1
|
Wang L, Xie X, Huang F, Wei Q, Cai T, Yu N, Chen S, Wang F, Chen W, Chen CY, Li C, Ma L. An Engineered PfAgo with Wide Catalytic Temperature Range and Substrate Spectrum. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416631. [PMID: 40364725 DOI: 10.1002/advs.202416631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/04/2025] [Indexed: 05/15/2025]
Abstract
PfAgo, a thermophilic Argonaute nuclease from Pyrococcus furiosus, is widely used in various fields due to its high DNA-guided DNA cleavage activity. However, its high-temperature-dependent cleavage activity largely restricts its applications in moderate-temperature scenarios. In this study, PfAgo is engineered for cold adaptation based on its ternary complex structure and the attributes of cold-adapted enzymes, yielding a series of variants with better performance at moderate temperatures. Among those, mPfAgo (K617G, L618G) exhibits significantly promoted cleavage activity at 37 °C and a wider catalytic temperature range of 30-95 °C. Its high-temperature cleavage activity is also greatly improved, enabling its application in DNA detection with attomolar sensitivity in the presence of Mg2+. Additionally, mPfAgo shows versatile cleavage activities, including DNA cleavage guided by 5'OH-gDNA, 5'P-gDNA, or 5'COOH-gDNA, as well as RNA cleavage with 5'OH-gDNA, 5'P-gDNA, 5'P-gRNA, or 5'COOH-gDNA as guides. Further analysis through far-UV CD spectra and DSF indicates that mPfAgo has a more flexible structure than wild-type PfAgo. Furthermore, this established strategy is applied to engineer TtdAgo, likewise obtaining its variants with enhanced moderate-temperature activity and expanded substrate spectrum. In summary, this work provides a novel method for the rational design of thermophilic Agos, thereby greatly expanding their application scopes.
Collapse
Affiliation(s)
- Longyu Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xiaochen Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Fuyong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Qiang Wei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Tianxin Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Na Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Shi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Chin-Yu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Chunhua Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| |
Collapse
|
2
|
Li Y, Zhao L, Ma L, Bai Y, Feng F. Argonaute protein powered biosensing for pathogenic biosafety. Int J Biol Macromol 2025; 305:141321. [PMID: 39984107 DOI: 10.1016/j.ijbiomac.2025.141321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
The food safety and medical health issues caused by pathogen are particularly prominent. The development of biosensing technologies is urgent to ensure pathogenic biosafety. Argonaute system, as a promising and cutting-edged next-generation nucleic acid test technology, has the potential to address the challenges faced by CRISPR/Cas system. In this review, we focused on the current state-of-art Argonaute-powered biosensing for pathogenic biosafety. First, we introduced current methods for nucleic acid testing and programmable nucleases, followed by the working principle of Argonaute system (PfAgo, TtAgo, CbAgo, etc). Then Argonaute-medicated nucleic acid biosensing was highlighted through amplification and amplification-free manners. In addition, we summarized the application of Argonaute tools in detecting bacteria, virus, mycoplasma, etc. Finally, we pointed out the challenges and perspectives. Current pathogen methods demonstrate low sensitivity and specificity, as well as lack capabilities for multiple and point-of-care testing. Recent studies have shown that Argonaute-powered biosensing is an innovative and rapidly growing technology that could significantly enhance detection capabilities for pathogen-related issues, addressing the limitations of current methods. The application of Argonaute-powered biosensing is both promising and desirable due to the potential to offer "customized" and streamlined detection in the field of pathogenic biosafety monitoring.
Collapse
Affiliation(s)
- Yaru Li
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China.
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yunfeng Bai
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China; School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China.
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China.
| |
Collapse
|
3
|
Li J, Yu M, Yang Z, Zhou Y, Teng Y, Wang Z, Chen J, Lai J, Xin B. A mesophilic Argonaute from Clostridium formicaceticum with efficient DNA cleavage activity guided by small DNA. Structure 2025:S0969-2126(25)00099-1. [PMID: 40157363 DOI: 10.1016/j.str.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 01/07/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
We characterized a new Argonaute protein (pAgo), CfAgo, from the mesophilic bacterium Clostridium formicaceticum. CfAgo possesses DNA-guided DNA endonuclease activity and cleaves DNA targets at the canonical site. It is active from 28°C to 75°C and prefers DNA guides with a 5'-phosphate group and thymidine as the first nucleotide. Cleavage activity is reduced by single-nucleotide mismatches in the seed, central, and 3'-supplementary regions of guides, with stronger mismatch discrimination observed for 5'hydroxylated (5'OH) guides compared to 5'phosphorylated (5'P) guides. Moreover, structural analysis suggests that the MID domain of CfAgo is crucial for recognizing the 5' guide and it influences the binding specificity. CfAgo catalyzes programmable cleavage of double-stranded DNA in AT-rich regions in the presence of Mn2+ and Mg2+ ions at appropriate salt concentrations. These properties could make CfAgo a promising tool for DNA manipulation such as nucleic acid detection and cleavage.
Collapse
Affiliation(s)
- Jianrui Li
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Meixia Yu
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Zhijia Yang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Yueheng Zhou
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Yunpeng Teng
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Zijian Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jian Chen
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China; Key Laboratory of Genome Editing Research and Application, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Key Laboratory of Genome Editing Research and Application, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Beibei Xin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Zhang J, Su Z, Luo Q, Wei H, Liao J, Chen W, Lin J, Zhang J, Cai S, Wang X, Lin M. TtrAgo-mediated nucleic acid detection system and portable device for rapid detection of sexually transmitted diseases. Biosens Bioelectron 2025; 272:117029. [PMID: 39778245 DOI: 10.1016/j.bios.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
The development of rapid and multiplexed point-of-care (POC) diagnostic tools is vital for the prevention and control of sexually transmitted diseases (STIs). Here, we developed a POC-comprehensive Thermococcus thioreducensArgonaute (TtrAgo)-mediated nucleic acid detection system (POC-CANDY) and palm-sized portable detection device "Owl-1" for the simultaneous detection of Ureaplasma urealyticum, Chlamydia trachomatis, Neisseria gonorrhoeae, human papillomavirus types 16/18 and antibiotic resistance molecular markers [tetM, and gyrA mutation (S91F)]. Using recombinase polymerase amplification (RPA), the optimized POC-CANDY could finish the whole detection procedure within 55 min and achieve a limit of detection of 10 copies/μL. When validated by clinical STI samples, POC-CANDY showed 100% consistency with quantitative PCR. Additionally, compared with the PfAgo-based system, POC-CANDY significantly improved the sensitivity of distinguishing single nucleotide variations. The results demonstrated that POC-CANDY can be easily applied locally or on site. This study also promotes the utility of the TtrAgo-mediated technique in clinical diagnosis.
Collapse
Affiliation(s)
- Jiexiu Zhang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Qiulan Luo
- Hanshan Normal University, Chaozhou, Guangdong Province, China
| | - Huagui Wei
- Affiliated Hospital of Youjiang Medical University for Nationalities, China
| | - Jiayu Liao
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Weizhong Chen
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Jie Lin
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Juntian Zhang
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Shuheng Cai
- Guangdong Kaipu Technology Intelligent Manufacturing Co., Ltd., Chaozhou, Guangdong, China
| | - Xiaozhong Wang
- Guangdong Kaipu Technology Intelligent Manufacturing Co., Ltd., Chaozhou, Guangdong, China
| | - Min Lin
- Hanshan Normal University, Chaozhou, Guangdong Province, China.
| |
Collapse
|
5
|
Li X, Yang X, Liu B, Luo J, Chen H, Chen J, Wang B, Hu Y, Su Z, Qin X. One-pot synthesis of multifunctional sliver nanoparticles with controlled size for sensitive colorimetric and electrochemiluminescent immunoassay of SARS-CoV-2. Anal Chim Acta 2025; 1342:343684. [PMID: 39919859 DOI: 10.1016/j.aca.2025.343684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 02/09/2025]
Abstract
Silver nanoparticles (AgNPs) have great potential in a broad range of applications because of their biochemical functionality, unique physical and optical properties. However, it is still a great challenge to synthesize small-size AgNPs with good stability and high performance for biosensors. In this work, triethanolamine and polyacrylic acid modified AgNPs (TEOA@AgNPs-PAA) with controllable size and high catalytic activity for sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are reported. Monodisperse TEOA@AgNPs-PAA are prepared by the one-pot synthesis using the TEOA and PAA as reducing agent and surfactant, respectively. The size of TEOA@AgNPs-PAA (the average size of 8.65 nm) is 6 times smaller than that of the TEOA@AgNPs (52 ± 1.5 nm) without PAA. The as-prepared TEOA@AgNPs-PAA possess catalytic activity and present mimicking property of horseradish peroxidase, which are employed to fabricate colorimetric biosensors by catalyzing the reaction between H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB) to produce blue oxTMB for sensitive detection of SARS-CoV-2 spiking proteins. Significantly, the small-size TEOA@AgNPs-PAA can catalyze electroreduction process of K2S2O8 to enhance the cathodic ECL signal, and their surface cap abundant TEOA molecules, which can also act as a coreactant to enhance the anodic ECL of Ru(bpy)32+. Under optimal conditions, the fabricate immunosensors for anodic and cathodic ECL determination of SARS-CoV-2 present the detection limits of 9.2 fg/mL and 14.3 fg/mL (S/N = 3), respectively. This work exhibits a promising novel strategy for the development of multifunctional AgNPs as an efficient sensing platform for the clinical diagnosis and biosensing application.
Collapse
Affiliation(s)
- Xiangyu Li
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaolan Yang
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China
| | - Bo Liu
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jiali Luo
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China
| | - Huquan Chen
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jin Chen
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China
| | - Birui Wang
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China
| | - Yue Hu
- Bairuopu Town Center Health Center, Changsha, 410206, China
| | - Zhaohong Su
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaoli Qin
- School of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
6
|
Su F, Zhao W, Zhao F, Cao M, Zhu T, Lv W, Li B. Pyrococcus furiosus Argonaute-Based Fluorometric Biosensor for One-Tube Detection of Cancer-Associated Single Nucleotide Polymorphisms in MicroRNAs. Anal Chem 2025; 97:4678-4686. [PMID: 39982863 DOI: 10.1021/acs.analchem.4c07109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
MicroRNA-related single nucleotide polymorphisms (miR-SNPs) are promising biomarkers for cancer diagnostics, yet accurate detection methods remain limited. Here, we introduce a ligation-triggered Pyrococcus furiosus Argonaute (PfAgo) cleavage (LTAC) strategy for the sensitive detection of miR-SNPs, demonstrated using the rs11614913 SNP in miR-196a2, which is associated with nonsmall cell lung cancer (NSCLC). The mutant miR-196a2T serves as a scaffold for the formation of guide DNA (gDNA) catalyzed by the SplintR ligase, leading to PfAgo activation and enhanced fluorescence. In contrast, wild-type miR-196a2C cannot facilitate gDNA formation and thus fails to activate PfAgo. This method exhibits a linear relationship with the logarithm of the miR-196a2T concentration over a range of 0.2 pM to 100 nM, achieving a low detection limit of 0.15 pM. Analysis of NSCLC patient samples using LTAC reveals elevated levels of the rs11614913 SNP in miR-196a2 compared to healthy controls, underscoring the diagnostic potential of LTAC.
Collapse
Affiliation(s)
- Fengli Su
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 211166, China
| | - Wentao Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 211166, China
| | - Furong Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 211166, China
| | - Min Cao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 211166, China
| | - Tianjiao Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 211166, China
| | - Wei Lv
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin 214400, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 211166, China
| |
Collapse
|
7
|
Lin J, Zhang J, Zhu X, Xia X, Zhang Y, Zeng Q, Xu Y, Deng R, Li J. Pyrococcus furiosus Argonaute-mediated dual recognition enables the detection of trace single-nucleotide-mutated fungicide-resistant fungal pathogens. Chem Commun (Camb) 2025; 61:3335-3338. [PMID: 39883459 DOI: 10.1039/d4cc06481j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Detection of low-abundance mutations for the early discovery of fungicide-resistant fungal pathogens is highly demanded, but remains challenging. Herein, we developed a dual-recognition strategy, termed PARPA, involving Pyrococcus furiosus Argonaute (pfAgo)-mediated elimination of wild-type fungal genes and CRISPR/Cas12a-based amplicon recognition. This assay can detect fungicide-resistant Puccinia striiformis at relative abundances as low as 0.05% and has potential for achieving early screening of fungicide-resistant fungal pathogens.
Collapse
Affiliation(s)
- Jiahao Lin
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
- Beijing Life Science Academy, Beijing 102206, China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xianglin Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Xuhan Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Yong Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jinghong Li
- Beijing Life Science Academy, Beijing 102206, China
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, New Cornerstone Science Laboratory, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Tan S, Zeng F, Zhong W, Chen T, Chen X, Li L, Wei H, Zhang S. Using Recombinase-Aid Amplification Combined with Pyrococcus furiosus Argonaute for Rapid Sex Identification in Flamingo ( Phoenicopteridae). Animals (Basel) 2024; 15:7. [PMID: 39794950 PMCID: PMC11718780 DOI: 10.3390/ani15010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Flamingos (Phoenicopteridae) are among the oldest birds worldwide and are loved by people for their bright red feathers. In addition, flamingos are sexually monomorphic birds, and distinguishing between males and females is difficult. The polymerase chain reaction (PCR) is widely used for sex identification. However, the PCR method requires a precise thermal cycler in the laboratory and is time-consuming. Therefore, developing a rapid, sensitive, and accurate method to identify the sex of flamingos is crucial. In this study, we established a sex identification system using a recombinase-aided amplification-Pyrococcus furiosus Argonaute (RAA-PfAgo) technique for greater flamingo (Phoenicopterus roseus). The greater flamingo-RAA-PfAgo system can identify unknown-sex greater flamingos in less than 1 h and can be visualized using a fluorescent detector or blue light. The results showed that optimal RAA-PfAgo conditions could detect 0.6 ng of genomic DNA and effectively differentiate between males and females. Random sample evaluations revealed that the system had a 100% coincidence rate compared with conventional PCR. In conclusion, this study provides a sensitive, specific, and accurate reference method for greater flamingo sexing.
Collapse
Affiliation(s)
- Shenluan Tan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.T.); (L.L.)
| | - Fanwen Zeng
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510075, China; (F.Z.); (T.C.); (X.C.)
| | - Wanhuan Zhong
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China;
| | - Tanzipeng Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510075, China; (F.Z.); (T.C.); (X.C.)
| | - Xuanjiao Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510075, China; (F.Z.); (T.C.); (X.C.)
| | - Li Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.T.); (L.L.)
| | - Hengxi Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.T.); (L.L.)
| | - Shouquan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.T.); (L.L.)
| |
Collapse
|
9
|
Yang X, Wang Y, Xu C, Liu Z, Guan Y, Wang F, Chen S, Wang Y, Cheng Y, Dong Y. MIRA /PfAgo-Mediated Biosensor for Multiplex Human Enteroviruses Virus Typing Detection on HFMD. ACS Synth Biol 2024; 13:4119-4130. [PMID: 39635874 DOI: 10.1021/acssynbio.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Hand, foot, and mouth disease (HFMD), caused by enteroviruses, mostly including EV71, CVA6, CVA10, and CVA16, is an acute infectious disease commonly found in children. Due to no approved antiviral therapies and available vaccines, except for EV71, developing accurate diagnostic methods of HFMD is essential for controlling its spread and mitigating its impact on public health. Here, we create a MIRA-HEV-PAND multiple nucleic acid typing method that utilizes PfAgo to identify enterovirus type A pathogens (EV71, CVA6, CVA10, and CVA16) and universal type EVU. The MDC (minimum detection concentration) level of MIRA-HEV-PAND is within the range of 1.66 aM (1.0 copy/μL), which was matched to that of qPCR assays and even more sensitive up to 10%. Importantly, the MIRA-HEV-PAND method exhibits higher sensitivity and less time-consuming efficiency compared to the approach that combines PCR amplification instead of MIRA amplification. Meanwhile, though the quintuple and single-tube multiple MIRA-HEV-PAND detection system can be used for one viral target or multiple viral target detection, the single-tube detection system detects more efficiently and rapidly than the quintuple-tube multiple detection system. Moreover, the diagnostic results obtained by evaluating clinical samples using MIRA-HEV-PAND show a complete consistency of 100% with qPCR assays. The MIRA-HEV-PAND method can screen a wider range of target regions using low-cost guide DNA without being limited to PAM sequences, compared to the MARPLES based on the CRISPR-Cas12a. The utilization of this correlation can be beneficial for the application of molecular testing for clinical diagnoses and the study of human enteroviruses A infection and virus typing on an epidemiological scale.
Collapse
Affiliation(s)
- Xuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, Hubei, China
| | - Yue Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, Hubei, China
| | - Chengming Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, Hubei, China
| | - Zhiyi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, Hubei, China
| | - Yuanqi Guan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, Hubei, China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, Hubei, China
| | - Shuliang Chen
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, Hubei, China
| | - Yuan Wang
- School of Basic Medicine, Hubei University of Arts and Sciences, Xiangyang 441053, Hubei, China
| | - Yibin Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, Hubei, China
| | - Yanming Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan 430200, Hubei, China
| |
Collapse
|
10
|
Zhao Y, Zhou C, Guo B, Yang X, Wang H. Pyrococcus furiosus Argonaute-mediated porcine epidemic diarrhea virus detection. Appl Microbiol Biotechnol 2024; 108:137. [PMID: 38229331 DOI: 10.1007/s00253-023-12919-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, induces severe vomiting and acute watery diarrhea in unweaned piglets. The pig industry has suffered tremendous financial losses due to the high mortality rate of piglets caused by PEDV. Consequently, a simple and rapid on-site diagnostic technology is crucial for preventing and controlling PEDV. This study established a detection method for PEDV using recombinase-aided amplification (RAA) and Pyrococcus furiosus Argonaute (PfAgo), which can detect 100 copies of PEDV without cross-reactivity with other pathogens. The entire reaction of RAA and PfAgo to detect PEDV does not require sophisticated instruments, and the reaction results can be observed with the naked eye. Overall, this integrated RAA-PfAgo cleavage assay is a practical tool for accurately and quickly detecting PEDV. KEY POINTS: • PfAgo has the potential to serve as a viable molecular diagnostic tool for the detection and diagnosis of viral genomes • The RAA-PfAgo detection technique has a remarkable level of sensitivity and specificity • The RAA-PfAgo detection system can identify PEDV without needing advanced equipment.
Collapse
Affiliation(s)
- Yu Zhao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Boyan Guo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xin Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China.
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China.
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Chen L, Chen W, Wei H, Lin W, Zhang C, Hu H, Wang C, Chen J, Liang X, Zhu D, Wang J, Lin Z, Wei Y, Li J, Lin M. Rapid and supersensitive allele detection of Plasmodium falciparum chloroquine resistance via a Pyrococcus furiosus argonaute-triggered dual-signal biosensing platform. Parasit Vectors 2024; 17:488. [PMID: 39582041 PMCID: PMC11587582 DOI: 10.1186/s13071-024-06575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Malaria remains a serious public health problem worldwide, particularly in Africa. Resistance to antimalarial drugs is an essential issue for malaria control and elimination. Currently, polymerase chain reaction (PCR) combined with Sanger sequencing is regarded as the gold standard for mutation detection. However, this method fails to meet the requirements of point-of-care testing (POCT) because of its time-consuming, expensive instruments and professional dependence. To support this strategy, we developed a novel diagnostic platform that combines recombinase polymerase amplification (RPA) with the Pyrococcus furiosus argonaute (PfAgo) protein and was designed to detect gene mutations related to antimalarial drug resistance. The Pfcrt haplotypes CVMNK and CVIET of chloroquine resistance (CQR) were used as examples and were assessed in this study. METHODS By meticulously designing strategies, RPA primers, guide DNAs, and probes were screened, the reaction was optimized, and the resulting parameters were employed to ascertain the genotype of Pfcrt. The recombinant plasmids pUC57/Pfcrt-CVIET and pUC57/Pfcrt-CVMNK were constructed and diluted for sensitivity detection. The pUC57/Pfcrt-CVIET plasmid mixture was added to the pUC57/Pfcrt-CVMNK plasmid mixture in different additions to configure several specific proportions of mixed plasmid mixtures. The RPA-PfAgo platform was used, and the mixed plasmid was detected simultaneously via nest-PCR (nPCR) and Sanger sequencing. The platform was then evaluated on 85 clinical samples and compared with Sanger sequencing. RESULTS The entire process achieves the key mutation Pfcrt-CVMNK/CVIET genotype identification of CQR within 90 min. The platform achieved 1.8 × 104 copies/μL sensitivity and could detect as little as 3% CVIET in mixed plasmids, which is a higher sensitivity than that of Sanger sequencing (5%). Notably, the platform shows 100% concordance with the gold standard method when 85 clinical samples are tested. The sensitivity and specificity were 100% for the 85 clinical samples. CONCLUSIONS This study established an RPA-PfAgo platform for genotyping the key mutation Pfcrt-CVMNK/CVIET of CQR. This method can rapidly produce reliable results and avoid the disadvantages of nPCR with sequencing. This approach has the characteristics of a short operation time, low device dependence, and a good match to the POCT strategy, suggesting that the platform can be easily applied locally or on site.
Collapse
Affiliation(s)
- Liying Chen
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Wencheng Chen
- Laboratory Medical Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Key Laboratory of Research On Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Baise, Guangxi, China
| | - Huagui Wei
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Wenai Lin
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Cheng Zhang
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Hongfei Hu
- Laboratory Medical Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Chunfang Wang
- Laboratory Medical Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Jiangtao Chen
- Laboratory Medical Center, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Xueyan Liang
- Laboratory Medical Center, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Daiqian Zhu
- School of Basic Medicine Science, Hubei University of Medicine, Shiyan, Hubei, China
| | - Junli Wang
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Guangxi Medical and Health Key Discipline Construction Project of the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Zongyun Lin
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Yuxia Wei
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Guangxi Medical and Health Key Discipline Construction Project of the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Jian Li
- School of Basic Medicine Science, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Min Lin
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi, China.
- Guangxi Medical and Health Key Discipline Construction Project of the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.
| |
Collapse
|
12
|
Li Y, Zhao L, Wang J, Ma L, Bai Y, Feng F. Argonaute-Based Nucleic Acid Detection Technology: Advantages, Current Status, Challenges, and Perspectives. ACS Sens 2024; 9:5665-5682. [PMID: 39526595 DOI: 10.1021/acssensors.4c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Rapid and accurate detection is a prerequisite for precise clinical diagnostics, ensuring food safety, and facilitating biotechnological applications. The Argonaute system, as a cutting-edge technique, has been successfully repurposed in biosensing beyond the CRISPR/Cas system (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins), which has been extensively researched, but recognition of PAM sequences remains restricted. Argonaute, as a programmable and target-activated nuclease, is repurposed for fabricating novel detection methods due to its unparalleled biological features. In this comprehensive review, we initially elaborate on the current methods for nucleic acid testing and programmable nucleases, followed by delving into the structure and nuclease activity of the Argonaute system. The advantages of Argonaute compared with the CRISPR/Cas system in nucleic acid detection are highlighted and discussed. Furthermore, we summarize the applications of Argonaute-based nucleic acid detection and provide an in-depth analysis of future perspectives and challenges. Recent research has demonstrated that Argonaute-based biosensing is an innovative and rapidly advancing technology that can overcome the limitations of existing methods and potentially replace them. In summary, the implementation of Argonaute and its integration with other technologies hold promise in developing customized and intelligent detection methods for nucleic acid testing across various aspects.
Collapse
Affiliation(s)
- Yaru Li
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| | - Jiali Wang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yunfeng Bai
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| |
Collapse
|
13
|
Liu Y, Chen L, Zhang Z, Zhang R, Xu J, Yang P, Sun Y, Chen Y, Xie C, Lin M, Zheng Y. Development and application of a novel recombinase polymerase amplification-Pyrococcus furiosus argonaute system for rapid detection of goose parvovirus. Poult Sci 2024; 103:104141. [PMID: 39137501 PMCID: PMC11372586 DOI: 10.1016/j.psj.2024.104141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Rapid and accurate detection of goose parvovirus (GPV) is crucial for controlling outbreaks and mitigating their economic impact on the poultry industry. This study introduces recombinase polymerase amplification combined with the Pyrococcus furiosus argonaute (RPA-PfAgo) system, a novel diagnostic platform designed to address the limitations of traditional GPV detection methods. Capitalizing on the rapid DNA amplification of RPA and stringent nucleic acid cleavage by the PfAgo protein, the RPA-PfAgo system offers high specificity and sensitivity in detecting GPV. Our optimization efforts included primer and probe configurations, reaction parameters, and guided DNA selection, culminating in a detection threshold of 102 GPV DNA copies per microlitre. The specificity of the proposed method was rigorously validated against a spectrum of avian pathogens. Clinical application to lung tissues from GPV-infected geese yielded a detection concordance of 100%, surpassing that of qPCR and PCR in both rapidity and operational simplicity. The RPA-PfAgo system has emerged as a revolutionary diagnostic modality for managing this disease, as it is a promising rapid, economical, and onsite GPV detection method amenable to integration into broad-scale disease surveillance frameworks. Future explorations will extend the applicability of this method to diverse avian diseases and assess its field utility across various epidemiological landscapes.
Collapse
Affiliation(s)
- Yaqun Liu
- Guangdong Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Hanshan Normal University, Chaozhou 521041, China; Shantou University Medical College, Shantou 515000, China; Guangdong Taiantang Pharmaceutical Co., Ltd. Shantou 515000, China
| | - Lianghui Chen
- Industrial College of Biomedicine and Health Industry, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Hanshan Normal University, Chaozhou 521041, China
| | - Rong Zhang
- Guangdong Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Hanshan Normal University, Chaozhou 521041, China
| | - Jinyu Xu
- Guangdong Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Hanshan Normal University, Chaozhou 521041, China
| | - Peikui Yang
- Guangdong Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Hanshan Normal University, Chaozhou 521041, China
| | - Yanjie Sun
- Guangdong Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Hanshan Normal University, Chaozhou 521041, China
| | - Yicun Chen
- Shantou University Medical College, Shantou 515000, China
| | - Chengsong Xie
- Guangdong Taiantang Pharmaceutical Co., Ltd. Shantou 515000, China
| | - Min Lin
- Guangdong Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Hanshan Normal University, Chaozhou 521041, China; Industrial College of Biomedicine and Health Industry, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Hanshan Normal University, Chaozhou 521041, China; Industrial College of Biomedicine and Health Industry, Youjiang Medical University for Nationalities, Baise 533000, China.
| |
Collapse
|
14
|
Jiao J, Zeng D, Wu Y, Li C, Mo T. Programmable and ultra-efficient Argonaute protein-mediated nucleic acid tests: A review. Int J Biol Macromol 2024; 278:134755. [PMID: 39147338 DOI: 10.1016/j.ijbiomac.2024.134755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
With the attributes of high sensitivity, single-base resolution, multiplex detection capability, and programmability upon nucleic acid recognition, Argonaute (Ago)-based biosensing assays are increasingly recognized as one of the most promising tools for precise identification and quantification of target analytes. Employed as highly specific sequence recognition elements of these robust diagnostic methods, Agos are revolutionizing how nucleic acid targets are detected. A systematic and comprehensive summary of this emerging and rapid-advancing technology is necessary to give play to the potential of Ago-based biosensing assays. The structure and function of Agos were briefly overviewed at the beginning of the work, followed by a review of the recent advancements in employing Agos sensing for detecting various targets with a comprehensive analysis such as viruses, tumor biomarkers, pathogens, mycoplasma, and parasite. The significance and benefits of these platforms were then deliberated. In addition, the authors shared subjective viewpoints on the existing challenges and offered relevant guidance for the future progress of Agos assays. Finally, the future research outlook regarding Ago-based sensing in this field was also outlined. As such, this review is expected to offer valuable information and fresh perspectives for a broader group of researchers.
Collapse
Affiliation(s)
- Jinlong Jiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dandan Zeng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yafang Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chentao Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
15
|
Zhou B, Zheng L, Wu B, Yi K, Zhong B, Tan Y, Liu Q, Liò P, Hong L. A conditional protein diffusion model generates artificial programmable endonuclease sequences with enhanced activity. Cell Discov 2024; 10:95. [PMID: 39251570 PMCID: PMC11385924 DOI: 10.1038/s41421-024-00728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Deep learning-based methods for generating functional proteins address the growing need for novel biocatalysts, allowing for precise tailoring of functionalities to meet specific requirements. This advancement leads to the development of highly efficient and specialized proteins with diverse applications across scientific, technological, and biomedical fields. This study establishes a pipeline for protein sequence generation with a conditional protein diffusion model, namely CPDiffusion, to create diverse sequences of proteins with enhanced functions. CPDiffusion accommodates protein-specific conditions, such as secondary structures and highly conserved amino acids. Without relying on extensive training data, CPDiffusion effectively captures highly conserved residues and sequence features for specific protein families. We applied CPDiffusion to generate artificial sequences of Argonaute (Ago) proteins based on the backbone structures of wild-type (WT) Kurthia massiliensis Ago (KmAgo) and Pyrococcus furiosus Ago (PfAgo), which are complex multi-domain programmable endonucleases. The generated sequences deviate by up to nearly 400 amino acids from their WT templates. Experimental tests demonstrated that the majority of the generated proteins for both KmAgo and PfAgo show unambiguous activity in DNA cleavage, with many of them exhibiting superior activity as compared to the WT. These findings underscore CPDiffusion's remarkable success rate in generating novel sequences for proteins with complex structures and functions in a single step, leading to enhanced activity. This approach facilitates the design of enzymes with multi-domain molecular structures and intricate functions through in silico generation and screening, all accomplished without the need for supervision from labeled data.
Collapse
Affiliation(s)
- Bingxin Zhou
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
- Shanghai National Center for Applied Mathematics (SJTU center), Shanghai Jiao Tong University, Shanghai, China
| | - Lirong Zheng
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China.
- Department of Cell and Developmental Biology & Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Banghao Wu
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Yi
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, Australia
| | - Bozitao Zhong
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Tan
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK.
| | - Liang Hong
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai National Center for Applied Mathematics (SJTU center), Shanghai Jiao Tong University, Shanghai, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, China.
| |
Collapse
|
16
|
Chen W, Zhang J, Wei H, Su J, Lin J, Liang X, Chen J, Zhou R, Li L, Lu Z, Sun G. Rapid and sensitive detection of methicillin-resistant Staphylococcus aureus through the RPA- PfAgo system. Front Microbiol 2024; 15:1422574. [PMID: 39234537 PMCID: PMC11371615 DOI: 10.3389/fmicb.2024.1422574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Both the incidence and mortality rates associated with methicillin-resistant Staphylococcus aureus (MRSA) have progressively increased worldwide. A nucleic acid testing system was developed in response, enabling swift and precise detection of Staphylococcus aureus (S. aureus) and its MRSA infection status. This facilitates improved prevention and control of MRSA infections. Methods In this work, we introduce a novel assay platform developed by integrating Pyrococcus furiosus Argonaute (PfAgo) with recombinase polymerase amplification (RPA), which was designed for the simultaneous detection of the nuc and mecA genes in MRSA. Results This innovative approach enables visual MRSA detection within 55 mins, boasting a detection limit of 102 copies/μL. Characterized by its high specificity, the platform accurately identifies MRSA infections without cross-reactivity to other clinical pathogens, highlighting its unique capability for S. aureus infection diagnostics amidst bacterial diversity. Validation of this method was performed on 40 clinical isolates, demonstrating a 95.0% accuracy rate in comparison to the established Vitek2-COMPACT system. Discussion The RPA-PfAgo platform has emerged as a superior diagnostic tool, offering enhanced sensitivity, specificity, and identification efficacy for MRSA detection. Our findings underscore the potential of this platform to significantly improve the diagnosis and management of MRSA infection.
Collapse
Affiliation(s)
- Weizhong Chen
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Jiexiu Zhang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Huagui Wei
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baize, China
| | - Jie Su
- Department of Laboratory, Chaozhou Central Hospital, Chaozhou, China
| | - Jie Lin
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Xueyan Liang
- Department of Laboratory, Huizhou Central Hospital, Huizhou, China
| | - Jiangtao Chen
- Department of Laboratory, Huizhou Central Hospital, Huizhou, China
| | - Rong Zhou
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Lin Li
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Zefang Lu
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Guangyu Sun
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| |
Collapse
|
17
|
Peng JM, Liu H, Ying ZM. Rapid one-pot isothermal amplification reassembled of fluorescent RNA aptamer for SARS-CoV-2 detection. Talanta 2024; 276:126264. [PMID: 38761661 DOI: 10.1016/j.talanta.2024.126264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The outbreak of SARS-CoV-2 poses a serious threat to human life and health. A rapid nucleic acid tests can effectively curb the spread of the disease. With the advantages of fluorescent RNA aptamers, low background and high sensitivity. A variety of fluorescent RNA aptamer sensors have been developed for the detection of nucleic acid. Here, we report a hypersensitive detection platform in which SARS-CoV-2 initiates RTF-EXPAR to amplify trigger fragments. This activation leads to the reassembled of the SRB2 fluorescent RNA aptamer, restoring its secondary structure for SR-DN binding and turn-on fluorescence. The platform completes the assay in 30 min and all reactions occur in one tube. The detection limit is as low as 116 aM. Significantly, the platform's quantitative analyses were almost identical to qPCR results in simulated tests of positive samples. In conclusion, the platform is sensitive, accurate and provides a new protocol for point-of-care testing of viruses.
Collapse
Affiliation(s)
- Jia-Min Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Hao Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Zhan-Ming Ying
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
18
|
Liao JY, Feng XY, Zhang JX, Yang TD, Zhan MX, Zeng YM, Huang WY, Lian HB, Ke L, Cai SS, Zhang NF, Fang JW, Cai XY, Chen JD, Lin GY, Lin LY, Chen WZ, Liu YY, Huang FF, Lin CX, Lin M. RT-RPA- PfAgo detection platform for one-tube simultaneous typing diagnosis of human respiratory syncytial virus. Front Cell Infect Microbiol 2024; 14:1419949. [PMID: 39119294 PMCID: PMC11306018 DOI: 10.3389/fcimb.2024.1419949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
Human respiratory syncytial virus (HRSV) is the most prevalent pathogen contributing to acute respiratory tract infections (ARTI) in infants and young children and can lead to significant financial and medical costs. Here, we developed a simultaneous, dual-gene and ultrasensitive detection system for typing HRSV within 60 minutes that needs only minimum laboratory support. Briefly, multiplex integrating reverse transcription-recombinase polymerase amplification (RT-RPA) was performed with viral RNA extracted from nasopharyngeal swabs as a template for the amplification of the specific regions of subtypes A (HRSVA) and B (HRSVB) of HRSV. Next, the Pyrococcus furiosus Argonaute (PfAgo) protein utilizes small 5'-phosphorylated DNA guides to cleave target sequences and produce fluorophore signals (FAM and ROX). Compared with the traditional gold standard (RT-qPCR) and direct immunofluorescence assay (DFA), this method has the additional advantages of easy operation, efficiency and sensitivity, with a limit of detection (LOD) of 1 copy/μL. In terms of clinical sample validation, the diagnostic accuracy of the method for determining the HRSVA and HRSVB infection was greater than 95%. This technique provides a reliable point-of-care (POC) testing for the diagnosis of HRSV-induced ARTI in children and for outbreak management, especially in resource-limited settings.
Collapse
Affiliation(s)
- Jia-Yu Liao
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xue-Yong Feng
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jie-Xiu Zhang
- Shantou University Medical College, Shantou, Guangdong, China
| | - Tian-Dan Yang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Min-Xuan Zhan
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yong-Mei Zeng
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Wei-Yi Huang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, China
| | - Hao-Bin Lian
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lin Ke
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Si-Si Cai
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Nan-Fei Zhang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jin-Wen Fang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiao-Ying Cai
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jun-Duo Chen
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Guang-Yu Lin
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Li-Yun Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, China
| | - Wei-Zhong Chen
- Department of Medical Laboratory, Chaozhou People’s Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong, China
| | - Yu-Yan Liu
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, China
| | - Fei-Fei Huang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, China
| | - Chuang-Xing Lin
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Min Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, China
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
19
|
Xiang Y, Ke W, Qin Y, Zhou B, Hu Y. PfAgo-based dual signal amplification biosensor for rapid and highly sensitive detection of alkaline phosphatase activity. Mikrochim Acta 2024; 191:439. [PMID: 38954110 DOI: 10.1007/s00604-024-06516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
A Pyrococcus furiosus Argonaute (PfAgo)-based biosensor is presented for alkaline phosphatase (ALP) activity detection in which the ALP-catalyzed hydrolysis of 3'-phosphate-modified functional DNA activates the strand displacement amplification, and the amplicon mediates the fluorescent reporter cleavage as a guide sequence of PfAgo. Under the dual amplification mode of PfAgo-catalyzed multiple-turnover cleavage activity and pre-amplification technology, the developed method was successfully applied to ALP activity determination with a detection limit (LOD) of 0.0013 U L-1 (3σ) and a detection range of 0.0025 to 1 U L-1 within 90 min. The PfAgo-based method exhibits satisfactory analytic performance in the presence of potential interferents and in complex human serum samples. The proposed method shows several advantages, such as rapid analysis, high sensitivity, low-cost, and easy operation, and has great potential in disease evolution fundamental studies and clinical diagnosis applications.
Collapse
Affiliation(s)
- YuQiang Xiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Weikang Ke
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
| | - Yuqing Qin
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
| | - Bosheng Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
| | - Yonggang Hu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
20
|
Wang W, Luo L, Li Y, Hong B, Ma Y, Kang K, Wang J. Detection of SARS-CoV-2 using machine learning-enabled paper-assisted ratiometric fluorescent sensors based on target-induced magnetic DNAzyme. Biosens Bioelectron 2024; 255:116272. [PMID: 38581837 DOI: 10.1016/j.bios.2024.116272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The development of an advanced analytical platform with regard to SARS-CoV-2 is crucial for public health. Herein, we present a machine learning platform based on paper-assisted ratiometric fluorescent sensors for highly sensitive detection of the SARS-CoV-2 RdRp gene. The assay involves target-induced rolling circle amplification to generate magnetic DNAzyme, which is then detectable using the paper-assisted ratiometric fluorescent sensor. This sensor detects the SARS-CoV-2 RdRp gene with a visible-fluorescence color response. Moreover, leveraging different fluorescence responses, the ResNet algorithm of machine learning assists in accurately identifying fluorescence images and differentiating the concentration of the SARS-CoV-2 RdRp gene with over 99% recognition accuracy. The machine learning platform exhibits exceptional sensitivity and color responsiveness, achieving a limit of detection of 30 fM for the SARS-CoV-2 RdRp gene. The integration of intelligent artificial vision with the paper-assisted ratiometric fluorescent sensor presents a novel approach for the on-site detection of COVID-19 and holds potential for broader use in disease diagnostics in the future.
Collapse
Affiliation(s)
- Wenhai Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong Province, China.
| | - Lun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong Province, China
| | - Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong Province, China
| | - Bin Hong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong Province, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong Province, China
| | - Keren Kang
- National Engineering Laboratory of Rapid Diagnostic Tests, Guangzhou Wondfo Biotech Co., Ltd., Guangzhou, 510663, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong Province, China.
| |
Collapse
|
21
|
Fu R, Hou J, Wang Z, Xianyu Y. Mn 2+-Mediated Modulation of PfAgo Activity for Biosensing. Adv Healthc Mater 2024; 13:e2304484. [PMID: 38530141 DOI: 10.1002/adhm.202304484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Argonaute (Ago) as a powerful enzyme has provided new insights into biosensing due to its programmability, high sensitivity, and user-friendly operation. However, current strategies mainly rely on phosphorylated guide DNA to modulate the cleavage activity of Ago, which is limited in versatility and simplicity. Herein, the authors report the Mn2+-enhanced cleavage activity of Ago and employ Mn-ions with variable valence to regulate the activity of Pyrococcus furiosus Ago (PfAgo) for biosensing applications. The conversion of Mn ions with different valence states through MnO2 nanoflowers enables the sensitive detection of ascorbic acid, alkaline phosphatase, and arsenic with limits of detection of 2.5 nmol L-1, 0.009 U L-1, and 0.4 ng mL-1, respectively. A PfAgo-based immunoassay is further developed that allows for the detection of diverse targets, thus providing a promising toolbox to broaden PfAgo-based sensors into versatile bioanalytical and biomedical applications.
Collapse
Affiliation(s)
- Ruijie Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Zhejiang, 310058, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang, 310058, China
| | - Jinjie Hou
- College of Biosystems Engineering and Food Science, Zhejiang University, Zhejiang, 310058, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang, 310058, China
| | - Zexiang Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Zhejiang, 310058, China
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang, 310058, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Zhejiang, 310058, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang, 310058, China
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310058, China
| |
Collapse
|
22
|
Zhao Y, Yang M, Zhou C, Guo B, Wang K, Song C, Wang H. Establishment of a simple, sensitive, and specific ASFV detection method based on Pyrococcus furiosus argonaute. Biosens Bioelectron 2024; 254:116230. [PMID: 38520983 DOI: 10.1016/j.bios.2024.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/25/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
African swine fever (ASF), which is casued by African swine fever virus (ASFV), is a fatal infectious disease of pigs that results in significant losses to the breeding industry. Therefore, screening and detection are crucial for the control and prevention of the ASFV. Argonaute is a new detection tool that is being extensively used due to its high specificity and programmability. This study reports on a new nucleic acid assay method, termed REPD, which uses recombinase-aided amplification and restriction endonuclease-assisted Pyrococcus furiosus argonaute (PfAgo) detection. One-pot REPD was developed for the detection of ASFV. The one-pot REPD could detect a single copy of ASFV nucleic acid and showed no cross-reactivity with other pathogens. Detection in clinical samples was 100% consistent with the results of real-time PCR analysis. The results showed that the one-pot REPD assay is convenient, sensitive, specific, and potentially adaptable to the detection of ASFV. In summary, this study highlights a novel method that can be employed for the detection of pathogens.
Collapse
Affiliation(s)
- Yu Zhao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Ming Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Boyan Guo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Kailu Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Cailiang Song
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
23
|
Lin L, Luo Q, Li L, Zheng Y, Wei H, Liao J, Liu Y, Liu M, Wang Z, Lin W, Zou X, Zhu H, Lin M. Recombinase polymerase amplification combined with Pyrococcus furiosus Argonaute for fast Salmonella spp. testing in food safety. Int J Food Microbiol 2024; 417:110697. [PMID: 38642433 DOI: 10.1016/j.ijfoodmicro.2024.110697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/24/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
Foodborne illness caused by Salmonella spp. is one of the most prevalent public health problems globally, which have brought immeasurable economic burden and social impact to countries around the world. Neither current nucleic acid amplification detection method nor standard culture method (2-3 days) are suitable for field detection in areas with a heavy burden of Salmonella spp. Here, we developed a highly sensitive and accurate assay for Salmonella spp. detection in less than 40 min. Specifically, the invA gene of Salmonella spp. was amplified by recombinase polymerase amplification (RPA), followed by Pyrococcus furiosus Argonaute (PfAgo)-based target sequence cleavage, which could be observed by a fluorescence reader or the naked eye. The assay offered the lowest detectable concentration of 1.05 × 101 colony forming units/mL (CFU/mL). This assay had strong specificity and high sensitivity for the detection of Salmonella spp. in field samples, which indicated the feasibility of this assay.
Collapse
Affiliation(s)
- Liyun Lin
- School of Biotechnology and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong Province, China
| | - Qiulan Luo
- School of Biotechnology and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong Province, China
| | - Liejun Li
- Guangdong Hybribio Biotech Co., Ltd., Chaozhou, Guangdong, China
| | - Yuzhong Zheng
- School of Biotechnology and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong Province, China
| | - Huagui Wei
- School of Biotechnology and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong Province, China
| | - Jiayu Liao
- School of Biotechnology and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong Province, China
| | - Yaqun Liu
- School of Biotechnology and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong Province, China
| | - Mouquan Liu
- School of Biotechnology and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong Province, China
| | - Zhonghe Wang
- School of Biotechnology and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong Province, China
| | - Wanling Lin
- School of Biotechnology and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong Province, China
| | - Xianghui Zou
- School of Biotechnology and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong Province, China
| | - Hui Zhu
- School of Biotechnology and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong Province, China
| | - Min Lin
- School of Biotechnology and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong Province, China.
| |
Collapse
|
24
|
Kou J, Li Y, Zhao Z, Qiao J, Zhang Q, Han X, Cheng X, Man S, Ma L. Simultaneous Dual-Gene Test of Methicillin-Resistant Staphylococcus Aureus using an Argonaute-Centered Portable and Visual Biosensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311764. [PMID: 38506607 DOI: 10.1002/smll.202311764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Indexed: 03/21/2024]
Abstract
The development of novel method for drug-resistant bacteria detection is imperative. A simultaneous dual-gene Test of methicillin-resistant Staphylococcus aureus (MRSA) is developed using an Argonaute-centered portable biosensor (STAR). This is the first report concerning Argonaute-based pathogenic bacteria detection. Simply, the species-specific mecA and nuc gene are isothermally amplified using loop-mediated isothermal amplification (LAMP) technique, followed by Argonaute-based detection enabled by its programmable, guided, sequence-specific recognition and cleavage. With the strategy, the targeted nucleic acid signals gene are dexterously converted into fluorescent signals. STAR is capable of detecting the nuc gene and mecA gene simultaneously in a single reaction. The limit of detection is 10 CFU/mL with a dynamic range from 10 to 107 CFU/mL. The sample-to-result time is <65 min. This method is successfully adapted to detect clinical samples, contaminated foods, and MRSA-infected animals. This work broadens the reach of Argonaute-based biosensing and presents a novel bacterial point-of-need (PON) detection platform.
Collapse
Affiliation(s)
- Jun Kou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zhiying Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jiali Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Qiang Zhang
- Branch of Tianjin Third Central Hospital, Tianjin, 300250, China
| | - Xiao Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| |
Collapse
|
25
|
Tang Y, Xu M, Luo B, Wang Y, Chen Y, Yu G, Yang G, Gao S, Wang P. Highly sensitive detection of a long-COVID-related SNP in LZTFL1 allele with Pyrococcus furiosus Argonaute in point-of-care settings. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1089-1092. [PMID: 38804045 PMCID: PMC11322863 DOI: 10.3724/abbs.2024071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Yixin Tang
- Jiangsu Key Laboratory of Marine Biological Resources and EnvironmentCo-Innovation Center of Jiangsu Marine Bio-industry TechnologyJiangsu Ocean UniversityLianyungang222005China
| | - Miao Xu
- Jiangsu Key Laboratory of Marine Biological Resources and EnvironmentCo-Innovation Center of Jiangsu Marine Bio-industry TechnologyJiangsu Ocean UniversityLianyungang222005China
| | - Bo Luo
- Jiangsu Key Laboratory of Marine Biological Resources and EnvironmentCo-Innovation Center of Jiangsu Marine Bio-industry TechnologyJiangsu Ocean UniversityLianyungang222005China
| | - Yue Wang
- Jiangsu Key Laboratory of Marine Biological Resources and EnvironmentCo-Innovation Center of Jiangsu Marine Bio-industry TechnologyJiangsu Ocean UniversityLianyungang222005China
| | - Yukang Chen
- Jiangsu Key Laboratory of Marine Biological Resources and EnvironmentCo-Innovation Center of Jiangsu Marine Bio-industry TechnologyJiangsu Ocean UniversityLianyungang222005China
| | - Guangxi Yu
- Jiangsu Key Laboratory of Marine Biological Resources and EnvironmentCo-Innovation Center of Jiangsu Marine Bio-industry TechnologyJiangsu Ocean UniversityLianyungang222005China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Biological Resources and EnvironmentCo-Innovation Center of Jiangsu Marine Bio-industry TechnologyJiangsu Ocean UniversityLianyungang222005China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Biological Resources and EnvironmentCo-Innovation Center of Jiangsu Marine Bio-industry TechnologyJiangsu Ocean UniversityLianyungang222005China
| | - Pei Wang
- School of Marine and Biological EngineeringYancheng Teachers UniversityYancheng224007China
| |
Collapse
|
26
|
Lee H, You J, Lee H, Kim W, Jang K, Park J, Na S. Enhanced selective discrimination of point-mutated viral RNA through false amplification regulatory direct insertion in rolling circle amplification. Biosens Bioelectron 2024; 252:116145. [PMID: 38412685 DOI: 10.1016/j.bios.2024.116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Coronaviruses are single-stranded RNA viruses with high mutation rates. Although a diagnostic method for coronaviruses has been developed, variants appear rapidly. Low test accuracy owing to single-point mutations is one of the main factors in the failure to prevent the early spread of coronavirus infection. Although reverse transcription-quantitative polymerase chain reaction can detect coronavirus infection, it cannot exclude the possibility of false positives, and an additional multiplexing kit is needed to discriminate single nucleotide polymorphism (SNP) variants. Therefore, in this study, we introduced a new nucleic acid amplification method to determine whether an infected person has a SNP mutation using a lateral flow assay (LFA) as a point-of-care test. Unlike traditional DNA amplification methods, direct insertion into rolling circle amplification amplifies the target genes without false amplification. After SNP-selective nucleic acid amplification, nuclease enzymes are used to make double-stranded DNA fragments that the LFA can detect, where specific mismatched DNA is found and cleaved to show different signals when a SNP-type is present. Therefore, wild- and SNP-type variants can be selectively detected. In this study, the limit of detection was 400 aM for viral RNA, and we successfully identified a dominant SNP variant selectively. Clinical tests were also conducted.
Collapse
Affiliation(s)
- Hakbeom Lee
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Juneseok You
- Department of Mechanical Engineering, Kumoh National Institute of Technology, Gumi, 31977, Republic of Korea
| | - Hansol Lee
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woojoo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kuewhan Jang
- School of Mechanical Engineering, Hoseo University, Asan, 31499, Republic of Korea.
| | - Jinsung Park
- Department of Biomechatronics Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon, 16419, Republic of Korea.
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
27
|
Han R, Wang F, Chen W, Ma L. A Fast and Sensitive One-Tube SARS-CoV-2 Detection Platform Based on RTX-PCR and Pyrococcus furiosus Argonaute. BIOSENSORS 2024; 14:245. [PMID: 38785719 PMCID: PMC11118887 DOI: 10.3390/bios14050245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Since SARS-CoV-2 is a highly transmissible virus, alternative reliable, fast, and cost-effective methods are still needed to prevent virus spread that can be applied in the laboratory and for point-of-care testing. Reverse transcription real-time fluorescence quantitative PCR (RT-qPCR) is currently the gold criteria for detecting RNA viruses, which requires reverse transcriptase to reverse transcribe viral RNA into cDNA, and fluorescence quantitative PCR detection was subsequently performed. The frequently used reverse transcriptase is thermolabile; the detection process is composed of two steps: the reverse transcription reaction at a relatively low temperature, and the qPCR performed at a relatively high temperature, moreover, the RNA to be detected needs to pretreated if they had advanced structure. Here, we develop a fast and sensitive one-tube SARS-CoV-2 detection platform based on Ultra-fast RTX-PCR and Pyrococcus furiosus Argonaute-mediated Nucleic acid Detection (PAND) technology (URPAND). URPAND was achieved ultra-fast RTX-PCR process based on a thermostable RTX (exo-) with both reverse transcriptase and DNA polymerase activity. The URPAND can be completed RT-PCR and PAND to detect nucleic acid in one tube within 30 min. This method can specifically detect SARS-CoV-2 with a low detection limit of 100 copies/mL. The diagnostic results of clinical samples with one-tube URPAND displayed 100% consistence with RT-qPCR test. Moreover, URPAND was also applied to identify SARS-CoV-2 D614G mutant due to its single-nucleotide specificity. The URPAND platform is rapid, accurate, tube closed, one-tube, easy-to-operate and free of large instruments, which provides a new strategy to the detection of SARS-CoV-2 and other RNA viruses.
Collapse
Affiliation(s)
- Rui Han
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China; (R.H.); (F.W.)
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China; (R.H.); (F.W.)
| | - Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China; (R.H.); (F.W.)
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China; (R.H.); (F.W.)
| |
Collapse
|
28
|
Zheng L, Zhou B, Yang Y, Zan B, Zhong B, Wu B, Feng Y, Liu Q, Hong L. Mn 2+-induced structural flexibility enhances the entire catalytic cycle and the cleavage of mismatches in prokaryotic argonaute proteins. Chem Sci 2024; 15:5612-5626. [PMID: 38638240 PMCID: PMC11023060 DOI: 10.1039/d3sc06221j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Prokaryotic Argonaute (pAgo) proteins, a class of DNA/RNA-guided programmable endonucleases, have been extensively utilized in nucleic acid-based biosensors. The specific binding and cleavage of nucleic acids by pAgo proteins, which are crucial processes for their applications, are dependent on the presence of Mn2+ bound in the pockets, as verified through X-ray crystallography. However, a comprehensive understanding of how dissociated Mn2+ in the solvent affects the catalytic cycle, and its underlying regulatory role in this structure-function relationship, remains underdetermined. By combining experimental and computational methods, this study reveals that unbound Mn2+ in solution enhances the flexibility of diverse pAgo proteins. This increase in flexibility through decreasing the number of hydrogen bonds, induced by Mn2+, leads to higher affinity for substrates, thus facilitating cleavage. More importantly, Mn2+-induced structural flexibility increases the mismatch tolerance between guide-target pairs by increasing the conformational states, thereby enhancing the cleavage of mismatches. Further simulations indicate that the enhanced flexibility in linkers triggers conformational changes in the PAZ domain for recognizing various lengths of nucleic acids. Additionally, Mn2+-induced dynamic alterations of the protein cause a conformational shift in the N domain and catalytic sites towards their functional form, resulting in a decreased energy penalty for target release and cleavage. These findings demonstrate that the dynamic conformations of pAgo proteins, resulting from the presence of the unbound Mn2+ in solution, significantly promote the catalytic cycle of endonucleases and the tolerance of cleavage to mismatches. This flexibility enhancement mechanism serves as a general strategy employed by Ago proteins from diverse prokaryotes to accomplish their catalytic functions and provide useful information for Ago-based precise molecular diagnostics.
Collapse
Affiliation(s)
- Lirong Zheng
- Institute of Natural Sciences, Shanghai Jiao Tong University Shanghai 200240 China
- Department of Cell and Developmental Biology & Michigan Neuroscience Institute, University of Michigan Medical School 48105 Ann Arbor MI USA
| | - Bingxin Zhou
- Institute of Natural Sciences, Shanghai Jiao Tong University Shanghai 200240 China
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai Jiao Tong University Shanghai 200240 China
| | - Yu Yang
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Bing Zan
- Institute of Natural Sciences, Shanghai Jiao Tong University Shanghai 200240 China
| | - Bozitao Zhong
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Banghao Wu
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yan Feng
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qian Liu
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Liang Hong
- Institute of Natural Sciences, Shanghai Jiao Tong University Shanghai 200240 China
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai Jiao Tong University Shanghai 200240 China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
29
|
Chen Y, Zhang X, Yang X, Su L, Chen W, Zhao J, Hu Y, Wang Y, Wu Y, Dong Y. PfAgo-Based Zika Virus Detection. Viruses 2024; 16:539. [PMID: 38675882 PMCID: PMC11054744 DOI: 10.3390/v16040539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
As a mosquito-borne flavivirus, Zika virus (ZIKV) has been identified as a global health threat. The virus has been linked to severe congenital disabilities, including microcephaly and other congenital malformations, resulting in fatal intrauterine death. Therefore, developing sensitive and specific methods for the early detection and accurate diagnosis of the ZIKV is essential for controlling its spread and mitigating its impact on public health. Herein, we set up a novel nucleic acid detection system based on Pyrococcus furiosus Argonaute (PfAgo)-mediated nucleic acid detection, targeting the non-structural protein 5 (NS5) region of the ZIKV genome (abbreviated ZIKV-PAND). Without preamplification with the polymerase chain reaction (PCR), the minimum detection concentration (MDC) of ZIKV-PAND was about 10 nM. When introducing an amplification step, the MDC can be dramatically decreased to the aM level (8.3 aM), which is comparable to qRT-PCR assay (1.6 aM). In addition, the diagnostic findings from the analysis of simulated clinical samples or Zika virus samples using ZIKV-PAND show a complete agreement of 100% with qRT-PCR assays. This correlation can aid in the implementation of molecular testing for clinical diagnoses and the investigation of ZIKV infection on an epidemiological scale.
Collapse
Affiliation(s)
- Yuhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xianyi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lifang Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Weiran Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jixiang Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yunhong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yuan Wang
- School of Basic Medicine, Hubei University of Arts and Sciences, Xiangyang 441053, China
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Yanming Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| |
Collapse
|
30
|
Zhao Y, Zhang Y, Wu W, Kang T, Sun J, Jiang H. Rapid and sensitive detection of Mycoplasma synoviae using RPA combined with Pyrococcus furiosus Argonaute. Poult Sci 2024; 103:103244. [PMID: 38194834 PMCID: PMC10792625 DOI: 10.1016/j.psj.2023.103244] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 01/11/2024] Open
Abstract
Mycoplasma synoviae (MS) is an important pathogen in laying hens and causes serious economic losses in poultry production. Rapid, accurate and specific detection is important for the prevention and control of MS. Argonaute from Pyrococcus furiosus (PfAgo) is emerging as a nucleic acid detector that works via "dual-step" sequence-specific cleavage. In this study, an MS detection method combining recombinase polymerase amplification (RPA) and PfAgo was established. Through elaborate design and screening of RPA primers and PfAgo gDNA and condition optimization, amplification and detection procedures can be completed within 40 min, whereas the results were superficially interpreted under UV and blue light. The sensitivity for MS detection was 2 copies/µL, and the specificity results showed no cross reaction with other pathogens. For the detection of 31 clinical samples, the results of this method and qPCR were completely consistent. This method provides a reliable and convenient method for the on-site detection of MS that is easy to operate without complex instruments and equipment.
Collapse
Affiliation(s)
- Yanli Zhao
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuhua Zhang
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Weiqing Wu
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Tianhao Kang
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Sun
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Hongxia Jiang
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
31
|
He P, Zhou W, Wei H, Yu J. Fast and Ultrasensitive Detection of Monkeypox by a Pyrococcus furiosus Argonaute System Coupled with a Short Amplification. Viruses 2024; 16:382. [PMID: 38543748 PMCID: PMC10975468 DOI: 10.3390/v16030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 05/23/2024] Open
Abstract
Monkeypox virus (MPXV), the pathogen responsible for the infectious disease monkeypox, causes lesions on the skin, lymphadenopathy, and fever. It has posed a global public health threat since May 2022. Highly sensitive and specific detection of MPXV is crucial for preventing the spread of the disease. Pyrococcus furiosus Argonaute (PfAgo) is an artificial DNA-guided restriction cleavage enzyme programmable with 5'-phosphorylated ssDNA sequences, which can be developed to specifically detect nucleic acids of pathogens. Here, a PfAgo-based system was established for the detection of MPXV-specific DNA targeting the F3L gene. A short amplicon of 79 bp could be obtained through a fast PCR procedure, which was completed within 45 min. Two 5'-phosphorylation guide DNAs were designed to guide PfAgo to cleave the amplicon to obtain an 18 bp 5'-phosphorylation sequence specific to MPXV, not to other orthopoxviruses (cowpox, variola, and vaccinia viruses). The 18 bp sequence guided PfAgo to cleave a designed probe specific to MPXV to emit fluorescence. With optimized conditions for the PfAgo-MPXV system, it could be completed in 60 min for the detection of the extracted MPXV DNA with the limit of detection (LOD) of 1.1 copies/reaction and did not depend on expensive instruments. Successful application of the PfAgo-MPXV system in sensitively detecting MPXV in simulated throat swabs, skin swabs, sera, and wastewater demonstrated the system's good performance. The PfAgo platform, with high sensitivity and specificity established here, has the potential to prevent the spread of MPXV.
Collapse
Affiliation(s)
- Ping He
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430207, China; (P.H.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhao Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430207, China; (P.H.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430207, China; (P.H.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430207, China; (P.H.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Wang L, Chen W, Zhang C, Xie X, Huang F, Chen M, Mao W, Yu N, Wei Q, Ma L, Li Z. Molecular mechanism for target recognition, dimerization, and activation of Pyrococcus furiosus Argonaute. Mol Cell 2024; 84:675-686.e4. [PMID: 38295801 DOI: 10.1016/j.molcel.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/15/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024]
Abstract
The Argonaute nuclease from the thermophilic archaeon Pyrococcus furiosus (PfAgo) contributes to host defense and represents a promising biotechnology tool. Here, we report the structure of a PfAgo-guide DNA-target DNA ternary complex at the cleavage-compatible state. The ternary complex is predominantly dimerized, and the dimerization is solely mediated by PfAgo at PIWI-MID, PIWI-PIWI, and PAZ-N interfaces. Additionally, PfAgo accommodates a short 14-bp guide-target DNA duplex with a wedge-type N domain and specifically recognizes 5'-phosphorylated guide DNA. In contrast, the PfAgo-guide DNA binary complex is monomeric, and the engagement of target DNA with 14-bp complementarity induces sufficient dimerization and activation of PfAgo, accompanied by movement of PAZ and N domains. A closely related Argonaute from Thermococcus thioreducens adopts a similar dimerization configuration with an additional zinc finger formed at the dimerization interface. Dimerization of both Argonautes stabilizes the catalytic loops, highlighting the important role of Argonaute dimerization in the activation and target cleavage.
Collapse
Affiliation(s)
- Longyu Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Chendi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xiaochen Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Fuyong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Miaomiao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wuxiang Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Na Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Qiang Wei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| | - Zhuang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
33
|
Wang Z, Feng N, Zhou Y, Cheng X, Zhou C, Ma A, Wang Q, Li Y, Chen Y. Mesophilic Argonaute-Mediated Polydisperse Droplet Biosensor for Amplification-Free, One-Pot, and Multiplexed Nucleic Acid Detection Using Deep Learning. Anal Chem 2024; 96:2068-2077. [PMID: 38259216 DOI: 10.1021/acs.analchem.3c04426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Detection of nucleic acids from a single multiplexed and amplification-free test is critical for ensuring food safety, clinical diagnostics, and environmental monitoring. In this study, we introduced a mesophilic Argonaute protein from Clostridium butyricum (CbAgo), which exhibits nucleic acid endonuclease activity, to achieve a programmable, amplification-free system (PASS) for rapid nucleic acid quantification at ambient temperatures in one pot. By using CbAgo-mediated binding with specific guide DNA (gDNA) and subsequent targeted cleavage of wild-type target DNAs complementary to gDNA, PASS can detect multiple foodborne pathogen DNA (<102 CFU/mL) simultaneously. The fluorescence signals were then transferred to polydisperse emulsions and analyzed by using deep learning. This simplifies the process and increases the suitability of polydisperse emulsions compared to traditional digital PCR, which requires homogeneous droplets for accurate detection. We believe that PASS has the potential to become a next-generation point-of-care digital nucleic acid detection method.
Collapse
Affiliation(s)
- Zhipan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Niu Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yanan Zhou
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xinrui Cheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Cuiyun Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qinyu Wang
- Department of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430000, Hubei China
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
34
|
Wen J, Han M, Feng N, Chen G, Jiang F, Lin J, Chen Y. A digital platform for One-Pot signal enhanced foodborne pathogen detection based on mesophilic argonaute-driven polydisperse microdroplet reactors and machine learning. CHEMICAL ENGINEERING JOURNAL 2024; 482:148845. [DOI: 10.1016/j.cej.2024.148845] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
|
35
|
Zhang Y, Gong B, Lin Y, Zhu Y, Su G, Yu Y. Split G-quadruplex based PfAgo sensing platform for nucleotide mutation discrimination and human genotyping. Analyst 2024; 149:707-711. [PMID: 38230655 DOI: 10.1039/d3an02090h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
A PfAgo-G4 sensing platform exploiting G4 as a signal reporter was proposed, validated, and optimized. By introducing two mismatches at the Link strand, a universal nucleotide design rule was established for accurate single nucleotide polymorphism discrimination with PfAgo-G4. The FUT2 gene was then successfully and accurately genotyped using human buccal swab samples.
Collapse
Affiliation(s)
- Yan Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Bin Gong
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Yanan Lin
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Yuedong Zhu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
36
|
Molina Vargas A, Sinha S, Osborn R, Arantes P, Patel A, Dewhurst S, Hardy D, Cameron A, Palermo G, O’Connell M. New design strategies for ultra-specific CRISPR-Cas13a-based RNA detection with single-nucleotide mismatch sensitivity. Nucleic Acids Res 2024; 52:921-939. [PMID: 38033324 PMCID: PMC10810210 DOI: 10.1093/nar/gkad1132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
An increasingly pressing need for clinical diagnostics has required the development of novel nucleic acid-based detection technologies that are sensitive, fast, and inexpensive, and that can be deployed at point-of-care. Recently, the RNA-guided ribonuclease CRISPR-Cas13 has been successfully harnessed for such purposes. However, developing assays for detection of genetic variability, for example single-nucleotide polymorphisms, is still challenging and previously described design strategies are not always generalizable. Here, we expanded our characterization of LbuCas13a RNA-detection specificity by performing a combination of experimental RNA mismatch tolerance profiling, molecular dynamics simulations, protein, and crRNA engineering. We found certain positions in the crRNA-target-RNA duplex that are particularly sensitive to mismatches and establish the effect of RNA concentration in mismatch tolerance. Additionally, we determined that shortening the crRNA spacer or modifying the direct repeat of the crRNA leads to stricter specificities. Furthermore, we harnessed our understanding of LbuCas13a allosteric activation pathways through molecular dynamics and structure-guided engineering to develop novel Cas13a variants that display increased sensitivities to single-nucleotide mismatches. We deployed these Cas13a variants and crRNA design strategies to achieve superior discrimination of SARS-CoV-2 strains compared to wild-type LbuCas13a. Together, our work provides new design criteria and Cas13a variants to use in future easier-to-implement Cas13-based RNA detection applications.
Collapse
Affiliation(s)
- Adrian M Molina Vargas
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Souvik Sinha
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | - Raven Osborn
- Clinical and Translational Sciences Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Pablo R Arantes
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | - Amun Patel
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Dwight J Hardy
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Andrew Cameron
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
- Department of Chemistry, University of California Riverside, Riverside, CA, USA
| | - Mitchell R O’Connell
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| |
Collapse
|
37
|
Shi Y, Tan Z, Li W, Wu D, Li L, Wu Y, Li G. Enzyme-Assisted Endogenous Guide DNA Generation-Mediated Pyrococcus furiosus Argonaute for Alicyclobacillus acidoterrestris Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1354-1360. [PMID: 38174972 DOI: 10.1021/acs.jafc.3c07881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Pyrococcus furiosusArgonaute (PfAgo) emerged as a novel endonuclease for the nucleic acid test recently. However, the input of exogenous guide DNA (gDNA) to activate PfAgo has reduced its flexibility. In this work, an enzyme-assisted endogenous gDNA generation-mediated PfAgo for the target detection strategy, termed EGG-PAD, was proposed. With the aid of EcoR Ι, the target double-strand DNA was cut, producing a phosphate group at the 5' end, functioning as gDNA to activate PfAgo for nucleic acid detection. The applicability of this assay was tested in the detection ofAlicyclobacillus acidoterrestris, a bacterium causing the spoilage of fruit juice, showing excellent sensitivity and specificity, ascribed to the "duplex amplification and triple insurance" mechanism. Moreover, EGG-PAD exhibited superior versatility in the identification of common foodborne pathogens. This powerful platform could also be an on-site test tool for detecting nucleic acid-containing organisms such as tumor cell, pathogen, and virus in the future.
Collapse
Affiliation(s)
- Yiheng Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zishan Tan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenrui Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
38
|
Li Y, Tang X, Wang N, Zhao Z, Man S, Zhu L, Ma L. Argonaute-DNAzyme tandem biosensing for highly sensitive and simultaneous dual-gene detection of methicillin-resistant Staphylococcus aureus. Biosens Bioelectron 2024; 244:115758. [PMID: 37931440 DOI: 10.1016/j.bios.2023.115758] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a common zoonotic multidrug-resistant bacterium, puts a great threat to public health and food safety. Rapid and reliable detection of MRSA is crucial to guide effective patient treatment at early stages of infection and control the spread of MRSA infections. Herein, we developed a Simultaneous dual-gene and ulTra-sensitive detection for methicillin-resistant Staphylococcus aureus using Argonaute-DNAzyme tandem Detection (STAND). Simply, loop-mediated isothermal amplification (LAMP) was used for the amplification of the species-specific mecA and nuc gene, followed by STAND enabled by the site-specific cleavage of programable Argonaute. The Argonaute-DNAzyme tandem reaction rendered a conceptually novel signal amplification and transduction module that was more sensitive (1 or 2 order of magnitude higher) than the original Argonaute-based biosensing. With the strategy, the target nucleic acid signals gene were dexterously converted into fluorescent signals. STAND could detect the nuc gene and mecA gene simultaneously in a single reaction with 1 CFU/mL MRSA and a dynamic range from 1 to 108 CFU/mL. This method was confirmed by clinical samples and challenged by identifying contaminated foods and MRSA-infected animals. This work enriches the arsenal of Argonaute-mediated biosensing and presents a novel biosensing strategy to detect pathogenic bacteria with ultra-sensitivity, specificity and on-site capability.
Collapse
Affiliation(s)
- Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiaoqin Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Nan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zhiying Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
39
|
Graver BA, Chakravarty N, Solomon KV. Prokaryotic Argonautes for in vivo biotechnology and molecular diagnostics. Trends Biotechnol 2024; 42:61-73. [PMID: 37451948 DOI: 10.1016/j.tibtech.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Prokaryotic Argonautes (pAgos) are an emerging class of programmable endonucleases that are believed to be more flexible than existing CRISPR-Cas systems and have significant potential for biotechnology. Current applications of pAgos include a myriad of molecular diagnostics and in vitro DNA assembly tools. However, efforts have historically been centered on thermophilic pAgo variants. To enable in vivo biotechnological applications such as gene editing, focus has shifted to pAgos from mesophilic organisms. We discuss what is known of pAgos, how they are being developed for various applications, and strategies to overcome current challenges to in vivo applications in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Brett A Graver
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Namrata Chakravarty
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kevin V Solomon
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
40
|
Jang H, Song J, Kim S, Byun JH, Lee KG, Park KH, Woo E, Lim EK, Jung J, Kang T. ANCA: artificial nucleic acid circuit with argonaute protein for one-step isothermal detection of antibiotic-resistant bacteria. Nat Commun 2023; 14:8033. [PMID: 38052830 PMCID: PMC10697997 DOI: 10.1038/s41467-023-43899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023] Open
Abstract
Endonucleases have recently widely used in molecular diagnostics. Here, we report a strategy to exploit the properties of Argonaute (Ago) proteins for molecular diagnostics by introducing an artificial nucleic acid circuit with Ago protein (ANCA) method. The ANCA is designed to perform a continuous autocatalytic reaction through cross-catalytic cleavage of the Ago protein, enabling one-step, amplification-free, and isothermal DNA detection. Using the ANCA method, carbapenemase-producing Klebsiella pneumoniae (CPKP) are successfully detected without DNA extraction and amplification steps. In addition, we demonstrate the detection of carbapenem-resistant bacteria in human urine and blood samples using the method. We also demonstrate the direct identification of CPKP swabbed from surfaces using the ANCA method in conjunction with a three-dimensional nanopillar structure. Finally, the ANCA method is applied to detect CPKP in rectal swab specimens from infected patients, achieving sensitivity and specificity of 100% and 100%, respectively. The developed method can contribute to simple, rapid and accurate diagnosis of CPKP, which can help prevent nosocomial infections.
Collapse
Grants
- NRF-2021M3H4A1A02051048 National Research Foundation of Korea (NRF)
- NRF-2023R1A2C2005185 National Research Foundation of Korea (NRF)
- NRF-2021M3E5E3080844 National Research Foundation of Korea (NRF)
- NRF-2022R1C1C1008815 National Research Foundation of Korea (NRF)
- CPS22021-100 National Research Council of Science and Technology (National Research Council of Science & Technology)
- 2021003370003 MOE | Korea Environmental Industry and Technology Institute (KEITI)
- RS-2022-00154853 Ministry of Trade, Industry and Energy, Korea | Korea Evaluation Institute of Industrial Technology (KEIT)
- KGM5472322 Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- This research was supported by NRF and NST grants funded by Korea government (MSIT) (NRF-2021M3E5E3080379 to T. Kang, NRF-2021M3H4A1A02051048 to T. Kang, NRF-2023R1A2C2005185 to T. Kang, NRF-2021M3E5E3080844 to J. Jung, NRF-2022R1C1C1008815 to E.-K. Lim, and CPS22021-100 to E.-K. Lim), Technology Development Program for Biological Hazards Management in Indoor Air through KEITI funded by Korea government (ME) (2021003370003 to T. Kang), KEIT grant funded by Korea government (MOTIE) (RS-2022-00154853 to T. Kang), Nanomedical Devices Development Program of National Nano Fab Center, and KRIBB Research Initiative Program (KGM5472322 to T. Kang).
Collapse
Affiliation(s)
- Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jayeon Song
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 175 Cambridge Street, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 79 Gangnam-ro, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea
| | - Jung-Hyun Byun
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 79 Gangnam-ro, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea
| | - Kyoung G Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Park
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Euijeon Woo
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeongi-do, 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeongi-do, 16419, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- School of Pharmacy, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeongi-do, 16419, Republic of Korea.
| |
Collapse
|
41
|
Wang Y, Chen Y, Tang Y, Wang Y, Gao S, Yang L, Wang P. A recombinase polymerase amplification and Pyrococcus furiosus Argonaute combined method for ultra-sensitive detection of white spot syndrome virus in shrimp. JOURNAL OF FISH DISEASES 2023; 46:1357-1365. [PMID: 37635423 DOI: 10.1111/jfd.13853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
White spot disease (WSD) in shrimp is an acute infectious disease caused by white spot syndrome virus (WSSV). WSD has seriously threatened the security of shrimp farming, causing huge economic losses worldwide. As there is currently no effective treatment for WSD, developing early detection technologies for WSSV is of great significance for the prevention. In this study, we have established a detection method for WSSV using a combination of recombinase polymerase amplification (RPA) and Pyrococcus furiosus Argonaute (PfAgo). We have achieved a detection sensitivity of single copy per reaction, which is more sensitive than the previously reported detection methods. Additionally, we have demonstrated high specificity. The entire detection process can be completed within 75 min without the need for precise thermal cyclers, making it suitable for on-site testing. The fluorescence signal generated by the reaction can be quantified using a portable fluorescence detector or observed with the naked eye under a blue light background. This study provides an ultrasensitive on-site detection method for WSSV in shrimp aquaculture and expands the application of PfAgo in the field of aquatic disease diagnosis.
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Yukang Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Yixin Tang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Yue Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Lihong Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Pei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
42
|
Yang Z, Mao S, Wang L, Fu S, Dong Y, Jaffrezic-Renault N, Guo Z. CRISPR/Cas and Argonaute-Based Biosensors for Pathogen Detection. ACS Sens 2023; 8:3623-3642. [PMID: 37819690 DOI: 10.1021/acssensors.3c01232] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Over the past few decades, pathogens have posed a threat to human security, and rapid identification of pathogens should be one of the ideal methods to prevent major public health security outbreaks. Therefore, there is an urgent need for highly sensitive and specific approaches to identify and quantify pathogens. Clustered Regularly Interspaced Short Palindromic Repeats CRISPR/Cas systems and Argonaute (Ago) belong to the Microbial Defense Systems (MDS). The guided, programmable, and targeted activation of nucleases by both of them is leading the way to a new generation of pathogens detection. We compare these two nucleases in terms of similarities and differences. In addition, we discuss future challenges and prospects for the development of the CRISPR/Cas systems and Argonaute (Ago) biosensors, especially electrochemical biosensors. This review is expected to afford researchers entering this multidisciplinary field useful guidance and to provide inspiration for the development of more innovative electrochemical biosensors for pathogens detection.
Collapse
Affiliation(s)
- Zhiruo Yang
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Siying Mao
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Lu Wang
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Sinan Fu
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Yanming Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne 69100, France
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| |
Collapse
|
43
|
Yin W, Hu J, Chen F, Zhu L, Ma Y, Wang N, Wei H, Yang H, Chou SH, He J. Combining hybrid nanoflowers with hybridization chain reaction for highly sensitive detection of SARS-CoV-2 nucleocapsid protein. Anal Chim Acta 2023; 1279:341838. [PMID: 37827653 DOI: 10.1016/j.aca.2023.341838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND COVID-19 (coronavirus disease 2019) pandemic has had enormous social and economic impacts so far. The nucleocapsid protein (N protein) is highly conserved and is a key antigenic marker for the diagnosis of early SARS-CoV-2 infection. RESULTS In this study, the N protein was first captured by an aptamer (Aptamer 58) coupled to magnetic beads (MBs), which in turn were bound to another DNA sequence containing the aptamer (Aptamer 48-Initiator). After adding 5'-biotinylated hairpin DNA Amplifier 1 and Amplifier 2 with cohesive ends for complementary hybridization, the Initiator in the Aptamer 48-Initiator began to trigger the hybridization chain reaction (HCR), generating multiple biotin-labeled DNA concatamers. When incubated with synthetic streptavidin-invertase-Ca3(PO4)2 hybrid nanoflower (SICa), DNA concatamers could specifically bind to SICa through biotin-streptavidin interaction with high affinity. After adding sucrose, invertase in SICa hydrolyzed sucrose to glucose, whose concentration could be directly read with a portable glucometer, and its concentration was positively correlated with the amount of captured N protein. The method is highly sensitive with a detection limit as low as 1 pg/mL. SIGNIFICANCE We believe this study provided a practical solution for the early detection of SARS-CoV-2 infection, and offered a new method for detecting other viruses through different target proteins.
Collapse
Affiliation(s)
- Wen Yin
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ji Hu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fang Chen
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Zhu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Nuo Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430000, China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430000, China
| | - Shan-Ho Chou
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
44
|
Sun K, Liu Y, Zhao W, Ma B, Zhang M, Yu X, Ye Z. Prokaryotic Argonaute Proteins: A New Frontier in Point-of-Care Viral Diagnostics. Int J Mol Sci 2023; 24:14987. [PMID: 37834437 PMCID: PMC10573157 DOI: 10.3390/ijms241914987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
The recent pandemic of SARS-CoV-2 has underscored the critical need for rapid and precise viral detection technologies. Point-of-care (POC) technologies, which offer immediate and accurate testing at or near the site of patient care, have become a cornerstone of modern medicine. Prokaryotic Argonaute proteins (pAgo), proficient in recognizing target RNA or DNA with complementary sequences, have emerged as potential game-changers. pAgo present several advantages over the currently popular CRISPR/Cas systems-based POC diagnostics, including the absence of a PAM sequence requirement, the use of shorter nucleic acid molecules as guides, and a smaller protein size. This review provides a comprehensive overview of pAgo protein detection platforms and critically assesses their potential in the field of viral POC diagnostics. The objective is to catalyze further research and innovation in pAgo nucleic acid detection and diagnostics, ultimately facilitating the creation of enhanced diagnostic tools for clinic viral infections in POC settings.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (K.S.); (Y.L.); (W.Z.); (B.M.); (M.Z.)
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (K.S.); (Y.L.); (W.Z.); (B.M.); (M.Z.)
| |
Collapse
|
45
|
Wu Z, Yu L, Shi W, Ma J. Argonaute protein-based nucleic acid detection technology. Front Microbiol 2023; 14:1255716. [PMID: 37744931 PMCID: PMC10515653 DOI: 10.3389/fmicb.2023.1255716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
It is vital to diagnose pathogens quickly and effectively in the research and treatment of disease. Argonaute (Ago) proteins are recently discovered nucleases with nucleic acid shearing activity that exhibit specific recognition properties beyond CRISPR-Cas nucleases, which are highly researched but restricted PAM sequence recognition. Therefore, research on Ago protein-mediated nucleic acid detection technology has attracted significant attention from researchers in recent years. Using Ago proteins in developing nucleic acid detection platforms can enable efficient, convenient, and rapid nucleic acid detection and pathogen diagnosis, which is of great importance for human life and health and technological development. In this article, we introduce the structure and function of Argonaute proteins and discuss the latest advances in their use in nucleic acid detection.
Collapse
Affiliation(s)
- Zhiyun Wu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Li Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Weifeng Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jinhong Ma
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
46
|
Wang Z, Wang Z, Zhang F, Wu L. Thermus thermophilus Argonaute-based signal amplifier for highly sensitive and specific microRNA detection. Front Bioeng Biotechnol 2023; 11:1221943. [PMID: 37583711 PMCID: PMC10424790 DOI: 10.3389/fbioe.2023.1221943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023] Open
Abstract
The prokaryote-derived gene defense system as a new generation of nucleic acid detection tool exhibits impressive performance in the field of molecular diagnosis. Prokaryotic Argonaute (Ago) is a CRISPR-associated protein that is guided by a short DNA (gDNA) and then efficiently cleaves gDNA-complementary nucleic acids and presents unique characteristics that are different from the CRISPR/Cas system. However, the application of Ago in biosensing is still relatively scarce, and many properties of Ago need to be further clarified. In this study, we aim to systematically explore the properties of Thermus thermophilus Argonaute (TtAgo), including the dependence of TtAgo activity on guide DNA (gDNA) length, substrates' length, and the position of gDNA complementary region on the substrate. Based on these properties, we constructed an exonuclease III-assisted target-recycled amplification system (exoAgo) for sensitive miRNA detection. The result showed that exoAgo can be used for miRNA profiling with a detection limit of 12.2 pM and single-base-resolution and keep good performance for the detection of complex samples, which indicates that Ago has great application potential in the detection of nucleic acids. In conclusion, this study will provide guidance for further development and utilization of Ago in the field of biosensing.
Collapse
Affiliation(s)
- Ziqi Wang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China
| | - Zitong Wang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China
| | - Fan Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China
| | - Lingyi Wu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China
| |
Collapse
|
47
|
Vargas AMM, Osborn R, Sinha S, Arantes PR, Patel A, Dewhurst S, Palermo G, O'Connell MR. New design strategies for ultra-specific CRISPR-Cas13a-based RNA-diagnostic tools with single-nucleotide mismatch sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550755. [PMID: 37547020 PMCID: PMC10402140 DOI: 10.1101/2023.07.26.550755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The pressing need for clinical diagnostics has required the development of novel nucleic acid-based detection technologies that are sensitive, fast, and inexpensive, and that can be deployed at point-of-care. Recently, the RNA-guided ribonuclease CRISPR-Cas13 has been successfully harnessed for such purposes. However, developing assays for detection of genetic variability, for example single-nucleotide polymorphisms, is still challenging and previously described design strategies are not always generalizable. Here, we expanded our characterization of LbuCas13a RNA-detection specificity by performing a combination of experimental RNA mismatch tolerance profiling, molecular dynamics simulations, protein, and crRNA engineering. We found certain positions in the crRNA-target-RNA duplex that are particularly sensitive to mismatches and establish the effect of RNA concentration in mismatch tolerance. Additionally, we determined that shortening the crRNA spacer or modifying the direct repeat of the crRNA leads to stricter specificities. Furthermore, we harnessed our understanding of LbuCas13a allosteric activation pathways through molecular dynamics and structure-guided engineering to develop novel Cas13a variants that display increased sensitivities to single-nucleotide mismatches. We deployed these Cas13a variants and crRNA design strategies to achieve superior discrimination of SARS-CoV-2 strains compared to wild-type LbuCas13a. Together, our work provides new design criteria and new Cas13a variants for easier-to-implement Cas13-based diagnostics. KEY POINTS Certain positions in the Cas13a crRNA-target-RNA duplex are particularly sensitive to mismatches.Understanding Cas13a's allosteric activation pathway allowed us to develop novel high-fidelity Cas13a variants.These Cas13a variants and crRNA design strategies achieve superior discrimination of SARS-CoV-2 strains. GRAPHICAL ABSTRACT
Collapse
|
48
|
Xiong X, Lu Z, Ma L, Zhai C. Applications of Programmable Endonucleases in Sequence- and Ligation-Independent Seamless DNA Assembly. Biomolecules 2023; 13:1022. [PMID: 37509059 PMCID: PMC10377497 DOI: 10.3390/biom13071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Programmable endonucleases, such as Cas (Clustered Regularly-Interspaced Short Repeats-associated proteins) and prokaryotic Argonaute (pAgo), depend on base pairing of the target DNA with the guide RNA or DNA to cleave DNA strands. Therefore, they are capable of recognizing and cleaving DNA sequences at virtually any arbitrary site. The present review focuses on the commonly used in vivo and in vitro recombination-based gene cloning methods and the application of programmable endonucleases in these sequence- and ligation-independent DNA assembly methods. The advantages and shortcomings of the programmable endonucleases utilized as tools for gene cloning are also discussed in this review.
Collapse
Affiliation(s)
- Xingchen Xiong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhiwen Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
49
|
Yin J, Tong J, Li J, Shao G, Xie B, Zhuang J, Bi G, Mu Y. A portable, high-throughput real-time quantitative PCR device for point-of-care testing. Anal Biochem 2023:115200. [PMID: 37302776 DOI: 10.1016/j.ab.2023.115200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/15/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
Nucleic acids detection has become essential in the identification of many infectious diseases and tumors. Conventional qPCR instruments are not suitable for point-of-care Moreover, current miniaturized nucleic acid detection equipment has limited throughput and multiplex detection capabilities, typically allowing the detection of a limited number of samples. Here, we present an affordable, portable, and high-throughput nucleic acid detection device for point-of-care detection. This portable device is approximately 220×165×140 mm in size and about 3 kg in weight. It can provide stable and accurate temperature control and analyze two fluorescent signals (FAM and VIC) and run 16 samples simultaneously. As a proof of concept, we used the two purified DNA samples from Bordetella pertussis and Canine parvovirus and the results showed good linearity and coefficient of variation. Moreover, this portable device can detect as low as 10 copies and has good specificity. Therefore, our device can provide advantages in real-time diagnosis of high-throughput nucleic acid detection in the field, especially for resource-limited conditions.
Collapse
Affiliation(s)
- Juxin Yin
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, Zhejiang Province, 310015, China
| | - Jizhi Tong
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, Zhejiang Province, 310015, China
| | - Jiale Li
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Guangye Shao
- Hang Zhou Techway Gene CO.LTD, Zhejiang Province, 310015, China
| | - Bo Xie
- Hang Zhou Techway Gene CO.LTD, Zhejiang Province, 310015, China
| | - Jianjian Zhuang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Gang Bi
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, Zhejiang Province, 310015, China.
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China.
| |
Collapse
|
50
|
Liu Y, Qin Z, Zhou J, Jia X, Li H, Wang X, Chen Y, Sun Z, He X, Li H, Wang G, Chang H. Nano-biosensor for SARS-CoV-2/COVID-19 detection: methods, mechanism and interface design. RSC Adv 2023; 13:17883-17906. [PMID: 37323463 PMCID: PMC10262965 DOI: 10.1039/d3ra02560h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
The epidemic of coronavirus disease 2019 (COVID-19) was a huge disaster to human society. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which led to COVID-19, has resulted in a large number of deaths. Even though the reverse transcription-polymerase chain reaction (RT-PCR) is the most efficient method for the detection of SARS-CoV-2, the disadvantages (such as long detection time, professional operators, expensive instruments, and laboratory equipment) limit its application. In this review, the different kinds of nano-biosensors based on surface-enhanced Raman scattering (SERS), surface plasmon resonance (SPR), field-effect transistor (FET), fluorescence methods, and electrochemical methods are summarized, starting with a concise description of their sensing mechanism. The different bioprobes (such as ACE2, S protein-antibody, IgG antibody, IgM antibody, and SARS-CoV-2 DNA probes) with different bio-principles are introduced. The key structural components of the biosensors are briefly introduced to give readers an understanding of the principles behind the testing methods. In particular, SARS-CoV-2-related RNA mutation detection and its challenges are also briefly described. We hope that this review will encourage readers with different research backgrounds to design SARS-CoV-2 nano-biosensors with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Yansheng Liu
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 Hubei China
| | - Zhenle Qin
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Jin Zhou
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Xiaobo Jia
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Hongli Li
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Xiaohong Wang
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Yating Chen
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Zijun Sun
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Xiong He
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Hongda Li
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 Hubei China
| | - Guofu Wang
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Haixin Chang
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 Hubei China
| |
Collapse
|