1
|
Arshad F, Abdillah AN, Shivanand P, Ahmed MU. Dual-Mode RPA/CRISPR-Cas12a Biosensor Based on Silica and Magnetic Hybrid Nanobeads for Rapid Detection of Campylobacter jejuni. ACS APPLIED BIO MATERIALS 2025; 8:2977-2984. [PMID: 40183586 DOI: 10.1021/acsabm.4c01810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
In this study, we developed a biosensor that makes use of recombinase polymerase amplification (RPA) along with a CRISPR/Cas12a system integrated with silica nanobeads and a magnetic nanoparticle nanohybrid complex that displayed peroxidase-mimicking properties. This nanohybrid nanozyme (NZ) integration with the CRISPR/Cas system allowed dual-mode fluorometric and colorimetric responses . The nanohybrid NZ was a conjugated ssDNA quencher probe sequence with inherent fluorometric properties. In the presence of target RPA amplicons, the CRISPR/Cas12a system gets activated, cleaving the probe sequence attached to the NZ complex and leading to fluorescence signal generation. Post-CRISPR/Cas12a assay, the presence of the NZ in the reaction mixture, after being cleaved away from the probe sequence, gave a colourimetric response directly proportional to the target DNA concentration, as the ssDNA probe sequence no longer hindered its catalytic activity. Therefore, the dual-mode detection using the CRISPR/Cas12a-based fluorometric response and NZ-based colorimetric detection conferred high sensitivity and selectivity toward Campylobacter detection. The developed sensor could detect the pathogenic DNA at concentrations as low as 0.98 pg/μL and 0.96 pg/μL via fluorescence and absorbance spectroscopy, respectively. In addition, our method was also tested in raw food analysis and showed good recovery.
Collapse
Affiliation(s)
- Fareeha Arshad
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Anis Nadiah Abdillah
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| |
Collapse
|
2
|
Kim HP, Park JH, Kim MG, Seok Y. Lab-on-paper for molecular testing with USB-powered isothermal amplification and fluidic control. Mikrochim Acta 2025; 192:90. [PMID: 39821474 DOI: 10.1007/s00604-024-06889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
The global healthcare market increasingly demands affordable molecular diagnostics for field testing. To address this need, we introduce a lab-on-paper (LOP) platform that integrates isothermal amplification with a specially designed paper strip for molecular testing through an automated microfluidics process. The LOP system is engineered for rapid, cost-effective, and highly sensitive detection, using USB-powered thermal management and a wax valve mechanism. This innovative platform provides an accessible solution for the rapid and accurate detection of various microorganisms, proving particularly advantageous for point-of-care testing in resource-limited environments. Experiments conducted in this study demonstrated the efficacy of the LOP platform in the colorimetric detection of foodborne pathogens. It reliably detected Vibrio vulnificus at concentrations as low as 120 CFU/mL and Salmonella Typhimurium at 60 CFU/mL, with results observable to the naked eye. The entire process, encompassing amplification and detection, was completed within 30 min, underscoring the system's rapid diagnostic capability. Furthermore, with an assay cost of 5.2 USD per test, the platform offers a highly cost-effective solution for molecular diagnostics, particularly in resource-limited settings. The LOP platform's portability, ease of use, and affordability make it a promising alternative for various diagnostic applications, including infectious disease monitoring and ensuring food safety.
Collapse
Affiliation(s)
- Hyun Pyo Kim
- AI the nutrigene, 42, Changeop-Ro, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 13449, Republic of Korea
| | - Ji-Ho Park
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju, 61005, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju, 61005, Republic of Korea.
| | - Youngung Seok
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
3
|
Laliwala A, Pant A, Svechkarev D, Sadykov MR, Mohs AM. Advancements of paper-based sensors for antibiotic-resistant bacterial species identification. NPJ BIOSENSING 2024; 1:17. [PMID: 39678719 PMCID: PMC11645268 DOI: 10.1038/s44328-024-00016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Evolution of antimicrobial-resistant bacterial species is on a rise. This review aims to explore the diverse range of paper-based platforms designed to identify antimicrobial-resistant bacterial species. It highlights the most important targets used for sensor development and examines the applications of nanosized particles used in paper-based sensors. This review also discusses the advantages, limitations, and applicability of various targets and detection techniques for sensing drug-resistant bacterial species using paper-based platforms.
Collapse
Affiliation(s)
- Aayushi Laliwala
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
- Present Address: Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Ashruti Pant
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
| | - Denis Svechkarev
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182-0109 USA
| | - Marat R. Sadykov
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198-5900 USA
| | - Aaron M. Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5900 USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
| |
Collapse
|
4
|
Wu T, Shen C, Zhao Z, Lyu M, Bai H, Hu X, Zhao J, Zhang R, Qian K, Xu G, Ying B. Integrating Paper-Based Microfluidics and Lateral Flow Strip into Nucleic Acid Amplification Device toward Rapid, Low-Cost, and Visual Diagnosis of Multiple Mycobacteria. SMALL METHODS 2024; 8:e2400095. [PMID: 38466131 DOI: 10.1002/smtd.202400095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/23/2024] [Indexed: 03/12/2024]
Abstract
Efficient diagnosis of mycobacterial infections can effectively manage and prevent the transmission of infectious diseases. Unfortunately, existing diagnostic strategies are challenged by long assay times, high costs, and highly specialized expertise to distinguish between pulmonary tuberculosis (PTB) and nontuberculous mycobacterial pulmonary diseases (NTM-PDs). Herein, in this study, an optimized 3D paper-based analytical device (µPAD) is incorporated with a closed lateral flow (LF) strip into a loop-mediated isothermal amplification (LAMP) device (3D-µPAD-LF-LAMP) for rapid, low-cost, and visual detection of pathogenic mycobacteria. The platform's microfluidic feature enhanced the nucleic acid amplification, thereby reducing the costs and time as compared to boiling, easyMAG, and QIAGEN techniques. Moreover, the LF unit is specifically designed to minimize aerosol contamination for a user-friendly and visual readout. 3D-µPAD-LF-LAMP is optimized and assessed using standard strains, demonstrating a limit of detection (LOD) down to 10 fg reaction-1. In a cohort of 815 patients, 3D-µPAD-LF-LAMP displays significantly better sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and diagnostic accuracy than conventional bacterial culture and Xpert techniques. Collectively, 3D-µPAD-LF-LAMP demonstrates enhanced accessibility, efficiency, and practicality for the diagnosis of multiple pathogenic mycobacteria, which can be applied across diverse clinical settings, thereby ultimately improving public health outcomes.
Collapse
Affiliation(s)
- Tao Wu
- Department of Clinical Laboratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750001, China
| | - Chenlan Shen
- Department of Laboratory Medicine and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Mengyuan Lyu
- Department of Laboratory Medicine and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Hao Bai
- Department of Laboratory Medicine and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Xuejiao Hu
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, 510080, China
| | - Junwei Zhao
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan Province, China
| | - Ru Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Kun Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Gaolian Xu
- Shanghai Sci-Tech InnoCenter for Infection & Immunity, Building A1, Bay Valley Science and Technology Park, Lane 1688, Guoquan North Road, Yangpu District, Shanghai, China
| | - Binwu Ying
- Department of Laboratory Medicine and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| |
Collapse
|
5
|
Priya R, Dubey SK, Goel S. Miniaturized Devices for Isothermal Amplification and Photometric Quantification of Pseudomonas Aeruginosa. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 6:133-139. [PMID: 39698119 PMCID: PMC11655106 DOI: 10.1109/ojemb.2024.3477315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/08/2024] [Accepted: 10/06/2024] [Indexed: 12/20/2024] Open
Abstract
Goal: This study introduced a proof-of-concept prototype for isothermal recombinase polymerase amplification (RPA) with miniaturized photometric detection, enabling rapid P. aeruginosa detection. Methods: The researchers conducted the amplification process within a microchamber with a diameter of 10 mm, utilizing a standalone Thermostat driven thermal management setup. RPA, an amplification technique was employed, which required a lower operating temperature of 37 °C-40 °C to complete the reaction. The amplified amplicon was labeled with a fluorophore reporter, stimulated by an LED light source, and detected in real-time using a photodiode. Results: The developed prototype successfully demonstrated the rapid detection of P. aeruginosa using the RPA assay. The process only required the utilization of 0.04 ng of working concentration of DNA. The entire process, from amplification to detection, could be completed in over 15 minutes. The platform showed enhanced sensitivity and specificity, providing a cost-effective and accurate solution for on-site detection/quantification of pathogens. Conclusions: The integration of isothermal RPA with the miniaturized photometric detection platform proved successful in achieving the goal of rapid and specific pathogen detection. This study proved the benefits of Isothermal Nucleic Acid Amplification Technology (INAAT), emphasizing its potential as an accessible, user-friendly point-of-care technology for resource-constrained institutions. The RPA-based prototype demonstrated capability without requiring costly laboratory equipment or expertise. The developed platform, when combined with Internet of Things (IoT) enabled cloud platform, also allowed remote monitoring of data. Overall, the methodology presented in this study offered a cost-effective, accurate, and convenient solution for on-site testing in resource-limited settings.
Collapse
Affiliation(s)
- Ramya Priya
- MEMS, Microfluidics and Nanoelectronics (MMNE) LabBirla Institute of Technology and Science (BITS) Pilani, Hyderabad CampusHyderabad500078India
- Department of Mechanical EngineeringBirla Institute of Technology and Science (BITS) Pilani, Hyderabad CampusHyderabad500078India
| | - Satish Kumar Dubey
- MEMS, Microfluidics and Nanoelectronics (MMNE) LabBirla Institute of Technology and Science (BITS) Pilani, Hyderabad CampusHyderabad500078India
- Department of Mechanical EngineeringBirla Institute of Technology and Science (BITS) Pilani, Hyderabad CampusHyderabad500078India
| | - Sanket Goel
- MEMS, Microfluidics and Nanoelectronics (MMNE) LabBirla Institute of Technology and Science (BITS) Pilani, Hyderabad CampusHyderabad500078India
- Department of Electrical and Electronics EngineeringBirla Institute of Technology and Science (BITS) Pilani, Hyderabad CampusHyderabad500078India
| |
Collapse
|
6
|
Zhang Z, Yuan H, Ni R, Yin J, Li M, Yang P, Cao X, Zhou J, Su X, Chen Y, Gao W, Jin Q. Minute level ultra-rapid and thousand copies level high-sensitive pathogen nucleic acid identification based on contactless impedance detection microsensor. Talanta 2024; 278:126487. [PMID: 39002258 DOI: 10.1016/j.talanta.2024.126487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/21/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Early screening for pathogens is crucial during pandemic outbreaks. Nucleic acid testing (NAT) is a valuable method for keeping pathogens from spreading. However, the long detection time and large size of the instruments involved significantly limited the efficiency of detection. This work described an integrated NAT microsensor that facilitated rapid and extremely sensitive detection based on nucleic acid amplification (NAA) on a chip. The biochip consisted of two layers incorporating a heater, a thermometer, an interdigital electrode (IDE) and a reaction chamber. The Pt electrode based heater and thermometer were utilized to maintain a specific temperature for the sample in the chamber. The thermometer exhibited a good linear correlation with a sensitivity of 9.36 Ω/°C and the heater achieved a heating efficiency of approximately 6.5 °C/s. Multiple ions were released during NAA, resulting in a decrease in the impedance of the amplification system solution. A large signal of impedance was generated by the released ions due to its linear correlation with the logarithm of the ion concentration. With this detection principle, IDE was employed for real-time monitoring of the in-chip reaction system impedance and NAA process. Specific nucleic acids from two pathogens (SARS-CoV-2, Vibrio vulnificus) were detected with this microsensor. The samples were qualitatively analyzed on microchip within 3 min, with a limit of detection (LOD) of 103 copies/μL. The proposed sensor presented several advantages, including reduced NAT time and increased sensitivity. Consequently, it has shown significant potential in rapid and high-quality nucleic acid testing for the field of epidemic prevention.
Collapse
Affiliation(s)
- Zhikang Zhang
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Haojun Yuan
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Renhao Ni
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jiawen Yin
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Min Li
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Panhui Yang
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xinyi Cao
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jun Zhou
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xiurong Su
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yongbin Chen
- Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, 315800, Ningbo, Zhejiang, China
| | - Wanlei Gao
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Qinghui Jin
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
7
|
Vedantam KS, Jain SK, Panwar NL, Sunil J, Wadhawan N, Kumar A. Emergence of Internet of Things technology in food and agricultural sector: A review. J FOOD PROCESS ENG 2024; 47. [DOI: 10.1111/jfpe.14698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/11/2024] [Indexed: 01/06/2025]
Abstract
AbstractFood processing is an indispensable sector crucial for controlling the food losses. Discrete measures were introduced and implemented to enhance the food shelf life and preservation techniques. However, poor handling and preservation methods usher to the food deprivation. In such milieu, amalgamation of futuristic technologies like sophisticated sensors tether with Internet of Things (IoT) could shoot up the food safety and minimize the deprivation. Research across the globe have proved that integration of IoT‐smart sensors in scrutinizing ecological factors such as temperature, radiation, gaseous composition, relative humidity, and moisture content that are critical for food processing and preservation. IoT has the prospects to ameliorate nationwide explicable execution, slash energy depletion, slash manufacturing expenses, inflate worker health and safety during food processing unit. Smart agricultural techniques also enable measurement of temperature, relative humidity, soil moisture, and nitrogen contents in smart farming and helps the user to determine the status of crops and commodity. This article aims to focus a few aspects and budding areas of IoT in the food and agricultural sectors. With this outlook, advancement and smartness in agriculture and food processing can be created by collaborating with IoT technology.
Collapse
Affiliation(s)
- Krishna S. Vedantam
- Department of Agricultural Engineering Aditya Engineering College, AU, Supampalem Andhra Pradesh India
- Department of Processing and Food Engineering College of Dairy and Food Technology, MPUAT Udaipur, Rajasthan India
| | - Sanjay Kumar Jain
- Department of Processing and Food Engineering College of Dairy and Food Technology, MPUAT Udaipur, Rajasthan India
| | - Narayan Lal Panwar
- Department of Renewable Energy Engineering College of Dairy and Food Technology, MPUAT Udaipur, Rajasthan India
| | - Joshi Sunil
- Department of Electrical Communication Engineering College of Dairy and Food Technology, MPUAT Udaipur, Rajasthan India
| | - Nikita Wadhawan
- Department of Dairy and Food Technology College of Dairy and Food Technology, MPUAT Udaipur, Rajasthan India
| | - Arun Kumar
- Department of Dairy and Food Technology College of Dairy and Food Technology, MPUAT Udaipur, Rajasthan India
| |
Collapse
|
8
|
Bai H, Liu Y, Gao L, Wang T, Zhang X, Hu J, Ding L, Zhang Y, Wang Q, Wang L, Li J, Zhang Z, Wang Y, Shen C, Ying B, Niu X, Hu W. A portable all-in-one microfluidic device with real-time colorimetric LAMP for HPV16 and HPV18 DNA point-of-care testing. Biosens Bioelectron 2024; 248:115968. [PMID: 38150799 DOI: 10.1016/j.bios.2023.115968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Screening for high-risk human papillomavirus (HPV) infection is one of the most important preventative measures for cervical cancer. However, fast, convenient, and low-cost HPV detection remains challenging, especially in resource-limited settings. Here, we report a portable all-in-one device (PAD) for point-of-care testing (POCT) for HPV16 and HPV18 DNA in cervical swabs. The PAD was engineered to integrate modules for extraction-free sample lysis, loop-mediated isothermal amplification (LAMP) with lyophilized reagent beads, and real-time colorimetric signal sensing into a single miniaturized device, considerably shortening the sample-to-result time to 15 min. The precision liquid handling in the completely sealed microfluidic chip is achieved by a uniquely designed pressure-balanced automatic liquid flow mechanism, thereby eliminating the need for manual manipulation of liquids and thus the risk of biohazards. The PAD employs an improved real-time colorimetric LAMP (rcLAMP) assay with a limit of detection (LOD) of 1 copy/μL, enabled by enhanced assay chemistry to maximize the reaction kinetics. To validate this device for clinical application, we tested 206 clinical cervical swab samples and obtained a sensitivity of 92.1% and a specificity of 99.0%. This custom PAD enabled by microfluidic and electronic engineering techniques can be configured for the simultaneous detection of HPV16 and HPV18 or other pathogens in point-of-care applications.
Collapse
Affiliation(s)
- Hao Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqing Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Metabolomics and Gynecological Disease Research, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Linbo Gao
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Metabolomics and Gynecological Disease Research, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoli Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Metabolomics and Gynecological Disease Research, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Hu
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China; Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lisha Ding
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Metabolomics and Gynecological Disease Research, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yueting Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Qian Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Metabolomics and Gynecological Disease Research, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Wang
- One-Chip Biotechnology Co. Ltd, Chengdu, 610041, China
| | - Jianlong Li
- One-Chip Biotechnology Co. Ltd, Chengdu, 610041, China
| | - Zhifeng Zhang
- One-Chip Biotechnology Co. Ltd, Chengdu, 610041, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Chenlan Shen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiaoyu Niu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Metabolomics and Gynecological Disease Research, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wenchuang Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China; Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Hilda L, Mutlaq MS, Waleed I, Althomali RH, Mahdi MH, Abdullaev SS, Singh R, Nasser HA, Mustafa YF, Alawadi AHR. Genosensor on-chip paper for point of care detection: A review of biomedical analysis and food safety application. Talanta 2024; 268:125274. [PMID: 37839324 DOI: 10.1016/j.talanta.2023.125274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Over the last decade, paper-based biosensing has attracted considerable attention in numerous fields due to several advantages of them. To elaborate, using paper as a substrate of sensing approaches can be considered an affordable sensing approach owing to low cost of paper, and alongside that, the ability to operate without requiring external equipment. In many cases, cost-effective fabrication techniques such as screen printed and drop casting can be supposed as other benefits of these platforms. Despite the portability and affordability of paper-based assay, two important limitations including sensitivity and selectivity can decrease the application of these sensing approaches. Initially, decoration of paper substrate with nanomaterials (NMs) can improve the properties of paper due to high surface area and conductivity of them. Secondly, the presence of bioreceptors can provide a selective detection platform. Among different bioreceptors, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) can play a significant role. From this perspective, paper-based biosensors can be used for the detection of various gens which related to biomedical or food safety. In this review, we attempted to summarize recent trends and applications of paper-based genosensor, along with critical arguments in terms of NMs role in signal amplification. Furthermore, the lack of paper-based genosensors in field the of biomedical and food safety will be discussed in the following.
Collapse
Affiliation(s)
- Lelya Hilda
- Department of Chemistry, Universitas Islam Negeri Syekh Ali Hasan Ahmad Addary Padangsidimpuan, Padangsidimpuan, Indonesia.
| | - Maysam Salih Mutlaq
- Department of Radiology & Sonar Techniques, AlNoor University College, Nineveh, Iraq
| | | | - Raed H Althomali
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir, 11991, Saudi Arabia
| | | | - Sherzod Shukhratovich Abdullaev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan; Department of Chemical Engineering, Central Asian University, Tashkent, Uzbekistan; Scientific and Innovation Department, Tashkent State Pedagogical University named after Nizami, Tashkent, Uzbekistan
| | - Rajesh Singh
- Department of Electronics & Communication Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed H R Alawadi
- Building and Construction Technical Engineering Department, College of Technical Engineering, The Islamic university, Najaf, Iraq
| |
Collapse
|
10
|
Pang X, Fu Q, Yang Y, Zhou C, Feng S, Gong K, Wang J, Zhou J. A low-voltage alternant direct current electroporation chip for ultrafast releasing the genome DNA of Helicobacter pylori bacterium. Mikrochim Acta 2024; 191:116. [PMID: 38291180 DOI: 10.1007/s00604-024-06187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/01/2024] [Indexed: 02/01/2024]
Abstract
Nucleic acid detection, as an important molecular diagnostic method, is widely used in bacterial identification, disease diagnosis. For detecting the nucleic acid of bacteria, the prerequisite is to release nucleic acids inside the bacteria. The common means to release nucleic acids is the chemical method, which involves complex processes, is time-consuming, and remains chemical inhibitors. Compared with chemical methods, electroporation as a physical method has the advantages of easy operation, short-time consumption, and chemical reagents free. However, the current works using electroporation often necessitates high-frequency or high-voltage conditions, entailing bulky power devices. Herein, we propose a low-voltage alternant direct current (LADC) electroporation chip and the corresponding miniature device for ultrafast releasing the genome DNA from Helicobacter pylori (H. pylori) for detection. We connected a micrometer-interdigital electrode in the chip with a 20 V portable battery to make the miniature device. Using this low-voltage device, our chip released genome DNA of H. pylori within only 5 ms, achieving a cell lysis rate of 99.5%. We further combined this chip with a colorimetric loop-mediated isothermal amplification assay to visually detect H. pylori within ~ 25 min at 10 CFU/μL. We detected 11 clinical samples using the chip, and the detection results were consistent with those of the clinical standard. The results indicate that the LADC electroporation chip is useful for ultrafast release of genome DNA from bacteria and is expected to promote the development of nucleic acid detection in POCT and other scenarios.
Collapse
Affiliation(s)
- Xueyuan Pang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Quanying Fu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuxiao Yang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Cuiping Zhou
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shaoqiong Feng
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Keye Gong
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiasi Wang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jianhua Zhou
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
11
|
Reynolds J, Loeffler RS, Leigh PJ, Lopez HA, Yoon JY. Recent Uses of Paper Microfluidics in Isothermal Nucleic Acid Amplification Tests. BIOSENSORS 2023; 13:885. [PMID: 37754119 PMCID: PMC10526735 DOI: 10.3390/bios13090885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Isothermal nucleic acid amplification tests have recently gained popularity over polymerase chain reaction (PCR), as they only require a constant temperature and significantly simplify nucleic acid amplification. Recently, numerous attempts have been made to incorporate paper microfluidics into these isothermal amplification tests. Paper microfluidics (including lateral flow strips) have been used to extract nucleic acids, amplify the target gene, and detect amplified products, all toward automating the process. We investigated the literature from 2020 to the present, i.e., since the onset of the COVID-19 pandemic, during which a significant surge in isothermal amplification tests has been observed. Paper microfluidic detection has been used extensively for recombinase polymerase amplification (RPA) and its related methods, along with loop-mediated isothermal amplification (LAMP) and rolling circle amplification (RCA). Detection was conducted primarily with colorimetric and fluorometric methods, although a few publications demonstrated flow distance- and surface-enhanced Raman spectroscopic (SERS)-based detection. A good number of publications could be found that demonstrated both amplification and detection on paper microfluidic platforms. A small number of publications could be found that showed extraction or all three procedures (i.e., fully integrated systems) on paper microfluidic platforms, necessitating the need for future work.
Collapse
Affiliation(s)
- Jocelyn Reynolds
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Reid S. Loeffler
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Preston J. Leigh
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Hannah A. Lopez
- Department of Neuroscience, The University of Arizona, Tucson, AZ 85721, USA;
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| |
Collapse
|
12
|
Kim K, Lee B, Park JH, Park JH, Lee KJ, Kwak TJ, Son T, Shin YB, Im H, Kim MG. Rapid PCR kit: lateral flow paper strip with Joule heater for SARS-CoV-2 detection. MATERIALS HORIZONS 2023; 10:1697-1704. [PMID: 36843375 DOI: 10.1039/d2mh01267g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Polymerase chain reaction (PCR)-based diagnostic kits for point-of-care (POC) testing are highly desirable to prevent the spread of infectious diseases. Here, we demonstrate a rapid PCR testing kit that involves integrating a lateral flow paper strip with a nichrome-based thin film heater. The use of a paper membrane as a PCR-solution container results in fast thermocycling without a cooler because the membrane can contain the solution with a high specific surface area where Joule heating is applied. After PCR, amplified products are simultaneously detected at the lateral flow paper strip with the naked eye. Severe acute respiratory syndrome β-coronavirus RNA can be detected within 30 min after PCR solution injection. This work reveals that the paper membrane can act as not only a capillary flow channel but also as a promising platform for fast PCR and detection.
Collapse
Affiliation(s)
- Kihyeun Kim
- Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Bobin Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Jun Hyeok Park
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Ji-Ho Park
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Ki Joong Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Tae Joon Kwak
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Taehwang Son
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Yong-Beom Shin
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- BioNano Health Guard Research Center (H-GUARD), Daejeon 34141, Republic of Korea
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
| | - Min-Gon Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
13
|
Liao X, Zhang Y, Zhang Q, Zhou J, Ding T, Feng J. Advancing point-of-care microbial pathogens detection by material-functionalized microfluidic systems. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
14
|
Naghdi T, Ardalan S, Asghari Adib Z, Sharifi AR, Golmohammadi H. Moving toward smart biomedical sensing. Biosens Bioelectron 2023; 223:115009. [PMID: 36565545 DOI: 10.1016/j.bios.2022.115009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The development of novel biomedical sensors as highly promising devices/tools in early diagnosis and therapy monitoring of many diseases and disorders has recently witnessed unprecedented growth; more and faster than ever. Nonetheless, on the eve of Industry 5.0 and by learning from defects of current sensors in smart diagnostics of pandemics, there is still a long way to go to achieve the ideal biomedical sensors capable of meeting the growing needs and expectations for smart biomedical/diagnostic sensing through eHealth systems. Herein, an overview is provided to highlight the importance and necessity of an inevitable transition in the era of digital health/Healthcare 4.0 towards smart biomedical/diagnostic sensing and how to approach it via new digital technologies including Internet of Things (IoT), artificial intelligence, IoT gateways (smartphones, readers), etc. This review will bring together the different types of smartphone/reader-based biomedical sensors, which have been employing for a wide variety of optical/electrical/electrochemical biosensing applications and paving the way for future eHealth diagnostic devices by moving towards smart biomedical sensing. Here, alongside highlighting the characteristics/criteria that should be met by the developed sensors towards smart biomedical sensing, the challenging issues ahead are delineated along with a comprehensive outlook on this extremely necessary field.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Sina Ardalan
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Zeinab Asghari Adib
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Amir Reza Sharifi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Hamed Golmohammadi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| |
Collapse
|
15
|
Dos-Reis-Delgado AA, Carmona-Dominguez A, Sosa-Avalos G, Jimenez-Saaib IH, Villegas-Cantu KE, Gallo-Villanueva RC, Perez-Gonzalez VH. Recent advances and challenges in temperature monitoring and control in microfluidic devices. Electrophoresis 2023; 44:268-297. [PMID: 36205631 PMCID: PMC10092670 DOI: 10.1002/elps.202200162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Temperature is a critical-yet sometimes overlooked-parameter in microfluidics. Microfluidic devices can experience heating inside their channels during operation due to underlying physicochemical phenomena occurring therein. Such heating, whether required or not, must be monitored to ensure adequate device operation. Therefore, different techniques have been developed to measure and control temperature in microfluidic devices. In this contribution, the operating principles and applications of these techniques are reviewed. Temperature-monitoring instruments revised herein include thermocouples, thermistors, and custom-built temperature sensors. Of these, thermocouples exhibit the widest operating range; thermistors feature the highest accuracy; and custom-built temperature sensors demonstrate the best transduction. On the other hand, temperature control methods can be classified as external- or integrated-methods. Within the external methods, microheaters are shown to be the most adequate when working with biological samples, whereas Peltier elements are most useful in applications that require the development of temperature gradients. In contrast, integrated methods are based on chemical and physical properties, structural arrangements, which are characterized by their low fabrication cost and a wide range of applications. The potential integration of these platforms with the Internet of Things technology is discussed as a potential new trend in the field.
Collapse
Affiliation(s)
| | | | - Gerardo Sosa-Avalos
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| | - Ivan H Jimenez-Saaib
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| | - Karen E Villegas-Cantu
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| | | | - Víctor H Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| |
Collapse
|
16
|
Silva-Neto HA, Arantes IV, Ferreira AL, do Nascimento GH, Meloni GN, de Araujo WR, Paixão TR, Coltro WK. Recent advances on paper-based microfluidic devices for bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Lin Q, Jia K, Gou H, He H, Wen J, Shen H, Chen K, Wu Y, Lu B, Liao M, Han Y, Zhang J. A smartphone-assisted high-throughput integrated color-sensing platform for the rapid detection of Campylobacter coli. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Detection of Campylobacter jejuni Based on a Real-Time Fluorescence Loop-Mediated Isothermal Amplification Method. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3613757. [PMID: 36093400 PMCID: PMC9453007 DOI: 10.1155/2022/3613757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 06/24/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022]
Abstract
Campylobacter jejuni (C. jejuni), a foodborne pathogenic bacterium, is among the most prevalent causes of human gastroenteritis globally. We developed and evaluated a loop-mediated isothermal amplification (LAMP) method to detect C. jejuni. Outer primers and inner primers were designed based on the hipO gene. The ratio between the concentrations of the inner and outer primers and the reaction temperature were then optimized to achieve optimal assay conditions. The analytical specificity tests showed that, among 12 genera of 74 pure bacterial culture strains, only four C. jejuni isolates could be detected, whereas no amplification was observed in C. coli, C. lari, and the other 11 genera of foodborne pathogens (n = 70). Moreover, the LAMP assay showed a higher analytical sensitivity (34.2 fg μL−1) than the conventional PCR method (342 fg μL−1). The limit of detection of C. jejuni based on the LAMP assay was 103 CFU g−1 in the artificially spiked samples of chicken meat. In conclusion, the developed LAMP assay will be a powerful and practical tool for the fast, specific, and sensitive detection of C. jejuni.
Collapse
|
19
|
O'Connell KC, Lawless NK, Stewart BM, Landers JP. Dielectric heating of highly corrosive and oxidizing reagents on a hybrid glass microfiber-polymer centrifugal microfluidic device. LAB ON A CHIP 2022; 22:2549-2565. [PMID: 35674228 DOI: 10.1039/d2lc00221c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many assays necessitate the use of highly concentrated acids, powerful oxidizing agents, or a combination of the two. Although microfluidic devices offer vast potential for rapid analytical interrogation at the point-of-need (PON), they cannot escape the fundamental requirement for reagent compatibility. Worse, many innovative protocols have been developed that would represent a significant improvement to current field-forward practices within their respective disciplines, but adoption falters due to chemical incompatibility with challenging reagents. Polymeric centrifugal microfluidic devices meet many of the needs for accommodating complex chemical or biochemical protocols in a multiplexed and automatable format. Yet, they also struggle to accommodate highly reactive chemical components long term. In this work, we report on a simple and inexpensive reagent storage strategy that bypasses the typical complexity involved with integration of liquid reagents on microfluidic devices. Moreover, we demonstrate microdevice compatibility and operation after six months of corrosive reagent storage as well as post dielectric heating. This new strategy allows for storage of multiple highly corrosive and oxidative reagents simultaneously, enhancing the possibilities for multistep assay integration at the PON for a diverse array of applications. Successful detection after one week of corrosive reagent storage of an illicit drug and neurotransmitter metabolite, for forensic and clinical applications, is demonstrated. Furthermore, environmental sample preparation via microwave-assisted wet acid digestion is performed on-disc and integrated with downstream detection. Quantitative detection of a heavy metal in soil is achieved by way of on-disc calibration and found to be accurate within 2.4% compared to a gold standard reference (ICP-OES).
Collapse
Affiliation(s)
- Killian C O'Connell
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Nicola K Lawless
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Cognitive Science, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Brennan M Stewart
- Department of Biochemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - James P Landers
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
20
|
Sullivan BP, Chou YS, Bender AT, Martin CD, Kaputa ZG, March H, Song M, Posner JD. Quantitative isothermal amplification on paper membranes using amplification nucleation site analysis. LAB ON A CHIP 2022; 22:2352-2363. [PMID: 35548880 PMCID: PMC9202034 DOI: 10.1039/d2lc00007e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Quantitative nucleic acid amplification tests (qNAATs) are critical in treating infectious diseases, such as in HIV viral load monitoring or SARS-CoV-2 testing, in which viral load indicates viral suppression or infectivity. Quantitative PCR is the gold standard tool for qNAATs; however, there is a need to develop point-of-care (POC) qNAATs to manage infectious diseases in outpatient clinics, low- and middle-income countries, and the home. Isothermal amplification methods are an emerging tool for POC NAATs as an alternative to traditional PCR-based workflows. Previous works have focused on relating isothermal amplification bulk fluorescence signals to input copies of target nucleic acids for sample quantification with limited success. In this work, we show that recombinase polymerase amplification (RPA) reactions on paper membranes exhibit discrete fluorescent amplification nucleation sites. We demonstrate that the number of nucleation sites can be used to quantify HIV-1 DNA and viral RNA in less than 20 minutes. An image-analysis algorithm quantifies nucleation sites and determines the input nucleic acid copies in the range of 67-3000 copies per reaction. We demonstrate a mobile phone-based system for image capture and onboard processing, illustrating that this method may be used at the point-of-care for qNAATs with minimal instrumentation.
Collapse
Affiliation(s)
- Benjamin P Sullivan
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195, Washington, USA.
| | - Yu-Shan Chou
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Andrew T Bender
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195, Washington, USA.
| | - Coleman D Martin
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Zoe G Kaputa
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - Hugh March
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - Minyung Song
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195, Washington, USA.
| | - Jonathan D Posner
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195, Washington, USA.
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Department of Family Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
21
|
Li C, Chen X, Wen R, Ma P, Gu K, Li C, Zhou C, Lei C, Tang Y, Wang H. Immunocapture Magnetic Beads Enhanced the LAMP-CRISPR/Cas12a Method for the Sensitive, Specific, and Visual Detection of Campylobacter jejuni. BIOSENSORS 2022; 12:bios12030154. [PMID: 35323424 PMCID: PMC8946501 DOI: 10.3390/bios12030154] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 05/03/2023]
Abstract
Campylobacter jejuni is one of the most important causes of food-borne infectious disease, and poses challenges to food safety and public health. Establishing a rapid, accurate, sensitive, and simple detection method for C. jejuni enables early diagnosis, early intervention, and prevention of pathogen transmission. In this study, an immunocapture magnetic bead (ICB)-enhanced loop-mediated isothermal amplification (LAMP) CRISPR/Cas12a method (ICB-LAMP-CRISPR/Cas12a) was developed for the rapid and visual detection of C. jejuni. Using the ICB-LAMP-CRISPR/Cas12a method, C. jejuni was first captured by ICB, and the bacterial genomic DNA was then released by heating and used in the LAMP reaction. After the LAMP reaction, LAMP products were mixed and detected by the CRISPR/Cas12a cleavage mixture. This ICB-LAMP-CRISPR/Cas12a method could detect a minimum of 8 CFU/mL of C. jejuni within 70 min. Additionally, the method was performed in a closed tube in addition to ICB capture, which eliminates the need to separate preamplification and transfer of amplified products to avoid aerosol pollution. The ICB-LAMP-CRISPR/Cas12a method was further validated by testing 31 C. jejuni-positive fecal samples from different layer farms. This method is an all-in-one, simple, rapid, ultrasensitive, ultraspecific, visual detection method for instrument-free diagnosis of C. jejuni, and has wide application potential in future work.
Collapse
Affiliation(s)
- Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xuan Chen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Renqiao Wen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Peng Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Kui Gu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Cui Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yizhi Tang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
- Correspondence: (Y.T.); (H.W.); Tel./Fax: +86-028-8547-1599 (Y.T. & H.W.)
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
- Correspondence: (Y.T.); (H.W.); Tel./Fax: +86-028-8547-1599 (Y.T. & H.W.)
| |
Collapse
|
22
|
Qian J, Zhang Q, Liu M, Wang Y, Lu M. A portable system for isothermal amplification and detection of exosomal microRNAs. Biosens Bioelectron 2022; 196:113707. [PMID: 34695686 DOI: 10.1016/j.bios.2021.113707] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/20/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
Exosomal microRNAs (miRNAs) play a key role in cell-cell communication to regulate gene expression in target cells and have great potential as biomarkers for disease diagnosis. This paper reports an on-chip exosomal miRNA amplification and detection system for rapid analysis of exosomal miRNAs. The compact system consists of two connected flow cells for processing exosomes and detecting miRNAs, respectively. The miRNAs extracted from exosomes were quantitatively measured using the on-chip exponential amplification reaction (EXPAR) assay. The sensor chip was designed to store multiple oligonucleotide templates for the EXPAR, mix sample and reagent, and simultaneously analyze multiple exosomal miRNAs of interest. To facilitate the miRNA analysis, a portable detection instrument was built on an IoT platform using a low-cost microcontroller to execute the EXPAR assay, collect fluorescent images, and analyze amplification curves. Here, we studied the miRNA profiles carried by exosomes derived from three different phenotypes of tissue macrophages. The affordable instrument, rapid assay, multiplexed analysis, as well as disposable sensor chip, would boost the development of point-of-care liquid biopsy tests using exosomal miRNAs.
Collapse
Affiliation(s)
- Jingjing Qian
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Qinming Zhang
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Mingdian Liu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Yixuan Wang
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Meng Lu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA; Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
23
|
Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. JOURNAL OF ANALYSIS AND TESTING 2022; 6:247-273. [PMID: 35039787 PMCID: PMC8755517 DOI: 10.1007/s41664-021-00204-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Point-of-care testing (POCT), as a portable and user-friendly technology, can obtain accurate test results immediately at the sampling point. Nowadays, microfluidic paper-based analysis devices (μPads) have attracted the eye of the public and accelerated the development of POCT. A variety of detection methods are combined with μPads to realize precise, rapid and sensitive POCT. This article mainly introduced the development of electrochemistry and optical detection methods on μPads for POCT and their applications on disease analysis, environmental monitoring and food control in the past 5 years. Finally, the challenges and future development prospects of μPads for POCT were discussed.
Collapse
Affiliation(s)
- Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Cong-Cong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan-Li Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Xiao-Hu Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Bao-Xin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Min Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Shi-Yin Yao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| |
Collapse
|
24
|
Sullivan BP, Chou YS, Bender AT, Martin CD, Kaputa ZG, March H, Song M, Posner JD. Quantitative Isothermal Amplification on Paper Membranes using Amplification Nucleation Site Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.11.475898. [PMID: 35043115 PMCID: PMC8764744 DOI: 10.1101/2022.01.11.475898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quantitative nucleic acid amplification tests (qNAATs) are critical in treating infectious diseases, such as in HIV viral load monitoring or SARS-CoV-2 testing, in which viral load indicates viral suppression or infectivity. Quantitative PCR is the gold standard tool for qNAATs; however, there is a need to develop point-of-care (POC) qNAATs to manage infectious diseases in outpatient clinics, low- and middle-income countries, and the home. Isothermal amplification methods are an emerging tool for POC NAATs as an alternative to traditional PCR-based workflows. Previous works have focused on relating isothermal amplification bulk fluorescence signals to input copies of target nucleic acids for sample quantification with limited success. In this work, we show that recombinase polymerase amplification (RPA) reactions on paper membranes exhibit discrete fluorescent amplification nucleation sites. We demonstrate that the number of nucleation sites can be used to quantify HIV-1 DNA and RNA in less than 20 minutes. An image-analysis algorithm quantifies nucleation sites and determines the input nucleic acid copies in the range of 67-3,000 copies per reaction. We demonstrate a mobile phone-based system for image capture and onboard processing, illustrating that this method may be used at the point-of-care for qNAATs with minimal instrumentation.
Collapse
|
25
|
Kishnani V, Park S, Nakate UT, Mondal K, Gupta A. Nano-functionalized paper-based IoT enabled devices for point-of-care testing: a review. Biomed Microdevices 2021; 24:2. [PMID: 34792679 PMCID: PMC8600500 DOI: 10.1007/s10544-021-00588-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/04/2022]
Abstract
Over the last few years, the microfluidics phenomenon coupled with the Internet of Things (IoT) using innovative nano-functional materials has been recognized as a sustainable and economical tool for point-of-care testing (POCT) of various pathogens influencing human health. The sensors based on these phenomena aim to be designed for cost-effectiveness, make it handy, environment-friendly, and get an accurate, easy, and rapid response. Considering the burgeoning importance of analytical devices in the healthcare domain, this review paper is based on the gist of sensing aspects of the microfabricated paper-based analytical devices (μPADs). The article discusses the various used design methodologies and fabrication approaches and elucidates the recently reported surface modification strategies, detection mechanisms viz., colorimetric, electrochemical, fluorescence, electrochemiluminescence, etc. In a nutshell, this article summarizes the state-of-the-art research work carried out over the nano functionalized paper-based analytical devices and associated challenges/solutions in the point of care testing domain.
Collapse
Affiliation(s)
- Vinay Kishnani
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur-342037, Rajasthan, India
| | - Sungjune Park
- Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Umesh T Nakate
- Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID 83415, USA
| | - Ankur Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur-342037, Rajasthan, India.
| |
Collapse
|
26
|
Wan X, Saltepe B, Yu L, Wang B. Programming living sensors for environment, health and biomanufacturing. Microb Biotechnol 2021; 14:2334-2342. [PMID: 33960658 PMCID: PMC8601174 DOI: 10.1111/1751-7915.13820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 01/10/2023] Open
Abstract
Synthetic biology offers new tools and capabilities of engineering cells with desired functions for example as new biosensing platforms leveraging engineered microbes. In the last two decades, bacterial cells have been programmed to sense and respond to various input cues for versatile purposes including environmental monitoring, disease diagnosis and adaptive biomanufacturing. Despite demonstrated proof-of-concept success in the laboratory, the real-world applications of microbial sensors have been restricted due to certain technical and societal limitations. Yet, most limitations can be addressed by new technological developments in synthetic biology such as circuit design, biocontainment and machine learning. Here, we summarize the latest advances in synthetic biology and discuss how they could accelerate the development, enhance the performance and address the present limitations of microbial sensors to facilitate their use in the field. We view that programmable living sensors are promising sensing platforms to achieve sustainable, affordable and easy-to-use on-site detection in diverse settings.
Collapse
Affiliation(s)
- Xinyi Wan
- Centre for Synthetic and Systems BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
- Hangzhou Innovation CenterZhejiang UniversityHangzhou311200China
| | - Behide Saltepe
- Centre for Synthetic and Systems BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
| | - Luyang Yu
- The Provincial International Science and Technology Cooperation Base for Engineering BiologyInternational CampusZhejiang UniversityHaining314400China
- College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Baojun Wang
- Centre for Synthetic and Systems BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
- Hangzhou Innovation CenterZhejiang UniversityHangzhou311200China
- The Provincial International Science and Technology Cooperation Base for Engineering BiologyInternational CampusZhejiang UniversityHaining314400China
- College of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
27
|
Khaliliazar S, Toldrà A, Chondrogiannis G, Hamedi MM. Electroanalytical Paper-Based Nucleic Acid Amplification Biosensors with Integrated Thread Electrodes. Anal Chem 2021; 93:14187-14195. [PMID: 34648274 PMCID: PMC8552215 DOI: 10.1021/acs.analchem.1c02900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022]
Abstract
Nucleic acid amplification tests (NAATs) are very sensitive and specific methods, but they mainly rely on centralized laboratories and therefore are not suitable for point-of-care testing. Here, we present a 3D microfluidic paper-based electrochemical NAAT. These devices use off-the-shelf gold plasma-coated threads to integrate electroanalytical readouts using ex situ self-assembled monolayer formation on the threads prior to assembling into the paper device. They further include a sandwich hybridization assay with sample incubation, rinsing, and detection steps all integrated using movable stacks of filter papers to allow time-sequenced reactions. The devices use glass fiber substrates for storing recombinase polymerase amplification reagents and conducting the isothermal amplification. We used the paper-based device for the detection of the toxic microalgae Ostreopsis cf. ovata. The NAAT, completed in 95 min, attained a limit of detection of 0.06 pM target synthetic DNA and was able to detect 1 ng/μL O. cf. ovata genomic DNA with negligible cross-reactivity from a closely related microalgae species. We think that the integration of thread electrodes within paper-based devices paves the way for digital one-time use NAATs and numerous other advanced electroanalytical paper- or textile-based devices.
Collapse
Affiliation(s)
| | | | - Georgios Chondrogiannis
- School of Engineering Sciences
in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Teknikringen 56, Stockholm 10044, Sweden
| | - Mahiar Max Hamedi
- School of Engineering Sciences
in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Teknikringen 56, Stockholm 10044, Sweden
| |
Collapse
|
28
|
Ma L, He W, Petersen M, Chou KC, Lu X. Next-Generation Antimicrobial Resistance Surveillance System Based on the Internet-of-Things and Microfluidic Technique. ACS Sens 2021; 6:3477-3484. [PMID: 34494420 DOI: 10.1021/acssensors.1c01453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antimicrobial resistance (AMR) of foodborne pathogens is a global crisis in public health and economic growth. A real-time surveillance system is key to track the emergence of AMR bacteria and provides a comprehensive AMR trend from farm to fork. However, current AMR surveillance systems, which integrate results from multiple laboratories using the conventional broth microdilution method, are labor-intensive and time-consuming. To address these challenges, we present the internet of things (IoT), including colorimetric-based microfluidic sensors, a custom-built portable incubator, and machine learning algorithms, to monitor AMR trends in real time. As a top priority microbe that poses risks to human health, Campylobacter was selected as a bacterial model to demonstrate and validate the IoT-assisted AMR surveillance. Image classification with convolution neural network ResNet50 on the colorimetric sensors achieved an accuracy of 99.5% in classifying bacterial growth/inhibition patterns. The IoT was used to carry out a small-scale survey study, identifying eight Campylobacter isolates out of 35 chicken samples. A 96% agreement on Campylobacter AMR profiles was achieved between the results from the IoT and the conventional broth microdilution method. The data collected from the intelligent sensors were transmitted from local computers to a cloud server, facilitating real-time data collection and integration. A web browser was developed to demonstrate the spatial and temporal AMR trends to end-users. This rapid, cost-effective, and portable approach is able to monitor, assess, and mitigate the burden of bacterial AMR in the agri-food chain.
Collapse
Affiliation(s)
- Luyao Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Weidong He
- College of Computer Science, Chongqing University, Chongqing 400044, China
| | - Marlen Petersen
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Keng C. Chou
- Department of Chemistry, Faculty of Science, The University of British Columbia, Vancouver V6T 1Z1, Canada
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|