1
|
Usami A. Development of biocatalysts for high-value-added compounds. Biosci Biotechnol Biochem 2025; 89:496-501. [PMID: 39384613 DOI: 10.1093/bbb/zbae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
High-value-added compounds, such as monoterpenoids, are important industrial targets because they are an essential group of compounds for pharmaceutical and industrial applications. Meanwhile, the depletion of natural resources and climate change demands sustainable production methods. In recent years, biocatalysis, which allows microbial bioproduction by regio- and stereo-selective reaction under mild conditions, has been attracted researchers' attention as a possible alternative to conventional methods. In this mini-review, we focus on the identification of biotransformation pathways in the non-model microorganism Acinetobacter sp. Tol 5 using geraniol, a representative monoterpenoid, and on the construction of an unconventional bioproduction method for high-value-added monoterpenoid (E)-geranic acid, which has great potential for industrial applications. This method offers a more environmentally friendly approach and insights contribute to optimizing biotransformation and bioproduction strategies for high-value-added compounds.
Collapse
Affiliation(s)
- Atsushi Usami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
2
|
Wang Y, Tian Y, Xu D, Cheng S, Li WW, Song H. Recent advances in synthetic biology toolkits and metabolic engineering of Ralstonia eutropha H16 for production of value-added chemicals. Biotechnol Adv 2025; 79:108516. [PMID: 39793936 DOI: 10.1016/j.biotechadv.2025.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Ralstonia eutropha H16, a facultative chemolithoautotrophic Gram-negative bacterium, demonstrates remarkable metabolic flexibility by utilizing either diverse organic substrates or CO2 as the sole carbon source, with H2 serving as the electron donor under aerobic conditions. The capacity of carbon and energy metabolism of R. eutropha H16 enabled development of synthetic biology technologies and strategies to engineer its metabolism for biosynthesis of value-added chemicals. This review firstly outlines the development of synthetic biology tools tailored for R. eutropha H16, including construction of expression vectors, regulatory elements, and transformation techniques. The availability of comprehensive omics data (i.e., transcriptomic, proteomic, and metabolomic) combined with the fully annotated genome sequence provides a robust genetic framework for advanced metabolic engineering. These advancements facilitate efficient reprogramming metabolic network of R. eutropha. The potential of R. eutropha as a versatile microbial platform for industrial biotechnology is further underscored by its ability to utilize a wide range of carbon sources for the production of value-added chemicals through both autotrophic and heterotrophic pathways. The integration of state-of-the-art genetic and genomic engineering tools and strategies with high cell-density fermentation processes enables engineered R. eutropha as promising microbial cell factories for optimizing carbon fluxes and expanding the portfolio of bio-based products.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yao Tian
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, 110819 Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, 110819 Shenyang, China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wen-Wei Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Hao Song
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; College of Life and Health Sciences, Northeastern University, Shenyang 110169, China.
| |
Collapse
|
3
|
Chávez Montes RA, Mary MA, Rashel RH, Fokar M, Herrera-Estrella L, Lopez-Arredondo D, Patiño R. Hormetic and transcriptomic responses of the toxic alga Prymnesium parvum to glyphosate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176451. [PMID: 39317257 DOI: 10.1016/j.scitotenv.2024.176451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Growth of the toxic alga Prymnesium parvum is hormetically stimulated with environmentally relevant concentrations of glyphosate. The mechanisms of glyphosate hormesis in this species, however, are unknown. We evaluated the transcriptomic response of P. parvum to glyphosate at concentrations that stimulate maximum growth and where growth is not different from control values, the zero-equivalent point (ZEP). Maximum growth occurred at 0.1 mg l-1 and the ZEP was 2 mg l-1. At 0.1 mg l-1, upregulated transcripts outnumbered downregulated transcripts by one order of magnitude. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that the upregulated transcriptome is primarily associated with metabolism and biosynthesis. Transcripts encoding heat shock proteins and co-chaperones were among the most strongly upregulated, and several others were associated with translation, Redox homeostasis, cell replication, and photosynthesis. Although most of the same transcripts were also upregulated at concentrations ≥ZEP, the proportion of downregulated transcripts greatly increased as glyphosate concentrations increased. At the ZEP, downregulated transcripts were associated with photosynthesis, cell replication, and anion transport, indicating that specific interference with these processes is responsible for the nullification of hormetic growth. Transcripts encoding the herbicidal target of glyphosate, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), were upregulated at concentrations ≥ZEP but not at 0.1 mg l-1, indicating that disruption of EPSPS activity occurred at high concentrations and that nullification of hormetic growth involves the direct interaction of glyphosate with this enzyme. Results of this study may contribute to a better understanding of glyphosate hormesis and of anthropogenic factors that influence P. parvum biogeography and bloom formation.
Collapse
Affiliation(s)
- Ricardo A Chávez Montes
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, USA
| | - Mousumi A Mary
- Department of Biological Sciences and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX, USA
| | - Rakib H Rashel
- Department of Biological Sciences and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX, USA
| | - Mohamed Fokar
- Center for Biotechnology and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, USA
| | - Damar Lopez-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, USA
| | - Reynaldo Patiño
- U.S. Geological Survey and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
4
|
de Sousa DP, de Assis Oliveira F, Arcanjo DDR, da Fonsêca DV, Duarte ABS, de Oliveira Barbosa C, Ong TP, Brocksom TJ. Essential Oils: Chemistry and Pharmacological Activities-Part II. Biomedicines 2024; 12:1185. [PMID: 38927394 PMCID: PMC11200837 DOI: 10.3390/biomedicines12061185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The importance of essential oils and their components in the industrial sector is attributed to their chemical characteristics and their application in the development of products in the areas of cosmetology, food, and pharmaceuticals. However, the pharmacological properties of this class of natural products have been extensively investigated and indicate their applicability for obtaining new drugs. Therefore, this review discusses the use of these oils as starting materials to synthesize more complex molecules and products with greater commercial value and clinic potential. Furthermore, the antiulcer, cardiovascular, and antidiabetic mechanisms of action are discussed. The main mechanistic aspects of the chemopreventive properties of oils against cancer are also presented. The data highlight essential oils and their derivatives as a strategic chemical group in the search for effective therapeutic agents against various diseases.
Collapse
Affiliation(s)
| | | | - Daniel Dias Rufino Arcanjo
- LAFMOL—Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, Brazil; (D.D.R.A.); (C.d.O.B.)
| | - Diogo Vilar da Fonsêca
- Collegiate of Medicine, Federal University of São Francisco Valley, Bahia 48607-190, Brazil;
| | - Allana Brunna S. Duarte
- Laboratory of Pharmaceutical Chemistry, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Celma de Oliveira Barbosa
- LAFMOL—Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, Brazil; (D.D.R.A.); (C.d.O.B.)
| | - Thomas Prates Ong
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil;
- Food Research Center (FoRC), University of São Paulo, São Paulo 05508-000, Brazil
| | - Timothy John Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil;
| |
Collapse
|
5
|
Mosheim JR, Ruggieri F, Humeau C, Hance P, Willand N, Hilbert JL, Heuson E, Froidevaux R. Biocatalytic Regioselective O-acylation of Sesquiterpene Lactones from Chicory: A Pathway to Novel Ester Derivatives. Chembiochem 2024; 25:e202300722. [PMID: 38235523 DOI: 10.1002/cbic.202300722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
We report the first biocatalytic modification of sesquiterpene lactones (STLs) found in the chicory plants, specifically lactucin (Lc), 11β,13-dihydrolactucin (DHLc), lactucopicrin (Lp), and 11β,13-dihydrolactucopicrin (DHLp). The selective O-acylation of their primary alcohol group was carried out by the lipase B from Candida antarctica (CAL-B) using various aliphatic vinyl esters as acyl donors. Perillyl alcohol, a simpler monoterpenoid, served as a model to set up the desired O-acetylation reaction by comparing the use of acetic acid and vinyl acetate as acyl donors. Similar conditions were then applied to DHLc, where five novel ester chains were selectively introduced onto the primary alcohol group, with conversions going from >99 % (acetate and propionate) to 69 % (octanoate). The synthesis of the corresponding O-acetyl esters of Lc, Lp, and DHLp was also successfully achieved with near-quantitative conversion. Molecular docking simulations were then performed to elucidate the preferred enzyme-substrate binding modes in the acylation reactions with STLs, as well as to understand their interactions with crucial amino acid residues at the active site. Our methodology enables the selective O-acylation of the primary alcohol group in four different STLs, offering possibilities for synthesizing novel derivatives with significant potential applications in pharmaceuticals or as biocontrol agents.
Collapse
Affiliation(s)
- J Rodriguez Mosheim
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - Institut Charles Viollette, Lille, France
| | - F Ruggieri
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - Institut Charles Viollette, Lille, France
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - C Humeau
- Univ. Lorraine, CNRS, UMR 7274 - Laboratoire Réactions et Génie des Procédés, -, F-54000, Nancy, France
| | - P Hance
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - Institut Charles Viollette, Lille, France
- Joint Laboratory University of Lille-Florimond-Desprez CHIC41Health, F-59655, Villeuneve d'Ascq, France
| | - N Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - J L Hilbert
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - Institut Charles Viollette, Lille, France
- Joint Laboratory University of Lille-Florimond-Desprez CHIC41Health, F-59655, Villeuneve d'Ascq, France
| | - E Heuson
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - R Froidevaux
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - Institut Charles Viollette, Lille, France
| |
Collapse
|
6
|
Missbach K, Flatschacher D, Bueschl C, Samson JM, Leibetseder S, Marchetti-Deschmann M, Zeilinger S, Schuhmacher R. Light-Induced Changes in Secondary Metabolite Production of Trichoderma atroviride. J Fungi (Basel) 2023; 9:785. [PMID: 37623556 PMCID: PMC10456024 DOI: 10.3390/jof9080785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
Many studies aim at maximizing fungal secondary metabolite production but the influence of light during cultivation has often been neglected. Here, we combined an untargeted isotope-assisted liquid chromatography-high-resolution mass spectrometry-based metabolomics approach with standardized cultivation of Trichoderma atroviride under three defined light regimes (darkness (PD), reduced light (RL) exposure, and 12/12 h light/dark cycle (LD)) to systematically determine the effect of light on secondary metabolite production. Comparative analyses revealed a similar metabolite profile upon cultivation in PD and RL, whereas LD treatment had an inhibiting effect on both the number and abundance of metabolites. Additionally, the spatial distribution of the detected metabolites for PD and RL was analyzed. From the more than 500 detected metabolites, only 25 were exclusively produced upon fungal growth in darkness and 85 were significantly more abundant in darkness. The majority were detected under both cultivation conditions and annotation revealed a cluster of substances whose production followed the pattern observed for the well-known T. atroviride metabolite 6-pentyl-alpha-pyrone. We conclude that cultivation of T. atroviride under RL can be used to maximize secondary metabolite production.
Collapse
Affiliation(s)
- Kristina Missbach
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (K.M.)
- Department of Microbiology, Universität Innsbruck, 6020 Innsbruck, Austria
| | | | - Christoph Bueschl
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (K.M.)
| | - Jonathan Matthew Samson
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (K.M.)
| | - Stefan Leibetseder
- Institute of Chemical Technologies and Analytics, TU Wien, 1060 Vienna, Austria; (S.L.)
| | | | - Susanne Zeilinger
- Department of Microbiology, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (K.M.)
| |
Collapse
|
7
|
Manina AS, Forlani F. Biotechnologies in Perfume Manufacturing: Metabolic Engineering of Terpenoid Biosynthesis. Int J Mol Sci 2023; 24:ijms24097874. [PMID: 37175581 PMCID: PMC10178209 DOI: 10.3390/ijms24097874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The fragrance industry is increasingly turning to biotechnology to produce sustainable and high-quality fragrance ingredients. Microbial-based approaches have been found to be particularly promising, as they offer a more practical, economical and sustainable alternative to plant-based biotechnological methods for producing terpene derivatives of perfumery interest. Among the evaluated works, the heterologous expression of both terpene synthase and mevalonate pathway into Escherichia coli has shown the highest yields. Biotechnology solutions have the potential to help address the growing demand for sustainable and high-quality fragrance ingredients in an economically viable and responsible manner. These approaches can help compensate for supply issues of rare or impermanent raw materials, while also meeting the increasing demand for sustainable ingredients and processes. Although scaling up biotransformation processes can present challenges, they also offer advantages in terms of safety and energy savings. Exploring microbial cell factories for the production of natural fragrance compounds is a promising solution to both supply difficulties and the demand for sustainable ingredients and processes in the fragrance industry.
Collapse
Affiliation(s)
- Alessia Shelby Manina
- Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, 20133 Milan, Italy
| | - Fabio Forlani
- Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, 20133 Milan, Italy
| |
Collapse
|
8
|
Gazioglu I, Zengin OS, Gunaydin Akyildiz A, Zengin Kurt B. Fungal biotransformation of carvone and camphor by Aspergillus flavus and investigation of cytotoxic activities of naturally obtained essential oils. Nat Prod Res 2023; 37:944-955. [PMID: 35899398 DOI: 10.1080/14786419.2022.2098957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In this study, the biotransformation of carvone and camphor by Aspergillus flavus and the products were investigated. The biotransformation reaction of carvone by A. flavus resulted in the production of neodihydrocarveol, dihydrocarvone, 2-cyclohexene-1-one,2-methyl-5-(1-methylethenyl), limonene-1,2-diol, trans-p-mentha-1(7),8-dien-2-ol, p-menth-8(10)-ene-2,9-diol, and the biotransformation reaction of camphor resulted in the production of 2 -campholenic acid, 2-cyclohexene-1-one,2-hydroxy-4,4,6,6-tetramethyl, α-campholene aldehyde. The naturally produced essential oils by biotransformation of carvone and camphor were observed to be cytotoxic to breast cancer cells while no significant inhibition was seen in the healthy cell line. Additionally, biotransformation products had the highest inhibition (74%) against aflatoxin B1. The bioactivities of biotransformation products are promising, and they can be further investigated for their therapeutic potential as active agents.
Collapse
Affiliation(s)
- Isil Gazioglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Bezmialem Vakif University, Istanbul, Turkey
| | - Ozge Sultan Zengin
- Faculty of Pharmacy, Department of Analytical Chemistry, Bezmialem Vakif University, Istanbul, Turkey
| | - Aysenur Gunaydin Akyildiz
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Bezmialem Vakif University, Istanbul, Turkey
| | - Belma Zengin Kurt
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
9
|
Chen Q, Yang Q, Pan C, Ding R, Wu T, Cao J, Wu H, Zhao X, Li B, Cheng X. Quiescence preconditioned nucleus pulposus stem cells alleviate intervertebral disc degeneration by enhancing cell survival via adaptive metabolism pattern in rats. Front Bioeng Biotechnol 2023; 11:1073238. [PMID: 36845177 PMCID: PMC9950514 DOI: 10.3389/fbioe.2023.1073238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Quiescence is a cellular state of reversible growth arrest required to maintain homeostasis and self-renewal. Entering quiescence allows the cells to remain in the non-dividing stage for an extended period of time and enact mechanisms to protect themselves from damage. Due to the extreme nutrient-deficient microenvironment in the intervertebral disc (IVD), the therapeutic effect of cell transplantation is limited. In this study, nucleus pulposus stem cells (NPSCs) were preconditioned into quiescence through serum starvation in vitro and transplanted to repair intervertebral disc degeneration (IDD). In vitro, we investigated apoptosis and survival of quiescent NPSCs in a glucose-free medium without fetal bovine serum. Non-preconditioned proliferating NPSCs served as controls. In vivo, the cells were transplanted into a rat model of IDD induced by acupuncture, and the intervertebral disc height, histological changes, and extracellular matrix synthesis were observed. Finally, to elucidate the mechanisms underlying the quiescent state of NPSCs, the metabolic patterns of the cells were investigated through metabolomics. The results revealed that quiescent NPSCs decreased apoptosis and increased cell survival when compared to proliferating NPSCs both in vitro and in vivo, as well as maintained the disc height and histological structure significantly better than that by proliferating NPSCs. Furthermore, quiescent NPSCs have generally downregulated metabolism and reduced energy requirements in response to a switch to a nutrient-deficient environment. These findings support that quiescence preconditioning maintains the proliferation and biological function potential of NPSCs, increases cell survival under the extreme environment of IVD, and further alleviates IDD via adaptive metabolic patterns.
Collapse
Affiliation(s)
- Qi Chen
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China
| | - Qu Yang
- Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chongzhi Pan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China
| | - Rui Ding
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China
| | - Jian Cao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China
| | - Hui Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China
| | - Xiaokun Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China
| | - Bin Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China,*Correspondence: Bin Li, ; Xigao Cheng,
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Bin Li, ; Xigao Cheng,
| |
Collapse
|
10
|
Ijinu TP, Prabha B, Pushpangadan P, George V. Essential Oil-Derived Monoterpenes in Drug Discovery and Development. DRUG DISCOVERY AND DESIGN USING NATURAL PRODUCTS 2023:103-149. [DOI: 10.1007/978-3-031-35205-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
11
|
Agwunobi DO, Wang M, Wang Z, Bai R, Wang R, Hu Q, Yu Z, Liu J. The toxicity of the monoterpenes from lemongrass is mitigated by the detoxifying symbiosis of bacteria and fungi in the tick Haemaphysalis longicornis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114261. [PMID: 36332404 DOI: 10.1016/j.ecoenv.2022.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The entry mode of terpenes into the atmosphere is via volatilization of hydrocarbons from foliage over heavily forested areas besides entering the environment through surface water runoff. Some monoterpenes in essential oils are phytotoxins, acting as plant chemical defenses against bacteria or fungi infections and plant-eating insects. For organisms to survive, their enzymatic systems are activated in response to an assault by potentially harmful compounds. Certain bacterial and fungal genera have developed special abilities to transform toxic terpenes into less toxic derivatives. Here, we investigated the response of the bacterial and fungal community in Haemaphysalis longicornis exposed to Cymbopogon citratus (lemongrass) essential oil (EO) and citronellal. Sequencing of bacterial 16S rRNA and fungal ITS1 regions on an Illumina NovaSeq PE250 sequencing platform was performed for H. longicornis tick samples treated with 15 and 20 mg/mL of lemongrass essential oil and citronellal. The diversity recorded in samples treated with C. citratus EO was higher in comparison to those treated with citronellal but significantly lower in the control samples as reflected by the Shannon diversity index. All major H. longicornis bacterial phyla, including Proteobacteria (93.81 %), Firmicutes (2.58 %), and Bacteroidota (0.99 %) were detected. A switch of dominance from Coxiella to Pseudomonas, which has high biotransformation capacity, was observed in the bacterial community, whereas the phylum Ascomycota (Genera: Aspergillus, Archaeorhizomyces, Alternaria, and Candida) dominated in the fungal community indicating detoxifying symbiosis. Other significantly abundant bacterial genera include Ralstonia, Acinetobacter, Vibrio, and Pseudoalteromonas, while Ganoderma and Trichosporon (yeasts) spp. represented the fungi Basidiomycota. This study expanded the understanding of enzymatic modification of phytotoxic substances by microorganisms, which could provide deeper insights into the mitigation of harmful phytotoxins and the synthesis of eco-friendly derivatives for the control of ticks.
Collapse
Affiliation(s)
- Desmond O Agwunobi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Min Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Zihao Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Ruwei Bai
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Ruotong Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Qiuyu Hu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| |
Collapse
|
12
|
Manhas RS, Koul D, Kumar P, Kumar A, Bhagat A, Madishetti S, Sangwan PL, Ahmed Z, Chaubey A. Talaromyces purpurogenus MRS-F13 catalyzed biotransformation of (-)-verbenone to (-)-10-hydroxyverbenone and their anti-inflammatory activity profile. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2138359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ravi S. Manhas
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Campus Ghaziabad, India
| | - Diksha Koul
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Campus Ghaziabad, India
| | - Parveen Kumar
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Campus Ghaziabad, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Amit Kumar
- Quality Management &Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Asha Bhagat
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sreedhar Madishetti
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Campus Ghaziabad, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Payare L. Sangwan
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Campus Ghaziabad, India
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Zabeer Ahmed
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Campus Ghaziabad, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Asha Chaubey
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| |
Collapse
|
13
|
Ghasemy-Piranloo F, Kavousi F, Kazemi-Abharian M. Comparison for the production of essential oil by conventional, novel and biotechnology methods. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2120557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Fatemeh Kavousi
- Biosphere Technology Company, Environmental Laboratory, Abhar, Iran
| | | |
Collapse
|
14
|
Faccia M, Maggiolino A, Natrella G, Zizzadoro C, Mazzone A, Poulopoulou I, Bragaglio A, De Palo P. Ingested versus inhaled limonene in sheep: A pilot study to explore potential different transfer to the mammary gland and effects on milk and Caciotta cheese aroma. J Dairy Sci 2022; 105:8143-8157. [PMID: 36028343 DOI: 10.3168/jds.2022-22016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
Concentration is a key determinant in the overall positive impact of terpenes on milk and cheese aroma; additionally, route of intake may affect the achievable concentrations of dietary terpenes in milk and cheese. In this study, we explored the possibility that the amount of the monoterpene limonene transferred to sheep milk and its corresponding cheese could differ depending on the route of intake and that the aroma profile of these products could also differ. To this aim, 12 lactating dairy ewes were repeatedly exposed to limonene by the oral or respiratory route during a 48-h test period, according to a 3 × 3 Latin square experimental design. Limonene content was measured in individual and bulk milk samples, in 1-d-old and 15-d-old Caciotta cheese obtained from that milk, in the related whey and curd, and in the air inhaled by the ewes in the respiratory treatment group (to obtain an estimate of the dose actually supplied by this route). Bulk milk and fresh (1-d-old) cheese underwent sensory analysis by ortho-olfactory evaluation. Both intake routes demonstrated transfer of limonene to milk, but the respiratory route transferred limonene with greater efficiency than the oral route. Moreover, according to the protocol used in this study, a short period of respiratory exposure induced a slightly higher limonene content in milk compared with oral exposure. As to the fate of limonene during cheesemaking, an important part of it was lost into the whey, perhaps through volatilization. The differences between milk and cheese tended to dissipate in curd and fresh cheese and disappeared completely after 15 d of ripening. Finally, it was possible to distinguish between the 2 routes of limonene intake using sensory analysis, even though no direct relationship was identified between the different aroma profiles of milks and cheeses from the oral and respiratory groups and their respective limonene contents. Overall, our results expand current knowledge on the biological pathways of terpene transfer from feed to sheep milk and cheese, as well as on the role played by terpenes in the formation of aroma in these products. Our observations may contribute to future development of strategies for external control and better standardization of the presence of odor compounds in milk and cheese from dairy ruminants.
Collapse
Affiliation(s)
- M Faccia
- Department of Soil, Plant and Food Sciences, University of Bari A. Moro, 70121 Bari, Italy
| | - A Maggiolino
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy.
| | - G Natrella
- Department of Soil, Plant and Food Sciences, University of Bari A. Moro, 70121 Bari, Italy
| | - C Zizzadoro
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - A Mazzone
- Order of Chemists of Bari, 70121 Bari, Italy
| | - I Poulopoulou
- Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - A Bragaglio
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - P De Palo
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| |
Collapse
|
15
|
Mittal R, Srivastava G, Ganjewala D. An update on the progress of microbial biotransformation of commercial monoterpenes. Z NATURFORSCH C 2022; 77:225-240. [PMID: 34881551 DOI: 10.1515/znc-2021-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/14/2021] [Indexed: 01/05/2023]
Abstract
Monoterpenes, a class of isoprenoid compounds, are extensively used in flavor, fragrance, perfumery, and cosmetics. They display many astonishing bioactive properties of biological and pharmacological significance. All monoterpenes are derived from universal precursor geranyl diphosphate. The demand for new monoterpenoids has been increasing in flavor, fragrances, perfumery, and pharmaceuticals. Chemical methods, which are harmful for human and the environment, synthesize most of these products. Over the years, researchers have developed alternative methods for the production of newer monoterpenoids. Microbial biotransformation is one of them, which relied on microbes and their enzymes. It has produced many new desirable commercially important monoterpenoids. A growing number of reports reflect an ever-expanding scope of microbial biotransformation in food and aroma industries. Simultaneously, our knowledge of the enzymology of monoterpene biosynthetic pathways has been increasing, which facilitated the biotransformation of monoterpenes. In this article, we have covered the progress made on microbial biotransformation of commercial monoterpenes with a brief introduction to their biosynthesis. We have collected several reports from authentic web sources, including Google Scholar, Pubmed, Web of Science, and Scopus published in the past few years to extract information on the topic.
Collapse
Affiliation(s)
- Ruchika Mittal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida 201303, UP, India
| | - Gauri Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida 201303, UP, India
| | - Deepak Ganjewala
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida 201303, UP, India
| |
Collapse
|
16
|
Waidyanatha S, Black SR, Witt KL, Fennell TR, Swartz C, Recio L, Watson SL, Patel P, Fernando RA, Rider CV. The common indoor air pollutant α-pinene is metabolized to a genotoxic metabolite α-pinene oxide. Xenobiotica 2022; 52:301-311. [PMID: 35473450 DOI: 10.1080/00498254.2022.2070047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. α-Pinene caused a concentration-responsive increase in bladder hyperplasia and decrease in sperm counts in rodents following inhalation exposure. Additionally, it formed a prospective reactive metabolite, α-pinene oxide.2. To provide human relevant context for data generated in animal models and explore potential mechanism, we undertook studies to investigate the metabolism of α-pinene to α-pinene oxide and mutagenicity of α-pinene and α-pinene oxide.3. α-Pinene oxide was formed in rat and human microsomes and hepatocytes with some species differences. Based on area under the concentration versus time curves, the formation of α-pinene oxide was up to 4-fold higher in rats than in humans.4. While rat microsomes cleared α-pinene oxide faster than human microsomes, the clearance of α-pinene oxide in hepatocytes was similar between species.5. α-Pinene was not mutagenic with or without induced rat liver S9 in Salmonella typhimurium or Escherichia coli when tested up to 10,000 μg/plate while α-pinene oxide was mutagenic at ≥25 μg/plate.6. α-Pinene was metabolized to α-pinene oxide under the conditions of the bacterial mutation assay although the concentration was approximately 3-fold lower than the lowest α-pinene oxide concentration that was positive in the assay, potentially explaining the lack of mutagenicity observed with α-pinene.
Collapse
Affiliation(s)
- Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Kristine L Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Carol Swartz
- Integrated Laboratory Systems, Research Triangle Park, NC, USA
| | - Leslie Recio
- Integrated Laboratory Systems, Research Triangle Park, NC, USA
| | | | - Purvi Patel
- RTI International, Research Triangle Park, NC, USA
| | | | - Cynthia V Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
17
|
Alexandrino TD, de Medeiros TDM, Ruiz ALTG, Favaro DC, Pastore GM, Bicas JL. Structural properties and evaluation of the antiproliferative activity of limonene-1,2-diol obtained by the fungal biotransformation of R-(+)- and S-(-)-limonene. Chirality 2022; 34:887-893. [PMID: 35420719 DOI: 10.1002/chir.23439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/08/2022]
Abstract
Limonene-1,2-diol is a limonene oxygenated metabolite that possesses eight different stereoisomers, which could result in different biological properties. Nonetheless, the relation between its spatial configuration and biological function is still little explored. The present study aimed to perform the stereoisomers identification using nuclear magnetic resonance (NMR) investigation of the limonene-1,2-diol produced via R-(+)- and S-(-)-limonene biotransformation by Colletotrichum nymphaeae and S-(-)-limonene biotransformation by Fusarium oxysporum 152B. Besides, in vitro antiproliferative activity was evaluated against human tumor and nontumor cell lines. The NMR analysis showed that R-(+)-limonene biotransformation afforded exclusively (+)-(1S,2S,4R-limonene-1,2-diol), whereas S-(-)-limonene biotransformation afforded exclusively (-)-(1R,2R,4S-limonene-1,2-diol) independent on the fungi used. Despite no significant cytostatic effects, a possible influence of stereogenic center on the antiproliferative activity of these limonene biotransformation products was evidenced. Moreover, the lack of in vitro antiproliferative effect of limonene-1,2-diol against nontumor cells suggested a safe dose range for further in vivo evaluations, including food applications.
Collapse
Affiliation(s)
| | | | | | - Denize Cristina Favaro
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, Campinas, Brazil
| | - Gláucia Maria Pastore
- School of Food Engineering, Department of Food Science, University of Campinas, Campinas, Brazil
| | - Juliano Lemos Bicas
- School of Food Engineering, Department of Food Science, University of Campinas, Campinas, Brazil
| |
Collapse
|
18
|
Biotransformation of artemisinin to a novel derivative via ring rearrangement by Aspergillus niger. Appl Microbiol Biotechnol 2022; 106:2433-2444. [PMID: 35355096 PMCID: PMC8989930 DOI: 10.1007/s00253-022-11888-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/10/2022] [Accepted: 03/19/2022] [Indexed: 11/27/2022]
Abstract
Abstract Artemisinin is a component part of current frontline medicines for the treatment of malaria. The aim of this study is to make analogues of artemisinin using microbial transformation and evaluate their in vitro antimalarial activity. A panel of microorganisms were screened for biotransformation of artemisinin (1). The biotransformation products were extracted, purified and isolated using silica gel column chromatography and semi-preparative HPLC. Spectroscopic methods including LC-HRMS, GC–MS, FT-IR, 1D and 2D NMR were used to elucidate the structure of the artemisinin metabolites.1H NMR spectroscopy was further used to study the time-course biotransformation. The antiplasmodial activity (IC50) of the biotransformation products of 1 against intraerythrocytic cultures of Plasmodium falciparum were determined using bioluminescence assays. A filamentous fungus Aspergillus niger CICC 2487 was found to possess the best efficiency to convert artemisinin (1) to a novel derivative, 4-methoxy-9,10-dimethyloctahydrofuro-(3,2-i)-isochromen-11(4H)-one (2) via ring rearrangement and further degradation, along with three known derivatives, compound (3), deoxyartemisinin (4) and 3-hydroxy-deoxyartemisinin (5). Kinetic study of the biotransformation of artemisinin indicated the formation of artemisinin G as a key intermediate which could be hydrolyzed and methylated to form the new compound 2. Our study shows that the anti-plasmodial potency of compounds 2, 3, 4 and 5 were ablated compared to 1, which attributed to the loss of the unique peroxide bridge in artemisinin (1). This is the first report of microbial degradation and ring rearrangement of artemisinin with subsequent hydrolysis and methoxylation by A.niger. Key points • Aspergillus niger CICC 2487 was found to be efficient for biotransformation of artemisinin • A novel and unusual artemisinin derivative was isolated and elucidated • The peroxide bridge in artemisinin is crucial for its high antimalarial potency • The pathway of biotransformation involves the formation of artemisinin G as a key intermediate Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11888-0.
Collapse
|
19
|
Nagy F, Sánta-Bell E, Jipa M, Hornyánszky G, Szilágyi A, László K, Katona G, Paizs C, Poppe L, Balogh-Weiser D. Cross-Linked Enzyme-Adhered Nanoparticles (CLEANs) for Continuous-Flow Bioproduction. CHEMSUSCHEM 2022; 15:e202102284. [PMID: 34913608 DOI: 10.1002/cssc.202102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Nanostructured but micro-sized biocatalysts were created by bottom-up technology using multi-functionalized silica nanoparticles (NPs) as nano-sized building blocks to form cross-linked enzyme-adhered nanoparticles (CLEANs) as robust micro-sized particles with beneficial internal structure and good mechanical properties. Systematic surface modification of NPs with a grafting mixture consisting of organosilanes with reactive (aminopropyl) and inert (e. g., vinyl, propyl, phenyl, or octyl) functions resulted in functional NPs enabling cross-linking agents, such as glutardialdehyde or bisepoxides (glycerol diglycidyl ether, neopentylglycol diglycidyl ether, and poly(propylene glycol) diglycidyl ether), to bind and cross-link enzymes covalently and to form macroporous microparticles. These CLEANs were able to diminish several weaknesses of traditional cross-linked enzyme aggregates as biocatalysts, such as poor mechanical resistance, difficult recovery, and storage, strengthening their use for packed-bed enzyme reactors. Lipase B from Candida antarctica (CaLB) was selected as model enzyme for development of robust CLEANs, which were successfully tested for various industrially relevant applications including a kinetic resolution of a racemic alcohol and the production of various natural fragrance compounds under continuous-flow conditions.
Collapse
Affiliation(s)
- Flóra Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Evelin Sánta-Bell
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Monica Jipa
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - András Szilágyi
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Krisztina László
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Gabriel Katona
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
- SynBiocat LLC, Szilasliget u 3, 1072, Budapest, Hungary
| | - Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- SynBiocat LLC, Szilasliget u 3, 1072, Budapest, Hungary
| |
Collapse
|
20
|
Chalkos D, Karamanoli K, Vokou D. Monoterpene Enrichments Have Positive Impacts on Soil Bacterial Communities and the Potential of Application in Bioremediation. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112536. [PMID: 34834898 PMCID: PMC8623845 DOI: 10.3390/plants10112536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
We study here how soil bacterial communities of different ecosystems respond to disturbances caused by enrichments with monoterpenes that are common essential oil constituents. We used fenchone, 1,8-cineol and α-pinene, and soils from phrygana, a typical Mediterranean-type ecosystem where aromatic plants abound, and from another five ecosystem types, focusing on culturable bacteria. Patterns of response were common to all ecosystems, but responses themselves were not always as pronounced in phrygana as in the other ecosystems, suggesting that these enrichments are less of a disturbance there. More specifically, soil respiration and abundance of the bacterial communities increased, becoming from below two up to 16 times as high as in control soils (for both attributes) and remained at high levels as long as these compounds were present. Bacteria that can utilize these three compounds as substrates of growth became dominant members of the bacterial communities in the enriched soils. All changes were readily reversible once monoterpene addition stopped. Bacteria with the ability to utilize these monoterpenes as carbon sources were found in soils from all ecosystems, 15 strains in total, suggesting a rather universal presence; of these, six could also utilize the organic pollutants toluene or p-xylene. These results suggest also potential novel applications of monoterpenes in combating soil pollution.
Collapse
Affiliation(s)
- Dimitris Chalkos
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, School of Agriculture, Faculty of Agriculture Forestry and Natural Environment, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Despoina Vokou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| |
Collapse
|
21
|
Pan H, Wang J, Wu H, Li Z, Lian J. Synthetic biology toolkit for engineering Cupriviadus necator H16 as a platform for CO 2 valorization. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:212. [PMID: 34736496 PMCID: PMC8570001 DOI: 10.1186/s13068-021-02063-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/25/2021] [Indexed: 06/09/2023]
Abstract
BACKGROUND CO2 valorization is one of the effective methods to solve current environmental and energy problems, in which microbial electrosynthesis (MES) system has proved feasible and efficient. Cupriviadus necator (Ralstonia eutropha) H16, a model chemolithoautotroph, is a microbe of choice for CO2 conversion, especially with the ability to be employed in MES due to the presence of genes encoding [NiFe]-hydrogenases and all the Calvin-Benson-Basham cycle enzymes. The CO2 valorization strategy will make sense because the required hydrogen can be produced from renewable electricity independently of fossil fuels. MAIN BODY In this review, synthetic biology toolkit for C. necator H16, including genetic engineering vectors, heterologous gene expression elements, platform strain and genome engineering, and transformation strategies, is firstly summarized. Then, the review discusses how to apply these tools to make C. necator H16 an efficient cell factory for converting CO2 to value-added products, with the examples of alcohols, fatty acids, and terpenoids. The review is concluded with the limitation of current genetic tools and perspectives on the development of more efficient and convenient methods as well as the extensive applications of C. necator H16. CONCLUSIONS Great progress has been made on genetic engineering toolkit and synthetic biology applications of C. necator H16. Nevertheless, more efforts are expected in the near future to engineer C. necator H16 as efficient cell factories for the conversion of CO2 to value-added products.
Collapse
Affiliation(s)
- Haojie Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jia Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haoliang Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
22
|
Oxidation of Terpenoids to Achieve High-Value Flavor and Fragrances—Questioning Microalgae Oxidative Capabilities in the Biotransformation of the Sesquiterpene Valencene and of Selected Natural Apocarotenoids. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Natural flavor and fragrance market size is expected to grow steadily due to the rising consumer demand of natural ingredients. This market request is guided by the general opinion that the production of natural compounds leads to a reduction of pollution, with inherent advantages for the environment and people’s health. The biotransformation reactions have gained high relevance in the production of natural products. In this context, few pieces of research have described the role of microalgae in the oxidation of terpenoids. In this present study, we questioned the role of microalgal based oxidation in the synthesis of high-value flavors and fragrances. This study investigated the role of three different microalgae strains, Chlorella sp. (211.8b and 211.8p) and Chlorococcum sp. (JB3), in the oxidation of different terpenoid substrates: α-ionone, β-ionone, theaspirane and valencene. Unfortunately, the experimental data showed that the microalgal strains used are not responsible for the substrate oxidation. In fact, our experiments demonstrate that the transformation of the four starting compounds is a photochemical reaction that involves the oxygen as oxidant. Even though these findings cast a shadow on the use of these microorganisms for an industrial purpose, they open a new possible strategy to easily obtain nootkatone in a natural way by just using an aqueous medium, oxygen and light.
Collapse
|
23
|
Ha SK, Kang MC, Lee S, Darlami O, Shin D, Choi I, Kim KH, Kim SY. Generation of Stilbene Glycoside with Promising Cell Rejuvenation Activity through Biotransformation by the Entomopathogenic Fungus Beauveria bassiana. Biomedicines 2021; 9:555. [PMID: 34067529 PMCID: PMC8156121 DOI: 10.3390/biomedicines9050555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
A stilbene glycoside (resvebassianol A) (1) with a unique sugar unit, 4-O-methyl-D-glucopyranose, was identified through biotransformation of resveratrol (RSV) by the entomopathogenic fungus Beauveria bassiana to obtain a superior RSV metabolite with enhanced safety. Its structure, including its absolute configurations, was determined using spectroscopic data, HRESIMS, and chemical reactions. Microarray analysis showed that the expression levels of filaggrin, HAS2-AS1, and CERS3 were higher, while those of IL23A, IL1A, and CXCL8 were lower in the resvebassianol A-treated group than in the RSV-treated group, as confirmed by qRT-PCR. Compound 1 exhibited the same regenerative and anti-inflammatory effects as RSV with no cytotoxicity in skin keratinocytes and TNF-α/IFN-γ-stimulated HIEC-6 cells, suggesting that compound 1 is a safe and stable methylglycosylated RSV. Our findings suggest that our biotransformation method can be an efficient biosynthetic platform for producing a broad range of natural glycosides with enhanced safety.
Collapse
Affiliation(s)
- Sang Keun Ha
- Division of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Korea;
- Divison of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Min Cheol Kang
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (M.C.K.); (O.D.); (D.S.)
| | - Seulah Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
- Division of Life Sciences, Korea Polar Research Institute, KIOST, Incheon 21990, Korea
| | - Om Darlami
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (M.C.K.); (O.D.); (D.S.)
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (M.C.K.); (O.D.); (D.S.)
| | - Inwook Choi
- Division of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Korea;
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (M.C.K.); (O.D.); (D.S.)
| |
Collapse
|
24
|
Microfluidically supported characterization of responses of Rhodococcus erythropolis strains isolated from different soils on Cu-, Ni-, and Co-stress. Braz J Microbiol 2021; 52:1405-1415. [PMID: 33956334 PMCID: PMC8324611 DOI: 10.1007/s42770-021-00495-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/08/2021] [Indexed: 10/26/2022] Open
Abstract
We present a new methodological approach for the assessment of the susceptibility of Rhodococcus erythropolis strains from specific sampling sites in response to increasing heavy metal concentration (Cu2+, Ni2+, and Co2+) using the droplet-based microfluid technique. All isolates belong to the species R. erythropolis identified by Sanger sequencing of the 16S rRNA. The tiny step-wise variation of metal concentrations from zero to the lower mM range in 500 nL droplets not only provided accurate data for critical metal ion concentrations but also resulted in a detailed visualization of the concentration-dependent response of bacterial growth and autofluorescence activity. As a result, some of the isolates showed similar characteristics in heavy metal tolerance against Cu2+, Ni2+, and Co2+. However, significantly different heavy metal tolerances were found for other strains. Surprisingly, samples from the surface soil of ancient copper mining areas supplied mostly strains with a moderate sensitivity to Cu2+, Ni2+, and Co2+, but in contrast, a soil sample from an excavation site of a medieval city that had been covered for about eight centuries showed an extremely high tolerance against cobalt ion (up to 36 mM). The differences among the strains not only may be regarded as results of adaptation to the different environmental conditions faced by the strains in nature but also seem to be related to ancient human activities and temporal partial decoupling of soil elements from the surface. This investigation confirmed that microfluidic screening offers empirical characterization of properties from same species which has been isolated from sites known to have different human activities in the past.
Collapse
|
25
|
Waidyanatha S, Hackett M, Black SR, Stout MD, Fennell TR, Silinski MR, Watson SL, Licause J, Robinson VG, Sparrow B, Fernando RA, Cooper S, Rider CV. Toxicokinetic evaluation of the common indoor air pollutant, α-pinene, and its potential reactive metabolite, α-pinene oxide, following inhalation exposure in rodents. Toxicol Appl Pharmacol 2021; 418:115496. [PMID: 33744279 PMCID: PMC8336714 DOI: 10.1016/j.taap.2021.115496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 11/22/2022]
Abstract
The toxicokinetic behavior of α-pinene and its potential reactive metabolite, α-pinene oxide, was investigated following whole body inhalation exposure to 50 and 100 ppm α-pinene in rats and mice for 6 h per day for 7d. In both species and sexes, the maximum blood concentration (Cmax) increased more than proportionally while the increase in area under the concentration time curve (AUC) was proportional to the exposure concentration. When normalized to the calculated dose (D), both Cmax/D (male rats, 12.2-54.5; female rats, 17.4-74.1; male mice, 7.41-14.2; female mice, 6.59-13.0 (ng/mL)/(mg/kg)) and AUC/D (male rats, 28.9-31.1; female rats, 55.8-56.8; male mice, 18.1-19.4; female mice, 19.2-22.5 (h*ng/mL)/(mg/kg)) in rats were higher than in mice and in female rats were higher than in male rats; no sex difference was observed in mice. α-Pinene was eliminated from blood with half-lives between 12.2 and 17.4 h in rats and 6.18-19.4 h in mice. At the low dose, the ratio of α-pinene oxide to α-pinene, based on Cmax and AUC, respectively, was 0.200-0.237 and 0.279-0.615 in rats and 0.060-0.086 and 0.036-0.011 in mice demonstrating lower formation of the oxide in mice than in rats. At the high dose, the ratio decreased considerably in both species pointing to saturation of pathways leading to the formation of α-pinene oxide. α-Pinene and the oxide were quantified in the mammary glands of rats and mice with tissue to blood ratios of ≥23 demonstrating retention of these analytes in mammary glands. The findings of epoxide formation and species- and sex-differences in systemic exposure may be important in providing context and relating animal findings to human exposures.
Collapse
Affiliation(s)
- Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | | | | | - Mathew D Stout
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | | | | | - Veronica G Robinson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | | | - Cynthia V Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
26
|
Su W, Li Q, Liu Y, Qin Y, Liu H, Tang A. Improved efficiency of lipase-mediated epoxidation of α-pinene using H2O2 in single-phase systems. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Detection of Alternaria alternata in tomato juice and fresh fruit by the production of its biomass, respiration, and volatile compounds. Int J Food Microbiol 2021; 342:109092. [PMID: 33607541 DOI: 10.1016/j.ijfoodmicro.2021.109092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 01/30/2023]
Abstract
Tomato is widely consumed and marketed as juice, puree, or fresh product. Nevertheless, 30% of its harvest volume is lost because of the fungus Alternaria alternata. This research aimed to provide early detection methods for this fungal decay on tomato juice and fresh fruit. Biomass content, CO2, O2 and volatile compounds (VOCs) during A. alternata growth in tomato juice and fruit at two ripening stages (breaker and red colour) were evaluated. Additionally, CO2 and VOCs data set were analysed with a hierarchical cluster technique (HCA) to explore the differences between inoculated and non-inoculated samples. Biomass was determined by gravimetry, CO2 and O2 by gas chromatography (GC), and VOCs by GC-mass spectrometry. Biomass content was not drastically modified by tomato's ripening stage (3-6 mg of dry weight). CO2 in tomato juice was considerably higher in the inoculated samples with A. alternata (27-63%) than in the non-inoculated ones (2.8-6.6%), regardless of the ripeness stage; while in tomato fruit CO2 was higher at breaker stage and inoculated with A. alternata (33-41%) than the remaining treatments (9-23%). It was also observed that, except for limonene, trans-sabinene hydrate, and rhodovibrin, VOCs' release during the interaction between tomato juice and A. alternata was different from the fresh tomato and A. alternata interaction. Only the HCA based on CO2 data showed clear differences between the inoculated and non-inoculated tomato juice and fruit at both ripening stages.
Collapse
|
28
|
Abstract
A biocatalytic cascade system using a cocktail of oxidoreductase enzymes (2-1B peroxidase and M120 laccase) was designed for the allylic oxidation of (+)-α-pinene into value-added products (e.g., verbenol and verbenone). The oxidative transformation involved a two-step process as follows: (+)-α-pinene was (i) oxidized on the allylic position with H2O2 mainly assisted by 2-1B peroxidase leading to verbenol as the principal reaction product, and (ii) directed to verbenone in the presence of M120 laccase responsible for further oxidation of verbenol to verbenone. The reaction environment was ensured by the acetate buffer (0.1 M, pH = 5). Optimum values for the experimental parameters (e.g., concentration of 2-1B peroxidase, M120 laccase, and H2O2) were set up. The biocatalytic cascade process was monitored for 24 h in order to evaluate the process pathway. Maximum performance under optimum conditions was reached after 5 h incubation time (e.g., 80% (+)-α-pinene conversion and 70% yield in verbenol). Therefore, the developed biocatalytic cascade system offered promising perspectives for (+)-α-pinene valorization.
Collapse
|
29
|
Sun C, Dong X, Zhang R, Xie C. Effectiveness of recombinant Escherichia coli on the production of (R)-(+)-perillyl alcohol. BMC Biotechnol 2021; 21:3. [PMID: 33419424 PMCID: PMC7791655 DOI: 10.1186/s12896-020-00662-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/08/2020] [Indexed: 01/11/2023] Open
Abstract
Background (R)-(+)-perillyl alcohol is a naturally oxygenated monoterpene widely used as the natural flavor additives, insecticides, jet fuels and anti-cancer therapies. It was also readily available monoterpene precursors. However, this natural product is present at low concentrations from plant sources which are not economically viable. Therefore, alternative microbial production methods are rapidly emerging as an attractive alternative to make (R)-(+)-perillyl alcohol production more sustainable and environmentally friendly. Results We engineered Escherichia coli to possess a heterologous mevalonate (MVA) pathway, including limonene synthase, P-cymene monoxygenase hydroxylase and P-cymene monoxygenase reductase for the production of (R)-(+)-perillyl alcohol. The concentration of (R)-(+)-limonene (the monoterpene precursor to (R)-(+)-perillyl alcohol) reached 45 mg/L from glucose. Enhanced (R)-(+)-perillyl alcohol production was therefore achieved. The strain produced (R)-(+)-perillyl alcohol at a titer of 87 mg/L and a yield of 1.5 mg/g glucose in a 5 L bioreactor fed batch system. Conclusions These datas highlight the efficient production of (R)-(+)-perillyl alcohol through the mevalonate pathway from glucose. This method serves as a platform for the future production of other monoterpenes.
Collapse
Affiliation(s)
- Chao Sun
- A State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Rd., Qingdao, 266042, China.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Rd., Qingdao, 266101, China
| | - Xianjuan Dong
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Rd., Qingdao, 266101, China
| | - Rubing Zhang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Rd., Qingdao, 266101, China.
| | - Congxia Xie
- A State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Rd., Qingdao, 266042, China.
| |
Collapse
|
30
|
Gozari M, Alborz M, El-Seedi HR, Jassbi AR. Chemistry, biosynthesis and biological activity of terpenoids and meroterpenoids in bacteria and fungi isolated from different marine habitats. Eur J Med Chem 2020; 210:112957. [PMID: 33160760 DOI: 10.1016/j.ejmech.2020.112957] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
Abstract
The marine environment with its vast biological diversity encompasses many organisms that produce bioactive natural products. Marine microorganisms are rich sources of compounds from many structural classes with a multitude of biological activities. The biosynthesis of microbial natural products depends on a variety of biotic and abiotic factors in the marine environment, including temperature, nutrients, salinity and interaction with other microorganisms. Terpenoids, as one of the most important groups of natural products in terrestrial microorganisms are important metabolites for marine microorganisms. Here, we have reviewed the chemistry, biosynthesis and pharmacological activities of terpenoids, extracted from marine microbes, and then survey their potential applications in drug development. We also discussed the different habitats in which marine microorganisms are found including sediments, the flora, such as seaweeds, sea grasses, and mangroves as well as the fauna like sponges and corals. Amongst these habitats, marine sediments are the major source for terpenoids producing microorganisms. The marine bacteria produce mostly meroterpenoids, while the fungi are well known for production of isoprenoids. Interestingly, marine-derived microbial terpenoids have some structural characteristics such as halogenation, which are catalyzed by specific enzymes with distinct substrate specificity. These compounds have anticancer, antibacterial, antifungal, antimalarial and anti-inflammatory properties. The information collected here might provide useful clues for developing new medications.
Collapse
Affiliation(s)
- Mohsen Gozari
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Bandar Abbas, Iran
| | - Maryam Alborz
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, SE-751 23, Uppsala, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, PR China
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
31
|
Grabarczyk M, Mączka W, Żołnierczyk AK, Wińska K. Transformations of Monoterpenes with the p-Menthane Skeleton in the Enzymatic System of Bacteria, Fungi and Insects. Molecules 2020; 25:E4840. [PMID: 33092264 PMCID: PMC7587936 DOI: 10.3390/molecules25204840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/02/2022] Open
Abstract
The main objective of this article was to present the possibilities of using the enzymatic system of microorganisms and insects to transform small molecules, such as monoterpenes. The most important advantage of this type of reaction is the possibility of obtaining derivatives that are not possible to obtain with standard methods of organic synthesis or are very expensive to obtain. The interest of industrial centers focuses mainly on obtaining particles of high optical purity, which have the desired biological properties. The cost of obtaining such a compound and the elimination of toxic or undesirable chemical waste is important. Enzymatic reactions based on enzymes alone or whole microorganisms enable obtaining products with a specific structure and purity in accordance with the rules of Green Chemistry.
Collapse
Affiliation(s)
- Małgorzata Grabarczyk
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Wanda Mączka
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | | | - Katarzyna Wińska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| |
Collapse
|
32
|
Velázquez JE, Sadañoski MA, Zapata PD, Comelli NA, Villalba LL. Bioproduction of α-terpineol and R-(+)-limonene derivatives by terpene-tolerant ascomycete fungus as a potential contribution to the citrus value chain. J Appl Microbiol 2020; 130:76-89. [PMID: 32648320 DOI: 10.1111/jam.14777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/12/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022]
Abstract
AIMS The aims of this article were to select fungal species with high tolerance and high growth rate in mediums supplemented with limonene and citrus essential oils (CEOs), and to test the bioconversion capability of the chosen isolates for the bioproduction of aroma compounds. METHODS AND RESULTS Based on the use of predictive mycology, 21 of 29 isolates were selected after assaying R-(+)-limonene and CEO tolerance (10 g l-1 ). With a dendrogram divisive coefficient of 0·937, the subcluster two with isolates Aspergillus niger LBM 055, Penicillium sp. LBM 150, Penicillium sp. LBM 151 and Penicillium sp. LBM 154 gathered the highest tolerance and mycelia growth speed. Ultrastructural analysis indicated that culture media containing limonene had no visible toxic activity that could promote morphological changes in the fungal cell wall. The biomass of A. niger LBM055 was distinctive in liquid media supplemented with R-(+)-limonene (0·57 ± 0·07 g) and it was selected to prove bioconversion capacity, under static and agitated conditions, and converted up to 98% of limonene, yielding a wide variety of products that were quantified by GC-FID. It was obtained at molecular weights less than limonene (64-100%), between limonene and α-terpineol (12-72%) and greater than α-terpineol (2-48%). CONCLUSIONS Aspergillus niger LBM 055, Penicillium sp. LBM 150, Penicillium sp. LBM 151 and Penicillium sp. LBM 154 showed to the highest tolerance and growth rate in mediums supplemented with R-(+)-limonene and orange and lemon essential oils. Particularly, A. niger LBM055, showed limonene bioconversion capability and produced different molecular weights compounds such us α-terpineol. SIGNIFICANCE AND IMPACT OF THE STUDY Different bioproducts can be obtained by changing operative condition with the same fungus, and this bioprocess aspect is a significant approach to be adopted on industrial scale leading to the creation of new natural flavours and fragrance compositions.
Collapse
Affiliation(s)
- J E Velázquez
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", CONICET, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - M A Sadañoski
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", CONICET, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - P D Zapata
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", CONICET, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - N A Comelli
- Departamento de Ciencias Básicas, Área Química, Facultad de Ingeniería y Ciencias Agropecuarias, Universidad Nacional de San Luis - Instituto de Investigación en Tecnología Química (INTEQUI - CONICET), San Luis, Argentina
| | - L L Villalba
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", CONICET, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| |
Collapse
|
33
|
Bacillus subtilis Fermentation of Malva verticillata Leaves Enhances Antioxidant Activity and Osteoblast Differentiation. Foods 2020; 9:foods9050671. [PMID: 32456062 PMCID: PMC7278731 DOI: 10.3390/foods9050671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/18/2022] Open
Abstract
Malva verticillata, also known as Chinese mallow, is an herbaceous plant with colorful flowers and has been used as a medicine for thousands of years. This study investigated this herb for potential antioxidant activity or an association with osteoblast differentiation. M. verticillate leaves were fermented with B. subtilis MV1 at 30 °C for 7 days to enhance their biological activities. The resultant aqueous extract (MVW) and the fermented leaves (MVB) were measured for antioxidant and osteoblast differentiation. The results showed that the total phenolic, flavonoid, and antioxidant activity, as well as the osteoblast differentiation of the MVB increased (2 to 6 times) compared with those of the MVW. MVB induced phosphorylation of p38, extracellular signal-regulated kinase in C3H10T1/2 cells, and the phosphorylation was attenuated via transforming growth factor-β (TGF-β) inhibitors. Moreover, runt-related transcription factor 2 and osterix in the nucleus increased in a time-dependent manner. The messenger RNA expression of alkaline phosphatase and bone sialoprotein increased about 9.4- and 65-fold, respectively, compared to the non-treated cells. MVB stimulated C3H10T1/2 cells in the osteoblasts via TGF-β signaling. Thus, fermented M. verticillata extract exhibited enhanced antioxidant activity and osteoblast differentiation.
Collapse
|
34
|
Sharma A, Biharee A, Kumar A, Jaitak V. Antimicrobial Terpenoids as a Potential Substitute in Overcoming Antimicrobial Resistance. Curr Drug Targets 2020; 21:1476-1494. [PMID: 32433003 DOI: 10.2174/1389450121666200520103427] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 11/22/2022]
Abstract
There was a golden era where everyone thought that microbes can no longer establish threat to humans but the time has come where microbes are proposing strong resistance against the majority of antimicrobials. Over the years, the inappropriate use and easy availability of antimicrobials have made antimicrobial resistance (AMR) to emerge as the world's third leading cause of death. Microorganisms over the time span have acquired resistance through various mechanisms such as efflux pump, transfer through plasmids causing mutation, changing antimicrobial site of action, or modifying the antimicrobial which will lead to become AMR as the main cause of death worldwide by 2030. In order to overcome the emerging resistance against majority of antimicrobials, there is a need to uncover drugs from plants because they have proved to be effective antimicrobials due to the presence of secondary metabolites such as terpenoids. Terpenoids abundant in nature are produced in response to microbial attack have huge potential against various microorganisms through diverse mechanisms such as membrane disruption, anti-quorum sensing, inhibition of protein synthesis and ATP. New approaches like combination therapy of terpenoids and antimicrobials have increased the potency of treatment against various multidrug resistant microorganisms by showing synergism to each other.
Collapse
Affiliation(s)
- Aditi Sharma
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab-151001, India
| | - Avadh Biharee
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab-151001, India
| | - Amit Kumar
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab-151001, India
| | - Vikas Jaitak
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab-151001, India
| |
Collapse
|
35
|
Sousa GMD, Cazarin CBB, Maróstica Junior MR, Lamas CDA, Quitete VHAC, Pastore GM, Bicas JL. The effect of α-terpineol enantiomers on biomarkers of rats fed a high-fat diet. Heliyon 2020; 6:e03752. [PMID: 32382672 PMCID: PMC7199010 DOI: 10.1016/j.heliyon.2020.e03752] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/28/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Alpha-terpineol is a monoterpenoid found in many essential oils, being widely used in food and household products. In vitro antioxidant and anti-inflammatory activities have already been associated with this alcohol; therefore, this study aimed to check if these properties were also present in vivo, counteracting the oxidant and inflammatory effects of a high-fat diet, as well as if there were differences in the biological activities among the two α-terpineol enantiomers. Thus, this work evaluated the effect of supplementation of α-terpineol enantiomers (at 25, 50 and 100 mg/kg of diet) on biological parameters of diet-induced obese Sprague-Dawley rats. In general, α-terpineol improved the nutritional parameters of rats fed a high-fat diet. The intake of α-terpineol at concentrations ≥50 mg/kg was able to reestablish the insulin sensibility and reduced (p < 0.05) serum levels of pro-inflammatory cytokines TNF-α and IL-1β, when compared with the control group. The intake of R-(+)- and (-)-α-terpineol decreased the TNF-α level by approximately 1.5 and 3.4 times, respectively, when compared with the high-fat group, regardless of the concentration. Moreover, both enantiomers at 50 mg/kg decreased the levels of serum thiobarbituric acid reactive substances (TBARS) by 2.6-4.2 times, while hepatic TBARS were reduced in approximately 1.6 times, regardless of the compound and concentration tested. Further experiments are suggested to confirm the mechanisms and the security of α-terpineol in different experimental models and more extended exposure experiments.
Collapse
Affiliation(s)
- Gardênia Martins de Sousa
- Department of Food Science, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| | - Cinthia Baú Betim Cazarin
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| | - Mário Roberto Maróstica Junior
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| | - Celina de Almeida Lamas
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, CEP 13083-862, Campinas, SP, Brazil
| | - Valéria Helena Alves Cagnon Quitete
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, CEP 13083-862, Campinas, SP, Brazil
| | - Glaucia Maria Pastore
- Department of Food Science, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| | - Juliano Lemos Bicas
- Department of Food Science, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| |
Collapse
|
36
|
Chan S, Li Y, Poon W. Apoptotic and cytotoxic effects on human glioblastoma cell lines induced by essential oil Lavandula Augustifolia. SURGICAL PRACTICE 2020. [DOI: 10.1111/1744-1633.12406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Siu‐Yee Chan
- Division of NeurosurgeryOtto Wong Brain Tumour Centre, Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong
| | - Yi Li
- Department of Surgery, Otto Wong Brain Tumour CentrePrince of Wales Hospital, The Chinese University of Hong Kong Hong Kong
| | - Wai‐Sang Poon
- Division of NeurosurgeryOtto Wong Brain Tumour Centre, Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong
| |
Collapse
|
37
|
Grabarczyk M, Wińska K, Mączka W, Żarowska B, Białońska A, Anioł M. Hydroxy lactones with the gem-dimethylcyclohexane system – Synthesis and antimicrobial activity. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Becerril R, Manso S, Nerín C. Metabolites identified as interaction products between EOs from food packaging and selected microorganisms. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Molina G, Pessôa MG, Bicas JL, Fontanille P, Larroche C, Pastore GM. Optimization of limonene biotransformation for the production of bulk amounts of α-terpineol. BIORESOURCE TECHNOLOGY 2019; 294:122180. [PMID: 31606595 DOI: 10.1016/j.biortech.2019.122180] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
The biotransformation of R-(+)-limonene into high concentrations of R-(+)-α-terpineol by Sphingobium sp. was investigated in order to optimize the main process variables (pH, biocatalyst concentration, substrate concentration, temperature and agitation). This strategy comprised the screening of variables by a Plackett-Burman design followed by a Central Composite Design. The statistical analysis showed that the optimal α-terpineol production were at 28 °C and pH 7.0, with a limonene concentration of 350 g/L of organic phase agitation of 200 rpm and a biocatalyst concentration of 2.8 g/L of aqueous phase (OD600 = 8). Further trials showed that the R-(+)-α-terpineol concentration was higher (240 g/L after 96 h) when using a ratio of 1:3 (v.v-1) of organic:aqueous phases. However, the total production and yield (in terms of biomass) of α-terpineol would be maximized for an aqueous:organic ratio of 1:1. The experimental design optimization adopted herein was an effective tool for this type of study.
Collapse
Affiliation(s)
- Gustavo Molina
- Laboratory of Bioflavors, Department of Food Science, School of Food Engineering - University of Campinas, Campinas, São Paulo, Brazil; Laboratory of Food Biotechnology, Food Engineering, Institute of Science and Technology - UFVJM, Diamantina, Minas Gerais, Brazil; Université Clermont Auvergne, Institut Pascal, TSA 60026, F-63178 Aubière cedex, France.
| | - Marina G Pessôa
- Laboratory of Bioflavors, Department of Food Science, School of Food Engineering - University of Campinas, Campinas, São Paulo, Brazil
| | - Juliano L Bicas
- Laboratory of Bioflavors, Department of Food Science, School of Food Engineering - University of Campinas, Campinas, São Paulo, Brazil
| | - Pierre Fontanille
- Université Clermont Auvergne, Institut Pascal, TSA 60026, F-63178 Aubière cedex, France; CNRS, UMR 6602, IP, F-63178 Aubière cedex, France
| | - Christian Larroche
- Université Clermont Auvergne, Institut Pascal, TSA 60026, F-63178 Aubière cedex, France; CNRS, UMR 6602, IP, F-63178 Aubière cedex, France
| | - Gláucia M Pastore
- Laboratory of Bioflavors, Department of Food Science, School of Food Engineering - University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
40
|
Lipase-Catalyzed Esterification of Geraniol and Citronellol for the Synthesis of Terpenic Esters. Appl Biochem Biotechnol 2019; 190:574-583. [PMID: 31396887 DOI: 10.1007/s12010-019-03102-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
This article describes the synthesis of terpenic esters derived from geraniol and citronellol (geranyl and citronellyl alkanoates) through esterification reactions catalyzed by the immobilized lipases from Thermomyces lanuginosus (Lipozyme TL IM®) and Candida antarctica (Novozym 435®). Geraniol was esterified with oleic, lauric, and stearic acids; and citronellol was esterified with oleic and stearic acids. For all the synthesized flavor esters, the best conditions were 35 °C, and the molar ratio between acid and alcohol was 1:1. Geranyl and citronellyl alkanoates reached yields between 80-100% within 4 h of reaction. For the synthesis of the citronellyl and geranyl oleate, higher yields were obtained in the absence of organic solvents. For the esters from lauric and stearic acids, using solvent was indispensable to improve the miscibility between the substrates. The reuse of Novozym 435® and Lipozyme TL IM® was performed for two more cycles after the first use, with yields higher than 60%. The results demonstrated the efficiency of the reaction catalyzed by these two commercial enzymes and the feasibility of the methodology for the production of synthetic flavor esters through enzymatic catalysis. The flavor esters synthesized were not described in the literature up to the date, giving this research an innovative feature.
Collapse
|
41
|
Wajid A, Ahmad MS, Yousuf S, Simjee SU, Nisar U, Rahman AU, Choudhary MI. Macrophomina phaseolina mediated intramolecular trans-esterification of picrotoxinin and study of convulsant activity of transformed product. J Mol Struct 2019; 1180:499-504. [DOI: 10.1016/j.molstruc.2018.11.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Pessôa MG, Vespermann KA, Paulino BN, Barcelos MC, Pastore GM, Molina G. Newly isolated microorganisms with potential application in biotechnology. Biotechnol Adv 2019; 37:319-339. [DOI: 10.1016/j.biotechadv.2019.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/23/2022]
|
43
|
Singh P, Kapkoti DS, Singh N, Tewari R, Saikia D, Rout PK, Pandey R, Bhakuni RS. Biotransformation of artemisinic acid by the fungus Trichothecium roseum and anti-candidal activity of its metabolites. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2018.1552265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Pooja Singh
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Deepak Singh Kapkoti
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Nandan Singh
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rashi Tewari
- Process Chemistry and Chemical Engineering Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Dharmendra Saikia
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Prasant Kumar Rout
- Process Chemistry and Chemical Engineering Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rakesh Pandey
- Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rajendra Singh Bhakuni
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
44
|
Catalytic β-Bromohydroxylation of Natural Terpenes: Useful Intermediates for the Synthesis of Terpenic Epoxides. J CHEM-NY 2019. [DOI: 10.1155/2019/9268567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In a one-step procedure, various β-bromoalcohols were synthesized from natural terpenes in good to excellent yields. Using different catalysts, the reaction was carried out at room temperature, with H2O as nucleophile and N-bromosuccinimide as a bromine source under mild reaction conditions. The synthesized β-bromoalcohols were subsequently converted in situ to the corresponding epoxides in good yields.
Collapse
|
45
|
Biswal D, Pramanik NR, Drew MGB, Jangra N, Maurya MR, Kundu M, Sil PC, Chakrabarti S. Synthesis, crystal structure, DFT calculations, protein interaction, anticancer potential and bromoperoxidase mimicking activity of oxidoalkoxidovanadium( v) complexes. NEW J CHEM 2019; 43:17783-17800. [DOI: 10.1039/c9nj02471a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Intriguing structure–activity relationships (SARs) indicating an apparent dependence of anticancer and haloperoxidase activities on the carbon chain length of the alkoxo group.
Collapse
Affiliation(s)
- Debanjana Biswal
- Department of Chemistry
- University College of Science
- Kolkata 700009
- India
| | | | | | - Nancy Jangra
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Mannar R. Maurya
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Mousumi Kundu
- Division of Molecular Medicine
- Bose Institute
- Kolkata 700054
- India
| | - Parames C. Sil
- Division of Molecular Medicine
- Bose Institute
- Kolkata 700054
- India
| | | |
Collapse
|
46
|
Bier MCJ, Medeiros ABP, De Kimpe N, Soccol CR. Evaluation of antioxidant activity of the fermented product from the biotransformation of R-(+)-limonene in solid-state fermentation of orange waste by Diaporthe sp. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biori.2019.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Meadows CW, Mingardon F, Garabedian BM, Baidoo EEK, Benites VT, Rodrigues AV, Abourjeily R, Chanal A, Lee TS. Discovery of novel geranylgeranyl reductases and characterization of their substrate promiscuity. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:340. [PMID: 30607175 PMCID: PMC6309074 DOI: 10.1186/s13068-018-1342-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Geranylgeranyl reductase (GGR) is a flavin-containing redox enzyme that hydrogenates a variety of unactivated polyprenyl substrates, which are further processed mostly for lipid biosynthesis in archaea or chlorophyll biosynthesis in plants. To date, only a few GGR genes have been confirmed to reduce polyprenyl substrates in vitro or in vivo. RESULTS In this work, we aimed to expand the confirmed GGR activity space by searching for novel genes that function under amenable conditions for microbial mesophilic growth in conventional hosts such as Escherichia coli or Saccharomyces cerevisiae. 31 putative GGRs were selected to test for potential reductase activity in vitro on farnesyl pyrophosphate, geranylgeranyl pyrophosphate, farnesol (FOH), and geranylgeraniol (GGOH). We report the discovery of several novel GGRs exhibiting significant activity toward various polyprenyl substrates under mild conditions (i.e., pH 7.4, T = 37 °C), including the discovery of a novel bacterial GGR isolated from Streptomyces coelicolor. In addition, we uncover new mechanistic insights within several GGR variants, including GGR-mediated phosphatase activity toward polyprenyl pyrophosphates and the first demonstration of completely hydrogenated GGOH and FOH substrates. CONCLUSION These collective results enhance the potential for metabolic engineers to manufacture a variety of isoprenoid-based biofuels, polymers, and chemical feedstocks in common microbial hosts such as E. coli or S. cerevisiae.
Collapse
Affiliation(s)
- Corey W. Meadows
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | | | - Brett M. Garabedian
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Edward E. K. Baidoo
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Veronica T. Benites
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Andria V. Rodrigues
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Raya Abourjeily
- Total Raffinage Chimie, 2 Pl. Jean Millier, 92400 Courbevoie, France
| | - Angelique Chanal
- Total Raffinage Chimie, 2 Pl. Jean Millier, 92400 Courbevoie, France
| | - Taek Soon Lee
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
48
|
de Sousa IP, Sousa Teixeira MV, Jacometti Cardoso Furtado NA. An Overview of Biotransformation and Toxicity of Diterpenes. Molecules 2018; 23:E1387. [PMID: 29890639 PMCID: PMC6100218 DOI: 10.3390/molecules23061387] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022] Open
Abstract
Diterpenes have been identified as active compounds in several medicinal plants showing remarkable biological activities, and some isolated diterpenes are produced at commercial scale to be used as medicines, food additives, in the synthesis of fragrances, or in agriculture. There is great interest in developing methods to obtain derivatives of these compounds, and biotransformation processes are interesting tools for the structural modification of natural products with complex chemical structures. Biotransformation processes also have a crucial role in drug development and/or optimization. The understanding of the metabolic pathways for both phase I and II biotransformation of new drug candidates is mandatory for toxicity and efficacy evaluation and part of preclinical studies. This review presents an overview of biotransformation processes of diterpenes carried out by microorganisms, plant cell cultures, animal and human liver microsomes, and rats, chickens, and swine in vivo and highlights the main enzymatic reactions involved in these processes and the role of diterpenes that may be effectively exploited by other fields.
Collapse
Affiliation(s)
- Ingrid P de Sousa
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, São Paulo 14040903, Brazil.
| | - Maria V Sousa Teixeira
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, São Paulo 14040903, Brazil.
| | - Niege A Jacometti Cardoso Furtado
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, São Paulo 14040903, Brazil.
| |
Collapse
|
49
|
Żyszka-Haberecht B, Poliwoda A, Lipok J. Biocatalytic hydrogenation of the C=C bond in the enone unit of hydroxylated chalcones-process arising from cyanobacterial adaptations. Appl Microbiol Biotechnol 2018; 102:7097-7111. [PMID: 29869071 PMCID: PMC6096841 DOI: 10.1007/s00253-018-9109-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022]
Abstract
To verify the hypothesis that cyanobacteria naturally biosynthesising polyphenolic compounds possess an active enzymatic system that enables them to transform these substances, such an ability of the biocatalytic systems of whole cells of these biota was assessed for the first time. One halophilic strain and seven freshwater strains of cyanobacteria representing four of the five taxonomic orders of Cyanophyta were examined to determine the following: (i) whether they contain polyphenols, including flavonoids; (ii) the resistance of their cultures when suppressed by the presence of exogenous hydroxychalcones—precursors of flavonoid biosynthesis and (iii) whether these photoautotrophs can transform hydroxylated chalcones. All examined strains were found to contain polyphenols and flavonoids, and the growth of their cultures was inhibited in the presence of 2′-hydroxychalcone, 2″-hydroxychalcone and 4″-hydroxychalcone. We also confirmed that the examined cyanobacteria transformed hydroxychalcones via hydrogenative bio-reduction and formed the corresponding hydroxydihydro derivatives with yields above 90% whenever the substrates were bioavailable for such a conversion. Moreover, we observed that the routes and efficiency of biohydrogenation (and hydroxylation) of chalcones were dependent on the location of the hydroxyl substituent. The final products obtained as the results of biotransformations were extracted from the media and identified by mass spectrometry (LC-MS/MS) and nuclear magnetic resonance (1H NMR, 13C NMR, COSY, HSQC). Based on those results, we believe that the very efficient biohydrogenation of hydroxychalcones, which may easy be scaled up for biotechnological purposes, reflects the natural activity of the cyanobacterial defence system, because hydroxydihydrochalcones were less active inhibitors of the growth of cyanobacterial cultures than the corresponding substrates.
Collapse
Affiliation(s)
- Beata Żyszka-Haberecht
- Department of Analytical and Ecological Chemistry, Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Anna Poliwoda
- Department of Analytical and Ecological Chemistry, Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Jacek Lipok
- Department of Analytical and Ecological Chemistry, Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland.
| |
Collapse
|
50
|
Bergamaschi M, Bittante G. From milk to cheese: Evolution of flavor fingerprint of milk, cream, curd, whey, ricotta, scotta, and ripened cheese obtained during summer Alpine pasture. J Dairy Sci 2018; 101:3918-3934. [DOI: 10.3168/jds.2017-13573] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/22/2017] [Indexed: 11/19/2022]
|