectively. Furthermore, the film surface characteristics were investigated by atomic force microscopy. It was established that the manufacture of thin films from mesophase state induced an electrical conductivity improvement of one order of magnitude. A mathematical model was developed in the framework of a multifractal theory of motion in its Schrodinger representation. The model used the order degree of the thin films as a fractality measure of the physical system's representation in the multifractal space. It proposed two types of conductivity, which manifest at different ranges of fractalization degrees. The mathematical predictions were found to be in line with the empirical data.
Collapse
Affiliation(s)
- Oana Dumbravă
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (O.D.); (D.P.)
| | - Dumitru Popovici
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (O.D.); (D.P.)
| | - Decebal Vasincu
- Department of Biophysics and Medical Physics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania;
| | - Ovidiu Popa
- Department of Emergency Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania;
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania;
| | - Ștefan-Andrei Irimiciuc
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Bucharest, Romania
| | - Maricel Agop
- Department of Physics, “Gh. Asachi” Technical University of Iasi, 700050 Iasi, Romania
- Romanian Scientists Academy, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Anca Negură
- Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 2A Carol Boulevard, 700505 Iasi, Romania;
| |
Collapse
|
30
|
Shi M, Bai L, Xu M, Li Z, Hu T, Hu J, Zhang Z, Yin Z, Guo B. Micropatterned conductive elastomer patch based on poly(glycerol sebacate)-graphene for cardiac tissue repair. Biofabrication 2022; 14. [PMID: 35235923 DOI: 10.1088/1758-5090/ac59f2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/28/2022] [Indexed: 11/12/2022]
Abstract
Preparing a micropatterned elastomer film with characteristics that can simulate the mechanical properties, anisotropy, and electroactivity of natural myocardial tissues is crucial in cardiac tissue engineering after myocardial infarction (MI). Therefore, in this study, we developed several elastomeric films with a surface micropattern based on poly (glycerol sebacate) (PGS) and graphene (Gr). These films have sufficient mechanical strength (0.6 ± 0.1-3.2 ± 0.08 MPa) to withstand heartbeats, and the micropatterned structure also satisfies the natural myocardium anisotropy in the transverse and vertical. Moreover, Gr makes these films conductive (up to 5.80 × 10-7 S/m), which is necessary for the conduction of electrical signals between cardiomyocytes and the cardiac tissue. Furthermore, they have good cytocompatibility and can promote cell proliferation in H9c2 rat cardiomyocyte cell lines. In vivo test results indicate that these films have good biocompatibility. Notably, a film with 1 wt% Gr content (PGS-Gr1) significantly affects the recovery of myocardial function in rats after MI. This film effectively decreased the infarct size and degree of myocardial fibrosis and reduced collagen deposition. Echocardiographic evaluation showed that after treatment with this film, the left ventricular internal dimension in systole and left ventricular internal dimension in diastole of rats exhibited a significant downward trend, whereas the fractional shortening and ejection fraction were significantly increased compared with the control group. These data indicate that this electroactive micropatterned anisotropic elastomer film can be applied in cardiac tissue engineering.
Collapse
Affiliation(s)
- Mengting Shi
- Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710049, CHINA
| | - Lang Bai
- Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710049, CHINA
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710061, CHINA
| | - Zhenlong Li
- Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710049, CHINA
| | - Tianli Hu
- Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710049, CHINA
| | - Juan Hu
- Xi'an Jiaotong University, Xiwu Road, Xi'an, Shaanxi, 710049, CHINA
| | - Zixi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta Road, Xi'an, 710061, CHINA
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710061, CHINA
| | - Baolin Guo
- Xi'an Jiaotong University, Frontier Institute of Science and Technology, Xi'an, 710049, CHINA
| |
Collapse
|
31
|
Abstract
Conductive polymers have attracted wide attention since their discovery due to their unique properties such as good electrical conductivity, thermal and chemical stability, and low cost. With different possibilities of preparation and deposition on surfaces, they present unique and tunable structures. Because of the ease of incorporating different elements to form composite materials, conductive polymers have been widely used in a plethora of applications. Their inherent mechanical tolerance limit makes them ideal for flexible devices, such as electrodes for batteries, artificial muscles, organic electronics, and sensors. As the demand for the next generation of (wearable) personal and flexible sensing devices is increasing, this review aims to discuss and summarize the recent manufacturing advances made on flexible electrochemical sensors.
Collapse
|
32
|
Abarkan M, Pirog A, Mafilaza D, Pathak G, N'Kaoua G, Puginier E, O'Connor R, Raoux M, Donahue MJ, Renaud S, Lang J. Vertical Organic Electrochemical Transistors and Electronics for Low Amplitude Micro-Organ Signals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105211. [PMID: 35064774 PMCID: PMC8922095 DOI: 10.1002/advs.202105211] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Indexed: 06/14/2023]
Abstract
Electrical signals are fundamental to key biological events such as brain activity, heartbeat, or vital hormone secretion. Their capture and analysis provide insight into cell or organ physiology and a number of bioelectronic medical devices aim to improve signal acquisition. Organic electrochemical transistors (OECT) have proven their capacity to capture neuronal and cardiac signals with high fidelity and amplification. Vertical PEDOT:PSS-based OECTs (vOECTs) further enhance signal amplification and device density but have not been characterized in biological applications. An electronic board with individually tuneable transistor biases overcomes fabrication induced heterogeneity in device metrics and allows quantitative biological experiments. Careful exploration of vOECT electric parameters defines voltage biases compatible with reliable transistor function in biological experiments and provides useful maximal transconductance values without influencing cellular signal generation or propagation. This permits successful application in monitoring micro-organs of prime importance in diabetes, the endocrine pancreatic islets, which are known for their far smaller signal amplitudes as compared to neurons or heart cells. Moreover, vOECTs capture their single-cell action potentials and multicellular slow potentials reflecting micro-organ organizations as well as their modulation by the physiological stimulator glucose. This opens the possibility to use OECTs in new biomedical fields well beyond their classical applications.
Collapse
Affiliation(s)
- Myriam Abarkan
- UMR CNRS 5248 (CBMN, Chemistry and Biology of Membranes)Univ. BordeauxAv Geoffroy St HilairePessacF‐33600France
| | - Antoine Pirog
- UMR CNRS 5218 (IMS, Integration of Materials into Systems)Univ. BordeauxBordeaux Institut National Polytechnique351 Cours de la LibérationTalenceF‐33405France
| | - Donnie Mafilaza
- UMR CNRS 5218 (IMS, Integration of Materials into Systems)Univ. BordeauxBordeaux Institut National Polytechnique351 Cours de la LibérationTalenceF‐33405France
| | - Gaurav Pathak
- Department of BioelectronicsMines Saint EtienneCMP‐EMSEMOCGardanne13541France
- Linköping UniversityDepartment of Science and Technology (ITN)Laboratory of Organic ElectronicsLinköpingSE‐581 83Sweden
| | - Gilles N'Kaoua
- UMR CNRS 5218 (IMS, Integration of Materials into Systems)Univ. BordeauxBordeaux Institut National Polytechnique351 Cours de la LibérationTalenceF‐33405France
| | - Emilie Puginier
- UMR CNRS 5248 (CBMN, Chemistry and Biology of Membranes)Univ. BordeauxAv Geoffroy St HilairePessacF‐33600France
| | - Rodney O'Connor
- Department of BioelectronicsMines Saint EtienneCMP‐EMSEMOCGardanne13541France
| | - Matthieu Raoux
- UMR CNRS 5248 (CBMN, Chemistry and Biology of Membranes)Univ. BordeauxAv Geoffroy St HilairePessacF‐33600France
| | - Mary J. Donahue
- Department of BioelectronicsMines Saint EtienneCMP‐EMSEMOCGardanne13541France
- Linköping UniversityDepartment of Science and Technology (ITN)Laboratory of Organic ElectronicsLinköpingSE‐581 83Sweden
| | - Sylvie Renaud
- UMR CNRS 5218 (IMS, Integration of Materials into Systems)Univ. BordeauxBordeaux Institut National Polytechnique351 Cours de la LibérationTalenceF‐33405France
| | - Jochen Lang
- UMR CNRS 5248 (CBMN, Chemistry and Biology of Membranes)Univ. BordeauxAv Geoffroy St HilairePessacF‐33600France
| |
Collapse
|
33
|
Mariano A, Lubrano C, Bruno U, Ausilio C, Dinger NB, Santoro F. Advances in Cell-Conductive Polymer Biointerfaces and Role of the Plasma Membrane. Chem Rev 2022; 122:4552-4580. [PMID: 34582168 PMCID: PMC8874911 DOI: 10.1021/acs.chemrev.1c00363] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 02/07/2023]
Abstract
The plasma membrane (PM) is often described as a wall, a physical barrier separating the cell cytoplasm from the extracellular matrix (ECM). Yet, this wall is a highly dynamic structure that can stretch, bend, and bud, allowing cells to respond and adapt to their surrounding environment. Inspired by shapes and geometries found in the biological world and exploiting the intrinsic properties of conductive polymers (CPs), several biomimetic strategies based on substrate dimensionality have been tailored in order to optimize the cell-chip coupling. Furthermore, device biofunctionalization through the use of ECM proteins or lipid bilayers have proven successful approaches to further maximize interfacial interactions. As the bio-electronic field aims at narrowing the gap between the electronic and the biological world, the possibility of effectively disguising conductive materials to "trick" cells to recognize artificial devices as part of their biological environment is a promising approach on the road to the seamless platform integration with cells.
Collapse
Affiliation(s)
- Anna Mariano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Claudia Lubrano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Ugo Bruno
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Chiara Ausilio
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Nikita Bhupesh Dinger
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Francesca Santoro
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| |
Collapse
|
34
|
The influence of physicochemical properties on the processibility of conducting polymers: A bioelectronics perspective. Acta Biomater 2022; 139:259-279. [PMID: 34111518 DOI: 10.1016/j.actbio.2021.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
Conducting polymers (CPs) possess unique electrical and electrochemical properties and hold great potential for different applications in the field of bioelectronics. However, the widespread implementation of CPs in this field has been critically hindered by their poor processibility. There are four key elements that determine the processibility of CPs, which are thermal tunability, chemical stability, solvent compatibility and mechanical robustness. Recent research efforts have focused on enhancing the processibility of these materials through pre- or post-synthesis chemical modifications, the fabrication of CP-based complexes and composites, and the adoption of additive manufacturing techniques. In this review, the physicochemical and structural properties that underlie the performance and processibility of CPs are examined. In addition, current research efforts to overcome technical limitations and broaden the potential applications of CPs in bioelectronics are discussed. STATEMENT OF SIGNIFICANCE: This review details the inherent properties of CPs that have hindered their use in additive manufacturing for the creation of 3D bioelectronics. A fundamental approach is presented with consideration of the chemical structure and how this contributes to their electrical, thermal and mechanical properties. The review then considers how manipulation of these properties has been addressed in the literature including areas where improvements can be made. Finally, the review details the use of CPs in additive manufacturing and the future scope for the use of CPs and their composites in the development of 3D bioelectronics.
Collapse
|
35
|
Vėbraitė I, Hanein Y. Soft Devices for High-Resolution Neuro-Stimulation: The Interplay Between Low-Rigidity and Resolution. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:675744. [PMID: 35047928 PMCID: PMC8757739 DOI: 10.3389/fmedt.2021.675744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
The field of neurostimulation has evolved over the last few decades from a crude, low-resolution approach to a highly sophisticated methodology entailing the use of state-of-the-art technologies. Neurostimulation has been tested for a growing number of neurological applications, demonstrating great promise and attracting growing attention in both academia and industry. Despite tremendous progress, long-term stability of the implants, their large dimensions, their rigidity and the methods of their introduction and anchoring to sensitive neural tissue remain challenging. The purpose of this review is to provide a concise introduction to the field of high-resolution neurostimulation from a technological perspective and to focus on opportunities stemming from developments in materials sciences and engineering to reduce device rigidity while optimizing electrode small dimensions. We discuss how these factors may contribute to smaller, lighter, softer and higher electrode density devices.
Collapse
Affiliation(s)
- Ieva Vėbraitė
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
36
|
Zhang F, Zhang M, Liu S, Li C, Ding Z, Wan T, Zhang P. Application of Hybrid Electrically Conductive Hydrogels Promotes Peripheral Nerve Regeneration. Gels 2022; 8:41. [PMID: 35049576 PMCID: PMC8775167 DOI: 10.3390/gels8010041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/18/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022] Open
Abstract
Peripheral nerve injury (PNI) occurs frequently, and the prognosis is unsatisfactory. As the gold standard of treatment, autologous nerve grafting has several disadvantages, such as lack of donors and complications. The use of functional biomaterials to simulate the natural microenvironment of the nervous system and the combination of different biomaterials are considered to be encouraging alternative methods for effective tissue regeneration and functional restoration of injured nerves. Considering the inherent presence of an electric field in the nervous system, electrically conductive biomaterials have been used to promote nerve regeneration. Due to their singular physical properties, hydrogels can provide a three-dimensional hydrated network that can be integrated into diverse sizes and shapes and stimulate the natural functions of nerve tissue. Therefore, conductive hydrogels have become the most effective biological material to simulate human nervous tissue's biological and electrical characteristics. The principal merits of conductive hydrogels include their physical properties and their electrical peculiarities sufficient to effectively transmit electrical signals to cells. This review summarizes the recent applications of conductive hydrogels to enhance peripheral nerve regeneration.
Collapse
Affiliation(s)
- Fengshi Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Songyang Liu
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Ci Li
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Zhentao Ding
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
37
|
Mulko L, Soldera M, Lasagni AF. Structuring and functionalization of non-metallic materials using direct laser interference patterning: a review. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:203-240. [PMID: 39633888 PMCID: PMC11501624 DOI: 10.1515/nanoph-2021-0591] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/07/2024]
Abstract
Direct laser interference patterning (DLIP) is a laser-based surface structuring method that stands out for its high throughput, flexibility and resolution for laboratory and industrial manufacturing. This top-down technique relies on the formation of an interference pattern by overlapping multiple laser beams onto the sample surface and thus producing a periodic texture by melting and/or ablating the material. Driven by the large industrial sectors, DLIP has been extensively used in the last decades to functionalize metallic surfaces, such as steel, aluminium, copper or nickel. Even so, DLIP processing of non-metallic materials has been gaining popularity in promising fields such as photonics, optoelectronics, nanotechnology and biomedicine. This review aims to comprehensively collect the main findings of DLIP structuring of polymers, ceramics, composites, semiconductors and other non-metals and outline their most relevant results. This contribution also presents the mechanisms by which laser radiation interacts with non-metallic materials in the DLIP process and summarizes the developed surface functions and their applications in different fields.
Collapse
Affiliation(s)
- Lucinda Mulko
- Technische Universität Dresden, Institut für Fertigungstechnik, George-Baehr-Str. 3c, 01069, Dresden, Germany
| | - Marcos Soldera
- Technische Universität Dresden, Institut für Fertigungstechnik, George-Baehr-Str. 3c, 01069, Dresden, Germany
- PROBIEN-CONICET, Dto. de Electrotecnia, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén8300, Argentina
| | - Andrés Fabián Lasagni
- Technische Universität Dresden, Institut für Fertigungstechnik, George-Baehr-Str. 3c, 01069, Dresden, Germany
- Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstraße 28, 01277, Dresden, Germany
| |
Collapse
|
38
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
39
|
Xiao Y, Wang M, Li Y, Sun Z, Liu Z, He L, Liu R. High-Adhesive Flexible Electrodes and Their Manufacture: A Review. MICROMACHINES 2021; 12:1505. [PMID: 34945355 PMCID: PMC8704330 DOI: 10.3390/mi12121505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022]
Abstract
All human activity is associated with the generation of electrical signals. These signals are collectively referred to as electrical physiology (EP) signals (e.g., electrocardiogram, electroencephalogram, electromyography, electrooculography, etc.), which can be recorded by electrodes. EP electrodes are not only widely used in the study of primary diseases and clinical practice, but also have potential applications in wearable electronics, human-computer interface, and intelligent robots. Various technologies are required to achieve such goals. Among these technologies, adhesion and stretchable electrode technology is a key component for rapid development of high-performance sensors. In last decade, remarkable efforts have been made in the development of flexible and high-adhesive EP recording systems and preparation technologies. Regarding these advancements, this review outlines the design strategies and related materials for flexible and adhesive EP electrodes, and briefly summarizes their related manufacturing techniques.
Collapse
Affiliation(s)
- Yingying Xiao
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China; (Y.X.); (M.W.); (Y.L.); (Z.S.)
| | - Mengzhu Wang
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China; (Y.X.); (M.W.); (Y.L.); (Z.S.)
| | - Ye Li
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China; (Y.X.); (M.W.); (Y.L.); (Z.S.)
| | - Zhicheng Sun
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China; (Y.X.); (M.W.); (Y.L.); (Z.S.)
| | - Zilong Liu
- Division of Optics, National Institute of Metrology, Beijing 100029, China;
| | - Liang He
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China;
| | - Ruping Liu
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China; (Y.X.); (M.W.); (Y.L.); (Z.S.)
| |
Collapse
|
40
|
Pershina LV, Grabeklis AR, Isankina LN, Skorb EV, Nikolaev KG. Determination of sodium and potassium ions in patients with SARS-Cov-2 disease by ion-selective electrodes based on polyelectrolyte complexes as a pseudo-liquid contact phase. RSC Adv 2021; 11:36215-36221. [PMID: 35492756 PMCID: PMC9043442 DOI: 10.1039/d1ra04582b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022] Open
Abstract
Nowadays, there are several methods for the detection of various bioelements during SARS-CoV-2. Many of them require special equipment, high expenses, and a long time to obtain results. In this study, we aim to use polyelectrolyte multilayers for robust carbon fiber-based potentiometric sensing to determine the ion concentration in human biofluids of COVID-19 patients. The polyethyleneimine/polystyrene sulfonate complex is hygroscopic and has the ability to retain counterions of inorganic salts. This fact makes it possible to create a flexible ionometric system with a pseudo-liquid connection. The formation of the polyethyleneimine/polystyrene sulfonate complex allows for the adhesion of a hydrophobic ion-selective membrane, and creates a Nernst response in a miniature sensor system. This approach discloses the development of miniaturized ion-selective electrodes and their future application to monitor analyte changes as micro and macroelement ions in the human body to identify correlation to SARS-CoV-2. An imbalance in the content of potassium and sodium in urine and blood is directly related to changes in the zinc content in patients with coronavirus. The proposed method for assessing the condition of patients will allow fast determination of the severity of the course of the disease.
Collapse
Affiliation(s)
- Liubov V Pershina
- Infochemistry Scientific Center of ITMO University 191002 Saint Petersburg Russian Federation
| | - Andrei R Grabeklis
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University Trubetskaya st., 8 119991 Moscow Russian Federation
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklay st., 6 Moscow 117198 Russian Federation
| | - Ludmila N Isankina
- Children's City Clinical Hospital No. 5 named after N.F. Filatov 192889 Saint Petersburg Russian Federation
| | - Ekaterina V Skorb
- Infochemistry Scientific Center of ITMO University 191002 Saint Petersburg Russian Federation
| | - Konstantin G Nikolaev
- Infochemistry Scientific Center of ITMO University 191002 Saint Petersburg Russian Federation
| |
Collapse
|
41
|
Walczak PA, Perez-Esteban P, Bassett DC, Hill EJ. Modelling the central nervous system: tissue engineering of the cellular microenvironment. Emerg Top Life Sci 2021; 5:507-517. [PMID: 34524411 PMCID: PMC8589431 DOI: 10.1042/etls20210245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/16/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022]
Abstract
With the increasing prevalence of neurodegenerative diseases, improved models of the central nervous system (CNS) will improve our understanding of neurophysiology and pathogenesis, whilst enabling exploration of novel therapeutics. Studies of brain physiology have largely been carried out using in vivo models, ex vivo brain slices or primary cell culture from rodents. Whilst these models have provided great insight into complex interactions between brain cell types, key differences remain between human and rodent brains, such as degree of cortical complexity. Unfortunately, comparative models of human brain tissue are lacking. The development of induced Pluripotent Stem Cells (iPSCs) has accelerated advancement within the field of in vitro tissue modelling. However, despite generating accurate cellular representations of cortical development and disease, two-dimensional (2D) iPSC-derived cultures lack an entire dimension of environmental information on structure, migration, polarity, neuronal circuitry and spatiotemporal organisation of cells. As such, researchers look to tissue engineering in order to develop advanced biomaterials and culture systems capable of providing necessary cues for guiding cell fates, to construct in vitro model systems with increased biological relevance. This review highlights experimental methods for engineering of in vitro culture systems to recapitulate the complexity of the CNS with consideration given to previously unexploited biophysical cues within the cellular microenvironment.
Collapse
Affiliation(s)
- Paige A. Walczak
- College of Health and Life Sciences, School of Biosciences, Aston University, Birmingham, U.K
| | - Patricia Perez-Esteban
- College of Health and Life Sciences, School of Biosciences, Aston University, Birmingham, U.K
| | - David C. Bassett
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, U.K
| | - Eric James Hill
- College of Health and Life Sciences, School of Biosciences, Aston University, Birmingham, U.K
| |
Collapse
|
42
|
Lin CH, Luo SC. Combination of AFM and Electrochemical QCM-D for Probing Zwitterionic Polymer Brushes in Water: Visualization of Ionic Strength and Surface Potential Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12476-12486. [PMID: 34648298 DOI: 10.1021/acs.langmuir.1c02230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The surface modification of soft zwitterionic polymer brushes with antifouling properties represents a facile approach to enhancing the performance of bioelectronics. Ionic strength and applied potentials play a crucial role in controlling polymer brushes' conformation and hydration states. In this study, we quantitatively investigated and compared poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly(sulfobetaine methacrylate) (PSBMA) brushes at different salt concentrations and applied surface potentials. Initiator-containing poly(3,4-ethylenedioxythiophene) films (poly(EDOT-Br)) were prepared by electropolymerization. After the conducting polymer was deposited, polymer brushes grew from the electrode surface through surface-initiated atom-transfer radical polymerization (SI-ATRP). Polymer brushes were carefully characterized for their surface morphologies using an atomic force microscope (AFM). The force volume method measured using AFM enabled the analysis of the Young's modulus of the two polymer brushes. Hydration states and protein binding behaviors of polymer brushes were examined using quartz crystal microbalance with dissipation (QCM-D). We further integrated a potentiostat with the QCM-D to conduct an electrochemical QCM-D study. The energy dissipation and frequency changes corresponded to the ion adsorption on the film surface under different ionic strengths. The results of both hydration states and nonspecific protein binding behavior indicate that PMPC brushes have greater ionic strength independency, implying the conformation of the unchanged PMPC brushes. Moreover, we illustrated how the surface potential influences nonspecific and specific binding behavior on PMPC brushes on PEDOT films compared with electrified poly(EDOT-PC) electrodes. We concluded that PMPC brushes exhibit unique behaviors that are barely affected by ion concentration, and that the brushes' modification results in less influence by surface potential due to the finite Debye length influencing the electrode surface to outer environment in an NaCl aqueous solution.
Collapse
Affiliation(s)
- Chia-Hsuan Lin
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes (NHRI), Miaoli County, 35053 Taiwan
| |
Collapse
|
43
|
Ahmad Ruzaidi DA, Mahat MM, Shafiee SA, Mohamed Sofian Z, Mohmad Sabere AS, Ramli R, Osman H, Hamzah HH, Zainal Ariffin Z, Sadasivuni KK. Advocating Electrically Conductive Scaffolds with Low Immunogenicity for Biomedical Applications: A Review. Polymers (Basel) 2021; 13:3395. [PMID: 34641210 PMCID: PMC8513068 DOI: 10.3390/polym13193395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/02/2022] Open
Abstract
Scaffolds support and promote the formation of new functional tissues through cellular interactions with living cells. Various types of scaffolds have found their way into biomedical science, particularly in tissue engineering. Scaffolds with a superior tissue regenerative capacity must be biocompatible and biodegradable, and must possess excellent functionality and bioactivity. The different polymers that are used in fabricating scaffolds can influence these parameters. Polysaccharide-based polymers, such as collagen and chitosan, exhibit exceptional biocompatibility and biodegradability, while the degradability of synthetic polymers can be improved using chemical modifications. However, these modifications require multiple steps of chemical reactions to be carried out, which could potentially compromise the end product's biosafety. At present, conducting polymers, such as poly(3,4-ethylenedioxythiophene) poly(4-styrenesulfonate) (PEDOT: PSS), polyaniline, and polypyrrole, are often incorporated into matrix scaffolds to produce electrically conductive scaffold composites. However, this will reduce the biodegradability rate of scaffolds and, therefore, agitate their biocompatibility. This article discusses the current trends in fabricating electrically conductive scaffolds, and provides some insight regarding how their immunogenicity performance can be interlinked with their physical and biodegradability properties.
Collapse
Affiliation(s)
- Dania Adila Ahmad Ruzaidi
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (R.R.)
| | - Mohd Muzamir Mahat
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (R.R.)
| | - Saiful Arifin Shafiee
- Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Malaysia;
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Awis Sukarni Mohmad Sabere
- Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Malaysia;
| | - Rosmamuhamadani Ramli
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (R.R.)
| | - Hazwanee Osman
- Centre of Foundation Studies UiTM, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Dengkil, Dengkil 43800, Malaysia;
| | - Hairul Hisham Hamzah
- School of Chemical Sciences, Universiti Sains Malaysia (USM), Gelugor 11800, Malaysia;
| | - Zaidah Zainal Ariffin
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (R.R.)
| | | |
Collapse
|
44
|
Wang R, Huang X. Anionic-Surfactant-Stabilized Hydrophobic Ionic-Liquid-Based Bicontinuous Microemulsion as a Medium for Enzymatic Oxidative Polymerization of Aniline. ACS OMEGA 2021; 6:20699-20709. [PMID: 34396015 PMCID: PMC8359135 DOI: 10.1021/acsomega.1c03150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The hydrophobic ionic liquid [C8mim][PF6] (1-octyl-3-methylimidazolium hexafluorophosphate)-based bicontinuous microemulsion stabilized by the anionic surfactant [C4mim][AOT] (1-butyl-3-methylimidazolium bis(2-ethylhexyl) sulfosuccinate) was first tried as a medium for horseradish peroxidase (HRP)-triggered oxidative polymerization of aniline. The effects of the mass ratio of [C8mim][PF6]-to-water (α), the mass fraction of [C4mim][AOT] in the total mixture (γ), and temperature (T) on the enzymatic polymerization were investigated using UV-vis-NIR absorption, electron spin resonance, and small-angle X-ray scattering spectroscopy techniques. The bicontinuous microemulsion is demonstrated to play a template role in the biosynthesis of polyaniline (PANI). The conductivity of the resulting PANI depends on the microemulsion microstructure and the microstructure- and T-dependent catalytic properties of the solubilized HRP. With the increase in α, the conductivity of the synthesized PANI decreases due to the increase in the template curvature (decrease of the microdomain size) and the decrease in the activity and stability of HRP. Compared with α, γ has little effect on the microdomain size of the template; so, the γ-dependent change in the conductivity of PANI is mainly caused by the changes of the microstructure-dependent activity and stability of HRP. Over the range of 20-35 °C, T has little effect on the microdomain size, but it greatly changes the activity and stability of HRP. With the increase in T, the activity of HRP increases steadily, but its stability decreases significantly, which should be one of the reasons why the conductivity of PANI decreases with increasing T. In conclusion, lower values of α, γ, and T are favorable for the biosynthesis of conductive PANI. The present study not only deepens the insight into the role of the template in the process of PANI synthesis, but also opens up a green new way for the biosynthesis of the conducting polymer.
Collapse
Affiliation(s)
- Rongrong Wang
- Key Laboratory of Colloid and Interface
Chemistry of Ministry of Education, Shandong
University, Jinan 250100, China
| | - Xirong Huang
- Key Laboratory of Colloid and Interface
Chemistry of Ministry of Education, Shandong
University, Jinan 250100, China
| |
Collapse
|
45
|
Panwar V, Babu A, Sharma A, Thomas J, Chopra V, Malik P, Rajput S, Mittal M, Guha R, Chattopadhyay N, Mandal D, Ghosh D. Tunable, conductive, self-healing, adhesive and injectable hydrogels for bioelectronics and tissue regeneration applications. J Mater Chem B 2021; 9:6260-6270. [PMID: 34338263 DOI: 10.1039/d1tb01075a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Conductive hydrogels are attracting considerable interest in view of their potential in a wide range of applications that include healthcare and electronics. Such hydrogels are generally incorporated with conductive materials/polymers. Herein, we present a series of conductive hydrogels (Ch-CMC-PDA), prepared with no additional conductive material. The hydrogels were synthesized using a combination of chitosan, cellulose (CMC) and dopamine (DA). The conductivity (0.01-3.4 × 10-3 S cm-1) in these gels is attributed to ionic conductivity. Very few conductive hydrogels are endowed with additional properties like injectability, adhesiveness and self-healing, which would help to widen their scope for applications. While the dynamic Schiff base coupling in our hydrogels facilitated self-healing and injectable properties, polydopamine imparted tissue adhesiveness. The porosity, rheological, mechanical and conductive properties of the hydrogels are regulated by the CMC-dialdehyde-polydopamine (CMC-D-PDA) content. The hydrogel was evaluated in various bioelectronics applications like ECG monitoring and triboelectric nanogenerators (TENG). The ability of the hydrogel to support cell growth and serve as a template for tissue regeneration was confirmed using in vitro and in vivo studies. In summary, the integration of such remarkable features in the ionic-conductive hydrogel would enable its usage in bioelectronics and biomedical applications.
Collapse
Affiliation(s)
- Vineeta Panwar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali-140306, Punjab, India.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Xue R, Tao Y, Sun H, Liu W, Ge Z, Jiang T, Jiang H, Han F, Li Y, Ren Y. Small universal mechanical module driven by a liquid metal droplet. LAB ON A CHIP 2021; 21:2771-2780. [PMID: 34047740 DOI: 10.1039/d1lc00206f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Gallium-based liquid metal droplets (LMDs) from micro-electromechanical systems (MEMS) have gained much attention due to their precise and sensitive controllability under an electric field. Considerable research progress has been made in the field of actuators by taking advantage of the continuous electrowetting (CEW) present within the solution. However, the motion generated is confined within the specific liquid environment and is lacking a way to transmit its motion outwardly, which undoubtedly serves as the greatest obstacle restricting any further development. Therefore, a driving module is proposed to generate rotational motion outside the solution for universality. Its performance can be easily tuned by adjusting the applied voltage. As an example of further application, the module is designed in the form of a pump that realizes the continuous/intermittent propulsion to mimic the veins/arteries of the human body without the problem in the previous LMD-based pumps. The feasibility of this pump in the on-chip in vitro analysis is proved by preparing a dynamic cell culture to simulate the movement of biofluids within human bodies. This study proposes an optional solution with an LMD-based motor for generating rotational motion and to expand current research on soft materials in actuators.
Collapse
Affiliation(s)
- Rui Xue
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Ye Tao
- School of Engineering and Applied Sciences and Department of Physics Harvard University, 9 Oxford Street, Cambridge, MA 02138, USA.
| | - Haoxiu Sun
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China.
| | - Weiyu Liu
- School of Electronics and Control Engineering, Chang'an University, Middle-Section of Nan'er Huan Road, Xi'an 710064, People's Republic of China
| | - Zhenyou Ge
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin 150001, People's Republic of China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin 150001, People's Republic of China
| | - Fang Han
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China.
| | - Yu Li
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China.
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| |
Collapse
|
47
|
Lee S, Cho EJ, Kwak HB. Personalized Healthcare for Dementia. Healthcare (Basel) 2021; 9:healthcare9020128. [PMID: 33525656 PMCID: PMC7910906 DOI: 10.3390/healthcare9020128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
Dementia is one of the most common health problems affecting older adults, and the population with dementia is growing. Dementia refers to a comprehensive syndrome rather than a specific disease and is characterized by the loss of cognitive abilities. Many factors are related to dementia, such as aging, genetic profile, systemic vascular disease, unhealthy diet, and physical inactivity. As the causes and types of dementia are diverse, personalized healthcare is required. In this review, we first summarize various diagnostic approaches associated with dementia. Particularly, clinical diagnosis methods, biomarkers, neuroimaging, and digital biomarkers based on advances in data science and wearable devices are comprehensively reviewed. We then discuss three effective approaches to treating dementia, including engineering design, exercise, and diet. In the engineering design section, recent advances in monitoring and drug delivery systems for dementia are introduced. Additionally, we describe the effects of exercise on the treatment of dementia, especially focusing on the effects of aerobic and resistance training on cognitive function, and the effects of diets such as the Mediterranean diet and ketogenic diet on dementia.
Collapse
Affiliation(s)
- Seunghyeon Lee
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Korea; (S.L.); (E.-J.C.)
- Department of Chemical Engineering, Inha University, Incheon 22212, Korea
| | - Eun-Jeong Cho
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Korea; (S.L.); (E.-J.C.)
| | - Hyo-Bum Kwak
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Korea; (S.L.); (E.-J.C.)
- Correspondence: ; Tel.: +82-32-860-8183
| |
Collapse
|
48
|
Baker C, Wagner K, Wagner P, Officer DL, Mawad D. Biofunctional conducting polymers: synthetic advances, challenges, and perspectives towards their use in implantable bioelectronic devices. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1899850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Carly Baker
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, AIIM Faculty, Innovation Campus, University of Wollongong, North Wollongong, Australia
| | - Klaudia Wagner
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, AIIM Faculty, Innovation Campus, University of Wollongong, North Wollongong, Australia
| | - Pawel Wagner
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, AIIM Faculty, Innovation Campus, University of Wollongong, North Wollongong, Australia
| | - David L. Officer
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, AIIM Faculty, Innovation Campus, University of Wollongong, North Wollongong, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, UNSW Science, University of New South Wales, Sydney, Australia
| |
Collapse
|