1
|
Bucukovski J, Miller BL. Everything's under Control: Maximizing Biosensor Performance through Negative Control Probe Selection. Anal Chem 2025; 97:3525-3535. [PMID: 39898999 PMCID: PMC11840803 DOI: 10.1021/acs.analchem.4c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
The rapid rise of label-free biosensing technologies has led to multiple creative strategies for the detection of macromolecules in complex biological solutions for disease state monitoring, drug discovery, and basic science research. A challenge with these techniques is that assays conducted in complex media such as serum suffer from nonspecific binding of matrix constituents. In label-free biosensors, it is virtually impossible to distinguish these nonspecific interactions without the use of a reference (negative control) probe. Only with reference subtraction can the specific binding signal be faithfully reported. To date, this has been a sparsely studied area in the biosensing field. Here, we report an FDA-inspired framework for optimum control probe selection and a systematic analysis for determining the optimal negative control probe given two monoclonal antibody capture probes on photonic ring resonator sensors. Briefly, while the differences in assay performance for IL-17A and CRP were found to be subtle, the best-scoring reference control based on the bioanalytical parameters of linearity, accuracy, and selectivity differed for each analyte. In the IL-17A assay, BSA scored the highest at 83%, while mouse IgG1 isotype control antibody placed a close second with 75%. With respect to the CRP assay, the rat IgG1 isotype control antibody scored the highest at 95%, while anti-FITC scored the second highest at 89%. These results suggest that although isotype-matching to the capture antibody may be tempting, the best on-chip reference control must be optimized on a case-by-case basis using the framework we report.
Collapse
Affiliation(s)
- Joseph Bucukovski
- Department
of Biochemistry and Biophysics, University
of Rochester, Rochester, New York 14627, United States
| | - Benjamin L. Miller
- Department
of Biochemistry and Biophysics, University
of Rochester, Rochester, New York 14627, United States
- Institute
of Optics, University of Rochester, Rochester, New York 14627, United States
- Department
of Dermatology, University of Rochester, Rochester, New York 14627, United States
- Program
in
Materials Science, University of Rochester, Rochester, New York 14627, United States
- Department
of Biomedical Engineering, University of
Rochester, Rochester, New York 14627, United States
| |
Collapse
|
2
|
Lomae A, Teekayupak K, Preechakasedkit P, Pasomsub E, Ozer T, Henry CS, Citterio D, Vilaivan T, Chailapakul O, Ruecha N. Peptide nucleic acid probe-assisted paper-based electrochemical biosensor for multiplexed detection of respiratory viruses. Talanta 2024; 279:126613. [PMID: 39096788 DOI: 10.1016/j.talanta.2024.126613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
The similar transmission patterns and early symptoms of respiratory viral infections, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza (H1N1), and respiratory syncytial virus (RSV), pose substantial challenges in the diagnosis, therapeutic management, and handling of these infectious diseases. Multiplexed point-of-care testing for detection is urgently needed for prompt and efficient disease management. Here, we introduce an electrochemical paper-based analytical device (ePAD) platform for multiplexed and label-free detection of SARS-CoV-2, H1N1, and RSV infection using immobilized pyrrolidinyl peptide nucleic acid probes. Hybridization between the probes and viral nucleic acid targets causes changes in the electrochemical response. The resulting sensor offers high sensitivity and low detection limits of 0.12, 0.35, and 0.36 pM for SARS-CoV-2 (N gene), H1N1, and RSV, respectively, without showing any cross-reactivities. The amplification-free detection of extracted RNA from 42 nasopharyngeal swab samples was successfully demonstrated and validated against reverse-transcription polymerase chain reaction (range of cycle threshold values: 17.43-25.89). The proposed platform showed excellent clinical sensitivity (100 %) and specificity (≥97 %) to achieve excellent agreement (κ ≥ 0.914) with the standard assay, thereby demonstrating its applicability for the screening and diagnosis of these respiratory diseases.
Collapse
Affiliation(s)
- Atchara Lomae
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Kanyapat Teekayupak
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Pattarachaya Preechakasedkit
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Ekawat Pasomsub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Charles S Henry
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Nipapan Ruecha
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
He K, Ye Y, Liu S, Yuan P, Sun W, Tang J. Polylevodopa nanoplatform for lateral flow immunochromatography assay of SARS-CoV-2 and influenza A virus. Biochem Biophys Res Commun 2024; 709:149821. [PMID: 38537597 DOI: 10.1016/j.bbrc.2024.149821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
At the end of 2019, an unprecedented outbreak of novel coronavirus pneumonia ravaged the global landscape, inflicting profound harm upon society. Following numerous cycles of transmission, we find ourselves in an epoch where the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coexists alongside influenza viruses (Flu A). Swift and accurate diagnosis of SARS-CoV-2 and Flu A is imperative to stem the spread of these maladies and administer appropriate treatment. Presently, colloidal gold-based lateral flow immunoassays (Au-LFIAs) constructed through electrostatic adsorption are beset by challenges such as diminished sensitivity and feeble binding stability. In this context, we propose the adoption of black polylevodopa nanoparticles (PLDA NPs) featuring abundant carboxyl groups as labeling nanomaterials in LFIA to bolster the stability and sensitivity of SARS-CoV-2 antigens and influenza A virus identifications. The engineered PLDA-LFIAs exhibit the capacity to detect SARS-CoV-2 and Flu A within 30 min, boasting a detection threshold of 5 pg/ml for the SARS-CoV-2 antigen and 0.1 ng/ml for the Flu A H1N1 antigen, thereby underscoring their heightened sensitivity relative to Au-LFIAs. These PLDA-LFIAs hold promise for the early detection of SARS-CoV-2 and Flu A, underscoring the potential of PLDA NPs as a discerning labeling probe to heighten the sensitivity of LFIA across diverse applications.
Collapse
Affiliation(s)
- Kangsong He
- Zhejiang Key Laboratory of Smart BioMaterials, College of Chemical and Biological Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Yabing Ye
- Zhejiang Key Laboratory of Smart BioMaterials, College of Chemical and Biological Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Shang Liu
- Zhejiang Key Laboratory of Smart BioMaterials, College of Chemical and Biological Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Pengcheng Yuan
- Zhejiang Key Laboratory of Smart BioMaterials, College of Chemical and Biological Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Wenjing Sun
- Zhejiang Key Laboratory of Smart BioMaterials, College of Chemical and Biological Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China.
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart BioMaterials, College of Chemical and Biological Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Li X, Sun R, Pan J, Shi Z, An Z, Dai C, Lv J, Liu G, Liang H, Liu J, Lu Y, Zhang F, Liu Q. Rapid and on-site wireless immunoassay of respiratory virus aerosols via hydrogel-modulated resonators. Nat Commun 2024; 15:4035. [PMID: 38740742 PMCID: PMC11091083 DOI: 10.1038/s41467-024-48294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Rapid and accurate detection of respiratory virus aerosols is highlighted for virus surveillance and infection control. Here, we report a wireless immunoassay technology for fast (within 10 min), on-site (wireless and battery-free), and sensitive (limit of detection down to fg/L) detection of virus antigens in aerosols. The wireless immunoassay leverages the immuno-responsive hydrogel-modulated radio frequency resonant sensor to capture and amplify the recognition of virus antigen, and flexible readout network to transduce the immuno bindings into electrical signals. The wireless immunoassay achieves simultaneous detection of respiratory viruses such as severe acute respiratory syndrome coronavirus 2, influenza A H1N1 virus, and respiratory syncytial virus for community infection surveillance. Direct detection of unpretreated clinical samples further demonstrates high accuracy for diagnosis of respiratory virus infection. This work provides a sensitive and accurate immunoassay technology for on-site virus detection and disease diagnosis compatible with wearable integration.
Collapse
Affiliation(s)
- Xin Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China
| | - Rujing Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jingying Pan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Zhenghan Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zijian An
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chaobo Dai
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jingjiang Lv
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guang Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China.
| |
Collapse
|
5
|
Ding H, Zhang W, Wang SA, Li C, Li W, Liu J, Yu F, Tao Y, Cheng S, Xie H, Chen Y. A semi-quantitative upconversion nanoparticle-based immunochromatographic assay for SARS-CoV-2 antigen detection. Front Microbiol 2023; 14:1289682. [PMID: 38149276 PMCID: PMC10750388 DOI: 10.3389/fmicb.2023.1289682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
The unprecedented public health and economic impact of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been met with an equally unprecedented scientific response. Sensitive point-of-care methods to detect SARS-CoV-2 antigens in clinical specimens are urgently required for the rapid screening of individuals with viral infection. Here, we developed an upconversion nanoparticle-based lateral flow immunochromatographic assay (UCNP-LFIA) for the high-sensitivity detection of SARS-CoV-2 nucleocapsid (N) protein. A pair of rabbit SARS-CoV-2 N-specific monoclonal antibodies was conjugated to UCNPs, and the prepared UCNPs were then deposited into the LFIA test strips for detecting and capturing the N protein. Under the test conditions, the limit of detection (LOD) of UCNP-LFIA for the N protein was 3.59 pg/mL, with a linear range of 0.01-100 ng/mL. Compared with that of the current colloidal gold-based LFIA strips, the LOD of the UCNP-LFIA-based method was increased by 100-fold. The antigen recovery rate of the developed method in the simulated pharyngeal swab samples ranged from 91.1 to 117.3%. Furthermore, compared with the reverse transcription-polymerase chain reaction, the developed UCNP-LFIA method showed a sensitivity of 94.73% for 19 patients with COVID-19. Thus, the newly established platform could serve as a promising and convenient fluorescent immunological sensing approach for the efficient screening and diagnosis of COVID-19.
Collapse
Affiliation(s)
- Hai Ding
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanying Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shu-an Wang
- Department of Clinic Nutrition, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chuang Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanting Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Liu
- Polariton Life Technologies Ltd., Soochow, Jiangsu, China
| | - Fang Yu
- Polariton Life Technologies Ltd., Soochow, Jiangsu, China
| | - Yanru Tao
- Polariton Life Technologies Ltd., Soochow, Jiangsu, China
| | - Siyun Cheng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Xie
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Kosoy G, Miller BL. Two Decades of Arrayed Imaging Reflectometry for Sensitive, High-Throughput Biosensing. BIOSENSORS 2023; 13:870. [PMID: 37754104 PMCID: PMC10526495 DOI: 10.3390/bios13090870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Arrayed imaging reflectometry (AIR), first introduced in 2004, is a thin-film interference sensor technique that optimizes optical properties (angle of incidence, polarization, substrate refractive index, and thickness) to create a condition of total destructive interference at the surface of a silicon substrate. The advantages of AIR are its sensitivity, dynamic range, multiplex capability, and high-throughput compatibility. AIR has been used for the detection of antibodies against coronaviruses, influenza viruses, Staphylococcus aureus, and human autoantigens. It has also shown utility in detection of cytokines, with sensitivity comparable to bead-based and ELISA assays. Not limited to antibodies or antigens, mixed aptamer and protein arrays as well as glycan arrays have been employed in AIR for differentiating influenza strains. Mixed arrays using direct and competitive inhibition assays have enabled simultaneous measurement of cytokines and small molecules. Finally, AIR has also been used to measure affinity constants, kinetic and at equilibrium. In this review, we give an overview of AIR biosensing technologies and present the latest AIR advances.
Collapse
Affiliation(s)
- Gabrielle Kosoy
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14526, USA;
| | - Benjamin L. Miller
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14526, USA;
- Department of Dermatology, University of Rochester, Rochester, NY 14526, USA
| |
Collapse
|
7
|
Hertz T, Levy S, Ostrovsky D, Oppenheimer H, Zismanov S, Kuzmina A, Friedman LM, Trifkovic S, Brice D, Chun-Yang L, Cohen-Lavi L, Shemer-Avni Y, Cohen-Lahav M, Amichay D, Keren-Naus A, Voloshin O, Weber G, Najjar-Debbiny R, Chazan B, McGargill MA, Webby R, Chowers M, Novack L, Novack V, Taube R, Nesher L, Weinstein O. Correlates of protection for booster doses of the SARS-CoV-2 vaccine BNT162b2. Nat Commun 2023; 14:4575. [PMID: 37516771 PMCID: PMC10387073 DOI: 10.1038/s41467-023-39816-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/28/2023] [Indexed: 07/31/2023] Open
Abstract
Vaccination, especially with multiple doses, provides substantial population-level protection against COVID-19, but emerging variants of concern (VOC) and waning immunity represent significant risks at the individual level. Here we identify correlates of protection (COP) in a multicenter prospective study following 607 healthy individuals who received three doses of the Pfizer-BNT162b2 vaccine approximately six months prior to enrollment. We compared 242 individuals who received a fourth dose to 365 who did not. Within 90 days of enrollment, 239 individuals contracted COVID-19, 45% of the 3-dose group and 30% of the four-dose group. The fourth dose elicited a significant rise in antibody binding and neutralizing titers against multiple VOCs reducing the risk of symptomatic infection by 37% [95%CI, 15%-54%]. However, a group of individuals, characterized by low baseline titers of binding antibodies, remained susceptible to infection despite significantly increased neutralizing antibody titers upon boosting. A combination of reduced IgG levels to RBD mutants and reduced VOC-recognizing IgA antibodies represented the strongest COP in both the 3-dose group (HR = 6.34, p = 0.008) and four-dose group (HR = 8.14, p = 0.018). We validated our findings in an independent second cohort. In summary combination IgA and IgG baseline binding antibody levels may identify individuals most at risk from future infections.
Collapse
Affiliation(s)
- Tomer Hertz
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center, Seattle, USA.
| | - Shlomia Levy
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Ostrovsky
- Clinical Research Center, Soroka University Medical Center, and the faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hanna Oppenheimer
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shosh Zismanov
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alona Kuzmina
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lilach M Friedman
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sanja Trifkovic
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David Brice
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lin Chun-Yang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Liel Cohen-Lavi
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yonat Shemer-Avni
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Laboratory of Virology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Merav Cohen-Lahav
- Laboratory of Management, Soroka University Medical Center, Beer-Sheva, Israel
| | - Doron Amichay
- Central Laboratory, Clalit Health Services & Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheba, Israel
| | - Ayelet Keren-Naus
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Laboratory of Virology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Olga Voloshin
- Laboratory of Virology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Gabriel Weber
- Infectious Diseases Unit, Lady Davis Carmel Medical Center, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronza Najjar-Debbiny
- Infectious Diseases Unit, Lady Davis Carmel Medical Center, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Bibiana Chazan
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Infectious Diseases Unit, Emek Medical Center, Afula, Israel
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michal Chowers
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Meir Medical Center, Kfar Saba, Israel
| | - Lena Novack
- Clinical Research Center, Soroka University Medical Center, and the faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Victor Novack
- Clinical Research Center, Soroka University Medical Center, and the faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ran Taube
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Lior Nesher
- Infectious Disease Institute, Soroka University Medical Center, and Faculty of Health Sciences, Ben-Gurion University, Beer Sheba, Israel.
| | - Orly Weinstein
- Dept. of Health systems management, faculty of health sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Hospital division, Clalit Health Services, Tel Aviv, Israel
| |
Collapse
|
8
|
Klose AM, Kosoy G, Miller BL. Arrayed Imaging Reflectometry monitoring of anti-viral antibody production throughout vaccination and breakthrough Covid-19. PLoS One 2023; 18:e0277846. [PMID: 36749755 PMCID: PMC9904502 DOI: 10.1371/journal.pone.0277846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Immune responses to COVID-19 infection and vaccination are individual and varied. There is a need to understand the timeline of vaccination efficacy against current and yet to be discovered viral mutations. Assessing immunity to SARS-CoV-2 in the context of immunity to other respiratory viruses is also valuable. Here we demonstrate the capability of a fully automated prototype Arrayed Imaging Reflectometry system to perform reliable longitudinal serology against a 34-plex respiratory array. The array contains antigens for respiratory syncytial virus, seasonal influenza, common human coronaviruses, MERS, SARS-CoV-1, and SARS-CoV-2. AIR measures a change in reflectivity due to the binding of serum antibodies to the antigens on the array. Samples were collected from convalescent COVID-19 donors and individuals vaccinated with a two-dose mRNA vaccine regimen. Vaccinated samples were collected prior to the first dose, one week after the first dose, one week after the second dose, and monthly thereafter. Information following booster dose and/or breakthrough infection is included for a subset of subjects. Longitudinal samples of vaccinated individuals demonstrate a rise and fall of SARS-CoV-2 spike antibodies in agreement with general knowledge of the adaptive immune response and other studies. Linear Regression analysis was performed to understand the relationship between antibodies binding to different antigens on the array. Our analysis identified strong correlations between closely related influenza virus strains as well as correlations between SARS-CoV-2, SARS-CoV-1, and human coronavirus 229E. A small test of using diluted whole blood from a fingerstick provided clean arrays with antibody binding comparable to serum. Potential applications include assessing immunity in the context of exposure to multiple respiratory viruses, clinical serology, population monitoring to facilitate public health recommendations, and vaccine development against new viruses and virus mutations.
Collapse
Affiliation(s)
- Alanna M. Klose
- Department of Dermatology, University of Rochester, Rochester, New York, United States of America
- Program in Materials Science, University of Rochester, Rochester, New York, United States of America
| | - Gabrielle Kosoy
- Department of Dermatology, University of Rochester, Rochester, New York, United States of America
- Department of Biophysics and Biochemistry, University of Rochester, Rochester, New York, United States of America
| | - Benjamin L. Miller
- Department of Dermatology, University of Rochester, Rochester, New York, United States of America
- Program in Materials Science, University of Rochester, Rochester, New York, United States of America
- Department of Biophysics and Biochemistry, University of Rochester, Rochester, New York, United States of America
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- Institute of Optics, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
9
|
Bannur Nanjunda S, Seshadri VN, Krishnan C, Rath S, Arunagiri S, Bao Q, Helmerson K, Zhang H, Jain R, Sundarrajan A, Srinivasan B. Emerging nanophotonic biosensor technologies for virus detection. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:5041-5059. [PMID: 39634299 PMCID: PMC11501160 DOI: 10.1515/nanoph-2022-0571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 12/07/2024]
Abstract
Highly infectious viral diseases are a serious threat to mankind as they can spread rapidly among the community, possibly even leading to the loss of many lives. Early diagnosis of a viral disease not only increases the chance of quick recovery, but also helps prevent the spread of infections. There is thus an urgent need for accurate, ultrasensitive, rapid, and affordable diagnostic techniques to test large volumes of the population to track and thereby control the spread of viral diseases, as evidenced during the COVID-19 and other viral pandemics. This review paper critically and comprehensively reviews various emerging nanophotonic biosensor mechanisms and biosensor technologies for virus detection, with a particular focus on detection of the SARS-CoV-2 (COVID-19) virus. The photonic biosensing mechanisms and technologies that we have focused on include: (a) plasmonic field enhancement via localized surface plasmon resonances, (b) surface enhanced Raman scattering, (c) nano-Fourier transform infrared (nano-FTIR) near-field spectroscopy, (d) fiber Bragg gratings, and (e) microresonators (whispering gallery modes), with a particular emphasis on the emerging impact of nanomaterials and two-dimensional materials in these photonic sensing technologies. This review also discusses several quantitative issues related to optical sensing with these biosensing and transduction techniques, notably quantitative factors that affect the limit of detection (LoD), sensitivity, specificity, and response times of the above optical biosensing diagnostic technologies for virus detection. We also review and analyze future prospects of cost-effective, lab-on-a-chip virus sensing solutions that promise ultrahigh sensitivities, rapid detection speeds, and mass manufacturability.
Collapse
Affiliation(s)
- Shivananju Bannur Nanjunda
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging (CenBioSIm), Indian Institute of Technology Madras, Chennai, India
| | - Venkatesh N. Seshadri
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
- Department of Life Science, Indian Academy, Bangalore, India
| | - Chitra Krishnan
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
| | - Sweta Rath
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging (CenBioSIm), Indian Institute of Technology Madras, Chennai, India
| | | | - Qiaoliang Bao
- Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low Energy Electronics Technologies (FLEET), Monash University, Clayton, VIC, Australia
| | - Kristian Helmerson
- School of Physics and Astronomy, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, VIC3800, Australia
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Ravi Jain
- Optical Science and Engineering Program, Center for High Technology Materials, Departments of ECE, Physics Astronomy, and Nanoscience Microsystems, University of New Mexico, Albuquerque, NM87106, USA
| | - Asokan Sundarrajan
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
| | - Balaji Srinivasan
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging (CenBioSIm), Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
10
|
Fox T, Geppert J, Dinnes J, Scandrett K, Bigio J, Sulis G, Hettiarachchi D, Mathangasinghe Y, Weeratunga P, Wickramasinghe D, Bergman H, Buckley BS, Probyn K, Sguassero Y, Davenport C, Cunningham J, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Struyf T, Van den Bruel A, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Deeks JJ. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev 2022; 11:CD013652. [PMID: 36394900 PMCID: PMC9671206 DOI: 10.1002/14651858.cd013652.pub2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND The diagnostic challenges associated with the COVID-19 pandemic resulted in rapid development of diagnostic test methods for detecting SARS-CoV-2 infection. Serology tests to detect the presence of antibodies to SARS-CoV-2 enable detection of past infection and may detect cases of SARS-CoV-2 infection that were missed by earlier diagnostic tests. Understanding the diagnostic accuracy of serology tests for SARS-CoV-2 infection may enable development of effective diagnostic and management pathways, inform public health management decisions and understanding of SARS-CoV-2 epidemiology. OBJECTIVES To assess the accuracy of antibody tests, firstly, to determine if a person presenting in the community, or in primary or secondary care has current SARS-CoV-2 infection according to time after onset of infection and, secondly, to determine if a person has previously been infected with SARS-CoV-2. Sources of heterogeneity investigated included: timing of test, test method, SARS-CoV-2 antigen used, test brand, and reference standard for non-SARS-CoV-2 cases. SEARCH METHODS The COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) was searched on 30 September 2020. We included additional publications from the Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre) 'COVID-19: Living map of the evidence' and the Norwegian Institute of Public Health 'NIPH systematic and living map on COVID-19 evidence'. We did not apply language restrictions. SELECTION CRITERIA We included test accuracy studies of any design that evaluated commercially produced serology tests, targeting IgG, IgM, IgA alone, or in combination. Studies must have provided data for sensitivity, that could be allocated to a predefined time period after onset of symptoms, or after a positive RT-PCR test. Small studies with fewer than 25 SARS-CoV-2 infection cases were excluded. We included any reference standard to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction tests (RT-PCR), clinical diagnostic criteria, and pre-pandemic samples). DATA COLLECTION AND ANALYSIS We use standard screening procedures with three reviewers. Quality assessment (using the QUADAS-2 tool) and numeric study results were extracted independently by two people. Other study characteristics were extracted by one reviewer and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and, for meta-analysis, we fitted univariate random-effects logistic regression models for sensitivity by eligible time period and for specificity by reference standard group. Heterogeneity was investigated by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and summarised results for tests that were evaluated in 200 or more samples and that met a modification of UK Medicines and Healthcare products Regulatory Agency (MHRA) target performance criteria. MAIN RESULTS We included 178 separate studies (described in 177 study reports, with 45 as pre-prints) providing 527 test evaluations. The studies included 64,688 samples including 25,724 from people with confirmed SARS-CoV-2; most compared the accuracy of two or more assays (102/178, 57%). Participants with confirmed SARS-CoV-2 infection were most commonly hospital inpatients (78/178, 44%), and pre-pandemic samples were used by 45% (81/178) to estimate specificity. Over two-thirds of studies recruited participants based on known SARS-CoV-2 infection status (123/178, 69%). All studies were conducted prior to the introduction of SARS-CoV-2 vaccines and present data for naturally acquired antibody responses. Seventy-nine percent (141/178) of studies reported sensitivity by week after symptom onset and 66% (117/178) for convalescent phase infection. Studies evaluated enzyme-linked immunosorbent assays (ELISA) (165/527; 31%), chemiluminescent assays (CLIA) (167/527; 32%) or lateral flow assays (LFA) (188/527; 36%). Risk of bias was high because of participant selection (172, 97%); application and interpretation of the index test (35, 20%); weaknesses in the reference standard (38, 21%); and issues related to participant flow and timing (148, 82%). We judged that there were high concerns about the applicability of the evidence related to participants in 170 (96%) studies, and about the applicability of the reference standard in 162 (91%) studies. Average sensitivities for current SARS-CoV-2 infection increased by week after onset for all target antibodies. Average sensitivity for the combination of either IgG or IgM was 41.1% in week one (95% CI 38.1 to 44.2; 103 evaluations; 3881 samples, 1593 cases), 74.9% in week two (95% CI 72.4 to 77.3; 96 evaluations, 3948 samples, 2904 cases) and 88.0% by week three after onset of symptoms (95% CI 86.3 to 89.5; 103 evaluations, 2929 samples, 2571 cases). Average sensitivity during the convalescent phase of infection (up to a maximum of 100 days since onset of symptoms, where reported) was 89.8% for IgG (95% CI 88.5 to 90.9; 253 evaluations, 16,846 samples, 14,183 cases), 92.9% for IgG or IgM combined (95% CI 91.0 to 94.4; 108 evaluations, 3571 samples, 3206 cases) and 94.3% for total antibodies (95% CI 92.8 to 95.5; 58 evaluations, 7063 samples, 6652 cases). Average sensitivities for IgM alone followed a similar pattern but were of a lower test accuracy in every time slot. Average specificities were consistently high and precise, particularly for pre-pandemic samples which provide the least biased estimates of specificity (ranging from 98.6% for IgM to 99.8% for total antibodies). Subgroup analyses suggested small differences in sensitivity and specificity by test technology however heterogeneity in study results, timing of sample collection, and smaller sample numbers in some groups made comparisons difficult. For IgG, CLIAs were the most sensitive (convalescent-phase infection) and specific (pre-pandemic samples) compared to both ELISAs and LFAs (P < 0.001 for differences across test methods). The antigen(s) used (whether from the Spike-protein or nucleocapsid) appeared to have some effect on average sensitivity in the first weeks after onset but there was no clear evidence of an effect during convalescent-phase infection. Investigations of test performance by brand showed considerable variation in sensitivity between tests, and in results between studies evaluating the same test. For tests that were evaluated in 200 or more samples, the lower bound of the 95% CI for sensitivity was 90% or more for only a small number of tests (IgG, n = 5; IgG or IgM, n = 1; total antibodies, n = 4). More test brands met the MHRA minimum criteria for specificity of 98% or above (IgG, n = 16; IgG or IgM, n = 5; total antibodies, n = 7). Seven assays met the specified criteria for both sensitivity and specificity. In a low-prevalence (2%) setting, where antibody testing is used to diagnose COVID-19 in people with symptoms but who have had a negative PCR test, we would anticipate that 1 (1 to 2) case would be missed and 8 (5 to 15) would be falsely positive in 1000 people undergoing IgG or IgM testing in week three after onset of SARS-CoV-2 infection. In a seroprevalence survey, where prevalence of prior infection is 50%, we would anticipate that 51 (46 to 58) cases would be missed and 6 (5 to 7) would be falsely positive in 1000 people having IgG tests during the convalescent phase (21 to 100 days post-symptom onset or post-positive PCR) of SARS-CoV-2 infection. AUTHORS' CONCLUSIONS Some antibody tests could be a useful diagnostic tool for those in whom molecular- or antigen-based tests have failed to detect the SARS-CoV-2 virus, including in those with ongoing symptoms of acute infection (from week three onwards) or those presenting with post-acute sequelae of COVID-19. However, antibody tests have an increasing likelihood of detecting an immune response to infection as time since onset of infection progresses and have demonstrated adequate performance for detection of prior infection for sero-epidemiological purposes. The applicability of results for detection of vaccination-induced antibodies is uncertain.
Collapse
Affiliation(s)
- Tilly Fox
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Julia Geppert
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jacqueline Dinnes
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Katie Scandrett
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jacob Bigio
- Research Institute of the McGill University Health Centre, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
| | - Giorgia Sulis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Dineshani Hettiarachchi
- Department of Anatomy Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Yasith Mathangasinghe
- Department of Anatomy Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Praveen Weeratunga
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | | | - Brian S Buckley
- Cochrane Response, Cochrane, London, UK
- Department of Surgery, University of the Philippines, Manila, Philippines
| | | | | | - Clare Davenport
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | | | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht , Netherlands
| | - Mariska Mg Leeflang
- Epidemiology and Data Science, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health, Amsterdam, Netherlands
| | | | - René Spijker
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, Netherlands
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thomas Struyf
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Ann Van den Bruel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jan Y Verbakel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Sian Taylor-Phillips
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Angelopoulou M, Makarona E, Salapatas A, Misiakos K, Synolaki E, Ioannidis A, Chatzipanagiotou S, Ritvos MA, Pasternack A, Ritvos O, Petrou PS, Kakabakos SE. Directly immersible silicon photonic probes: Application to rapid SARS-CoV-2 serological testing. Biosens Bioelectron 2022; 215:114570. [PMID: 35850040 PMCID: PMC9273522 DOI: 10.1016/j.bios.2022.114570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 01/31/2023]
Abstract
Silicon photonic probes based on broad-band Mach-Zehnder interferometry are explored for the first time as directly immersible immunosensors alleviating the need for microfluidics and pumps. Each probe includes two U-shaped waveguides allowing light in- and out-coupling from the same chip side through a bifurcated fiber and a mechanical coupler. At the opposite chip side, two Mach-Zehnder interferometers (MZI) are located enabling real-time monitoring of binding reactions by immersion of this chip side into a sample. The sensing arm windows of the two MZIs have different length resulting in two distinct peaks in the Fourier domain, the phase shift of which can be monitored independently through Fast Fourier Transform of the output spectrum. The photonic probes analytical potential was demonstrated through detection of antibodies against SARS-CoV-2 in human serum samples. For this, one MZI was functionalized with the Receptor Binding Domain (RBD) of SARS-CoV-2 Spike 1 protein, and the other with bovine serum albumin to serve as reference. The biofunctionalized probes were immersed for 10 min in human serum sample and then for 5 min in goat anti-human IgG Fc specific antibody solution. Using a humanized rat antibody against SARS-CoV-2 RBD, a detection limit of 20 ng/mL was determined. Analysis of human serum samples indicated that the proposed sensor discriminated completely non-infected/non-vaccinated from vaccinated individuals, and the antibodies levels determined correlated well with those determined in the same samples by ELISA. These results demonstrated the potential of the proposed sensor to serve as an efficient tool for expeditious point-of-care testing.
Collapse
Affiliation(s)
- Michailia Angelopoulou
- Institute of Nuclear & Radiological Science & Technology, Energy & Safety, NCSR “Demokritos”, Aghia Paraskevi, 15341, Greece
| | - Eleni Makarona
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15341, Greece
| | - Alexandros Salapatas
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15341, Greece
| | - Konstantinos Misiakos
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15341, Greece
| | - Evgenia Synolaki
- Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, 11527, Greece
| | - Anastasios Ioannidis
- Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, 22100, Greece
| | - Stylianos Chatzipanagiotou
- Department of Medical Biopathology and Clinical Microbiology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, 11528, Greece
| | - Mikael A. Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland,School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden,Nordic SARS Response AB, Stockholm, 19455, Sweden
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Panagiota S. Petrou
- Institute of Nuclear & Radiological Science & Technology, Energy & Safety, NCSR “Demokritos”, Aghia Paraskevi, 15341, Greece,Corresponding author. Research Immunoassays/Immunosensors Lab. INRASTES NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece
| | - Sotirios E. Kakabakos
- Institute of Nuclear & Radiological Science & Technology, Energy & Safety, NCSR “Demokritos”, Aghia Paraskevi, 15341, Greece
| |
Collapse
|
12
|
Kang B, Lee Y, Lim J, Yong D, Ki Choi Y, Woo Yoon S, Seo S, Jang S, Uk Son S, Kang T, Jung J, Lee KS, Kim MH, Lim EK. FRET-based hACE2 receptor mimic peptide conjugated nanoprobe for simple detection of SARS-CoV-2. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 442:136143. [PMID: 35382003 PMCID: PMC8969299 DOI: 10.1016/j.cej.2022.136143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 05/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has led to a pandemic of acute respiratory disease, namely coronavirus disease (COVID-19). This disease threatens human health and public safety. Early diagnosis, isolation, and prevention are important to suppress the outbreak of COVID 19 given the lack of specific antiviral drugs to treat this disease and the emergence of various variants of the virus that cause breakthrough infections even after vaccine administration. Simple and prompt testing is paramount to preventing further spread of the virus. However, current testing methods, namely RT-PCR, is time-consuming. Binding of the SARS-CoV-2 spike (S) glycoprotein to human angiotensin-converting enzyme 2 (hACE2) receptor plays a pivotal role in host cell entry. In the present study, we developed a hACE2 mimic peptide beacon (COVID19-PEB) for simple detection of SARS-CoV-2 using a fluorescence resonance energy transfer system. COVID19-PEB exhibits minimal fluorescence in its ''closed'' hairpin structure; however, in the presence of SARS-CoV-2, the specific recognition of the S protein receptor-binding domain by COVID19-PEB causes the beacon to assume an ''open'' structure that emits strong fluorescence. COVID19-PEB can detect SARS-CoV-2 within 3 h or even 50 min and exhibits strong fluorescence even at low viral concentrations, with a detection limit of 4 × 103 plaque-forming unit/test. Furthermore, in SARS-CoV-2-infected patient samples confirmed using polymerase chain reaction, COVID19-PEB accurately detected the virus. COVID19-PEB could be developed as a rapid and accurate diagnostic tool for COVID-19.
Collapse
Affiliation(s)
- Byunghoon Kang
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Youngjin Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaewoo Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, 776 1sunhwan-ro, Seowon-gu, Cheongju 28644, Republic of Korea
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Sun Woo Yoon
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seungbeom Seo
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Gumjeong-gu, Busan 46241, Republic of Korea
| | - Soojin Jang
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Seong Uk Son
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Taejoon Kang
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Juyeon Jung
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Kyu-Sun Lee
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Myung Hee Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
13
|
Guarino C, Larson E, Babasyan S, Rollins A, Joshi LR, Laverack M, Parrilla L, Plocharczyk E, Diel DG, Wagner B. Development of a quantitative COVID-19 multiplex assay and its use for serological surveillance in a low SARS-CoV-2 incidence community. PLoS One 2022; 17:e0262868. [PMID: 35061843 PMCID: PMC8782306 DOI: 10.1371/journal.pone.0262868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
A serological COVID-19 Multiplex Assay was developed and validated using serum samples from convalescent patients and those collected prior to the 2020 pandemic. After initial testing of multiple potential antigens, the SARS-CoV-2 nucleocapsid protein (NP) and receptor-binding domain (RBD) of the spike protein were selected for the human COVID-19 Multiplex Assay. A comparison of synthesized and mammalian expressed RBD proteins revealed clear advantages of mammalian expression. Antibodies directed against NP strongly correlated with SARS-CoV-2 virus neutralization assay titers (rsp = 0.726), while anti-RBD correlation was moderate (rsp = 0.436). Pan-Ig, IgG, IgA, and IgM against NP and RBD antigens were evaluated on the validation sample sets. Detection of NP and RBD specific IgG and IgA had outstanding performance (AUC > 0.90) for distinguishing patients from controls, but the dynamic range of the IgG assay was substantially greater. The COVID-19 Multiplex Assay was utilized to identify seroprevalence to SARS-CoV-2 in people living in a low-incidence community in Ithaca, NY. Samples were taken from a cohort of healthy volunteers (n = 332) in early June 2020. Only two volunteers had a positive result on a COVID-19 PCR test performed prior to serum sampling. Serological testing revealed an exposure rate of at least 1.2% (NP) or as high as 5.7% (RBD), higher than the measured incidence rate of 0.16% in the county at that time. This highly sensitive and quantitative assay can be used for monitoring community exposure rates and duration of immune response following both infection and vaccination.
Collapse
Affiliation(s)
- Cassandra Guarino
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Elisabeth Larson
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Alicia Rollins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Lok R. Joshi
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Melissa Laverack
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Lara Parrilla
- Cayuga Medical Center, Ithaca, NY, United States of America
| | | | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
14
|
Ilkhani H, Hedayat N, Farhad S. Novel approaches for rapid detection of COVID-19 during the pandemic: A review. Anal Biochem 2021; 634:114362. [PMID: 34478703 PMCID: PMC8406551 DOI: 10.1016/j.ab.2021.114362] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 02/03/2023]
Abstract
The rapid spread of the SARS-CoV-2 virus that caused the COVID-19 disease, has highlighted our urgent need for sensitive, fast and accurate diagnostic technologies. In fact, one of the main challenges for flatting COVID-19 spread charts is the ability to accurately and rapidly identify asymptomatic cases that result in spreading the virus to close contacts. SARS-CoV-2 virus mutation is also relatively rapid, which makes the detection of COVID-19 diseases still crucial even after the vaccination. Conventional techniques, which are commercially available have focused on clinical manifestation, along with molecular and serological detection tools that can identify the SARS-CoV-2 virus however, owing to various disadvantages including low specificity and sensitivity, a quick, low cost and easy approach is needed for diagnosis of COVID-19. Scientists are now showing extensive interest in an effective portable and simple detection method to diagnose COVID-19. There are several novel methods and approaches that are considered viable advanced systems that can meet the demands. This study reviews the new approaches and sensing technologies that work on COVID-19 diagnosis for easy and successful detection of SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Hoda Ilkhani
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, 87144, United States.
| | - Nader Hedayat
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, United States
| | - Siamak Farhad
- Advanced Energy & Sensor Lab, Department of Mechanical Engineering, The University of Akron, Akron, OH, 44325, United States.
| |
Collapse
|
15
|
Scholtz A, Ramoji A, Silge A, Jansson JR, de Moura IG, Popp J, Sram JP, Armani AM. COVID-19 Diagnostics: Past, Present, and Future. ACS PHOTONICS 2021; 8:2827-2838. [PMID: 37556281 PMCID: PMC8482784 DOI: 10.1021/acsphotonics.1c01052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 05/25/2023]
Abstract
In winter of 2020, SARS-CoV-2 emerged as a global threat, impacting not only health but also financial and political stability. To address the societal need for monitoring the spread of SARS-CoV-2, many existing diagnostic technologies were quickly adapted to detect SARS-CoV-2 RNA and antigens as well as the immune response, and new testing strategies were developed to accelerate time-to-decision. In parallel, the infusion of research support accelerated the development of new spectroscopic methods. While these methods have significantly reduced the impact of SARS-CoV-2 on society when coupled with behavioral changes, they also lay the groundwork for a new generation of platform technologies. With several epidemics on the horizon, such as the rise of antibiotic-resistant bacteria, the ability to quickly pivot the target pathogen of this diagnostic toolset will continue to have an impact.
Collapse
Affiliation(s)
- Alexis Scholtz
- Department of Biomedical Engineering,
University of Southern California, Los Angeles, California
90089, United States of America
| | - Anuradha Ramoji
- Institute of Physical Chemistry (IPC) and
Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena,
Germany
- Leibniz Institute of Photonic Technology
(IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health
Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Anja Silge
- Institute of Physical Chemistry (IPC) and
Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena,
Germany
- Leibniz Institute of Photonic Technology
(IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health
Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
- InfectoGnostics Research Campus
Jena, Centre of Applied Research, Philosophenweg 7, D-07743 Jena,
Germany
| | - Jakob R. Jansson
- Fulgent Genetics, Temple
City, California 91780, United States of America
| | - Ian G. de Moura
- Fulgent Genetics, Temple
City, California 91780, United States of America
| | - Jürgen Popp
- Institute of Physical Chemistry (IPC) and
Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena,
Germany
- Leibniz Institute of Photonic Technology
(IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health
Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
- InfectoGnostics Research Campus
Jena, Centre of Applied Research, Philosophenweg 7, D-07743 Jena,
Germany
| | - Jakub P. Sram
- Fulgent Genetics, Temple
City, California 91780, United States of America
| | - Andrea M. Armani
- Department of Biomedical Engineering,
University of Southern California, Los Angeles, California
90089, United States of America
- Mork Family Department of Chemical Engineering,
University of Southern California, Los Angeles, California
90089, United States of America
| |
Collapse
|
16
|
Wang C, Yang X, Zheng S, Cheng X, Xiao R, Li Q, Wang W, Liu X, Wang S. Development of an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobead for simultaneous detection of SARS-CoV-2 antigen and influenza A virus. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 345:130372. [PMID: 34219970 PMCID: PMC8239248 DOI: 10.1016/j.snb.2021.130372] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/15/2021] [Accepted: 06/26/2021] [Indexed: 05/02/2023]
Abstract
Rapid and accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (FluA) antigens in the early stages of virus infection is the key to control the epidemic spread. Here, we developed a two-channel fluorescent immunochromatographic assay (ICA) for ultrasensitive and simultaneous qualification of the two viruses in biological samples. A high-performance quantum dot nanobead (QB) was fabricated by adsorption of multilayers of dense quantum dots (QDs) onto the SiO2 surface and used as the highly luminescent label of the ICA system to ensure the high-sensitivity and stability of the assay. The combination of monodispersed SiO2 core (∼180 nm) and numerous carboxylated QDs formed a hierarchical shell, which ensured that the QBs possessed excellent stability, superior fluorescence signal, and convenient surface functionalization. The developed ICA biosensor achieved simultaneous detection of SARS-CoV-2 and FluA in one test within 15 min, with detection limits reaching 5 pg/mL for SARS-CoV-2 antigen and 50 pfu/mL for FluA H1N1. Moreover, our method showed high accuracy and specificity in throat swab samples with two orders of magnitude improvement in sensitivity compared with traditional AuNP-based ICA method. Hence, the proposed method is a promising and convenient tool for detection of respiratory viruses.
Collapse
Affiliation(s)
- Chongwen Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Xingsheng Yang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Shuai Zheng
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Xiaodan Cheng
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Rui Xiao
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Qingjun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Wenqi Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Xiaoxian Liu
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| |
Collapse
|
17
|
Aydın EB, Aydın M, Sezgintürk MK. Highly selective and sensitive sandwich immunosensor platform modified with MUA-capped GNPs for detection of spike Receptor Binding Domain protein: A precious marker of COVID 19 infection. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 345:130355. [PMID: 34188361 PMCID: PMC8225300 DOI: 10.1016/j.snb.2021.130355] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 05/10/2023]
Abstract
A label-free electrochemical biosensing system as a suitable analysis technique for COVID 19 specific spike receptor-binding domain protein (RBD) was developed with an aim to facilitate the diagnosis of coronavirus. A novel production procedure for the fabrication of gold nanoparticles (GNPs)-capped 11-mercaptoundecanoic acid (MUA) modified bioelectrode was presented and its application potential for RBD biosensing was examined. The bioelectrode fabrication protocol was based on covalent ester linking formation between hydroxylated ITO electrode and GNPs-capped MUA (GNPs@MUA) with carboxyl ends. For this aim, spherical GNPs were prepared and characterized with scanning-transmission electron microscopy (S-TEM), UV-vis, and Raman spectroscopy. The synthesized GNPs were functionalized with MUA yielding Au-S bonds. Then, covalent immobilization of anti-RBD antibodies on the GNPs@MUA was performed with the help of carbodiimide coupling chemistry. The assembly processes of GNPs@MUA, anti-RBD antibodies and RBD antigens were characterized electrochemical, chemical and morphological techniques. GNPs@MUA was used as immobilization environment and provided the most effective surface design for target immunosensor. The resulting immunosensor is further applied to the impedimetric detection of RBD and it displayed a linear response to RBD antigen in the linear range of 0.002-100 pg mL-1 with a limit of detection of 0.577 fg mL-1 and sensitivity of 0.238 kohmpgmL-1 cm-2. The fabricated immunosensor had a good repeatability, long storage, stability and a reusable property after simple regeneration process. Furthermore, it was successfully employed for selective determination of RBD in artificial nasal secretion samples.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Muhammet Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
18
|
Klose AM, Daiss JL, Ho L, Beck CA, Striemer CC, Muthukrishnan G, Miller BL. StaphAIR: A Label-Free Antigen Microarray Approach to Detecting Anti- Staphylococcus aureus Antibody Responses in Orthopedic Infections. Anal Chem 2021; 93:13580-13588. [PMID: 34596381 DOI: 10.1021/acs.analchem.1c02658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arrayed imaging reflectometry (AIR) is an optical biosensor platform for simple, multiplex measurement of antigen-specific antibody responses in patient blood samples. Here, we report the development of StaphAIR, an 8-plex Staphylococcus aureus antigen array on the AIR platform for profiling antigen-specific anti-S. aureus humoral immune responses. Initial validation experiments with mouse and humanized monoclonal antibodies against the S. aureus autolysin glucosaminidase (Gmd) domain, and subsequent testing with dilution series of pooled positive human serum confirmed analytically robust behavior of the array, with all antigens displaying Langmuir-type dose-response curves. Testing a cohort of 82 patients with S. aureus musculoskeletal infections (MSKI) and 30 healthy individuals enabled discrimination of individual patient responses to different S. aureus antigens, with statistical significance between osteomyelitis patients and controls obtained overall for four individual antigens (IsdA, IsdB, Gmd, and SCIN). Multivariate analyses of the antibody titers obtained from StaphAIR revealed its utility as a potential diagnostic tool for detecting S. aureus MSKI (area under the receiver operating characteristic curve (AUC) > 0.85). We conclude that StaphAIR has utility as a high-throughput immunoassay for studying and diagnosing osteomyelitis in patients.
Collapse
Affiliation(s)
- Alanna M Klose
- Department of Dermatology, University of Rochester, Rochester, New York 14627, United States
| | - John L Daiss
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14627, United States
| | - Lananh Ho
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Christopher A Beck
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14627, United States.,Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14627, United States
| | | | - Gowrishankar Muthukrishnan
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14627, United States
| | - Benjamin L Miller
- Department of Dermatology, University of Rochester, Rochester, New York 14627, United States.,Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
19
|
Williams A, Branscome H, Khatkar P, Mensah GA, Al Sharif S, Pinto DO, DeMarino C, Kashanchi F. A comprehensive review of COVID-19 biology, diagnostics, therapeutics, and disease impacting the central nervous system. J Neurovirol 2021; 27:667-690. [PMID: 34581996 PMCID: PMC8477646 DOI: 10.1007/s13365-021-00998-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/17/2021] [Accepted: 07/01/2021] [Indexed: 01/08/2023]
Abstract
The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a highly transmissible disease. SARS-CoV-2 is estimated to have infected over 153 million people and to have caused over 3.2 million global deaths since its emergence in December 2019. SARS-CoV-2 is the seventh coronavirus known to infect humans, and like other coronaviruses, SARS-CoV-2 infection is characterized by a variety of symptoms including general flu-like symptoms such as a fever, sore throat, fatigue, and shortness of breath. Severe cases often display signs of pneumonia, lymphopenia, acute kidney injury, cardiac injury, cytokine storms, lung damage, acute respiratory distress syndrome (ARDS), multiple organ failure, sepsis, and death. There is evidence that around 30% of COVID-19 cases have central nervous system (CNS) or peripheral nervous system (PNS) symptoms along with or in the absence of the previously mentioned symptoms. In cases of CNS/PNS impairments, patients display dizziness, ataxia, seizure, nerve pain, and loss of taste and/or smell. This review highlights the neurological implications of SARS-CoV-2 and provides a comprehensive summary of the research done on SARS-CoV-2 pathology, diagnosis, therapeutics, and vaccines up to May 5.
Collapse
Affiliation(s)
- Anastasia Williams
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
- American Type Culture Collection (ATCC), Manassas, VA, USA
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Gifty A Mensah
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Sarah Al Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Daniel O Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
- Immunology Core, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
20
|
Cognetti JS, Steiner DJ, Abedin M, Bryan MR, Shanahan C, Tokranova N, Young E, Klose AM, Zavriyev A, Judy N, Piorek B, Meinhart C, Jakubowicz R, Warren H, Cady NC, Miller BL. Disposable photonics for cost-effective clinical bioassays: application to COVID-19 antibody testing. LAB ON A CHIP 2021; 21:2913-2921. [PMID: 34160511 DOI: 10.1039/d1lc00369k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Decades of research have shown that biosensors using photonic circuits fabricated using CMOS processes can be highly sensitive, selective, and quantitative. Unfortunately, the cost of these sensors combined with the complexity of sample handling systems has limited the use of such sensors in clinical diagnostics. We present a new "disposable photonics" sensor platform in which rice-sized (1 × 4 mm) silicon nitride ring resonator sensor chips are paired with plastic micropillar fluidic cards for sample handling and optical detection. We demonstrate the utility of the platform in the context of detecting human antibodies to SARS-CoV-2, both in convalescent COVID-19 patients and for subjects undergoing vaccination. Given its ability to provide quantitative data on human samples in a simple, low-cost single-use format, we anticipate that this platform will find broad utility in clinical diagnostics for a broad range of assays.
Collapse
Affiliation(s)
- John S Cognetti
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA.
| | - Daniel J Steiner
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| | - Minhaz Abedin
- College of Nanoscale Science and Engineering, SUNY Polytechnic, Albany, New York, USA
| | - Michael R Bryan
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| | - Conor Shanahan
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA.
| | - Natalya Tokranova
- College of Nanoscale Science and Engineering, SUNY Polytechnic, Albany, New York, USA
| | - Ethan Young
- Ortho-Clinical Diagnostics, Rochester, New York, USA
| | - Alanna M Klose
- Department of Dermatology, University of Rochester, Rochester, New York, USA
| | | | - Nicholas Judy
- Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, California, USA
| | - Brian Piorek
- Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, California, USA
| | - Carl Meinhart
- Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, California, USA
| | | | - Harold Warren
- Ortho-Clinical Diagnostics, Rochester, New York, USA
| | - Nathaniel C Cady
- College of Nanoscale Science and Engineering, SUNY Polytechnic, Albany, New York, USA
| | - Benjamin L Miller
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA. and Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA and Institute of Optics, University of Rochester, Rochester, New York, USA and Department of Dermatology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
21
|
Avila-Huerta MD, Ortiz-Riaño EJ, Mancera-Zapata DL, Cortés-Sarabia K, Morales-Narváez E. Facile Determination of COVID-19 Seroconversion via Nonradiative Energy Transfer. ACS Sens 2021; 6:2136-2140. [PMID: 34047541 DOI: 10.1021/acssensors.1c00795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Serological tests are crucial in a pandemic scenario, since they are a valuable tool to spot those citizens with potential immunity, specific regions with herd immunity or particular at-risk populations, as well as acquired immunity after vaccination. Hence, high-throughput, fast, cost-effective, and straightforward technologies facilitating interrogation of COVID-19 seroconversion are an existing need. Herein, we developed an innovative assay for the determination of COVID-19 seroconversion. Fluorophore-labeled SARS-CoV-2 spike receptor-binding domain recombinant protein (F-RBD) was discovered to operate as a bioprobe that emits a strong fluorescence upon COVID-19 antibody detection; however, F-RBD fluorescence was deactivated by graphene oxide-decorated surfaces when COVID-19 antibodies are absent in the sample. With a cost of less than 0.5 USD per test (at laboratory scale), the biosensing system offers optimum results within 42 min. To demonstrate that this technology is technically sound in a relevant environment, 34 human serum samples were analyzed and clearly differentiated, requiring a tiny amount of serum (1 μL to be later diluted in saline buffer).
Collapse
Affiliation(s)
- Mariana D. Avila-Huerta
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León, 37150, Guanajuato, México
| | - Edwin J. Ortiz-Riaño
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León, 37150, Guanajuato, México
| | - Diana L. Mancera-Zapata
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León, 37150, Guanajuato, México
| | - Karen Cortés-Sarabia
- Facultad de Ciencias Químico, Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, 39070, Guerrero, México
| | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León, 37150, Guanajuato, México
| |
Collapse
|
22
|
Du PX, Chou YY, Santos HM, Keskin BB, Hsieh MH, Ho TS, Wang JY, Lin YL, Syu GD. Development and Application of Human Coronavirus Protein Microarray for Specificity Analysis. Anal Chem 2021; 93:7690-7698. [PMID: 34011150 PMCID: PMC8146142 DOI: 10.1021/acs.analchem.1c00614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus is an enveloped RNA virus that causes mild to severe respiratory diseases in humans, including HKU1-CoV, 229E-CoV, NL63-CoV, OC43-CoV, SARS-CoV, MERS-CoV, and SARS-CoV-2. Due to the outbreak of SARS-CoV-2, it is important to identify the patients and investigate their immune responses. Protein microarray is one of the best platforms to profile the antibodies in the blood because of its fast, multiplexed, and sensitive nature. To fully understand the immune responses and biological specificities, this study developed a human coronavirus (HCoV) protein microarray and included all seven human coronaviruses and three influenza viruses. Each protein was printed in triplicate and formed 14 identical blocks per array. The HCoV protein microarray showed high reproducibility and sensitivity to the monoclonal antibodies against spike and nucleocapsid protein with detection limits of 10-200 pg. The HCoV proteins that were immobilized on the array were properly folded and functional by showing interactions with a known human receptor, e.g., ACE2. By profiling the serum IgG and IgA from 32 COVID-19 patients and 36 healthy patients, the HCoV protein microarray demonstrated 97% sensitivity and 97% specificity with two biomarkers. The results also showed the cross-reactivity of IgG and IgA in COVID-19 patients to spike proteins from various coronaviruses, including that from SARS-CoV, HKU1-CoV, and OC43-CoV. Finally, an innate immune protein named surfactant protein D showed broad affinities to spike proteins in all human coronaviruses. Overall, the HCoV protein microarray is multiplexed, sensitive, and specific, which is useful in diagnosis, immune assessment, biological development, and drug screening.
Collapse
Affiliation(s)
- Pin-Xian Du
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Yi-Yu Chou
- Department
of Nursing, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan, ROC
| | - Harvey M. Santos
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Batuhan Birol Keskin
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Miao-Hsi Hsieh
- Institute
of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Tzong-Shiann Ho
- Department
of Pediatrics, National Cheng Kung University Hospital, College of
Medicine, National Cheng Kung University, Tainan 701, Taiwan, ROC
- Center
of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Jiu-Yao Wang
- Department
of Pediatrics, National Cheng Kung University Hospital, College of
Medicine, National Cheng Kung University, Tainan 701, Taiwan, ROC
- Center for
Allergy and Clinical Immunology Research (ACIR), College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Yi-Ling Lin
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Guan-Da Syu
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan, ROC
- International
Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan, ROC
- Research
Center of Excellence in Regenerative Medicine, National Cheng Kung University, Tainan 701, Taiwan, ROC
| |
Collapse
|
23
|
Song Q, Sun X, Dai Z, Gao Y, Gong X, Zhou B, Wu J, Wen W. Point-of-care testing detection methods for COVID-19. LAB ON A CHIP 2021; 21:1634-1660. [PMID: 33705507 DOI: 10.1039/d0lc01156h] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
COVID-19 is an acute respiratory disease caused by SARS-CoV-2, which has high transmissibility. People infected with SARS-CoV-2 can develop symptoms including cough, fever, pneumonia and other complications, which in severe cases could lead to death. In addition, a proportion of people infected with SARS-CoV-2 may be asymptomatic. At present, the primary diagnostic method for COVID-19 is reverse transcription-polymerase chain reaction (RT-PCR), which tests patient samples including nasopharyngeal swabs, sputum and other lower respiratory tract secretions. Other detection methods, e.g., isothermal nucleic acid amplification, CRISPR, immunochromatography, enzyme-linked immunosorbent assay (ELISA) and electrochemical sensors are also in use. As the current testing methods are mostly performed at central hospitals and third-party testing centres, the testing systems used mostly employ large, high-throughput, automated equipment. Given the current situation of the epidemic, point-of-care testing (POCT) is advantageous in terms of its ease of use, greater approachability on the user's end, more timely detection, and comparable accuracy and sensitivity, which could reduce the testing load on central hospitals. POCT is thus conducive to daily epidemic control and achieving early detection and treatment. This paper summarises the latest research advances in POCT-based SARS-CoV-2 detection methods, compares three categories of commercially available products, i.e., nucleic acid tests, immunoassays and novel sensors, and proposes the expectations for the development of POCT-based SARS-CoV-2 detection including greater accessibility, higher sensitivity and lower costs.
Collapse
Affiliation(s)
- Qi Song
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. and Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong, China
| | - Xindi Sun
- Materials Genome Institute, Shanghai University, Shanghai, China.
| | - Ziyi Dai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China.
| | - Yibo Gao
- Shenzhen Shineway Technology Corporation, Shenzhen, Guangdong, China
| | - Xiuqing Gong
- Materials Genome Institute, Shanghai University, Shanghai, China.
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China.
| | - Jinbo Wu
- Materials Genome Institute, Shanghai University, Shanghai, China.
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
24
|
Cao W, Dong C, Kim S, Hou D, Tai W, Du L, Im W, Zhang XF. Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction. Biophys J 2021; 120:1011-1019. [PMID: 33607086 PMCID: PMC7886630 DOI: 10.1016/j.bpj.2021.02.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
The current COVID-19 pandemic has led to a devastating impact across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (the virus causing COVID-19) is known to use the receptor-binding domain (RBD) at viral surface spike (S) protein to interact with the angiotensin-converting enzyme 2 (ACE2) receptor expressed on many human cell types. The RBD-ACE2 interaction is a crucial step to mediate the host cell entry of SARS-CoV-2. Recent studies indicate that the ACE2 interaction with the SARS-CoV-2 S protein has a higher affinity than its binding with the structurally identical S protein of SARS-CoV-1, the virus causing the 2002-2004 SARS outbreak. However, the biophysical mechanism behind such binding affinity difference is unclear. This study utilizes combined single-molecule force spectroscopy and steered molecular dynamics (SMD) simulation approaches to quantify the specific interactions between SARS-CoV-2 or SARS-CoV-1 RBD and ACE2. Depending on the loading rates, the unbinding forces between SARS-CoV-2 RBD and ACE2 range from 70 to 105 pN and are 30-40% higher than those of SARS-CoV-1 RBD and ACE2 under similar loading rates. SMD results indicate that SARS-CoV-2 RBD interacts with the N-linked glycan on Asn90 of ACE2. This interaction is mostly absent in the SARS-CoV-1 RBD-ACE2 complex. During the SMD simulations, the extra RBD-N-glycan interaction contributes to a greater force and prolonged interaction lifetime. The observation is confirmed by our experimental force spectroscopy study. After removing N-linked glycans on ACE2, its mechanical binding strength with SARS-CoV-2 RBD decreases to a similar level of the SARS-CoV-1 RBD-ACE2 interaction. Together, the study uncovers the mechanism behind the difference in ACE2 binding between SARS-CoV-2 and SARS-CoV-1 and could help develop new strategies to block SARS-CoV-2 entry.
Collapse
Affiliation(s)
| | - Chuqiao Dong
- Department of Mechanical Engineering and Mechanics
| | - Seonghan Kim
- Departments of Biological Sciences, Chemistry, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania
| | | | - Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Wonpil Im
- Department of Bioengineering; Departments of Biological Sciences, Chemistry, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania.
| | - X Frank Zhang
- Department of Bioengineering; Department of Mechanical Engineering and Mechanics.
| |
Collapse
|
25
|
Zhang H, Klose AM, Miller BL. Label-Free, Multiplex Glycan Microarray Biosensor for Influenza Virus Detection. Bioconjug Chem 2021; 32:533-540. [PMID: 33559468 DOI: 10.1021/acs.bioconjchem.0c00718] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Newly emerging influenza viruses adapted from animal species pose significant pandemic threats to public health. An understanding of hemagglutinin (HA) receptor-binding specificity to host receptors is key to studying the adaptation of influenza viruses in humans. This information may be particularly useful for predicting the emergence of a pandemic outbreak. Therefore, high-throughput sensing technologies able to profile HA receptor binding can facilitate studies of influenza virus evolution and adaptation in humans. As a step toward this goal, we have prepared glycan-based receptor analogue microarrays on the Arrayed Imaging Reflectometry (AIR) platform. These arrays demonstrate label-free, multiplex detection and discrimination between human and avian influenza viruses. Microarrays consisting of glycan probes with 2,6 and 2,3 linkages were prepared. After first confirming their ability to capture lectins (carbohydrate-binding proteins) with known specificities, we observed that the arrays were able to discriminate between and quantify human pandemic influenza A/California/07/2009 (H1N1pdm) and avian A/Netherlands/1/2000 (H13N8) influenza viruses, respectively. As the method may be expanded to large numbers of glycans (>100) and virus subtypes (H1-H18), we anticipate it can be applied to systematically evaluate influenza virus adaptation in humans. In turn, this will facilitate global influenza surveillance and serve as a new tool enabling health organizations, governments, research institutes, and laboratories to react quickly in the face of a pandemic outbreak.
Collapse
Affiliation(s)
- Hanyuan Zhang
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Alanna M Klose
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Benjamin L Miller
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
26
|
Limsakul P, Charupanit K, Moonla C, Jeerapan I. Advances in emergent biological recognition elements and bioelectronics for diagnosing COVID-19. EMERGENT MATERIALS 2021; 4:231-247. [PMID: 33718775 PMCID: PMC7937783 DOI: 10.1007/s42247-021-00175-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 05/04/2023]
Abstract
Coronaviruses pose a serious threat to public health. Tremendous efforts are dedicated to advance reliable and effective detection of coronaviruses. Currently, the coronavirus disease 2019 (COVID-19) diagnosis mainly relies on the detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic materials by using reverse transcription-polymerase chain reaction (RT-PCR) assay. However, simpler and more rapid and reliable alternatives are needed to meet high demand during the pandemic. Biosensor-based diagnosis approaches become alternatives for selectively and rapidly detecting virus particles because of their biorecognition elements consisting of biomaterials that are specific to virus biomarkers. Here, we summarize biorecognition materials, including antibodies and antibody-like molecules, that are designed to recognize SARS-CoV-2 biomarkers and the advances of recently developed biosensors for COVID-19 diagnosis. The design of biorecognition materials or layers is crucial to maximize biosensing performances, such as high selectivity and sensitivity of virus detection. Additionally, the recent representative achievements in developing bioelectronics for sensing coronavirus are included. This review includes scholarly articles, mainly published in 2020 and early 2021. In addition to capturing the fast development in the fields of applied materials and biodiagnosis, the outlook of this rapidly evolving technology is summarized. Early diagnosis of COVID-19 could help prevent the spread of this contagious disease and provide significant information to medical teams to treat patients.
Collapse
Affiliation(s)
- Praopim Limsakul
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| | - Krit Charupanit
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand
| | - Chochanon Moonla
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111, University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Itthipon Jeerapan
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| |
Collapse
|
27
|
Prommapan P, Brljak N, Lowry TW, Van Winkle D, Lenhert S. Aptamer Functionalized Lipid Multilayer Gratings for Label-Free Analyte Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:nano10122433. [PMID: 33291389 PMCID: PMC7762078 DOI: 10.3390/nano10122433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Lipid multilayer gratings are promising optical biosensor elements that are capable of transducing analyte binding events into changes in an optical signal. Unlike solid state transducers, reagents related to molecular recognition and signal amplification can be incorporated into the lipid grating ink volume prior to fabrication. Here we describe a strategy for functionalizing lipid multilayer gratings with a DNA aptamer for the protein thrombin that allows label-free analyte detection. A double cholesterol-tagged, double-stranded DNA linker was used to attach the aptamer to the lipid gratings. This approach was found to be sufficient for binding fluorescently labeled thrombin to lipid multilayers with micrometer-scale thickness. In order to achieve label-free detection with the sub-100 nm-thick lipid multilayer grating lines, the binding affinity was improved by varying the lipid composition. A colorimetric image analysis of the light diffracted from the gratings using a color camera was then used to identify the grating nanostructures that lead to an optimal signal. Lipid composition and multilayer thickness were found to be critical parameters for the signal transduction from the aptamer functionalized lipid multilayer gratings.
Collapse
Affiliation(s)
- Plengchart Prommapan
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA; (P.P.); (T.W.L.); (D.V.W.)
| | - Nermina Brljak
- Department of Chemistry, Florida State University, Tallahassee, FL 32306, USA;
| | - Troy W. Lowry
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA; (P.P.); (T.W.L.); (D.V.W.)
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, 77 Chieftan Way, Tallahassee, FL 32306, USA
| | - David Van Winkle
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA; (P.P.); (T.W.L.); (D.V.W.)
| | - Steven Lenhert
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, 77 Chieftan Way, Tallahassee, FL 32306, USA
| |
Collapse
|