1
|
Jiao JB, Kang Q, Cui SX, Cao JL, Lin T, Ma CJ, Xiao ZH, Du T, Wang N, Du XJ, Wang S. Target-driven functionalized DNA hydrogel capillary sensor for SARS-CoV-2 dual-mode detection. Talanta 2025; 285:127342. [PMID: 39644672 DOI: 10.1016/j.talanta.2024.127342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Coronavirus disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused secondary pandemic, which still poses a serious threat to physical health and economic development. Herein, the target-driven functionalized DNA hydrogel capillary sensor based on cascade signal amplification and carbon coated cobalt manganese modified by prussian blue and platinum nanoparticles (MnCo@C-Pt-PB NPs) has been successfully developed for dual-mode detection of SARS-CoV-2. The cascade signal amplification triggered by target RNA causes the permeability of the DNA hydrogel loaded in the capillary to be destroyed, thereby releasing the embedded MnCo@C-Pt-PB NPs as signal molecules into 3,3',5,5'-tetramethylbenzidine/hydrogen peroxide (TMB/H2O2) solution under the driving of capillarity. The colorless TMB is then catalyzed to blue oxidation products (oxTMB) due to peroxidase-like activity of MnCo@C-Pt-PB NPs, and MnCo@C-Pt-PB NPs and oxTMB with photothermal properties synergistically increase the system temperature under near-infrared irradiation, which are recorded by portable devices to achieve dual-mode detection. Signals intensity are proportional to the logarithm of T-RNA concentration in a wide detection range (100 aM-100 pM), with a detection limit of 100 aM. Moreover, the reliability of the developed method in oropharyngeal swabs samples has also been validated. The signal conversion and amplification function of functionalized DNA hydrogel enhances the convenience, sensitivity and versatility of the developed method, which is promising to be applied in environmental safety, molecular diagnostic assays and disease prevention.
Collapse
Affiliation(s)
- Jing-Bo Jiao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qing Kang
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shu-Xin Cui
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jiang-Li Cao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Tong Lin
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chen-Jing Ma
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ze-Hui Xiao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ting Du
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Xin-Jun Du
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Gagni P, Lodigiani G, Frigerio R, Cretich M, Gori A, Bergamaschi G. Supramolecular Hydrogels for 3D Biosensors and Bioassays. Chemistry 2024; 30:e202400974. [PMID: 38871646 DOI: 10.1002/chem.202400974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Supramolecular hydrogels play a pivotal role in many fields of biomedical research, including emerging applications in designing advanced tools for point-of-care testing, clinical diagnostics, and lab-on-chip analysis. This review outlines the growing relevance of supramolecular hydrogels in biosensing and bioassay devices, highlighting recent advancements that deliver increased sensitivity, real-time monitoring, and multiplexing capabilities through the distinctive properties of these nanomaterials. Furthermore, the exploration extends to additional applications, such as using hydrogels as three-dimensional matrices for cell-based assays.
Collapse
Affiliation(s)
- Paola Gagni
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| | - Giulia Lodigiani
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| | - Roberto Frigerio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| | - Marina Cretich
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| | - Alessandro Gori
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| | - Greta Bergamaschi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| |
Collapse
|
3
|
Li Y, Lu SM, Wang JL, Yao HP, Liang LG. Progress in SARS-CoV-2, diagnostic and clinical treatment of COVID-19. Heliyon 2024; 10:e33179. [PMID: 39021908 PMCID: PMC11253070 DOI: 10.1016/j.heliyon.2024.e33179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Background Corona Virus Disease 2019(COVID-19)is a global pandemic novel coronavirus infection disease caused by Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Although rapid, large-scale testing plays an important role in patient management and slowing the spread of the disease. However, there has been no good and widely used drug treatment for infection and transmission of SARS-CoV-2. Key findings Therefore, this review updates the body of knowledge on viral structure, infection routes, detection methods, and clinical treatment, with the aim of responding to the large-section caused by SARS-CoV-2. This paper focuses on the structure of SARS-CoV-2 viral protease, RNA polymerase, serine protease and main proteinase-like protease as well as targeted antiviral drugs. Conclusion In vitro or clinical trials have been carried out to provide deeper thinking for the pathogenesis, clinical diagnosis, vaccine development and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Si-Ming Lu
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Clinical in Vitro Diagnostic Techniques, Hangzhou, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Long Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Guo Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Xia Y, Rao R, Xiong M, He B, Zheng B, Jia Y, Li Y, Yang Y. CRISPR-Powered Strategies for Amplification-Free Diagnostics of Infectious Diseases. Anal Chem 2024; 96:8091-8108. [PMID: 38451204 DOI: 10.1021/acs.analchem.3c04363] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Affiliation(s)
- Yupiao Xia
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruotong Rao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqiu Xiong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bingxin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanwei Jia
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
5
|
Yin M, Zhang Y, Liang H, Liu C, Bi Y, Sun J, Guo W. Smart Free-Standing Bilayer Polyacrylamide/DNA Hybrid Hydrogel Film-Based Sensing System Using Changes in Bending Angles as a Visual Signal Readout. Anal Chem 2024; 96:5215-5222. [PMID: 38506337 DOI: 10.1021/acs.analchem.3c05562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Stimuli-responsive DNA hydrogels have shown great potential in sensing applications due to their attractive properties such as programmable target responsiveness, excellent biocompatibility, and biodegradability. In contrast to the extensively developed DNA hydrogel sensing systems based on the stimuli-responsive hydrogel-to-solution phase transition of the hydrogel matrix, the quantitative sensing application of DNA hydrogels exhibiting smart shape deformations has rarely been explored. Moreover, bulk DNA hydrogel-based sensing systems also suffer from high material cost and slow response. Herein, free-standing bilayer polyacrylamide/DNA hybrid hydrogel films with programmable responsive properties directed by the sequence of functional DNA units have been constructed. Compared with bulk DNA hydrogels, these DNA hydrogel films with a thickness at the micrometer scale not only greatly reduce the consumption of DNA materials but also facilitate the mass transfer of biomacromolecular substances within the hydrogel network, thus favoring their sensing applications. Therefore, a target-responsive smart DNA hydrogel film-based sensor system is further demonstrated based on the large amplitude macroscopic shape deformation of the film as a visual signal readout. As a proof of concept, Pb2+ or UO22+ ion-responsive DNA units were introduced into the active layer of the bilayer hydrogel films. In the presence of Pb2+ or UO22+ ions, the occurrence of a cleavage reaction within the DNA units leads to the release of DNA segments from the hydrogel film, inducing a dramatic shape deformation of the film, and thus sensing of Pb2+ or UO22+ ions with high specificity is achieved based on measuring the bending angle changes of these smart free-standing films. These smart DNA hydrogel film sensors with target-programmable responsiveness, simple operation, and ease of storage may hold promise for future rapid on-site testing applications.
Collapse
Affiliation(s)
- Mengyuan Yin
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yaxing Zhang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hanxue Liang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chang Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanhui Bi
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Juanjuan Sun
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Guo
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Li Y, Chen R, Zhou B, Dong Y, Liu D. Rational Design of DNA Hydrogels Based on Molecular Dynamics of Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307129. [PMID: 37820719 DOI: 10.1002/adma.202307129] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Indexed: 10/13/2023]
Abstract
In recent years, DNA has emerged as a fascinating building material to engineer hydrogel due to its excellent programmability, which has gained considerable attention in biomedical applications. Understanding the structure-property relationship and underlying molecular determinants of DNA hydrogel is essential to precisely tailor its macroscopic properties at molecular level. In this review, the rational design principles of DNA molecular networks based on molecular dynamics of polymers on the temporal scale, which can be engineered via the backbone rigidity and crosslinking kinetics, are highlighted. By elucidating the underlying molecular mechanisms and theories, it is aimed to provide a comprehensive overview of how the tunable DNA backbone rigidity and the crosslinking kinetics lead to desirable macroscopic properties of DNA hydrogels, including mechanical properties, diffusive permeability, swelling behaviors, and dynamic features. Furthermore, it is also discussed how the tunable macroscopic properties make DNA hydrogels promising candidates for biomedical applications, such as cell culture, tissue engineering, bio-sensing, and drug delivery.
Collapse
Affiliation(s)
- Yujie Li
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruofan Chen
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Bini Zhou
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dongsheng Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
7
|
Lee S, Bi L, Chen H, Lin D, Mei R, Wu Y, Chen L, Joo SW, Choo J. Recent advances in point-of-care testing of COVID-19. Chem Soc Rev 2023; 52:8500-8530. [PMID: 37999922 DOI: 10.1039/d3cs00709j] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Advances in microfluidic device miniaturization and system integration contribute to the development of portable, handheld, and smartphone-compatible devices. These advancements in diagnostics have the potential to revolutionize the approach to detect and respond to future pandemics. Accordingly, herein, recent advances in point-of-care testing (POCT) of coronavirus disease 2019 (COVID-19) using various microdevices, including lateral flow assay strips, vertical flow assay strips, microfluidic channels, and paper-based microfluidic devices, are reviewed. However, visual determination of the diagnostic results using only microdevices leads to many false-negative results due to the limited detection sensitivities of these devices. Several POCT systems comprising microdevices integrated with portable optical readers have been developed to address this issue. Since the outbreak of COVID-19, effective POCT strategies for COVID-19 based on optical detection methods have been established. They can be categorized into fluorescence, surface-enhanced Raman scattering, surface plasmon resonance spectroscopy, and wearable sensing. We introduced next-generation pandemic sensing methods incorporating artificial intelligence that can be used to meet global health needs in the future. Additionally, we have discussed appropriate responses of various testing devices to emerging infectious diseases and prospective preventive measures for the post-pandemic era. We believe that this review will be helpful for preparing for future infectious disease outbreaks.
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Liyan Bi
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, 264003, China
| | - Hao Chen
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Dong Lin
- School of Pharmacy, Bianzhou Medical University, Yantai, 264003, China
| | - Rongchao Mei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
| | - Yixuan Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
- School of Pharmacy, Bianzhou Medical University, Yantai, 264003, China
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
8
|
Gavina K, Franco LC, Khan H, Lavik JP, Relich RF. Molecular point-of-care devices for the diagnosis of infectious diseases in resource-limited settings - A review of the current landscape, technical challenges, and clinical impact. J Clin Virol 2023; 169:105613. [PMID: 37866094 DOI: 10.1016/j.jcv.2023.105613] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Molecular point-of-care (POC) tests offer high sensitivity, rapid turnaround times, relative ease of use, and the convenience of laboratory-grade testing in the absence of formal laboratory spaces and equipment, making them appealing options for infectious disease diagnosis in resource-limited settings. In this review, we discuss the role and potential of molecular POC tests in resource-limited settings and their associated logistical challenges. We discuss U.S. Food and Drug Administration approval, Clinical Laboratory Improvement Amendments complexity levels, and the REASSURED criteria as a starting point for assessing options currently available inside and outside of the United States. We then present POC tests currently in research and development phases that have potential for commercialization and implementation in limited-resource settings. Finally, we review published studies that have assessed the clinical impact of molecular POC testing in limited- and moderate-resource settings.
Collapse
Affiliation(s)
- Kenneth Gavina
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Clinical Microbiology, Indiana University Health, Indianapolis, IN, USA
| | - Lauren C Franco
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Haseeba Khan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John-Paul Lavik
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Clinical Microbiology, Indiana University Health, Indianapolis, IN, USA
| | - Ryan F Relich
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Clinical Microbiology, Indiana University Health, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Kim HS, Lee H, Kang S, Kim WJ, Shin S. Diagnostic performance of respirators for collection and detection of SARS-CoV-2. Sci Rep 2023; 13:13277. [PMID: 37582958 PMCID: PMC10427661 DOI: 10.1038/s41598-023-39789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Respirators, called as face mask, have been used to protect the wearer from the outside harmful air environment and prevent any virus from being released to neighbors from potentially infected exhaled breath. The antiviral effectiveness of respirators has not only been researched scientifically, but has also become a global issue due to society's obligation to wear respirators. In this paper, we report the results of a study on the collection and detection of viruses contained in exhaled breath using respirators. The inner electrostatic filter was carefully selected for virus collection because it does not come in direct contact with either human skin or the external environment. In the study of a healthy control group, it was confirmed that a large amount of DNA and biomolecules such as exosomes were collected from the respirator exposed to exhalation, and the amount of collection increased in proportion to the wearing time. We conducted experiments using a total of 72 paired samples with nasopharyngeal swabs and respirator samples. Out of these samples, fifty tested positive for SARS-CoV-2 and twenty-two tested negative. The PCR results of the NPS and respirator samples showed a high level of agreement, with a positive percent agreement of ≥ 90% and a negative percent agreement of ≥ 99%. Furthermore, there was a notable level of concordance between RCA-flow tests and PCR when examining the respirator samples. These results suggest that this is a non-invasive, quick and easy method of collecting samples from subjects using a respirator, which can significantly reduce the hassle of waiting at airports or public places and concerns about cross-contamination. Furthermore, we expect miniaturized technologies to integrate PCR detection into respirators in the near future.
Collapse
Affiliation(s)
- Hwang-Soo Kim
- Department of Micro-nano System Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hansol Lee
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Seonghui Kang
- Division of Infectious Diseases, Department of Internal Medicine, Konyang University Hospital, Daejeon, 35365, Republic of Korea
| | - Woo Joo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, 08308, Republic of Korea.
| | - Sehyun Shin
- Department of Micro-nano System Engineering, Korea University, Seoul, 02841, Republic of Korea.
- School of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
10
|
Trinh KTL, Do HDK, Lee NY. Recent Advances in Molecular and Immunological Diagnostic Platform for Virus Detection: A Review. BIOSENSORS 2023; 13:490. [PMID: 37185566 PMCID: PMC10137144 DOI: 10.3390/bios13040490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an ongoing coronavirus disease (COVID-19) outbreak and a rising demand for the development of accurate, timely, and cost-effective diagnostic tests for SARS-CoV-2 as well as other viral infections in general. Currently, traditional virus screening methods such as plate culturing and real-time PCR are considered the gold standard with accurate and sensitive results. However, these methods still require sophisticated equipment, trained personnel, and a long analysis time. Alternatively, with the integration of microfluidic and biosensor technologies, microfluidic-based biosensors offer the ability to perform sample preparation and simultaneous detection of many analyses in one platform. High sensitivity, accuracy, portability, low cost, high throughput, and real-time detection can be achieved using a single platform. This review presents recent advances in microfluidic-based biosensors from many works to demonstrate the advantages of merging the two technologies for sensing viruses. Different platforms for virus detection are classified into two main sections: immunoassays and molecular assays. Moreover, available commercial sensing tests are analyzed.
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
11
|
Tarim EA, Anil Inevi M, Ozkan I, Kecili S, Bilgi E, Baslar MS, Ozcivici E, Oksel Karakus C, Tekin HC. Microfluidic-based technologies for diagnosis, prevention, and treatment of COVID-19: recent advances and future directions. Biomed Microdevices 2023; 25:10. [PMID: 36913137 PMCID: PMC10009869 DOI: 10.1007/s10544-023-00649-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
The COVID-19 pandemic has posed significant challenges to existing healthcare systems around the world. The urgent need for the development of diagnostic and therapeutic strategies for COVID-19 has boomed the demand for new technologies that can improve current healthcare approaches, moving towards more advanced, digitalized, personalized, and patient-oriented systems. Microfluidic-based technologies involve the miniaturization of large-scale devices and laboratory-based procedures, enabling complex chemical and biological operations that are conventionally performed at the macro-scale to be carried out on the microscale or less. The advantages microfluidic systems offer such as rapid, low-cost, accurate, and on-site solutions make these tools extremely useful and effective in the fight against COVID-19. In particular, microfluidic-assisted systems are of great interest in different COVID-19-related domains, varying from direct and indirect detection of COVID-19 infections to drug and vaccine discovery and their targeted delivery. Here, we review recent advances in the use of microfluidic platforms to diagnose, treat or prevent COVID-19. We start by summarizing recent microfluidic-based diagnostic solutions applicable to COVID-19. We then highlight the key roles microfluidics play in developing COVID-19 vaccines and testing how vaccine candidates perform, with a focus on RNA-delivery technologies and nano-carriers. Next, microfluidic-based efforts devoted to assessing the efficacy of potential COVID-19 drugs, either repurposed or new, and their targeted delivery to infected sites are summarized. We conclude by providing future perspectives and research directions that are critical to effectively prevent or respond to future pandemics.
Collapse
Affiliation(s)
- E Alperay Tarim
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Muge Anil Inevi
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Ilayda Ozkan
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Seren Kecili
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Eyup Bilgi
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - M Semih Baslar
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | | | - H Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey.
- METU MEMS Center, Ankara, Turkey.
| |
Collapse
|
12
|
Wang H, Wang X, Lai K, Yan J. Stimulus-Responsive DNA Hydrogel Biosensors for Food Safety Detection. BIOSENSORS 2023; 13:320. [PMID: 36979532 PMCID: PMC10046603 DOI: 10.3390/bios13030320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Food safety has always been a major global challenge to human health and the effective detection of harmful substances in food can reduce the risk to human health. However, the food industry has been plagued by a lack of effective and sensitive safety monitoring methods due to the tension between the cost and effectiveness of monitoring. DNA-based hydrogels combine the advantages of biocompatibility, programmability, the molecular recognition of DNA molecules, and the hydrophilicity of hydrogels, making them a hotspot in the research field of new nanomaterials. The stimulus response property greatly broadens the function and application range of DNA hydrogel. In recent years, DNA hydrogels based on stimulus-responsive mechanisms have been widely applied in the field of biosensing for the detection of a variety of target substances, including various food contaminants. In this review, we describe the recent advances in the preparation of stimuli-responsive DNA hydrogels, highlighting the progress of its application in food safety detection. Finally, we also discuss the challenges and future application of stimulus-responsive DNA hydrogels.
Collapse
|
13
|
Li Q, Zhou X, Wang Q, Liu W, Chen C. Microfluidics for COVID-19: From Current Work to Future Perspective. BIOSENSORS 2023; 13:163. [PMID: 36831930 PMCID: PMC9953302 DOI: 10.3390/bios13020163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/07/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Spread of coronavirus disease 2019 (COVID-19) has significantly impacted the public health and economic sectors. It is urgently necessary to develop rapid, convenient, and cost-effective point-of-care testing (POCT) technologies for the early diagnosis and control of the plague's transmission. Developing POCT methods and related devices is critical for achieving point-of-care diagnosis. With the advantages of miniaturization, high throughput, small sample requirements, and low actual consumption, microfluidics is an essential technology for the development of POCT devices. In this review, according to the different driving forces of the fluid, we introduce the common POCT devices based on microfluidic technology on the market, including paper-based microfluidic, centrifugal microfluidic, optical fluid, and digital microfluidic platforms. Furthermore, various microfluidic-based assays for diagnosing COVID-19 are summarized, including immunoassays, such as ELISA, and molecular assays, such as PCR. Finally, the challenges of and future perspectives on microfluidic device design and development are presented. The ultimate goals of this paper are to provide new insights and directions for the development of microfluidic diagnostics while expecting to contribute to the control of COVID-19.
Collapse
Affiliation(s)
- Qi Li
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410017, China
| | - Xingchen Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410017, China
| | - Qian Wang
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410017, China
| | - Wenfang Liu
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410017, China
| | - Chuanpin Chen
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410017, China
| |
Collapse
|
14
|
Stimulus-responsive hydrogels: A potent tool for biosensing in food safety. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Preethi M, Roy L, Lahkar S, Borse V. Outlook of various diagnostics and nanodiagnostic techniques for COVID-19. BIOSENSORS & BIOELECTRONICS: X 2022; 12:100276. [PMID: 36345412 PMCID: PMC9632232 DOI: 10.1016/j.biosx.2022.100276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 05/06/2023]
Abstract
The sudden outbreak of the coronavirus disease 2019 (COVID-19) pandemic has brought to the fore the existing threat of disease-causing pathogens that affect public health all over the world. It has left the best healthcare systems struggling to contain the spread of disease and its consequences. Under challenging circumstances, several innovative technologies have emerged that facilitated quicker diagnosis and treatment. Nanodiagnostic devices are biosensing platforms developed using nanomaterials such as nanoparticles, nanotubes, nanowires, etc. These devices have the edge over conventional techniques such as reverse transcription-polymerase chain reaction (RT-PCR) because of their ease of use, quicker analysis, possible miniaturization, and scope for use in point-of-care (POC) treatment. This review discusses the techniques currently used for COVID-19 diagnosis, emphasizing nanotechnology-based diagnostic devices. The commercialized nanodiagnostic devices in various research and development stages are also reviewed. The advantages of nanodiagnostic devices over other techniques are discussed, along with their limitations. Additionally, the important implications of the utility of nanodiagnostic devices in COVID-19, their prospects for future development for use in clinical and POC settings, and personalized healthcare are also discussed.
Collapse
Affiliation(s)
- Mosam Preethi
- NanoBioSens Lab, Department of Medical Devices, National Institute of Pharmaceutical Education & Research (NIPER) Hyderabad, Hyderabad, 500037, Telangana, India
| | - Lavanika Roy
- NanoBioSens Lab, Department of Medical Devices, National Institute of Pharmaceutical Education & Research (NIPER) Hyderabad, Hyderabad, 500037, Telangana, India
| | - Sukanya Lahkar
- NanoBioSens Lab, Department of Medical Devices, National Institute of Pharmaceutical Education & Research (NIPER) Hyderabad, Hyderabad, 500037, Telangana, India
| | - Vivek Borse
- NanoBioSens Lab, Department of Medical Devices, National Institute of Pharmaceutical Education & Research (NIPER) Hyderabad, Hyderabad, 500037, Telangana, India
| |
Collapse
|
16
|
Wang Z, Chen R, Yang S, Li S, Gao Z. Design and application of stimuli-responsive DNA hydrogels: A review. Mater Today Bio 2022; 16:100430. [PMID: 36157049 PMCID: PMC9493390 DOI: 10.1016/j.mtbio.2022.100430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
Deoxyribonucleic acid (DNA) hydrogels combine the properties of DNAs and hydrogels, and adding functionalized DNAs is key to the wide application of DNA hydrogels. In stimuli-responsive DNA hydrogels, the DNA transcends its application in genetics and bridges the gap between different fields. Specifically, the DNA acts as both an information carrier and a bridge in constructing DNA hydrogels. The programmability and biocompatibility of DNA hydrogel make it change macroscopically in response to a variety of stimuli. In order to meet the needs of different scenarios, DNA hydrogels were also designed into microcapsules, beads, membranes, microneedle patches, and other forms. In this study, the stimuli were classified into single biological and non-biological stimuli and composite stimuli. Stimuli-responsive DNA hydrogels from the past five years were summarized, including but not limited to their design and application, in particular logic gate pathways and signal amplification mechanisms. Stimuli-responsive DNA hydrogels have been applied to fields such as sensing, nanorobots, information carriers, controlled drug release, and disease treatment. Different potential applications and the developmental pro-spects of stimuli-responsive DNA hydrogels were discussed.
Collapse
Affiliation(s)
- Zhiguang Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shiping Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| |
Collapse
|
17
|
Völlmecke K, Afroz R, Bierbach S, Brenker LJ, Frücht S, Glass A, Giebelhaus R, Hoppe A, Kanemaru K, Lazarek M, Rabbe L, Song L, Velasco Suarez A, Wu S, Serpe M, Kuckling D. Hydrogel-Based Biosensors. Gels 2022; 8:768. [PMID: 36547292 PMCID: PMC9777866 DOI: 10.3390/gels8120768] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
There is an increasing interest in sensing applications for a variety of analytes in aqueous environments, as conventional methods do not work reliably under humid conditions or they require complex equipment with experienced operators. Hydrogel sensors are easy to fabricate, are incredibly sensitive, and have broad dynamic ranges. Experiments on their robustness, reliability, and reusability have indicated the possible long-term applications of these systems in a variety of fields, including disease diagnosis, detection of pharmaceuticals, and in environmental testing. It is possible to produce hydrogels, which, upon sensing a specific analyte, can adsorb it onto their 3D-structure and can therefore be used to remove them from a given environment. High specificity can be obtained by using molecularly imprinted polymers. Typical detection principles involve optical methods including fluorescence and chemiluminescence, and volume changes in colloidal photonic crystals, as well as electrochemical methods. Here, we explore the current research utilizing hydrogel-based sensors in three main areas: (1) biomedical applications, (2) for detecting and quantifying pharmaceuticals of interest, and (3) detecting and quantifying environmental contaminants in aqueous environments.
Collapse
Affiliation(s)
- Katharina Völlmecke
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Rowshon Afroz
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Sascha Bierbach
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Lee Josephine Brenker
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Sebastian Frücht
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Alexandra Glass
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Ryland Giebelhaus
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Axel Hoppe
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Karen Kanemaru
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Michal Lazarek
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Lukas Rabbe
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Longfei Song
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Andrea Velasco Suarez
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Shuang Wu
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Michael Serpe
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Dirk Kuckling
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| |
Collapse
|
18
|
Liang J, Teng P, Hu L, He G, Song Q, Zhang Y, Peng B, Li G, Xiao W, Cao D, Tang Y. Platinum nanoparticles (PtNPs)-based CRISPR/Cas12a platform for detection of nucleic acid and protein in clinical samples. Anal Chim Acta 2022; 1225:340203. [PMID: 36038232 PMCID: PMC9365833 DOI: 10.1016/j.aca.2022.340203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/01/2022]
Abstract
Early rapid screening diagnostic assay is essential for the identification, prevention, and evaluation of many contagious or refractory diseases. The optical density transducer created by platinum nanoparticles (PtNPs) (OD-CRISPR) is reported in the present research as a cheap and easy-to-execute CRISPR/Cas12a-based diagnostic platform. The OD-CRISPR uses PtNPs, with ultra-high peroxidase-mimicking activity, to increase the detection sensitivity, thereby enabling the reduction of detection time and cost. The OD-CRISPR can be utilized to identify nucleic acid or protein biomarkers within an incubation time of 30-40min in clinical specimens. In the case of taking severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) N gene as an instance, when compared to a quantitative reverse transcription-polymerase chain reaction (RT-qPCR), the OD-CRISPR test attains a sensitivity of 79.17% and a specificity of 100%. In terms of detecting prostate-specific antigen (PSA), aptamer-based OD-CRISPR assay achieves the least discoverable concentration of 0.01 ng mL-1. In general, the OD-CRISPR can detect nucleic acid and protein biomarkers, and is a potential strategy for early rapid screening diagnostic tools.
Collapse
Affiliation(s)
- Jiajie Liang
- Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China; Guangdong Biowings Tech Limited, Foshan, 528000, China
| | - Peijun Teng
- Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Liangshan Hu
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Guanbo He
- Guangdong Biowings Tech Limited, Foshan, 528000, China
| | - Qifang Song
- Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ying Zhang
- Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bin Peng
- Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Gan Li
- Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| | - Yong Tang
- Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
19
|
Collection and detection of SARS-CoV-2 in exhaled breath using face mask. PLoS One 2022; 17:e0270765. [PMID: 35980889 PMCID: PMC9387863 DOI: 10.1371/journal.pone.0270765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/08/2022] [Indexed: 01/02/2023] Open
Abstract
Face masks are used to protect the wearer from harmful external air and to prevent transmission of viruses from air exhaled by potentially infected wearers to the surrounding people. In this study, we examined the potential utility of masks for collecting viruses contained in exhaled breath and detected the collected viruses via various molecular tests. Using KF94 masks, the inner electrostatic filter was selected for virus collection, and an RNA extraction protocol was developed for the face mask. Virus detection in worn mask samples was performed using PCR and rolling circle amplification (RCA) tests and four different target genes (N, E, RdRp, and ORF1ab genes). The present study confirmed that the mask sample tests showed positive SARS-CoV-2 results, similar to the PCR tests using nasopharyngeal swab samples. In addition, the quantity of nucleic acid collected in the masks linearly increased with wearing time. These results suggest that samples for SARS-CoV-2 tests can be collected in a noninvasive, quick, and easy method by simply submitting worn masks from subjects, which can significantly reduce the hassle of waiting at airports or public places and concerns about cross-infection. In addition, it is expected that miniaturization technology will integrate PCR assays on face masks in the near future, and mask-based self-diagnosis would play a significant role in resolving the pandemic situation.
Collapse
|
20
|
Pandey SK, Mohanta GC, Kumar V, Gupta K. Diagnostic Tools for Rapid Screening and Detection of SARS-CoV-2 Infection. Vaccines (Basel) 2022; 10:1200. [PMID: 36016088 PMCID: PMC9414050 DOI: 10.3390/vaccines10081200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/11/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has severely impacted human health and the health management system globally. The ongoing pandemic has required the development of more effective diagnostic strategies for restricting deadly disease. For appropriate disease management, accurate and rapid screening and isolation of the affected population is an efficient means of containment and the decimation of the disease. Therefore, considerable efforts are being directed toward the development of rapid and robust diagnostic techniques for respiratory infections, including SARS-CoV-2. In this article, we have summarized the origin, transmission, and various diagnostic techniques utilized for the detection of the SARS-CoV-2 virus. These higher-end techniques can also detect the virus copy number in asymptomatic samples. Furthermore, emerging rapid, cost-effective, and point-of-care diagnostic devices capable of large-scale population screening for COVID-19 are discussed. Finally, some breakthrough developments based on spectroscopic diagnosis that could revolutionize the field of rapid diagnosis are discussed.
Collapse
Affiliation(s)
- Satish Kumar Pandey
- Department of Biotechnology, School of Life Sciences, Mizoram University (Central University), Aizawl 796004, India
| | - Girish C. Mohanta
- Materials Science and Sensor Applications, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India;
| | - Vinod Kumar
- Department of Dermatology, Venerology and Leprology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India;
| | - Kuldeep Gupta
- Russel H. Morgan, Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
21
|
Ngashangva L, Hemdan BA, El-Liethy MA, Bachu V, Minteer SD, Goswami P. Emerging Bioanalytical Devices and Platforms for Rapid Detection of Pathogens in Environmental Samples. MICROMACHINES 2022; 13:1083. [PMID: 35888900 PMCID: PMC9321031 DOI: 10.3390/mi13071083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023]
Abstract
The development of robust bioanalytical devices and biosensors for infectious pathogens is progressing well with the advent of new materials, concepts, and technology. The progress is also stepping towards developing high throughput screening technologies that can quickly identify, differentiate, and determine the concentration of harmful pathogens, facilitating the decision-making process for their elimination and therapeutic interventions in large-scale operations. Recently, much effort has been focused on upgrading these analytical devices to an intelligent technological platform by integrating them with modern communication systems, such as the internet of things (IoT) and machine learning (ML), to expand their application horizon. This review outlines the recent development and applications of bioanalytical devices and biosensors to detect pathogenic microbes in environmental samples. First, the nature of the recent outbreaks of pathogenic microbes such as foodborne, waterborne, and airborne pathogens and microbial toxins are discussed to understand the severity of the problems. Next, the discussion focuses on the detection systems chronologically, starting with the conventional methods, advanced techniques, and emerging technologies, such as biosensors and other portable devices and detection platforms for pathogens. Finally, the progress on multiplex assays, wearable devices, and integration of smartphone technologies to facilitate pathogen detection systems for wider applications are highlighted.
Collapse
Affiliation(s)
- Lightson Ngashangva
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvanthapuram, Kerala 695014, India;
| | - Bahaa A. Hemdan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
- Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Buhouth Street, Cairo P.O. Box 12622, Egypt;
| | - Mohamed Azab El-Liethy
- Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Buhouth Street, Cairo P.O. Box 12622, Egypt;
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, UT 84112, USA
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
| |
Collapse
|
22
|
Asghar R, Rasheed M, ul Hassan J, Rafique M, Khan M, Deng Y. Advancements in Testing Strategies for COVID-19. BIOSENSORS 2022; 12:410. [PMID: 35735558 PMCID: PMC9220779 DOI: 10.3390/bios12060410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
The SARS-CoV-2 coronavirus, also known as the disease-causing agent for COVID-19, is a virulent pathogen that may infect people and certain animals. The global spread of COVID-19 and its emerging variation necessitates the development of rapid, reliable, simple, and low-cost diagnostic tools. Many methodologies and devices have been developed for the highly sensitive, selective, cost-effective, and rapid diagnosis of COVID-19. This review organizes the diagnosis platforms into four groups: imaging, molecular-based detection, serological testing, and biosensors. Each platform's principle, advancement, utilization, and challenges for monitoring SARS-CoV-2 are discussed in detail. In addition, an overview of the impact of variants on detection, commercially available kits, and readout signal analysis has been presented. This review will expand our understanding of developing advanced diagnostic approaches to evolve into susceptible, precise, and reproducible technologies to combat any future outbreak.
Collapse
Affiliation(s)
- Rabia Asghar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China;
| | - Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China;
| | - Jalees ul Hassan
- Department of Wildlife and Ecology, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences-UVAS, Lahore 54000, Pakistan;
| | - Mohsin Rafique
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
| | - Mashooq Khan
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China;
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China;
| |
Collapse
|
23
|
Jamiruddin MR, Meghla BA, Islam DZ, Tisha TA, Khandker SS, Khondoker MU, Haq MA, Adnan N, Haque M. Microfluidics Technology in SARS-CoV-2 Diagnosis and Beyond: A Systematic Review. Life (Basel) 2022; 12:649. [PMID: 35629317 PMCID: PMC9146058 DOI: 10.3390/life12050649] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
With the progression of the COVID-19 pandemic, new technologies are being implemented for more rapid, scalable, and sensitive diagnostics. The implementation of microfluidic techniques and their amalgamation with different detection techniques has led to innovative diagnostics kits to detect SARS-CoV-2 antibodies, antigens, and nucleic acids. In this review, we explore the different microfluidic-based diagnostics kits and how their amalgamation with the various detection techniques has spearheaded their availability throughout the world. Three other online databases, PubMed, ScienceDirect, and Google Scholar, were referred for articles. One thousand one hundred sixty-four articles were determined with the search algorithm of microfluidics followed by diagnostics and SARS-CoV-2. We found that most of the materials used to produce microfluidics devices were the polymer materials such as PDMS, PMMA, and others. Centrifugal force is the most commonly used fluid manipulation technique, followed by electrochemical pumping, capillary action, and isotachophoresis. The implementation of the detection technique varied. In the case of antibody detection, spectrometer-based detection was most common, followed by fluorescence-based as well as colorimetry-based. In contrast, antigen detection implemented electrochemical-based detection followed by fluorescence-based detection, and spectrometer-based detection were most common. Finally, nucleic acid detection exclusively implements fluorescence-based detection with a few colorimetry-based detections. It has been further observed that the sensitivity and specificity of most devices varied with implementing the detection-based technique alongside the fluid manipulation technique. Most microfluidics devices are simple and incorporate the detection-based system within the device. This simplifies the deployment of such devices in a wide range of environments. They can play a significant role in increasing the rate of infection detection and facilitating better health services.
Collapse
Affiliation(s)
| | - Bushra Ayat Meghla
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (B.A.M.); (D.Z.I.); (T.A.T.)
| | - Dewan Zubaer Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (B.A.M.); (D.Z.I.); (T.A.T.)
| | - Taslima Akter Tisha
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (B.A.M.); (D.Z.I.); (T.A.T.)
| | - Shahad Saif Khandker
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.A.H.)
| | - Mohib Ullah Khondoker
- Department of Community Medicine, Gonoshasthaya Samaj Vittik Medical College, Savar, Dhaka 1344, Bangladesh;
| | - Md. Ahsanul Haq
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.A.H.)
| | - Nihad Adnan
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (B.A.M.); (D.Z.I.); (T.A.T.)
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sugai Besi, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
24
|
Song W, Zhang T, Lin H, Yang Y, Zhao G, Huang X. Conventional and Microfluidic Methods for the Detection of Nucleic Acid of SARS-CoV-2. MICROMACHINES 2022; 13:636. [PMID: 35457940 PMCID: PMC9031662 DOI: 10.3390/mi13040636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/23/2022]
Abstract
Nucleic acid testing (NAT) played a crucial role in containing the spread of SARS-CoV-2 during the epidemic. The gold standard technique, the quantitative real-time polymerase chain reaction (qRT-PCR) technique, is currently used by the government and medical boards to detect SARS-CoV-2. Due to the limitations of this technology, it is not capable of meeting the needs of large-scale rapid detection. To solve this problem, many new techniques for detecting nucleic acids of SARS-CoV-2 have been reported. Therefore, a review that systematically and comprehensively introduces and compares various detection technologies is needed. In this paper, we not only review the traditional NAT but also provide an overview of microfluidic-based NAT technologies and summarize and discuss the characteristics and development prospects of these techniques.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (W.S.); (T.Z.); (H.L.); (Y.Y.); (G.Z.)
| |
Collapse
|
25
|
Budharaju H, Zennifer A, Sethuraman S, Paul A, Sundaramurthi D. Designer DNA biomolecules as a defined biomaterial for 3D bioprinting applications. MATERIALS HORIZONS 2022; 9:1141-1166. [PMID: 35006214 DOI: 10.1039/d1mh01632f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
DNA has excellent features such as the presence of functional and targeted molecular recognition motifs, tailorability, multifunctionality, high-precision molecular self-assembly, hydrophilicity, and outstanding biocompatibility. Due to these remarkable features, DNA has emerged as a leading next-generation biomaterial of choice to make hydrogels by self-assembly. In recent times, novel routes for the chemical synthesis of DNA, advances in tailorable designs, and affordable production ways have made DNA as a building block material for various applications. These advanced features have made researchers continuously explore the interesting properties of pure and hybrid DNA for 3D bioprinting and other biomedical applications. This review article highlights the topical advancements in the use of DNA as an ideal bioink for the bioprinting of cell-laden three-dimensional tissue constructs for regenerative medicine applications. Various bioprinting techniques and emerging design approaches such as self-assembly, nucleotide sequence, enzymes, and production cost to use DNA as a bioink for bioprinting applications are described. In addition, various types and properties of DNA hydrogels such as stimuli responsiveness and mechanical properties are discussed. Further, recent progress in the applications of DNA in 3D bioprinting are emphasized. Finally, the current challenges and future perspectives of DNA hydrogels in 3D bioprinting and other biomedical applications are discussed.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
26
|
Vindeirinho JM, Pinho E, Azevedo NF, Almeida C. SARS-CoV-2 Diagnostics Based on Nucleic Acids Amplification: From Fundamental Concepts to Applications and Beyond. Front Cell Infect Microbiol 2022; 12:799678. [PMID: 35402302 PMCID: PMC8984495 DOI: 10.3389/fcimb.2022.799678] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 pandemic ignited the development of countless molecular methods for the diagnosis of SARS-CoV-2 based either on nucleic acid, or protein analysis, with the first establishing as the most used for routine diagnosis. The methods trusted for day to day analysis of nucleic acids rely on amplification, in order to enable specific SARS-CoV-2 RNA detection. This review aims to compile the state-of-the-art in the field of nucleic acid amplification tests (NAATs) used for SARS-CoV-2 detection, either at the clinic level, or at the Point-Of-Care (POC), thus focusing on isothermal and non-isothermal amplification-based diagnostics, while looking carefully at the concerning virology aspects, steps and instruments a test can involve. Following a theme contextualization in introduction, topics about fundamental knowledge on underlying virology aspects, collection and processing of clinical samples pave the way for a detailed assessment of the amplification and detection technologies. In order to address such themes, nucleic acid amplification methods, the different types of molecular reactions used for DNA detection, as well as the instruments requested for executing such routes of analysis are discussed in the subsequent sections. The benchmark of paradigmatic commercial tests further contributes toward discussion, building on technical aspects addressed in the previous sections and other additional information supplied in that part. The last lines are reserved for looking ahead to the future of NAATs and its importance in tackling this pandemic and other identical upcoming challenges.
Collapse
Affiliation(s)
- João M. Vindeirinho
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Eva Pinho
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno F. Azevedo
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Carina Almeida
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| |
Collapse
|
27
|
Wang X, Hong XZ, Li YW, Li Y, Wang J, Chen P, Liu BF. Microfluidics-based strategies for molecular diagnostics of infectious diseases. Mil Med Res 2022; 9:11. [PMID: 35300739 PMCID: PMC8930194 DOI: 10.1186/s40779-022-00374-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/10/2022] [Indexed: 02/08/2023] Open
Abstract
Traditional diagnostic strategies for infectious disease detection require benchtop instruments that are inappropriate for point-of-care testing (POCT). Emerging microfluidics, a highly miniaturized, automatic, and integrated technology, are a potential substitute for traditional methods in performing rapid, low-cost, accurate, and on-site diagnoses. Molecular diagnostics are widely used in microfluidic devices as the most effective approaches for pathogen detection. This review summarizes the latest advances in microfluidics-based molecular diagnostics for infectious diseases from academic perspectives and industrial outlooks. First, we introduce the typical on-chip nucleic acid processes, including sample preprocessing, amplification, and signal read-out. Then, four categories of microfluidic platforms are compared with respect to features, merits, and demerits. We further discuss application of the digital assay in absolute nucleic acid quantification. Both the classic and recent microfluidics-based commercial molecular diagnostic devices are summarized as proof of the current market status. Finally, we propose future directions for microfluidics-based infectious disease diagnosis.
Collapse
Affiliation(s)
- Xin Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Xian-Zhe Hong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yi-Wei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071 China
| | - Jie Wang
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, School of Medicine, Stanford University, Palo Alto, CA 94304 USA
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| |
Collapse
|
28
|
Flores-Contreras EA, González-González RB, Rodríguez-Sánchez IP, Yee-de León JF, Iqbal HMN, González-González E. Microfluidics-Based Biosensing Platforms: Emerging Frontiers in Point-of-Care Testing SARS-CoV-2 and Seroprevalence. BIOSENSORS 2022; 12:179. [PMID: 35323449 PMCID: PMC8946853 DOI: 10.3390/bios12030179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the ongoing COVID-19 (coronavirus disease-2019) outbreak and has unprecedentedly impacted the public health and economic sector. The pandemic has forced researchers to focus on the accurate and early detection of SARS-CoV-2, developing novel diagnostic tests. Among these, microfluidic-based tests stand out for their multiple benefits, such as their portability, low cost, and minimal reagents used. This review discusses the different microfluidic platforms applied in detecting SARS-CoV-2 and seroprevalence, classified into three sections according to the molecules to be detected, i.e., (1) nucleic acid, (2) antigens, and (3) anti-SARS-CoV-2 antibodies. Moreover, commercially available alternatives based on microfluidic platforms are described. Timely and accurate results allow healthcare professionals to perform efficient treatments and make appropriate decisions for infection control; therefore, novel developments that integrate microfluidic technology may provide solutions in the form of massive diagnostics to control the spread of infectious diseases.
Collapse
Affiliation(s)
- Elda A. Flores-Contreras
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo León, Mexico; (E.A.F.-C.); (R.B.G.-G.)
| | | | - Iram P. Rodríguez-Sánchez
- Laboratorio de Fisiología Molecular y Estructural, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico;
| | | | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo León, Mexico; (E.A.F.-C.); (R.B.G.-G.)
| | - Everardo González-González
- Laboratorio de Fisiología Molecular y Estructural, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico;
| |
Collapse
|
29
|
Abstract
Printing technology promises a viable solution for the low-cost, rapid, flexible, and mass fabrication of biosensors. Among the vast number of printing techniques, screen printing and inkjet printing have been widely adopted for the fabrication of biosensors. Screen printing provides ease of operation and rapid processing; however, it is bound by the effects of viscous inks, high material waste, and the requirement for masks, to name a few. Inkjet printing, on the other hand, is well suited for mass fabrication that takes advantage of computer-aided design software for pattern modifications. Furthermore, being drop-on-demand, it prevents precious material waste and offers high-resolution patterning. To exploit the features of inkjet printing technology, scientists have been keen to use it for the development of biosensors since 1988. A vast number of fully and partially inkjet-printed biosensors have been developed ever since. This study presents a short introduction on the printing technology used for biosensor fabrication in general, and a brief review of the recent reports related to virus, enzymatic, and non-enzymatic biosensor fabrication, via inkjet printing technology in particular.
Collapse
|
30
|
Bae SW, Kim J, Kwon S. Recent Advances in Polymer Additive Engineering for Diagnostic and Therapeutic Hydrogels. Int J Mol Sci 2022; 23:2955. [PMID: 35328375 PMCID: PMC8955662 DOI: 10.3390/ijms23062955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are hydrophilic polymer materials that provide a wide range of physicochemical properties as well as are highly biocompatible. Biomedical researchers are adapting these materials for the ever-increasing range of design options and potential applications in diagnostics and therapeutics. Along with innovative hydrogel polymer backbone developments, designing polymer additives for these backbones has been a major contributor to the field, especially for expanding the functionality spectrum of hydrogels. For the past decade, researchers invented numerous hydrogel functionalities that emerge from the rational incorporation of additives such as nucleic acids, proteins, cells, and inorganic nanomaterials. Cases of successful commercialization of such functional hydrogels are being reported, thus driving more translational research with hydrogels. Among the many hydrogels, here we reviewed recently reported functional hydrogels incorporated with polymer additives. We focused on those that have potential in translational medicine applications which range from diagnostic sensors as well as assay and drug screening to therapeutic actuators as well as drug delivery and implant. We discussed the growing trend of facile point-of-care diagnostics and integrated smart platforms. Additionally, special emphasis was given to emerging bioinformatics functionalities stemming from the information technology field, such as DNA data storage and anti-counterfeiting strategies. We anticipate that these translational purpose-driven polymer additive research studies will continue to advance the field of functional hydrogel engineering.
Collapse
Affiliation(s)
- Sang-Wook Bae
- Bio-MAX/N-Bio, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 08826, Korea
| | - Jiyun Kim
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
- Center for Multidimensional Programmable Matter, Ulsan 44919, Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
31
|
Haghayegh F, Salahandish R, Hassani M, Sanati-Nezhad A. Highly Stable Buffer-Based Zinc Oxide/Reduced Graphene Oxide Nanosurface Chemistry for Rapid Immunosensing of SARS-CoV-2 Antigens. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10844-10855. [PMID: 35172574 DOI: 10.1021/acsami.1c24475] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The widespread and long-lasting effect of the COVID-19 pandemic has called attention to the significance of technological advances in the rapid diagnosis of SARS-CoV-2 virus. This study reports the use of a highly stable buffer-based zinc oxide/reduced graphene oxide (bbZnO/rGO) nanocomposite coated on carbon screen-printed electrodes for electrochemical immuno-biosensing of SARS-CoV-2 nuelocapsid (N-) protein antigens in spiked and clinical samples. The incorporation of a salt-based (ionic) matrix for uniform dispersion of the nanomixture eliminates multistep nanomaterial synthesis on the surface of the electrode and enables a stable single-step sensor nanocoating. The immuno-biosensor provides a limit of detection of 21 fg/mL over a linear range of 1-10 000 pg/mL and exhibits a sensitivity of 32.07 ohms·mL/pg·mm2 for detection of N-protein in spiked samples. The N-protein biosensor is successful in discriminating positive and negative clinical samples within 15 min, demonstrating its proof of concept used as a COVID-19 rapid antigen test.
Collapse
Affiliation(s)
- Fatemeh Haghayegh
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Razieh Salahandish
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- Center for BioEngineering Research and Education, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Mohsen Hassani
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- Center for BioEngineering Research and Education, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
32
|
Lu D, Chen B. Coordinated motion of molecular motors on DNA chains with branch topology. ACTA MECHANICA SINICA = LI XUE XUE BAO 2022; 38:621225. [PMID: 35601132 PMCID: PMC9109741 DOI: 10.1007/s10409-021-09045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/25/2021] [Indexed: 06/15/2023]
Abstract
To understand the macroscopic mechanical behaviors of responsive DNA hydrogels integrated with DNA motors, we constructed a state map for the translocation process of a single FtsKC on a single DNA chain at the molecular level and then investigated the movement of single or multiple FtsKC motors on DNA chains with varied branch topologies. Our studies indicate that multiple FtsKC motors can have coordinated motion, which is mainly due to the force-responsive behavior of individual FtsKC motors. We further suggest the potential application of motors of FtsKC, together with DNA chains of specific branch topology, to serve as strain sensors in hydrogels.
Collapse
Affiliation(s)
- Di Lu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310058 China
| | - Bin Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Hangzhou, 310027 China
| |
Collapse
|
33
|
A review on corona virus disease 2019 (COVID-19): current progress, clinical features and bioanalytical diagnostic methods. Mikrochim Acta 2022; 189:103. [PMID: 35157153 PMCID: PMC8852957 DOI: 10.1007/s00604-022-05167-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/11/2022] [Indexed: 01/08/2023]
Abstract
A new epidemic of acute respiratory viral pneumonia was discovered in central China at the end of 2019. The disease was given the name coronavirus disease 2019 (COVID-19), and the virus that caused this disease was known as severe acute respiratory syndrome coronavirus (SARS-CoV-2). So far, diagnostic methods have been focused on (a) human antibody detection, (b) viral antigen detection and (c) viral gene detection, the latter using RT-PCR being the most accurate approach. In this paper, we present a summary of the COVID-19 pandemic, clinical features and epidemiology and pathogenesis. Also, we focus on the recent advances in bioanalytical diagnostic methods based on various techniques for SARS-CoV-2 sensing that have recently been published (2020–2021). Furthermore, we present the mechanisms, advantages and disadvantages of the most common biosensors for COVID-19 detection, which include optical, electrochemical and piezoelectric biosensors as well as wearable and smart nanobiosensors, immunosensors, aptasensors and genosensors.
Collapse
|
34
|
Hou Y, Han R, Sun Y, Luo C, Wang X. Chemiluminescence sensing of adenosine using DNA cross-linked hydrogel-capped magnetic mesoporous silica nanoparticles. Anal Chim Acta 2022; 1195:339386. [DOI: 10.1016/j.aca.2021.339386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
|
35
|
Yilmaz-Sercinoglu Z, Kuru Cİ, Ulucan-Karnak F. Polymeric-based interface for the development of COVID-19 biosensor. SENSING TOOLS AND TECHNIQUES FOR COVID-19 2022:57-82. [DOI: 10.1016/b978-0-323-90280-9.00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
36
|
Shanmugam ST, Trashin S, De Wael K. Singlet oxygen-based photoelectrochemical detection of DNA. Biosens Bioelectron 2022; 195:113652. [PMID: 34583105 DOI: 10.1016/j.bios.2021.113652] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023]
Abstract
The current work, designed for the photoelectrochemical detection of DNA, evaluates light-responsive DNA probes carrying molecular photosensitizers generating singlet oxygen (1O2). We take advantage of their chromophore's ability to produce 1O2 upon photoexcitation and subsequent photocurrent response. Type I, fluorescent and type II photosensitizers were studied using diode lasers at 406 nm blue, 532 nm green and 659 nm red lasers in the presensce and absence of a redox reporter, hydroquinone (HQ). Only type II photosensitizers (producing 1O2) resulted in a noticeable photocurrent in 1-4 nA range upon illumination, in particular, dissolved DNA probes labeled with chlorin e6 and erythrosine were found to give a well-detectable photocurrent response in the presence of HQ. Whereas, Type I photosensitizers and fluorescent chromophores generate negligible photocurrents (<0.15 nA). The analytical performance of the sensing system was evaluated using a magnetic beads-based DNA assay on disposable electrode platforms, with a focus to enhance the sensitivity and robustness of the technique in detecting complementary DNA targets. Amplified photocurrent responses in the range of 70-100 nA were obtained and detection limits of 17 pM and 10 pM were achieved using magnetic beads-captured chlorin e6 and erythrosine labeled DNA probes respectively. The presented novel photoelectrochemical detection can further be optimized and employed in applications for which enzymatic amplification such as polymerase chain reaction (PCR) is not applicable owing to their limitations and as an effective alternative to colorimetric detection when rapid detection of specific nucleic acid targets is required.
Collapse
Affiliation(s)
- Saranya Thiruvottriyur Shanmugam
- A-Sense Lab, Department of Bioengineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Stanislav Trashin
- A-Sense Lab, Department of Bioengineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Karolien De Wael
- A-Sense Lab, Department of Bioengineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
37
|
Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 2021; 6:426. [PMID: 34916490 PMCID: PMC8674418 DOI: 10.1038/s41392-021-00830-x] [Citation(s) in RCA: 439] [Impact Index Per Article: 109.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
Hydrogel is a type of versatile platform with various biomedical applications after rational structure and functional design that leverages on material engineering to modulate its physicochemical properties (e.g., stiffness, pore size, viscoelasticity, microarchitecture, degradability, ligand presentation, stimulus-responsive properties, etc.) and influence cell signaling cascades and fate. In the past few decades, a plethora of pioneering studies have been implemented to explore the cell-hydrogel matrix interactions and figure out the underlying mechanisms, paving the way to the lab-to-clinic translation of hydrogel-based therapies. In this review, we first introduced the physicochemical properties of hydrogels and their fabrication approaches concisely. Subsequently, the comprehensive description and deep discussion were elucidated, wherein the influences of different hydrogels properties on cell behaviors and cellular signaling events were highlighted. These behaviors or events included integrin clustering, focal adhesion (FA) complex accumulation and activation, cytoskeleton rearrangement, protein cyto-nuclei shuttling and activation (e.g., Yes-associated protein (YAP), catenin, etc.), cellular compartment reorganization, gene expression, and further cell biology modulation (e.g., spreading, migration, proliferation, lineage commitment, etc.). Based on them, current in vitro and in vivo hydrogel applications that mainly covered diseases models, various cell delivery protocols for tissue regeneration and disease therapy, smart drug carrier, bioimaging, biosensor, and conductive wearable/implantable biodevices, etc. were further summarized and discussed. More significantly, the clinical translation potential and trials of hydrogels were presented, accompanied with which the remaining challenges and future perspectives in this field were emphasized. Collectively, the comprehensive and deep insights in this review will shed light on the design principles of new biomedical hydrogels to understand and modulate cellular processes, which are available for providing significant indications for future hydrogel design and serving for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Huan Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lixia Duan
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Jun Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China.
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China.
| |
Collapse
|
38
|
Soares RRG, Madaboosi N, Nilsson M. Rolling Circle Amplification in Integrated Microsystems: An Uncut Gem toward Massively Multiplexed Pathogen Diagnostics and Genotyping. Acc Chem Res 2021; 54:3979-3990. [PMID: 34637281 PMCID: PMC8567418 DOI: 10.1021/acs.accounts.1c00438] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of robust methods allowing the precise detection of specific nucleic acid sequences is of major societal relevance, paving the way for significant advances in biotechnology and biomedical engineering. These range from a better understanding of human disease at a molecular level, allowing the discovery and development of novel biopharmaceuticals and vaccines, to the improvement of biotechnological processes providing improved food quality and safety, efficient green fuels, and smart textiles. Among these applications, the significance of pathogen diagnostics as the main focus of this Account has become particularly clear during the recent SARS-CoV-2 pandemic. In this context, while RT-PCR is the gold standard method for unambiguous detection of genetic material from pathogens, other isothermal amplification alternatives circumventing rapid heating-cooling cycles up to ∼95 °C are appealing to facilitate the translation of the assay into point-of-care (PoC) analytical platforms. Furthermore, the possibility of routinely multiplexing the detection of tens to hundreds of target sequences with single base pair specificity, currently not met by state-of-the-art methods available in clinical laboratories, would be instrumental along the path to tackle emergent viral variants and antimicrobial resistance genes. Here, we advocate that padlock probes (PLPs), first reported by Nilsson et al. in 1994, coupled with rolling circle amplification (RCA), termed here as PLP-RCA, is an underexploited technology in current arena of isothermal nucleic acid amplification tests (NAATs) providing an unprecedented degree of multiplexing, specificity, versatility, and amenability to integration in miniaturized PoC platforms. Furthermore, the intrinsically digital amplification of PLP-RCA retains spatial information and opens new avenues in the exploration of pathogenesis with spatial multiomics analysis of infected cells and tissue.The Account starts by introducing PLP-RCA in a nutshell focusing individually on the three main assay steps, namely, (1) PLP design and ligation mechanism, (2) RCA after probe ligation, and (3) detection of the RCA products. Each subject is touched upon succinctly but with sufficient detail for the reader to appreciate some assay intricacies and degree of versatility depending on the analytical challenge at hand. After familiarizing the reader with the method, we discuss specific examples of research in our group and others using PLP-RCA for viral, bacterial, and fungal diagnostics in a variety of clinical contexts, including the genotyping of antibiotic resistance genes and viral subtyping. Then, we dissect key developments in the miniaturization and integration of PLP-RCA to minimize user input, maximize analysis throughput, and expedite the time to results, ultimately aiming at PoC applications. These developments include molecular enrichment for maximum sensitivity, spatial arrays to maximize analytical throughput, automation of liquid handling to streamline the analytical workflow in miniaturized devices, and seamless integration of signal transduction to translate RCA product titers (and ideally spatial information) into a readable output. Finally, we position PLP-RCA in the current landscape of NAATs and furnish a systematic Strengths, Weaknesses, Opportunities and Threats analysis to shine light upon unpolished edges to uncover the gem with potential for ubiquitous, precise, and unbiased pathogen diagnostics.
Collapse
Affiliation(s)
- Ruben R. G. Soares
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 17165 Solna, Sweden
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden
| | - Narayanan Madaboosi
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 17165 Solna, Sweden
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India
| | - Mats Nilsson
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 17165 Solna, Sweden
| |
Collapse
|
39
|
Escobar A, Chiu P, Qu J, Zhang Y, Xu CQ. Integrated Microfluidic-Based Platforms for On-Site Detection and Quantification of Infectious Pathogens: Towards On-Site Medical Translation of SARS-CoV-2 Diagnostic Platforms. MICROMACHINES 2021; 12:1079. [PMID: 34577722 PMCID: PMC8470930 DOI: 10.3390/mi12091079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022]
Abstract
The rapid detection and quantification of infectious pathogens is an essential component to the control of potentially lethal outbreaks among human populations worldwide. Several of these highly infectious pathogens, such as Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been cemented in human history as causing epidemics or pandemics due to their lethality and contagiousness. SARS-CoV-2 is an example of these highly infectious pathogens that have recently become one of the leading causes of globally reported deaths, creating one of the worst economic downturns and health crises in the last century. As a result, the necessity for highly accurate and increasingly rapid on-site diagnostic platforms for highly infectious pathogens, such as SARS-CoV-2, has grown dramatically over the last two years. Current conventional non-microfluidic diagnostic techniques have limitations in their effectiveness as on-site devices due to their large turnaround times, operational costs and the need for laboratory equipment. In this review, we first present criteria, both novel and previously determined, as a foundation for the development of effective and viable on-site microfluidic diagnostic platforms for several notable pathogens, including SARS-CoV-2. This list of criteria includes standards that were set out by the WHO, as well as our own "seven pillars" for effective microfluidic integration. We then evaluate the use of microfluidic integration to improve upon currently, and previously, existing platforms for the detection of infectious pathogens. Finally, we discuss a stage-wise means to translate our findings into a fundamental framework towards the development of more effective on-site SARS-CoV-2 microfluidic-integrated platforms that may facilitate future pandemic diagnostic and research endeavors. Through microfluidic integration, many limitations in currently existing infectious pathogen diagnostic platforms can be eliminated or improved upon.
Collapse
Affiliation(s)
- Andres Escobar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.E.); (J.Q.); (Y.Z.)
| | - Phyllis Chiu
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
| | - Jianxi Qu
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.E.); (J.Q.); (Y.Z.)
| | - Yushan Zhang
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.E.); (J.Q.); (Y.Z.)
| | - Chang-qing Xu
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.E.); (J.Q.); (Y.Z.)
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
| |
Collapse
|
40
|
Singh B, Datta B, Ashish A, Dutta G. A comprehensive review on current COVID-19 detection methods: From lab care to point of care diagnosis. SENSORS INTERNATIONAL 2021; 2:100119. [PMID: 34766062 PMCID: PMC8302821 DOI: 10.1016/j.sintl.2021.100119] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022] Open
Abstract
Without a doubt, the current global pandemic affects all walks of our life. It affected almost every age group all over the world with a disease named COVID-19, declared as a global pandemic by WHO in early 2020. Due to the high transmission and moderate mortality rate of this virus, it is also regarded as the panic-zone virus. This potentially deadly virus has pointed up the significance of COVID-19 research. Due to the rapid transmission of COVID-19, early detection is very crucial. Presently, there are different conventional techniques are available for coronavirus detection like CT-scan, PCR, Sequencing, CRISPR, ELISA, LFA, LAMP. The urgent need for rapid, accurate, and cost-effective detection and the requirement to cut off shortcomings of traditional detection methods, make scientists realize to advance new technologies. Biosensors are one of the reliable platforms for accurate, early diagnosis. In this article, we have pointed recent diagnosis approaches for COVID-19. The review includes basic virology of SARS-CoV-2 mainly clinical and pathological features. We have also briefly discussed different types of biosensors, their working principles, and current advancement for COVID-19 detection and prevention.
Collapse
Affiliation(s)
- Bishal Singh
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Brateen Datta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Amlan Ashish
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Gorachand Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
41
|
Fu X, Chen T, Song Y, Feng C, Chen H, Zhang Q, Chen G, Zhu X. mRNA Delivery by a pH-Responsive DNA Nano-Hydrogel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101224. [PMID: 34145748 DOI: 10.1002/smll.202101224] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The delivery of mRNA to manipulate protein expression has attracted widespread attention, since that mRNA overcomes the problem of infection and mutation risks in transgenes and can work as drugs for the treatment of diseases. Although there are currently some vehicles that deliver mRNA into cells, they have not yet reached a good balance in terms of expression efficiency and biocompatibility. Here, a DNA nano-hydrogel system for mRNA delivery is developed. The nano-hydrogel is all composed of DNA except the target mRNA, so it has superior biocompatibility compared with those chemical vehicles. In parallel, the nano-hydrogel can be compacted into a nanosphere under the crosslinking by well-designed "X"-shaped DNA scaffolds and DNA linkers, facilitating the delivery into cells through endocytosis. In addition, smart intracellular release of the mRNA is achieved by incorporating a pH-responsive i-motif structure into the nano-hydrogel. Thus, taking the efficient delivery and release together, mRNA can be translated into the corresponding protein with a high efficiency, which is comparable to that of the commercial liposome but with a much better biocompatibility. Due to the excellent biocompatibility and efficiency, this nano-hydrogel system is expected to become a competitive alternative for delivering functional mRNA in vivo.
Collapse
Affiliation(s)
- Xin Fu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Tianshu Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yuchen Song
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Chang Feng
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Huinan Chen
- College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Qianqian Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiaoli Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
42
|
Yoo HM, Kim IH, Kim S. Nucleic Acid Testing of SARS-CoV-2. Int J Mol Sci 2021; 22:6150. [PMID: 34200331 PMCID: PMC8201071 DOI: 10.3390/ijms22116150] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) has caused a large global outbreak. It is accordingly important to develop accurate and rapid diagnostic methods. The polymerase chain reaction (PCR)-based method including reverse transcription-polymerase chain reaction (RT-PCR) is the most widely used assay for the detection of SARS-CoV-2 RNA. Along with the RT-PCR method, digital PCR has emerged as a powerful tool to quantify nucleic acid of the virus with high accuracy and sensitivity. Non-PCR based techniques such as reverse transcription loop-mediated isothermal amplification (RT-LAMP) and reverse transcription recombinase polymerase amplification (RT-RPA) are considered to be rapid and simple nucleic acid detection methods and were reviewed in this paper. Non-conventional molecular diagnostic methods including next-generation sequencing (NGS), CRISPR-based assays and nanotechnology are improving the accuracy and sensitivity of COVID-19 diagnosis. In this review, we also focus on standardization of SARS-CoV-2 nucleic acid testing and the activity of the National Metrology Institutes (NMIs) and highlight resources such as reference materials (RM) that provide the values of specified properties. Finally, we summarize the useful resources for convenient COVID-19 molecular diagnostics.
Collapse
Affiliation(s)
- Hee Min Yoo
- Microbiological Analysis Team, Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea; (H.M.Y.); (I.-H.K.)
- Department of Bio-Analytical Science, University of Science & Technology (UST), Daejeon 34113, Korea
| | - Il-Hwan Kim
- Microbiological Analysis Team, Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea; (H.M.Y.); (I.-H.K.)
| | - Seil Kim
- Microbiological Analysis Team, Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea; (H.M.Y.); (I.-H.K.)
- Department of Bio-Analytical Science, University of Science & Technology (UST), Daejeon 34113, Korea
- Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| |
Collapse
|
43
|
Jian X, Feng X, Luo Y, Li F, Tan J, Yin Y, Liu Y. Development, Preparation, and Biomedical Applications of DNA-Based Hydrogels. Front Bioeng Biotechnol 2021; 9:661409. [PMID: 34150729 PMCID: PMC8206814 DOI: 10.3389/fbioe.2021.661409] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Hydrogels have outstanding research and application prospects in the biomedical field. Among them, the design and preparation of biomedical hydrogels with deoxyribonucleic acid (DNA) as building blocks have attracted increasing research interest. DNA-based hydrogel not only has the skeleton function of hydrogel, but also retains its biological functions, including its excellent selection specificity, structural designability, precise molecular recognition ability, outstanding biocompatibility, and so on. It has shown important application prospects in the biomedical field, such as drug delivery, biosensing, and tissue engineering. In recent years, researchers have made full use of the characteristics of DNA molecules and constructed various pure DNA-based hydrogels with excellent properties through various crosslinking methods. Moreover, via introducing functional molecules or elements, or combining with other functional materials, a variety of multifunctional DNA-based hybrid hydrogels have also been constructed, which expand the breadth and depth of their applications. Here, we described the recent development trend in the area of DNA-based hydrogels and highlighted various preparation methods of DNA-based hydrogels. Representative biomedical applications are also exemplified to show the high performance of DNA-based hydrogels. Meanwhile, the existing problems and prospects are also summarized. This review provided references for the further development of DNA-based hydrogels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yang Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, University of South China, Hengyang, China
| |
Collapse
|
44
|
Antiochia R. Paper-Based Biosensors: Frontiers in Point-of-Care Detection of COVID-19 Disease. BIOSENSORS 2021; 11:110. [PMID: 33917183 PMCID: PMC8067807 DOI: 10.3390/bios11040110] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
This review summarizes the state of the art of paper-based biosensors (PBBs) for coronavirus disease 2019 (COVID-19) detection. Three categories of PBB are currently being been used for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics, namely for viral gene, viral antigen and antibody detection. The characteristics, the analytical performance, the advantages and drawbacks of each type of biosensor are highlighted and compared with traditional methods. It is hoped that this review will be useful for scientists for the development of novel PBB platforms with enhanced performance for helping to contain the COVID-19 outbreak, by allowing early diagnosis at the point of care (POC).
Collapse
Affiliation(s)
- Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|