1
|
Wang CF, Hu J, Liu XY, Qi YX, Cao XZ, Sun WJ, Cheng YJ, Wei MY, Zheng JY, Shao CL. Discovery new marine-derived terphenyllin derivatives as potential antifoulants through structural optimization. Bioorg Chem 2025; 159:108389. [PMID: 40121770 DOI: 10.1016/j.bioorg.2025.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/26/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Marine biofouling remains a global problem, harming the maritime industries and ocean's ecosystem. Toxic antifoulants caused serious environmental pollution, which may enter human body through the food chain and affect human health. We searched for antifouling active compounds from the marine compound library, and a natural p-terphenyl metabolite, terphenyllin (1) and its derivatives (2-8) attracted our attention. Two 2' or 4″ hydroxy group etherified derivatives (4 and 5) of terphenyllin showed antialgal activity. To improve its activity, twenty-four new terphenyllin derivatives (9-21, 23-27, and 29-34), along with two know derivatives (22 and 28), were designed and semisynthesized by halogenation, etherification, and acylation reactions. All the compounds were evaluated for their antifouling activity against diatoms Navicula Exigua, N. Leavissima, Amphora Ovalis, Skeletonema Costatum, and Nitzschia closterium f. minutissima. Twelve compounds (9-11, 19, 22-25, 28, 30-31, and 34) displayed antialgal activities with EC50 values from 1.2 to 9.8 μg/mL. Especially, compounds 10, 11, and 25 exhibited promising broad-spectrum antifouling activity (EC50 = 1.2-3.6 μg/mL) with lower ecotoxicity (LC50 > 150 μg/mL), which were approximately equivalent to the commercial antifouling agent Econea (EC50 = 0.5-1.1 μg/mL). It was worth noting that compound 9 (EC50 = 2.0 μg/mL, LC50 > 150 μg/mL) showed potential antifouling activity against the settlement of the macrofouling species Mussel Mytilus edulis. The preliminary structure-activity relationships of these compounds were also discussed. In conclusion, this study provided promising antifouling compounds, which were poised for further development as new environmentally friendly antifoulants.
Collapse
Affiliation(s)
- Cui-Fang Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Jie Hu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, 266237 Qingdao, PR China
| | - Xiao-Ying Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Yue-Xuan Qi
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, 266237 Qingdao, PR China
| | - Xi-Zhen Cao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Wen-Jing Sun
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, 266237 Qingdao, PR China
| | - Ya-Jie Cheng
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, 266237 Qingdao, PR China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Ji-Yong Zheng
- National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, 266237 Qingdao, PR China.
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
2
|
Li Y, Zhou Y, Lin J, Liu H, Liu X. Antifouling Slippery Surface with Enhanced Stability for Marine Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5598. [PMID: 39597421 PMCID: PMC11595577 DOI: 10.3390/ma17225598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
In recent years, slippery liquid-infused porous surfaces (SLIPSs) have gained significant attention in antifouling applications. However, their slippery performance often deteriorates in dynamic environments, limiting their service life. TC4 titanium alloy, commonly used in hulls and propellers, is prone to biofouling. SLIPSs have gained significant attention in antifouling applications. However, their slippery performance often deteriorates in dynamic environments, limiting their service life. To address these issues, a novel slippery liquid-infused surface (STASL) was developed on TC4 through the integration of hydroxyl end-blocked dimethylsiloxane (OH-PDMS), a silane coupling agent (KH550), and nano-titanium dioxide loaded with silver particles (TiO2-Ag, anatase) and silicone oil, thereby ensuring stable performance in both dynamic and static conditions. The as-prepared surfaces exhibited excellent sliding capabilities for water, acidic, alkaline, and saline droplets, achieving speeds of up to 2.859 cm/s. Notably, the STASL demonstrated superior oil retention and slippery stability compared to SLIPS, particularly at increased rotational speeds. With remarkable self-cleaning properties, the STASL significantly reduced the adhesion of proteins (50.0%), bacteria (77.8%), and algae (78.8%) compared to the titanium alloy. With these outstanding properties, the STASL has emerged as a promising solution for mitigating marine biofouling and corrosion on titanium alloys.
Collapse
Affiliation(s)
| | | | | | | | - Xin Liu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China; (Y.L.); (Y.Z.); (J.L.); (H.L.)
| |
Collapse
|
3
|
Pereira S, Oliveira IB, Sousa ML, Gonçalves C, Preto M, Turkina MV, Vasconcelos V, Campos A, Almeida JR. Antifouling activity and ecotoxicological profile of the cyanobacterial oxadiazine nocuolin A. CHEMOSPHERE 2024; 365:143318. [PMID: 39271082 DOI: 10.1016/j.chemosphere.2024.143318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Pursuing effective and biocompatible natural compounds to supplant current biocidal antifouling (AF) technologies remains crucial and challenging. Among natural products hosts, cyanobacteria are recognized as producers of bioactive secondary metabolites that are underexplored in terms of anti-biofilm and AF potential. Nocuolin A, a natural oxadiazine previously isolated and known to be produced by different cyanobacterial strains, has demonstrated bioactive potential, particularly against tumor cell lines. Considering this potential and its exquisite chemical structure, here nocuolin A was investigated as a potential natural AF agent through an integrative approach including AF bioactivity testing across distinct levels of biological organization, mode of action assessment, ecotoxicity evaluation, and ecological risk predictions. Nocuolin A was found to inhibit the settlement of mussel (Mytilus galloprovincialis) plantigrades (EC50 = 3.905 μM) while showing no toxicity to this biofouling species (LC50 > 100 μM). Additionally, while exhibiting no inhibitory activity against the growth of five marine biofilm-forming bacterial strains, it significantly suppressed the growth of the marine biofilm-forming diatom Navicula sp. (EC50 = 1.561 μM), and had a lethal effect on this diatom species (>3.1 μM). The AF targets of nocuolin A on mussel plantigrades revealed no correlation with acetylcholinesterase and tyrosinase metabolic processes; however, proteins involved in oxidative stress, muscle regulation, and energy production were highlighted. The results also provide insights into the ecological risk of nocuolin A, including its ecotoxicity against Artemia salina nauplii (LC50 = 2.480 μM), Amphibalanus amphitrite nauplii (LC50 = 0.0162 μM), and Danio rerio embryos (LC50 = 0.0584 μM). When matching these results with simulated environmental values, nocuolin A was deemed a considerable threat to the ecosystems. While this research highlights the AF activity of nocuolin A, it also emphasizes the potential adverse environmental impact when applied in preventive coatings.
Collapse
Affiliation(s)
- Sandra Pereira
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Isabel B Oliveira
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| | - Maria Lígia Sousa
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| | - Catarina Gonçalves
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Marco Preto
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| | - Maria V Turkina
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden.
| | - Vitor Vasconcelos
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Alexandre Campos
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| | - Joana R Almeida
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
4
|
Neves AR, Godinho S, Gonçalves C, Gomes AS, Almeida JR, Pinto M, Sousa E, Correia-da-Silva M. A Chemical Toolbox to Unveil Synthetic Nature-Inspired Antifouling (NIAF) Compounds. Mar Drugs 2024; 22:416. [PMID: 39330297 PMCID: PMC11433177 DOI: 10.3390/md22090416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
The current scenario of antifouling (AF) strategies to prevent the natural process of marine biofouling is based in the use of antifouling paints containing different active ingredients, believed to be harmful to the marine environment. Compounds called booster biocides are being used with copper as an alternative to the traditionally used tributyltin (TBT); however, some of them were recently found to accumulate in coastal waters at levels that are deleterious for marine organisms. More ecological alternatives were pursued, some of them based on the marine organism mechanisms' production of specialized metabolites with AF activity. However, despite the investment in research on AF natural products and their synthetic analogues, many studies showed that natural AF alternatives do not perform as well as the traditional metal-based ones. In the search for AF agents with better performance and to understand which molecular motifs were responsible for the AF activity of natural compounds, synthetic analogues were produced and investigated for structure-AF activity relationship studies. This review is a comprehensive compilation of AF compounds synthesized in the last two decades with highlights on the data concerning their structure-activity relationship, providing a chemical toolbox for researchers to develop efficient nature-inspired AF agents.
Collapse
Affiliation(s)
- Ana Rita Neves
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Sara Godinho
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Catarina Gonçalves
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Ana Sara Gomes
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Joana R Almeida
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
5
|
Wissner JL, Almeida JR, Grilo IR, Oliveira JF, Brízida C, Escobedo-Hinojosa W, Pissaridou P, Vasquez MI, Cunha I, Sobral RG, Vasconcelos V, Gaudêncio SP. Novel metabolite madeirone and neomarinone extracted from Streptomyces aculeoletus as marine antibiofilm and antifouling agents. Front Chem 2024; 12:1425953. [PMID: 39119516 PMCID: PMC11306024 DOI: 10.3389/fchem.2024.1425953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Biofouling poses a significant economic threat to various marine industries, leading to financial losses that can reach billions of euros annually. This study highlights the urgent need for effective alternatives to traditional antifouling agents, particularly following the global ban on organotin compounds. Material and methods: Streptomyces aculeolatus PTM-346 was isolated from sediment samples on the shores of the Madeira Archipelago, Portugal. The crude extract was fractionated using silica flash chromatography and preparative HPLC, resulting in two isolated marinone compounds: madeirone (1), a novel marinone derivative discovered in this study, and neomarinone (2). The antifouling activities of these compounds were tested against five marine bacterial species and the larvae of the mussel Mytilus galloprovincialis. Additionally, in silico and in vivo environmental toxicity evaluations of madeirone (1) and neomarinone (2) were conducted. Results: Madeirone (1) demonstrated significant antibiofilm efficacy, inhibiting Phaeobacter inhibens by up to 66%, Marinobacter hydrocarbonoclasticus by up to 60%, and Cobetia marina by up to 40%. Neomarinone (2) also exhibited substantial antibiofilm activity, with inhibition rates of up to 41% against P. inhibens, 40% against Pseudo-oceanicola batsensis, 56% against M. hydrocarbonoclasticus, 46% against C. marina, and 40% against Micrococcus luteus. The growth inhibition activity at the same concentrations of these compounds remained below 20% for the respective bacteria, highlighting their effectiveness as potent antibiofilm agents without significantly affecting bacterial viability. Additionally, both compounds showed potent effects against the settlement of Mytilus galloprovincialis larvae, with EC50 values of 1.76 µg/mL and 0.12 µg/mL for compounds (1) and (2), respectively, without impairing the viability of the targeted macrofouling species. In silico toxicity predictions and in vivo toxicity assays both support their potential for further development as antifouling agents. Conclusion: The newly discovered metabolite madeirone (1) and neomarinone (2) effectively inhibit both micro- and macrofouling. This distinct capability sets them apart from existing commercial antifouling agents and positions them as promising candidates for biofouling prevention. Consequently, these compounds represent a viable and environmentally friendly alternative for incorporation into paints, primers, varnishes, and sealants, offering significant advantages over traditional copper-based compounds.
Collapse
Affiliation(s)
- Julian L. Wissner
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | - Joana R. Almeida
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Inês R. Grilo
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Jhenifer F. Oliveira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Carolina Brízida
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Wendy Escobedo-Hinojosa
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | - Panayiota Pissaridou
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Marlen I. Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Isabel Cunha
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Rita G. Sobral
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Vítor Vasconcelos
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- Biology Department, Faculty of Sciences, Porto University, Porto, Portugal
| | - Susana P. Gaudêncio
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| |
Collapse
|
6
|
Pereira D, Palmeira A, Lima É, Vasconcelos V, Pinto M, Correia-da-Silva M, Almeida JR, Cidade H. Chalcone derivatives as promising antifoulants: Molecular optimization, bioactivity evaluation and performance in coatings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116560. [PMID: 38865941 DOI: 10.1016/j.ecoenv.2024.116560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Marine biofouling remains a huge concern for maritime industries and for environmental health. Although the current biocide-based antifouling coatings can prevent marine biofouling, their use has been associated with toxicity for the marine environment, being urgent to find sustainable alternatives. Previously, our research group has identified a prenylated chalcone (1) with promising antifouling activity against the settlement of larvae of the macrofouling species Mytilus galloprovincialis (EC50 = 16.48 µM and LC50 > 200 µM) and lower ecotoxicity when compared to Econea®, a commercial antifouling agent in use. Herein, a series of chalcone 1 analogues were designed and synthesized in order to obtain optimized antifouling compounds with improved potency while maintaining low ecotoxicity. Compounds 8, 15, 24, and 27 showed promising antifouling activity against the settlement of M. galloprovincialis larvae, being dihydrochalcone 27 the most potent. The effect of compound 24 was associated with the inhibition of acetylcholinesterase activity. Among the synthesized compounds, compound 24 also showed potent complementary activity against Navicula sp. (EC50 = 4.86 µM), similarly to the lead chalcone 1 (EC50 = 6.75 µM). Regarding the structure-activity relationship, the overall results demonstrate that the substitution of the chalcone of the lead compound 1 by a dihydrochalcone scaffold resulted in an optimized potency against the settlement of mussel larvae. Marine polyurethane (PU)-based coatings containing the best performed compound concerning anti-settlement activity (dihydrochalcone 27) were prepared, and mussel larvae adherence was reduced compared to control PU coatings.
Collapse
Affiliation(s)
- Daniela Pereira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| | - Érica Lima
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4069-007, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| | - Joana R Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal.
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal.
| |
Collapse
|
7
|
Pereira D, Almeida JR, Cidade H, Correia-da-Silva M. Proof of Concept of Natural and Synthetic Antifouling Agents in Coatings. Mar Drugs 2024; 22:291. [PMID: 39057400 PMCID: PMC11278152 DOI: 10.3390/md22070291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Marine biofouling, caused by the deposition and accumulation of marine organisms on submerged surfaces, represents a huge concern for the maritime industries and also contributes to environmental pollution and health concerns. The most effective way to prevent this phenomenon is the use of biocide-based coatings which have proven to cause serious damage to marine ecosystems. Several research groups have focused on the search for new environmentally friendly antifoulants, including marine and terrestrial natural products and synthetic analogues. Some of these compounds have been incorporated into marine coatings and display interesting antifouling activities caused by the interference with the biofilm-forming species as well as by the inhibition of the settlement of macroorganisms. This review highlights the proof-of-concept studies of emerging natural or synthetic antifouling compounds in coatings, from lab-made to commercial ones, performed between 2019 and 2023 and their results in the field or in in vivo laboratorial tests.
Collapse
Affiliation(s)
- Daniela Pereira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
| | - Joana R. Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (CESPU), 4585-116 Gandra, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
| |
Collapse
|
8
|
Huenuvil-Pacheco I, Jaramillo A, Abreu N, Garrido-Miranda K, Sánchez-Sanhueza G, González-Rocha G, Medina C, Montoya L, Sanhueza J, Melendrez M. Biocidal effects of organometallic materials supported on ZSM-5 Zeolite: Influence of the physicochemical and surface properties. Heliyon 2024; 10:e27182. [PMID: 38455576 PMCID: PMC10918221 DOI: 10.1016/j.heliyon.2024.e27182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Antifouling coatings containing biocidal agents can be used to prevent the accumulation of biotic deposits on submerged surfaces; however, several commercial biocides can negatively affect the ecosystem. In this study, various formulations of a potential biocide product comprising copper nanoparticles and capsaicin supported on zeolite ZSM-5 were analyzed to determine the influence of the concentration of each component. The incorporation of copper was evidenced by scanning electron microscopy and energy dispersive spectroscopy. Similarly, Fourier-transform infrared spectroscopy confirmed that capsaicin was supported on the zeolite surface. The presence of capsaicin on the external zeolite surface significantly reduced the surface area of the zeolite. Finally, bacterial growth inhibition analysis showed that copper nanoparticles inhibited the growth of strains Idiomarina loihiensis UCO25, Pseudoalteromonas sp. UCO92, and Halomonas boliviensis UCO24 while the organic component acted as a reinforcing biocide.
Collapse
Affiliation(s)
- I. Huenuvil-Pacheco
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile
- Department of Chemical Engineering, University of Concepción, Concepción 4070386, Chile
| | - A.F. Jaramillo
- Department of Mechanical Engineering, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile
- Departamento de Ingeniería Mecánica, Universidad de Córdoba, Cr 6 #76-103, Montería 230002, Colombia
| | - N.J. Abreu
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile
- Centro de Manejo de Residuos y Bioenergía, BIOREN, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile
| | - K. Garrido-Miranda
- Agriaquaculture Nutritional Genomic Center (CGNA), Temuco 4780000, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados (BIOMA), Universidad Católica de Temuco, Avenida Rudecindo Ortega 02950, Campus San Juan Pablo II, Temuco 4780000, Chile
| | - G. Sánchez-Sanhueza
- Department of Restorative Dentistry, Faculty of Dentistry, Universidad de Concepción, 1550 Roosevelt St, Concepcion 4030000, Chile
| | - G. González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, P.O. Box C-160, Chile
| | - C. Medina
- Department of Mechanical Engineering (DIM), Faculty of Engineering, University of Concepción, Edmundo Larenas 219, Concepcion 4070409, Chile
| | - L.F. Montoya
- Department of Chemical Engineering, University of Concepción, Concepción 4070386, Chile
| | - J.P. Sanhueza
- Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, 315 Edmundo Larenas, Concepcion, 4070415, Chile
| | - M.F. Melendrez
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastían, Campus Las Tres Pascualas, Lientur 1457, Concepción, 4060000, Chile
| |
Collapse
|
9
|
Cahill PL, Moodie LWK, Hertzer C, Pinori E, Pavia H, Hellio C, Brimble MA, Svenson J. Creating New Antifoulants Using the Tools and Tactics of Medicinal Chemistry. Acc Chem Res 2024; 57:399-412. [PMID: 38277792 DOI: 10.1021/acs.accounts.3c00733] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The unwanted accumulation of marine micro- and macroorganisms such as algae and barnacles on submerged man-made structures and vessel hulls is a major challenge for any marine operation. Known as biofouling, this problem leads to reduced hydrodynamic efficiency, significantly increased fuel usage, microbially induced corrosion, and, if not managed appropriately, eventual loss of both performance and structural integrity. Ship hull biofouling in the international maritime transport network conservatively accounts for 0.6% of global carbon emissions, highlighting the global scale and the importance of this problem. Improved antifouling strategies to limit surface colonization are paramount for essential activities such as shipping, aquaculture, desalination, and the marine renewable energy sector, representing both a multibillion dollar cost and a substantial practical challenge. From an ecological perspective, biofouling is a primary contributor to the global spread of invasive marine species, which has extensive implications for the marine environment.Historically, heavy metal-based toxic biocides have been used to control biofouling. However, their unwanted collateral ecological damage on nontarget species and bioaccumulation has led to recent global bans. With expanding human activities within aquaculture and offshore energy, it is both urgent and apparent that environmentally friendly surface protection remains key for maintaining the function of both moving and stationary marine structures. Biofouling communities are typically a highly complex network of both micro- and macroorganisms, representing a broad section of life from bacteria to macrophytes and animals. Given this diversity, it is unrealistic to expect that a single antifouling "silver bullet" will prevent colonization with the exception of generally toxic biocides. For that reason, modern and future antifouling solutions are anticipated to rely on novel coating technologies and "combination therapies" where mixtures of narrow-spectrum bioactive components are used to provide coverage across fouling species. In contrast to the existing cohort of outdated, toxic antifouling strategies, such as copper- and tributyltin-releasing paints, modern drug discovery techniques are increasingly being employed for the rational design of effective yet safe alternatives. The challenge for a medicinal chemistry approach is to effectively account for the large taxonomic diversity among fouling organisms combined with a lack of well-defined conserved molecular targets within most taxa.The current Account summarizes our work employing the tools of modern medicinal chemistry to discover, modify, and develop optimized and scalable antifouling solutions based on naturally occurring antifouling and repelling compounds from both marine and terrestrial sources. Inspiration for rational design comes from targeted studies on allelopathic natural products, natural repelling peptides, and secondary metabolites from sessile marine organisms with clean exteriors, which has yielded several efficient and promising antifouling leads.
Collapse
Affiliation(s)
- Patrick L Cahill
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Lindon W K Moodie
- Drug Design and Discovery, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, 75123 Uppsala, Sweden
| | - Cora Hertzer
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Emiliano Pinori
- RISE Research Institutes of Sweden, Division for Material and Production, 504 62 Borås, Sweden
| | - Henrik Pavia
- Department of Marine Sciences - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Claire Hellio
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Johan Svenson
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| |
Collapse
|
10
|
Abdulrahman I, Jamal MT, Pugazhendi A, Dhavamani J, Al-Shaeri M, Al-Maaqar S, Satheesh S. Antibacterial and antibiofilm activity of extracts from sponge-associated bacterial endophytes. Prep Biochem Biotechnol 2023; 53:1143-1153. [PMID: 36840506 DOI: 10.1080/10826068.2023.2175366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Sponges forms association with many bacteria that serve as sources of new bioactive compounds. The compounds are produced in response to environmental and nutritional conditions of the environment that enable them to protect their host from colonization. In this study, three sponge bacterial endophytes were isolated, identified, and subjected to solvent extraction processes. The identified bacteria are Bacillus amyloquifaciens, Bacillus paramycoides, and Enterobacter sp. The bacteria were cultured in two different fermentation media with varying nutritional composition for the extraction process. The extracts were evaluated for antibacterial and antibiofilm activity against microfouling bacteria and the chemical composition of each extract was analyzed via gas chromatography-mass spectrometry (GC-MS). The extract from the endophytes shows varying antibacterial and antibiofilm activity against the tested strains. Several compounds were detected from the extracts including some with known antibacterial/antibiofilm activity. The results showed variations in activity and secondary metabolite production between the extracts obtained under different nutritional composition of the media. In conclusion, this study indicated the role of nutrient composition in the activity and secondary metabolites production by bacteria associated with sponge Also, this study confirmed the role of sponge bacterial endophytes as producers of bioactive compounds with potential application as antifouling (AF) agents.
Collapse
Affiliation(s)
- Idris Abdulrahman
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Microbiology, Faculty of Sciences, Kaduna State University, Kaduna, Nigeria
| | - Mamdoh Taha Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Arulazhagan Pugazhendi
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Jeyakumar Dhavamani
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Saleh Al-Maaqar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Education, Al-Baydha University, Al-Baydha, Yemen
| | - Sathianeson Satheesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Morgan RN, Ali AA, Alshahrani MY, Aboshanab KM. New Insights on Biological Activities, Chemical Compositions, and Classifications of Marine Actinomycetes Antifouling Agents. Microorganisms 2023; 11:2444. [PMID: 37894102 PMCID: PMC10609280 DOI: 10.3390/microorganisms11102444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Biofouling is the assemblage of undesirable biological materials and macro-organisms (barnacles, mussels, etc.) on submerged surfaces, which has unfavorable impacts on the economy and maritime environments. Recently, research efforts have focused on isolating natural, eco-friendly antifouling agents to counteract the toxicities of synthetic antifouling agents. Marine actinomycetes produce a multitude of active metabolites, some of which acquire antifouling properties. These antifouling compounds have chemical structures that fall under the terpenoids, polyketides, furanones, and alkaloids chemical groups. These compounds demonstrate eminent antimicrobial vigor associated with antiquorum sensing and antibiofilm potentialities against both Gram-positive and -negative bacteria. They have also constrained larval settlements and the acetylcholinesterase enzyme, suggesting a strong anti-macrofouling activity. Despite their promising in vitro and in vivo biological activities, scaled-up production of natural antifouling agents retrieved from marine actinomycetes remains inapplicable and challenging. This might be attributed to their relatively low yield, the unreliability of in vitro tests, and the need for optimization before scaled-up manufacturing. This review will focus on some of the most recent marine actinomycete-derived antifouling agents, featuring their biological activities and chemical varieties after providing a quick overview of the disadvantages of fouling and commercially available synthetic antifouling agents. It will also offer different prospects of optimizations and analysis to scale up their industrial manufacturing for potential usage as antifouling coatings and antimicrobial and therapeutic agents.
Collapse
Affiliation(s)
- Radwa N. Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St, Cairo 11787, Egypt;
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 9088, Saudi Arabia;
| | - Khaled M. Aboshanab
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt
| |
Collapse
|
12
|
Davis RA, Cervin G, Beattie KD, Rali T, Fauchon M, Hellio C, Bodin Åkerlund L, Pavia H, Svenson J. Evaluation of natural resveratrol multimers as marine antifoulants. BIOFOULING 2023; 39:775-784. [PMID: 37822262 DOI: 10.1080/08927014.2023.2263374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
In the current study we investigate the antifouling potential of three polyphenolic resveratrol multimers (-)-hopeaphenol, vaticanol B and vatalbinoside A, isolated from two species of Anisoptera found in the Papua New Guinean rainforest. The compounds were evaluated against the growth and settlement of eight marine microfoulers and against the settlement and metamorphosis of Amphibalanus improvisus barnacle cyprids. The two isomeric compounds (-)-hopeaphenol and vaticanol B displayed a high inhibitory potential against the cyprid larvae metamorphosis at 2.8 and 1.1 μM. (-)-Hopeaphenol was also shown to be a strong inhibitor of both microalgal and bacterial adhesion at submicromolar concentrations with low toxicity. Resveratrol displayed a lower antifouling activity compared to the multimers and had higher off target toxicity against MCR-5 fibroblasts. This study illustrates the potential of natural products as a valuable source for the discovery of novel antifouling leads with low toxicity.
Collapse
Affiliation(s)
- Rohan A Davis
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Gunnar Cervin
- Department of Marine Sciences - Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Karren D Beattie
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Topul Rali
- School of Natural and Physical Sciences, The University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - Marilyne Fauchon
- Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, University of Brest, Brest, France
| | - Claire Hellio
- Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, University of Brest, Brest, France
| | - Lovisa Bodin Åkerlund
- Department of Biological Function, RISE Research Institutes of Sweden, Borås, Sweden
| | - Henrik Pavia
- Department of Marine Sciences - Tjärnö, University of Gothenburg, Strömstad, Sweden
| | | |
Collapse
|
13
|
Romeu MJ, Mergulhão F. Development of Antifouling Strategies for Marine Applications. Microorganisms 2023; 11:1568. [PMID: 37375070 DOI: 10.3390/microorganisms11061568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Marine biofouling is an undeniable challenge for aquatic systems since it is responsible for several environmental and ecological problems and economic losses. Several strategies have been developed to mitigate fouling-related issues in marine environments, including developing marine coatings using nanotechnology and biomimetic models, and incorporating natural compounds, peptides, bacteriophages, or specific enzymes on surfaces. The advantages and limitations of these strategies are discussed in this review, and the development of novel surfaces and coatings is highlighted. The performance of these novel antibiofilm coatings is currently tested by in vitro experiments, which should try to mimic real conditions in the best way, and/or by in situ tests through the immersion of surfaces in marine environments. Both forms present their advantages and limitations, and these factors should be considered when the performance of a novel marine coating requires evaluation and validation. Despite all the advances and improvements against marine biofouling, progress toward an ideal operational strategy has been slow given the increasingly demanding regulatory requirements. Recent developments in self-polishing copolymers and fouling-release coatings have yielded promising results which set the basis for the development of more efficient and eco-friendly antifouling strategies.
Collapse
Affiliation(s)
- Maria João Romeu
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe Mergulhão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
14
|
Li Z, Liu P, Chen S, Liu X, Yu Y, Li T, Wan Y, Tang N, Liu Y, Gu Y. Bioinspired marine antifouling coatings: Antifouling mechanisms, design strategies and application feasibility studies. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
15
|
Gallic acid derivatives as inhibitors of mussel (Mytilus galloprovincialis) larval settlement: Lead optimization, biological evaluation and use in antifouling coatings. Bioorg Chem 2022; 126:105911. [DOI: 10.1016/j.bioorg.2022.105911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/13/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
|
16
|
Biocide vs. Eco-Friendly Antifoulants: Role of the Antioxidative Defence and Settlement in Mytilus galloprovincialis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antifoulant paints were developed to prevent and reduce biofouling on surfaces immersed in seawater. The widespread use of these substances over the years has led to a significant increase of their presence in the marine environment. These compounds were identified as environmental and human threats. As a result of an international ban, research in the last decade has focused on developing a new generation of benign antifoulant paints. This review outlines the detrimental effects associated with biocide versus eco-friendly antifoulants, highlighting what are effective antifoulants and why there is a need to monitor them. We examine the effects of biocide and eco-friendly antifoulants on the antioxidative defence mechanism and settlement in a higher sessile organism, specifically the Mediterranean mussel, Mytilus galloprovincialis. These antifoulants can indirectly assess the potential of these two parameters in order to outline implementation of sustainable antifoulants.
Collapse
|
17
|
Gao Y, Meng Q, Zhou X, Luo X, Su Z, Chen Z, Huang R, Liu Y, Zhang X. How do environmentally friendly antifouling alkaloids affect marine fouling microbial communities? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:152910. [PMID: 34999079 DOI: 10.1016/j.scitotenv.2021.152910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Most previous studies on antifouling (AF) agents have focused on the influence of biofilm formation constituted by single or multiple cultured microbial species, and very few studies have analyzed the relationship between environmentally friendly AF compounds and marine fouling microbial communities (MFMCs). This is the first investigation of the impact of three environmentally friendly alkaloids (5-chlorosclerotiamide, circumdatin F and notoamide C) produced by the deep-sea-derived fungus Aspergillus westerdijkiae on MFMCs using high-throughput Illumina sequencing in a field test. The results of this study showed that the three alkaloids could significantly decrease the coverage of marine microflora (p < 0.05) and affect the composition and diversity of MFMCs on polyvinyl chloride (PVC) plates. Furthermore, 5-chlorosclerotiamide and notoamide C could completely inhibit many macrofouler-inductive-bacteria, such as Pseudoalteromonas and Pseudomonas, and promote the anti-macrofouler-bacteria, such as Winogradskyella, from 0.21% to more than 10% of the MFMCs on PVC plates. These results suggested that 5-chlorosclerotiamide and notoamide C could influence the compositions of MFMCs and make it unfavorable for the settlement of macrofoulers, by reducing the abundance of macrofouler-inductive-bacteria and promoting the percentage of anti-macrofouler-bacteria on PVC plates. The present study provides a new way to evaluate the effect of environmentally friendly AF compounds and obtain a better understanding of the antifouling process.
Collapse
Affiliation(s)
- Yumiao Gao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; School of Biological Sciences, University of Edinburgh, Edinburgh EH93FL, United Kingdom
| | - Qingyue Meng
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xuefeng Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xiaowei Luo
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ziheng Su
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zihui Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Yonghong Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Sarkar PK, Pawar SS, Rath SK, Kandasubramanian B. Anti-barnacle biofouling coatings for the protection of marine vessels: synthesis and progress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26078-26112. [PMID: 35076840 DOI: 10.1007/s11356-021-18404-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Marine biofouling has gnawed both mobile and non-mobile marine structures since time immemorial, leading to the deterioration of designed operational capabilities as well as a loss of valuable economic revenues. Mitigation of biofouling has been the primary focus of researchers and scientists from across the globe to save billions of dollars wasted due to the biological fouling of marine structures. The availability of an appropriate environment along with favorable substrata initiates biofilm formation within a few minutes. The crucial element in establishing a gelatinous biofilm is the excreted metabolites of destructive nature and exopolymeric substances (EPSs). These help in securing as well as signaling numerous foulants to establish themselves on this substrate. The larvae of various benthic invertebrates adhere to these suitable surfaces and transform from juveniles to adult barnacles depending upon the environment. Despite biofouling being characteristically witnessed for a month or lengthier timeframe, the preliminary phases of the fouling process typically transpire on a much lesser timescale. A few natural and synthetic additives had demonstrated excellent non-toxic anti barnacle establishment capability; however, further development into commercial products is still far-fetched. This review collates the specific anti-barnacle coatings, emphasizing natural additives, their sources of extraction, general life cycle analysis, and concluding future perspectives of this niche product.
Collapse
Affiliation(s)
- Pramit Kumar Sarkar
- Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced, Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, India
- Mazagon Dock Shipbuilders Ltd, Ministry of Defence, Dockyard Road, Mumbai, 400010, Maharashtra, India
| | - Sushil S Pawar
- Protective Coatings Department, Naval Materials Research Laboratory, Ministry of Defence, DRDO, Ambernath, 421506, Maharashtra, India
| | - Sangram K Rath
- Protective Coatings Department, Naval Materials Research Laboratory, Ministry of Defence, DRDO, Ambernath, 421506, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced, Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, India.
| |
Collapse
|
19
|
Grant TM, Rennison D, Cervin G, Pavia H, Hellio C, Foulon V, Brimble MA, Cahill P, Svenson J. Towards eco-friendly marine antifouling biocides - Nature inspired tetrasubstituted 2,5-diketopiperazines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152487. [PMID: 34953845 DOI: 10.1016/j.scitotenv.2021.152487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Marine biofouling plagues all maritime industries at vast economic and environmental cost. Previous and most current methods to control biofouling have employed highly persistent toxins and heavy metals, including tin, copper, and zinc. These toxic methods are resulting in unacceptable environmental harm and are coming under immense regulatory pressure. Eco-friendly alternatives are urgently required to effectively mitigate the negative consequence of biofouling without causing collateral harm. Amphiphilic micropeptides have recently been shown to exhibit excellent broad-spectrum antifouling activity, with a non-toxic mode of action and innate biodegradability. The present work focused on incorporating the pharmacophore derived from amphiphilic micropeptides into a 2,5-diketopiperazine (DKP) scaffold. This privileged structure is present in a vast number of natural products, including marine natural product antifoulants, and provides advantages of synthetic accessibility and adaptability. A novel route to symmetrical tetrasubstituted DKPs was developed and a library of amphiphilic 2,5-DKPs were subsequently synthesised. These biodegradable compounds were demonstrated to be potent marine antifoulants displaying broad-spectrum activity in the low micromolar range against a range of common marine fouling organisms. The outcome of planned coating and field trials will dictate the future development of the lead compounds.
Collapse
Affiliation(s)
- Thomas M Grant
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - David Rennison
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Gunnar Cervin
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Henrik Pavia
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Claire Hellio
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Valentin Foulon
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Patrick Cahill
- Cawthron Institute, 98 Halifax Street, Nelson, New Zealand
| | - Johan Svenson
- Cawthron Institute, 98 Halifax Street, Nelson, New Zealand.
| |
Collapse
|
20
|
Gaudêncio SP, Pereira F. Predicting Antifouling Activity and Acetylcholinesterase Inhibition of Marine-Derived Compounds Using a Computer-Aided Drug Design Approach. Mar Drugs 2022; 20:md20020129. [PMID: 35200658 PMCID: PMC8879326 DOI: 10.3390/md20020129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 11/19/2022] Open
Abstract
Biofouling is the undesirable growth of micro- and macro-organisms on artificial water-immersed surfaces, which results in high costs for the prevention and maintenance of this process (billion €/year) for aquaculture, shipping and other industries that rely on coastal and off-shore infrastructure. To date, there are still no sustainable, economical and environmentally safe solutions to overcome this challenging phenomenon. A computer-aided drug design (CADD) approach comprising ligand- and structure-based methods was explored for predicting the antifouling activities of marine natural products (MNPs). In the CADD ligand-based method, 141 organic molecules extracted from the ChEMBL database and literature with antifouling screening data were used to build the quantitative structure–activity relationship (QSAR) classification model. An overall predictive accuracy score of up to 71% was achieved with the best QSAR model for external and internal validation using test and training sets. A virtual screening campaign of 14,492 MNPs from Encinar’s website and 14 MNPs that are currently in the clinical pipeline was also carried out using the best QSAR model developed. In the CADD structure-based approach, the 125 MNPs that were selected by the QSAR approach were used in molecular docking experiments against the acetylcholinesterase enzyme. Overall, 16 MNPs were proposed as the most promising marine drug-like leads as antifouling agents, e.g., macrocyclic lactam, macrocyclic alkaloids, indole and pyridine derivatives.
Collapse
Affiliation(s)
- Susana P. Gaudêncio
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, Blue Biotechnology and Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Florbela Pereira
- LAQV, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- Correspondence:
| |
Collapse
|
21
|
Resende DISP, Almeida JR, Pereira S, Campos A, Lemos A, Plowman JE, Thomas A, Clerens S, Vasconcelos V, Pinto M, Correia-da-Silva M, Sousa E. From Natural Xanthones to Synthetic C-1 Aminated 3,4-Dioxygenated Xanthones as Optimized Antifouling Agents. Mar Drugs 2021; 19:638. [PMID: 34822509 PMCID: PMC8618441 DOI: 10.3390/md19110638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/20/2023] Open
Abstract
Biofouling, which occurs when certain marine species attach and accumulate in artificial submerged structures, represents a serious economic and environmental issue worldwide. The discovery of new non-toxic and eco-friendly antifouling systems to control or prevent biofouling is, therefore, a practical and urgent need. In this work, the antifouling activity of a series of 24 xanthones, with chemical similarities to natural products, was exploited. Nine (1, 2, 4, 6, 8, 16, 19, 21, and 23) of the tested xanthones presented highly significant anti-settlement responses at 50 μM against the settlement of mussel Mytilus galloprovincialis larvae and low toxicity to this macrofouling species. Xanthones 21 and 23 emerged as the most effective larval settlement inhibitors (EC50 = 7.28 and 3.57 µM, respectively). Additionally, xanthone 23 exhibited a therapeutic ratio (LC50/EC50) > 15, as required by the US Navy program attesting its suitability as natural antifouling agents. From the nine tested xanthones, none of the compounds were found to significantly inhibit the growth of the marine biofilm-forming bacterial strains tested. Xanthones 4, 6, 8, 16, 19, 21, and 23 were found to be non-toxic to the marine non-target species Artemia salina (<10% mortality at 50 μM). Insights on the antifouling mode of action of the hit xanthones 21 and 23 suggest that these two compounds affected similar molecular targets and cellular processes in mussel larvae, including that related to mussel adhesion capacity. This work exposes for the first time the relevance of C-1 aminated xanthones with a 3,4-dioxygenated pattern of substitution as new non-toxic products to prevent marine biofouling.
Collapse
Affiliation(s)
- Diana I. S. P. Resende
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (J.R.A.); (S.P.); (A.C.); (V.V.); (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Joana R. Almeida
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (J.R.A.); (S.P.); (A.C.); (V.V.); (M.P.); (E.S.)
| | - Sandra Pereira
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (J.R.A.); (S.P.); (A.C.); (V.V.); (M.P.); (E.S.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal
| | - Alexandre Campos
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (J.R.A.); (S.P.); (A.C.); (V.V.); (M.P.); (E.S.)
| | - Agostinho Lemos
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Jeffrey E. Plowman
- AgResearch Ltd., 1365 Springs Rd, Lincoln 7674, New Zealand; (J.E.P.); (A.T.); (S.C.)
| | - Ancy Thomas
- AgResearch Ltd., 1365 Springs Rd, Lincoln 7674, New Zealand; (J.E.P.); (A.T.); (S.C.)
| | - Stefan Clerens
- AgResearch Ltd., 1365 Springs Rd, Lincoln 7674, New Zealand; (J.E.P.); (A.T.); (S.C.)
- Biomolecular Interaction Centre, University of Canterbury, Christchurch 8041, New Zealand
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
| | - Vitor Vasconcelos
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (J.R.A.); (S.P.); (A.C.); (V.V.); (M.P.); (E.S.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal
| | - Madalena Pinto
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (J.R.A.); (S.P.); (A.C.); (V.V.); (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Marta Correia-da-Silva
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (J.R.A.); (S.P.); (A.C.); (V.V.); (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Emília Sousa
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (J.R.A.); (S.P.); (A.C.); (V.V.); (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| |
Collapse
|
22
|
Chiang HY, Cheng J, Liu X, Ma C, Qian PY. Synthetic Analogue of Butenolide as an Antifouling Agent. Mar Drugs 2021; 19:481. [PMID: 34564143 PMCID: PMC8465062 DOI: 10.3390/md19090481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 08/21/2021] [Indexed: 11/27/2022] Open
Abstract
Butenolide derivatives have the potential to be effective and environmentally friendly antifouling agents. In the present study, a butenolide derivative was structurally modified into Boc-butenolide to increase its melting point and remove its foul smell. The structurally modified Boc-butenolide demonstrated similar antifouling capabilities to butenolide in larval settlement bioassays but with significantly lower toxicity at high concentrations. Release-rate measurements demonstrated that the antifouling compound Boc-butenolide could be released from polycaprolactone-polyurethane (PCL-PU)-based coatings to inhibit the attachment of foulers. The coating matrix was easily degraded in the marine environment. The performance of the Boc-butenolide antifouling coatings was further examined through a marine field test. The coverage of biofouler on the Boc-butenolide coatings was low after 2 months, indicating the antifouling potential of Boc-butenolide.
Collapse
Affiliation(s)
- Ho Yin Chiang
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China; (H.Y.C.); (J.C.); (X.L.)
| | - Jinping Cheng
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China; (H.Y.C.); (J.C.); (X.L.)
| | - Xuan Liu
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China; (H.Y.C.); (J.C.); (X.L.)
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510000, China;
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China; (H.Y.C.); (J.C.); (X.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha 510000, China
| |
Collapse
|
23
|
Torres FG, De-la-Torre GE. Environmental pollution with antifouling paint particles: Distribution, ecotoxicology, and sustainable alternatives. MARINE POLLUTION BULLETIN 2021; 169:112529. [PMID: 34058498 DOI: 10.1016/j.marpolbul.2021.112529] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
Antifouling paint particles (APPs) are a type of paint particle loaded with toxic biocidal compounds. The present review focused on the current knowledge in respect of the abundance, distribution, and ecotoxicological effects of APPs in the marine environment. Also, the recent advances in nontoxic biobased antifouling paints were discussed as potential alternatives to contemporary marine coatings. The presence of APPs is mainly associated with boat maintenance in boatyards and port areas. Conventional microplastic assessments showed a significant contribution of paint particles to the morphological composition. Moreover, recent ecotoxicological studies demonstrated that environmental concentrations of APPs induce mortality (LC50) in sediment dwellers and macroinvertebrates. Novel biocides from natural sources and biopolymer binders in the formulation of antifouling paints are proposed as potential alternatives to conventional antifouling paints. The toxicity of most natural biocides is negligible to nontargeted species, while biopolymers are expected to prevent the formation of APPs.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, 15088 Lima, Peru.
| | | |
Collapse
|
24
|
Sánchez-Aguinagalde O, Meaurio E, Lejardi A, Sarasua JR. Amorphous solid dispersions in poly(ε-caprolactone)/xanthohumol bioactive blends: physicochemical and mechanical characterization. J Mater Chem B 2021; 9:4219-4229. [PMID: 33998613 DOI: 10.1039/d0tb02964e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This paper reports the obtention of amorphous solid dispersions (ASDs) of xanthohumol (XH) in PCL containing up to 50 wt% of the bioactive compound in the amorphous form thanks to the advantageous specific interactions established in this system. The miscibility of the PCL/XH blends was investigated using DSC. Melting point depression analysis yielded a negative interaction parameter indicating the occurrence of favorable inter-association interactions. XRD analyses performed at room temperature agree with the crystallinity results obtained on the heating runs performed by DSC. FTIR spectroscopy reveals strong C[double bond, length as m-dash]OO-H specific interactions between the hydroxyl groups of XH and the carbonyl groups of PCL. The AFM analysis of the blends obtained by spin-coating shows the variation of crystalline morphology with composition. Finally, tensile tests reveal high toughness retention for the blends in which XH can be dispersed in the amorphous form (containing up to 50 wt% XH). In summary, PCL is a convenient matrix to disperse XH in the amorphous form, bringing the possibility of obtaining completely amorphous bioactive materials suitable for the development of non-stiff biomedical devices.
Collapse
Affiliation(s)
- Oroitz Sánchez-Aguinagalde
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, University of The Basque Country (UPV/EHU), School of Engineering I, Plaza Ingeniero Torres Quevedo 1, Bilbao, Spain.
| | - Emilio Meaurio
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, University of The Basque Country (UPV/EHU), School of Engineering I, Plaza Ingeniero Torres Quevedo 1, Bilbao, Spain.
| | - Ainhoa Lejardi
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, University of The Basque Country (UPV/EHU), School of Engineering I, Plaza Ingeniero Torres Quevedo 1, Bilbao, Spain.
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, University of The Basque Country (UPV/EHU), School of Engineering I, Plaza Ingeniero Torres Quevedo 1, Bilbao, Spain.
| |
Collapse
|
25
|
Chen L, Duan Y, Cui M, Huang R, Su R, Qi W, He Z. Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144469. [PMID: 33422842 DOI: 10.1016/j.scitotenv.2020.144469] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Marine biofouling is a ubiquitous problem that accompanies human marine activities and marine industries. It exerts detrimental impacts on the economy, environment, ecology, and safety. Traditionally, mainstream approaches utilize metal ions to prevent biological contamination, but this also leads to environmental pollution and damage to the ecosystem. Efficient and environmentally friendly coatings are urgently needed to prevent marine devices from biofouling. Since nature is always the best teacher for humans, it offers us delightful thoughts on the research and development of high-efficiency, broad-spectrum and eco-friendly antifouling coatings. In this work, we focus on the research frontier of marine antifouling coatings from a bionic perspective. Enlightened by three distinctive dimensions of bionics: chemical molecule bionic, physiological mechanism bionic, and physical structure bionic, the research status of three main bioinspired strategies, which are natural antifoulants, bioinspired polymeric antifouling coatings, and biomimetic surface microtopographies, respectively, are demonstrated. The antifouling mechanisms are further interpreted based on biomimetic comprehension. The main fabrication methods and antifouling performances of these coatings are presented along with their advantages and drawbacks. Finally, the challenges are summarized, and future research prospects are proposed. It is believed that biomimetic antifouling strategies will contribute to the development of nontoxic antifouling techniques with exceptional repellency and stability.
Collapse
Affiliation(s)
- Liren Chen
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yanyi Duan
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Rongxin Su
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China; State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China.
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
26
|
Khan MAR, Wang BW, Chen YY, Lin TH, Lin HC, Yang YL, Pang KL, Liaw CC. Natural polyketide 6-pentyl-2 H-pyrone-2-one and its synthetic analogues efficiently prevent marine biofouling. BIOFOULING 2021; 37:257-266. [PMID: 33870823 DOI: 10.1080/08927014.2021.1890043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Biofouling is a widespread phenomenon in oceans worldwide. With increasing human development and activities in open and coastal waters, and due to the environmental impact of AF organotins and copper-based paint, the demand for nontoxic antifouling (AF) paints is increasing. Various bioassays for antimicrobial activity, anti-biofilm formation and anti-barnacle settlement were established to evaluate the possibility of using marine natural products as AF agents. A series of natural products, isolated from the marine-derived fungi Trichoderma atroviride and T. reesei, were evaluated for their AF activity. One pyrone-type compound (1) demonstrated significant inhibitory activities toward barnacle cyprid settlement. Furthermore, a series of pyrone analogues (S1-S6) were synthesized, and their bioactivities were evaluated in the established systems. The results showed that compounds S5 and S6 exhibited a broad spectrum of bioactivities, such as anti-barnacle settlement, anti-biofilm formation and antimicrobial activities.
Collapse
Affiliation(s)
- Mo Aqib Raza Khan
- Department of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
| | - Bo-Wei Wang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
| | - Yih-Yu Chen
- Department of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
| | - Ting-Hsuan Lin
- Department of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
| | - Hsiu-Chin Lin
- Department of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Ka-Lai Pang
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan, ROC
| |
Collapse
|
27
|
Pinteus S, Lemos MFL, Alves C, Silva J, Pedrosa R. The marine invasive seaweeds Asparagopsis armata and Sargassum muticum as targets for greener antifouling solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141372. [PMID: 32853930 DOI: 10.1016/j.scitotenv.2020.141372] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Biofouling is a complex phenomenon that affects all maritime dependent industries. The accumulation of both micro and macro-organisms in immerged structures increases significantly the maintenance expenses, and thus the use of antifouling substances is inevitable. Although with recognized antifouling properties, the available antifouling coatings are known to induce negative impacts in aquatic ecosystems. Therefore, greener alternatives are urgently required. Living underwater, marine organisms are prone to biofouling and some have developed strategies to defend themselves against undesirable organisms, which include the production of bioactive substances. As a result, marine organisms are promising sources of natural antifouling substances. Within this framework, the marine invasive seaweeds Sargassum muticum and Asparagopsis armata were addressed for antifouling compounds biodiscovery. Both seaweeds revealed antifouling properties against microfoulers, namely algicidal and anti-biofilm activities; however Asparagopsis armata stand out for its capacity to inhibit marine bacteria and microalgae growth, to decrease biofilm formation, and for acting as a neurotransmitter disruptor through the inhibition of acetylcholinesterase activity. By addressing invasive species, the problematic of the biological material supply for industrial purposes is surpassed while mitigating the negative impacts of invasive species through specimen's collection.
Collapse
Affiliation(s)
- Susete Pinteus
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal..
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Celso Alves
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Joana Silva
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Rui Pedrosa
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal..
| |
Collapse
|
28
|
Pereira D, Gonçalves C, Martins BT, Palmeira A, Vasconcelos V, Pinto M, Almeida JR, Correia-da-Silva M, Cidade H. Flavonoid Glycosides with a Triazole Moiety for Marine Antifouling Applications: Synthesis and Biological Activity Evaluation. Mar Drugs 2020; 19:5. [PMID: 33374188 PMCID: PMC7823860 DOI: 10.3390/md19010005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 01/28/2023] Open
Abstract
Over the last decades, antifouling coatings containing biocidal compounds as active ingredients were used to prevent biofouling, and eco-friendly alternatives are needed. Previous research from our group showed that polymethoxylated chalcones and glycosylated flavones obtained by synthesis displayed antifouling activity with low toxicity. In this work, ten new polymethoxylated flavones and chalcones were synthesized for the first time, including eight with a triazole moiety. Eight known flavones and chalcones were also synthesized and tested in order to construct a quantitative structure-activity relationship (QSAR) model for these compounds. Three different antifouling profiles were found: three compounds (1b, 11a and 11b) exhibited anti-settlement activity against a macrofouling species (Mytilus galloprovincialis), two compounds (6a and 6b) exhibited inhibitory activity against the biofilm-forming marine bacteria Roseobacter litoralis and one compound (7b) exhibited activity against both mussel larvae and microalgae Navicula sp. Hydrogen bonding acceptor ability of the molecule was the most significant descriptor contributing positively to the mussel larvae anti-settlement activity and, in fact, the triazolyl glycosylated chalcone 7b was the most potent compound against this species. The most promising compounds were not toxic to Artemia salina, highlighting the importance of pursuing the development of new synthetic antifouling agents as an ecofriendly and sustainable alternative for the marine industry.
Collapse
Affiliation(s)
- Daniela Pereira
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.P.); (B.T.M.); (A.P.); (M.P.); (H.C.)
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.G.); (V.V.)
| | - Catarina Gonçalves
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.G.); (V.V.)
| | - Beatriz T. Martins
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.P.); (B.T.M.); (A.P.); (M.P.); (H.C.)
| | - Andreia Palmeira
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.P.); (B.T.M.); (A.P.); (M.P.); (H.C.)
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.G.); (V.V.)
| | - Vitor Vasconcelos
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.G.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.P.); (B.T.M.); (A.P.); (M.P.); (H.C.)
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.G.); (V.V.)
| | - Joana R. Almeida
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.G.); (V.V.)
| | - Marta Correia-da-Silva
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.P.); (B.T.M.); (A.P.); (M.P.); (H.C.)
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.G.); (V.V.)
| | - Honorina Cidade
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.P.); (B.T.M.); (A.P.); (M.P.); (H.C.)
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.G.); (V.V.)
| |
Collapse
|
29
|
Liu LL, Wu CH, Qian PY. Marine natural products as antifouling molecules - a mini-review (2014-2020). BIOFOULING 2020; 36:1210-1226. [PMID: 33401982 DOI: 10.1080/08927014.2020.1864343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
In the present review, 182 antifouling (AF) natural products from marine microorganisms, algae and marine invertebrates reported from August 2014 to May 2020 are presented. Amongst these compounds, over half were isolated from marine-derived microorganisms, including 70 compounds from fungi and 31 compounds from bacteria. The structure-relationship of some of these compounds is also briefly discussed. Based on the work reported, a general workflow was drafted to refine the procedures for the commercialization of any novel AF compounds. Finally, butenolide, which is considered a potential environmentally friendly antifoulant, is used as a case study to show the procedures involved in AF compound work from the aspect of discovery, structure optimization, toxicity, stability, AF mechanism and coating incorporation, which highlight the current challenges and future perspectives in AF compound research.
Collapse
Affiliation(s)
- Ling-Li Liu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chuan-Hai Wu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
30
|
Almeida JR, Palmeira A, Campos A, Cunha I, Freitas M, Felpeto AB, Turkina MV, Vasconcelos V, Pinto M, Correia-da-Silva M, Sousa E. Structure-Antifouling Activity Relationship and Molecular Targets of Bio-Inspired(thio)xanthones. Biomolecules 2020; 10:E1126. [PMID: 32751491 PMCID: PMC7463931 DOI: 10.3390/biom10081126] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
The development of alternative ecological and effective antifouling technologies is still challenging. Synthesis of nature-inspired compounds has been exploited, given the potential to assure commercial supplies of potential ecofriendly antifouling agents. In this direction, the antifouling activity of a series of nineteen synthetic small molecules, with chemical similarities with natural products, were exploited in this work. Six (4, 5, 7, 10, 15 and 17) of the tested xanthones showed in vivo activity toward the settlement of Mytilus galloprovincialis larvae (EC50: 3.53-28.60 µM) and low toxicity to this macrofouling species (LC50 > 500 µM and LC50/EC50: 17.42-141.64), and two of them (7 and 10) showed no general marine ecotoxicity (<10% of Artemia salina mortality) after 48 h of exposure. Regarding the mechanism of action in mussel larvae, the best performance compounds 4 and 5 might be acting by the inhibition of acetylcholinesterase activity (in vitro and in silico studies), while 7 and 10 showed specific targets (proteomic studies) directly related with the mussel adhesive structure (byssal threads), given by the alterations in the expression of Mytilus collagen proteins (PreCols) and proximal thread proteins (TMPs). A quantitative structure-activity relationship (QSAR) model was built with predictive capacity to enable speeding the design of new potential active compounds.
Collapse
Affiliation(s)
- Joana R. Almeida
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
| | - Andreia Palmeira
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alexandre Campos
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
| | - Isabel Cunha
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
| | - Micaela Freitas
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal
- ISPSO—Institut des Sciences Pharmaceutiques de Suisse Occidentale, University of Geneva, 1205 Geneva, Switzerland
| | - Aldo Barreiro Felpeto
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
| | - Maria V. Turkina
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden;
| | - Vitor Vasconcelos
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal
| | - Madalena Pinto
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Marta Correia-da-Silva
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
31
|
Gu Y, Yu L, Mou J, Wu D, Xu M, Zhou P, Ren Y. Research Strategies to Develop Environmentally Friendly Marine Antifouling Coatings. Mar Drugs 2020; 18:E371. [PMID: 32708476 PMCID: PMC7404020 DOI: 10.3390/md18070371] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/13/2023] Open
Abstract
There are a large number of fouling organisms in the ocean, which easily attach to the surface of ships, oil platforms and breeding facilities, corrode the surface of equipment, accelerate the aging of equipment, affect the stability and safety of marine facilities and cause serious economic losses. Antifouling coating is an effective method to prevent marine biological fouling. Traditional organic tin and copper oxide coatings are toxic and will contaminate seawater and destroy marine ecology and have been banned or restricted. Environmentally friendly antifouling coatings have become a research hotspot. Among them, the use of natural biological products with antifouling activity as antifouling agents is an important research direction. In addition, some fouling release coatings without antifoulants, biomimetic coatings, photocatalytic coatings and other novel antifouling coatings have also developed rapidly. On the basis of revealing the mechanism of marine biofouling, this paper reviews the latest research strategies to develop environmentally friendly marine antifouling coatings. The composition, antifouling characteristics, antifouling mechanism and effects of various coatings were analyzed emphatically. Finally, the development prospects and future development directions of marine antifouling coatings are forecasted.
Collapse
Affiliation(s)
- Yunqing Gu
- College of Metrology &Measurement Engineering, China Jiliang University, Hangzhou 310018, China; (Y.G.); (L.Y.); (D.W.); (M.X.); (P.Z.)
| | - Lingzhi Yu
- College of Metrology &Measurement Engineering, China Jiliang University, Hangzhou 310018, China; (Y.G.); (L.Y.); (D.W.); (M.X.); (P.Z.)
| | - Jiegang Mou
- College of Metrology &Measurement Engineering, China Jiliang University, Hangzhou 310018, China; (Y.G.); (L.Y.); (D.W.); (M.X.); (P.Z.)
| | - Denghao Wu
- College of Metrology &Measurement Engineering, China Jiliang University, Hangzhou 310018, China; (Y.G.); (L.Y.); (D.W.); (M.X.); (P.Z.)
| | - Maosen Xu
- College of Metrology &Measurement Engineering, China Jiliang University, Hangzhou 310018, China; (Y.G.); (L.Y.); (D.W.); (M.X.); (P.Z.)
| | - Peijian Zhou
- College of Metrology &Measurement Engineering, China Jiliang University, Hangzhou 310018, China; (Y.G.); (L.Y.); (D.W.); (M.X.); (P.Z.)
| | - Yun Ren
- Zhijiang College, Zhejiang University of Technology, Shaoxing 312030, China;
| |
Collapse
|
32
|
Pinteus S, Lemos MFL, Freitas R, Duarte IM, Alves C, Silva J, Marques SC, Pedrosa R. Medusa polyps adherence inhibition: A novel experimental model for antifouling assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136796. [PMID: 32007874 DOI: 10.1016/j.scitotenv.2020.136796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Although in the last decades significant advances have been made to improve antifouling formulations, the main current options continue to be highly toxic to marine environment, leading to an urgent need for new safer alternatives. For anti-adherence studies, barnacles and mussels are commonly the first choice for experimental purposes. However, the use of these organisms involves a series of laborious and time-consuming stages. In the present work, a new approach for testing antifouling formulations was developed under known formulations and novel proposed options. Due to their high resilience, ability of surviving in hostile environments and high abundance in different ecosystems, medusa polyps present themselves as prospect candidates for antifouling protocols. Thus, a complete protocol to test antifouling formulations using polyps is presented, while the antifouling properties of two invasive seaweeds, Asparagopsis armata and Sargassum muticum, were evaluated within this new test model framework. The use of medusa polyps as model to test antifouling substances revealed to be a reliable alternative to the conventional organisms, presenting several advantages since the protocol is less laborious, less time-consuming and reproductive. The results also show that the seaweeds A. armata and S. muticum produce compounds with anti-adherence properties being therefore potential candidates for the development of new greener antifouling formulations.
Collapse
Affiliation(s)
- Susete Pinteus
- MARE. Marine and Environmental Sciences Centre, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Marco F L Lemos
- MARE. Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Rafaela Freitas
- MARE. Marine and Environmental Sciences Centre, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Inês M Duarte
- MARE. Marine and Environmental Sciences Centre, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Celso Alves
- MARE. Marine and Environmental Sciences Centre, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Joana Silva
- MARE. Marine and Environmental Sciences Centre, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Sónia C Marques
- MARE. Marine and Environmental Sciences Centre, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Rui Pedrosa
- MARE. Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| |
Collapse
|
33
|
Arul A, Sivagnanam S, Dey A, Mukherjee O, Ghosh S, Das P. The design and development of short peptide-based novel smart materials to prevent fouling by the formation of non-toxic and biocompatible coatings. RSC Adv 2020; 10:13420-13429. [PMID: 35493017 PMCID: PMC9051384 DOI: 10.1039/c9ra10018k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Biofouling refers to the undesirable process that leads to the accumulation of microorganisms such as bacteria or fungi on substrates. This is one of the major concerns associated with several components of our regular life such as food, health, water and energy. In the healthcare sector, biofouling on medical devices is known to cause infections, which are often resistant to conventional antibiotics and lead to increase in the number of hospital and surgery-related deaths. One of the better ways to tackle the problem of biofouling is the development of smart antifouling materials that can produce a biocompatible, non-toxic, eco-friendly and functional coating and maintain a biological environment without any adverse effect. To this end, in the present study, we have reported the design and synthesis of two simple chemically modified peptides, namely, PA1 (PFB-VVD) and PA2 (PFB-LLE). The design as well as the amino acid sequence of the peptides contains three basic components that enable their ability to (i) self-assemble into functional coatings, (ii) bind with the desired surface via the bi-dentate coordination of dicarboxylate groups and (iii) exhibit antifouling activity and generate a non-toxic biocompatible supramolecular coating on the desired surface. PA1 having aspartic acid as the anchoring moiety exhibits better antifouling activity compared to PA2 that has glutamic acid as the anchoring moiety. This is probably due to the greater adhesive force or binding affinity of aspartic acid to the examined surface compared to that of glutamic acid, as confirmed by force measurement studies using AFM. Most importantly, the simple drop-coating method promises great advantages due to its ease of operation, which leads to a reduction in the production cost and increase in the scope of commercialization. To the best of our knowledge, this is the first attempt to develop an ultra-short peptide-based smart antifouling material with a dicarboxylate group as the surface binding moiety. Furthermore, these findings promise to provide further insights into antifouling mechanisms in the future by the development of a smart material using a dicarboxylate group as an anchoring moiety.
Collapse
Affiliation(s)
- Amutha Arul
- Department of Chemistry, SRMIST SRM Nagar, Potheri, Kattankulathur, Kancheepuram District Chennai Tamil Nadu 603203 India
| | - Subramaniyam Sivagnanam
- Department of Chemistry, SRMIST SRM Nagar, Potheri, Kattankulathur, Kancheepuram District Chennai Tamil Nadu 603203 India
| | - Ananta Dey
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
- CSIR-Central Salt & Marine Chemicals Research Institute Bhavnagar 364002 India
| | - Oindrilla Mukherjee
- Department of Biotechnology, National Institute of Technology Durgapur West Bengal - 713209 India
| | - Soumyajit Ghosh
- Department of Chemistry, SRMIST SRM Nagar, Potheri, Kattankulathur, Kancheepuram District Chennai Tamil Nadu 603203 India
| | - Priyadip Das
- Department of Chemistry, SRMIST SRM Nagar, Potheri, Kattankulathur, Kancheepuram District Chennai Tamil Nadu 603203 India
| |
Collapse
|
34
|
Antibiofouling potential of 1-alkyl-3-methylimidazolium ionic liquids: Studies against biofouling barnacle larvae. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Antifouling Napyradiomycins from Marine-Derived Actinomycetes Streptomyces aculeolatus. Mar Drugs 2020; 18:md18010063. [PMID: 31963732 PMCID: PMC7024211 DOI: 10.3390/md18010063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 01/20/2023] Open
Abstract
The undesired attachment of micro and macroorganisms on water-immersed surfaces, known as marine biofouling, results in severe prevention and maintenance costs (billions €/year) for aquaculture, shipping and other industries that rely on coastal and off-shore infrastructures. To date, there are no sustainable, cost-effective and environmentally safe solutions to address this challenging phenomenon. Therefore, we investigated the antifouling activity of napyradiomycin derivatives that were isolated from actinomycetes from ocean sediments collected off the Madeira Archipelago. Our results revealed that napyradiomycins inhibited ≥80% of the marine biofilm-forming bacteria assayed, as well as the settlement of Mytilus galloprovincialis larvae (EC50 < 5 µg/ml and LC50/EC50 >15), without viability impairment. In silico prediction of toxicity end points are of the same order of magnitude of standard approved drugs and biocides. Altogether, napyradiomycins disclosed bioactivity against marine micro and macrofouling organisms, and non-toxic effects towards the studied species, displaying potential to be used in the development of antifouling products.
Collapse
|
36
|
Neves AR, Almeida JR, Carvalhal F, Câmara A, Pereira S, Antunes J, Vasconcelos V, Pinto M, Silva ER, Sousa E, Correia-da-Silva M. Overcoming environmental problems of biocides: Synthetic bile acid derivatives as a sustainable alternative. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109812. [PMID: 31669574 DOI: 10.1016/j.ecoenv.2019.109812] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Marine biofouling represents a global economic and ecological challenge. Some marine organisms produce bioactive metabolites, such as steroids, that inhibit the settlement and growth of fouling organisms. The aim of this work was to explore bile acids as a new scaffold with antifouling (AF) activity by using chemical synthesis to produce a series of bile acid derivatives with optimized AF performance and understand their structure-activity relationships. Seven bile acid derivatives were successfully synthesized in moderate to high yields, and their structures were elucidated through spectroscopic methods. Their AF activities were tested against both macro- and microfouling communities. The most potent bile acid against the settlement of Mytilus galloprovincialis larvae was the methyl ester derivative of cholic acid (10), which showed an EC50 of 3.7 μM and an LC50/EC50 > 50 (LC50 > 200 μM) in AF effectiveness vs toxicity studies. Two derivatives of deoxycholic acid (5 and 7) potently inhibited the growth of biofilm-forming marine bacteria with EC50 values < 10 μM, and five bile acids (1, 5, and 7-9) potently inhibited the growth of diatoms, showing EC50 values between 3 and 10 μM. Promising AF profiles were achieved with some of the synthesized bile acids by combining antimacrofouling and antimicrofouling activities. Initial studies on the incorporation of one of these promising bile acid derivatives in polymeric coatings, such as a marine paint, demonstrated the ability of these compounds to generate coatings with antimacrofouling activity.
Collapse
Affiliation(s)
- Ana R Neves
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Joana R Almeida
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Francisca Carvalhal
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Amadeu Câmara
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Sandra Pereira
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Jorge Antunes
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007, Porto, Portugal
| | - Madalena Pinto
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Elisabete R Silva
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande C8 bdg, Lisboa, 1749-016 Portugal; CERENA - Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
| | - Emília Sousa
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Marta Correia-da-Silva
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
37
|
Evaluation of Antifouling Potential and Ecotoxicity of Secondary Metabolites Derived from Red Algae of the Genus Laurencia. Mar Drugs 2019; 17:md17110646. [PMID: 31744063 PMCID: PMC6891695 DOI: 10.3390/md17110646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Red algae of the genus Laurencia are known to biosynthesize and secrete an immense variety of secondary metabolites possessing a spectrum of biological activities against bacteria, invertebrates and mammalian cell lines. Following a rigorous cross-species screening process, herein we report the antifouling potential of 25 secondary metabolites derived from species of the genus Laurencia, as well as the thorough evaluation of the ecotoxicity of selected metabolites against non-target marine arthropods and vertebrate cell lines. A number of these secondary metabolites exhibited potent antifouling activity and performed well in all screening tests. Our results show that perforenol (9) possesses similar antifouling activity with that already described for bromosphaerol, which is used herein as a benchmark.
Collapse
|
38
|
He J, Dai Q, Qi Y, Wu Z, Fang Q, Su P, Huang M, Burgess JG, Ke C, Feng D. Aggregation Pheromone for an Invasive Mussel Consists of a Precise Combination of Three Common Purines. iScience 2019; 19:691-702. [PMID: 31473589 PMCID: PMC6728611 DOI: 10.1016/j.isci.2019.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/25/2019] [Accepted: 08/13/2019] [Indexed: 12/21/2022] Open
Abstract
Most marine benthic invertebrates have a pelagic larval phase, after which they settle preferentially on or near conspecific adults, forming aggregations. Although settlement pheromones from conspecific adults have been implicated as critical drivers of aggregation for more than 30 years, surprisingly few have been unambiguously identified. Here we show that in the invasive dreissenid mussel Mytilopsis sallei (an ecological and economic pest), three common purines (adenosine, inosine, and hypoxanthine) released from adults in a synergistic and precise ratio (1:1.125:3.25) serve as an aggregation pheromone by inducing conspecific larval settlement and metamorphosis. Our results demonstrate that simple common metabolites can function as species-specific pheromones when present in precise combinations. This study provides important insights into our understanding of the ecology and communication processes of invasive organisms and indicates that the combination and ratio of purines might be critical for purine-based signaling systems that are fundamental and widespread in nature.
Collapse
Affiliation(s)
- Jian He
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Qi Dai
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yuxuan Qi
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhiwen Wu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Qianyun Fang
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Pei Su
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Miaoqin Huang
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - J Grant Burgess
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK
| | - Caihuan Ke
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| | - Danqing Feng
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
39
|
Bannister J, Sievers M, Bush F, Bloecher N. Biofouling in marine aquaculture: a review of recent research and developments. BIOFOULING 2019; 35:631-648. [PMID: 31339358 DOI: 10.1080/08927014.2019.1640214] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Biofouling in marine aquaculture is one of the main barriers to efficient and sustainable production. Owing to the growth of aquaculture globally, it is pertinent to update previous reviews to inform management and guide future research. Here, the authors highlight recent research and developments on the impacts, prevention and control of biofouling in shellfish, finfish and seaweed aquaculture, and the significant gaps that still exist in aquaculturalists' capacity to manage it. Antifouling methods are being explored and developed; these are centred on harnessing naturally occurring antifouling properties, culturing fouling-resistant genotypes, and improving farming strategies by adopting more sensitive and informative monitoring and modelling capabilities together with novel cleaning equipment. While no simple, quick-fix solutions to biofouling management in existing aquaculture industry situations have been developed, the expectation is that effective methods are likely to evolve as aquaculture develops into emerging culture scenarios, which will undoubtedly influence the path for future solutions.
Collapse
Affiliation(s)
- Jana Bannister
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Michael Sievers
- Australian Rivers Institute - Coast and Estuaries, Griffith University, Gold Coast, Queensland, Australia
| | - Flora Bush
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | | |
Collapse
|
40
|
Antunes J, Leão P, Vasconcelos V. Marine biofilms: diversity of communities and of chemical cues. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:287-305. [PMID: 30246474 DOI: 10.1111/1758-2229.12694] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Surfaces immersed in seawater are rapidly colonized by various microorganisms, resulting in the formation of heterogenic marine biofilms. These communities are known to influence the settlement of algae spores and invertebrate larvae, triggering a succession of fouling events, with significant environmental and economic impacts. This review covers recent research regarding the differences in composition of biofilms isolated from different artificial surface types and the influence of environmental factors on their formation. One particular phenomenon - bacterial quorum sensing (QS) - allows bacteria to coordinate swarming, biofilm formation among other phenomena. Some other marine biofilm chemical cues are believed to modulate the settlement and the succession of macrofouling organisms, and they are also reviewed here. Finally, since the formation of a marine biofilm is considered to be an initial, QS-dependent step in the development of marine fouling events, QS inhibition is discussed on its potential as a tool for antibiofouling control in marine settings.
Collapse
Affiliation(s)
- Jorge Antunes
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos, s/n 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 4069-007, Porto, Portugal
| | - Pedro Leão
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos, s/n 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 4069-007, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos, s/n 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 4069-007, Porto, Portugal
| |
Collapse
|
41
|
Haque MN, Eom HJ, Nam SE, Shin YK, Rhee JS. Chlorothalonil induces oxidative stress and reduces enzymatic activities of Na+/K+-ATPase and acetylcholinesterase in gill tissues of marine bivalves. PLoS One 2019; 14:e0214236. [PMID: 30964867 PMCID: PMC6456286 DOI: 10.1371/journal.pone.0214236] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/09/2019] [Indexed: 12/19/2022] Open
Abstract
Chlorothalonil is a thiol-reactive antifoulant that disperses widely and has been found in the marine environment. However, there is limited information on the deleterious effects of chlorothalonil in marine mollusks. In this study, we evaluated the effects of chlorothalonil on the gill tissues of the Pacific oyster, Crassostrea gigas and the blue mussel, Mytilus edulis after exposure to different concentrations of chlorothalonil (0.1, 1, and 10 μg L−1) for 96 h. Following exposure to 1 and/or 10 μg L−1 of chlorothalonil, malondialdehyde (MDA) levels significantly increased in the gill tissues of C. gigas and M. edulis compared to that in the control group at 96 h. Similarly, glutathione (GSH) levels were significantly affected in both bivalves after chlorothalonil exposure. The chlorothalonil treatment caused a significant time- and concentration-dependent increase in the activity of enzymes, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR), in the antioxidant defense system. Furthermore, 10 μg L−1 of chlorothalonil resulted in significant inhibitions in the enzymatic activity of Na+/K+-ATPase and acetylcholinesterase (AChE). These results suggest that chlorothalonil induces potential oxidative stress and changes in osmoregulation and the cholinergic system in bivalve gill tissues. This information will be a useful reference for the potential toxicity of chlorothalonil in marine bivalves.
Collapse
Affiliation(s)
- Md. Niamul Haque
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, South Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon, South Korea
| | - Hye-Jin Eom
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, South Korea
| | - Sang-Eun Nam
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, South Korea
| | - Yun Kyung Shin
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, South Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon, South Korea
- Institute of Green Environmental Research Center, Yeonsugu, Incheon, South Korea
- * E-mail:
| |
Collapse
|
42
|
Antunes J, Pereira S, Ribeiro T, Plowman JE, Thomas A, Clerens S, Campos A, Vasconcelos V, Almeida JR. A Multi-Bioassay Integrated Approach to Assess the Antifouling Potential of the Cyanobacterial Metabolites Portoamides. Mar Drugs 2019; 17:E111. [PMID: 30759807 PMCID: PMC6410096 DOI: 10.3390/md17020111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
The cyclic peptides portoamides produced by the cyanobacterium Phormidium sp. LEGE 05292 were previously isolated and their ability to condition microcommunities by allelopathic effect was described. These interesting bioactive properties are, however, still underexplored as their biotechnological applications may be vast. This study aims to investigate the antifouling potential of portoamides, given that a challenge in the search for new environmentally friendly antifouling products is to find non-toxic natural alternatives with the ability to prevent colonization of different biofouling species, from bacteria to macroinvertebrates. A multi-bioassay approach was applied to assess portoamides antifouling properties, marine ecotoxicity and molecular mode of action. Results showed high effectiveness in the prevention of mussel larvae settlement (EC50 = 3.16 µM), and also bioactivity towards growth and biofilm disruption of marine biofouling bacterial strains, while not showing toxicity towards both target and non-target species. Antifouling molecular targets in mussel larvae include energy metabolism modifications (failure in proton-transporting ATPases activity), structural alterations of the gills and protein and gene regulatory mechanisms. Overall, portoamides reveal a broad-spectrum bioactivity towards diverse biofouling species, including a non-toxic and reversible effect towards mussel larvae, showing potential to be incorporated as an active ingredient in antifouling coatings.
Collapse
Affiliation(s)
- Jorge Antunes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal.
| | - Sandra Pereira
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Tiago Ribeiro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | | | - Ancy Thomas
- AgResearch Ltd., 1365 Springs Rd, Lincoln 7674, New Zealand.
| | - Stefan Clerens
- AgResearch Ltd., 1365 Springs Rd, Lincoln 7674, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch P 8140, New Zealand.
- Riddet Institute, Massey University, Palmerston North P 4442, New Zealand.
| | - Alexandre Campos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Vitor Vasconcelos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal.
| | - Joana R Almeida
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
43
|
Model JFA, Dos Santos JT, Da Silva RSM, Vinagre AS. Metabolic effects of epinephrine on the crab Neohelice granulata. Comp Biochem Physiol A Mol Integr Physiol 2019; 231:111-118. [PMID: 30735703 DOI: 10.1016/j.cbpa.2019.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/29/2022]
Abstract
Although widely known for their involvement in the control of carbohydrate and lipid metabolism of vertebrates, the participation of catecholamines (CAs) in the metabolism of invertebrates is less understood. This study was designed to identify the physiological role of Epinephrine (E) in the intermediary metabolism of the burrowing crab Neohelice granulata and how E regulates the metabolism in crabs fed with a high-carbohydrate (HC) or a high-protein (HP) diet. To answer these questions, we evaluated in vivo the effects of E injections on glucose and triglycerides in the hemolymph and tissue glycogen levels of crabs fed with HC or HP diet. An in vitro investigation was carried out to assess the direct effects of E on glycogenolysis, lipolysis and glycolysis pathways in the hepatopancreas, mandibular muscle and anterior and posterior gills of this crab. E injections increased glucose and did not affect triglycerides levels in the hemolymph of either group of crabs, and E decreased glycogen in the hepatopancreas and mandibular muscle only in HP crabs, suggesting that these effects may be mediated by the crustacean hyperglycemic hormone (CHH). When the tissues were incubated with different concentrations of E, the concentration of glucose released to the medium decreased in the hepatopancreas and posterior gills, while glucose oxidation increased in the posterior gills of HP crabs. Incubation with E did not alter any parameter in tissues of HC crabs. These effects suggest that E may be involved in the metabolic response to osmotic stress.
Collapse
|
44
|
Wang Y, Zhao W, Wu W, Wang C, Wu X, Xue Q. Fabricating Bionic Ultraslippery Surface on Titanium Alloys with Excellent Fouling-Resistant Performance. ACS APPLIED BIO MATERIALS 2018; 2:155-162. [DOI: 10.1021/acsabm.8b00503] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yanjun Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P.R.China
| | - Wenjie Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wenting Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P.R.China
| | - Chunting Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xuedong Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qunji Xue
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P.R.China
| |
Collapse
|
45
|
Almeida JR, Moreira J, Pereira D, Pereira S, Antunes J, Palmeira A, Vasconcelos V, Pinto M, Correia-da-Silva M, Cidade H. Potential of synthetic chalcone derivatives to prevent marine biofouling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:98-106. [PMID: 29936172 DOI: 10.1016/j.scitotenv.2018.06.169] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/06/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Biofouling represents a major economic, environmental and health concern for which new eco-friendly solutions are needed. International legislation has restricted the use of biocidal-based antifouling coatings, and increasing efforts have been applied in the search for environmentally friendly antifouling agents. This research work deals with the assessment of the interest of a series of synthetic chalcone derivatives for antifouling applications. Sixteen chalcone derivatives were synthesized with moderate yields (38-85%). Antifouling bioactivity of these compounds was assessed at different levels of biological organization using both anti-macrofouling and anti-microfouling bioassays, namely an anti-settlement assay using mussel (Mytilus galloprovincialis) larvae, as well as marine bacteria and microalgal biofilms growth inhibition bioassays. Results showed that three compounds (11, 12, and 16) were particularly active against the settlement of mussel larvae (EC50 7.24-34.63 μM), being compounds 12 and 16 also able to inhibit the growth of microfouling species (EC50 4.09-20.31 μM). Moreover, the most potent compounds 12 and 16 were found to be non-toxic to the non-target species Artemia salina (<10% mortality at 25 μM). A quantitative structure-activity relationship model predicted that descriptors describing the ability of molecules to form hydrogen bonds and encoding the shape, branching ratio and constitutional diversity of the molecule were implied in the antifouling activity against the settlement of mussel larvae. This work elucidates for the first time the relevance of synthesizing chalcone derivatives to generate new non-toxic products to prevent marine biofouling.
Collapse
Affiliation(s)
- J R Almeida
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - J Moreira
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - D Pereira
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S Pereira
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - J Antunes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal
| | - A Palmeira
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - V Vasconcelos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal
| | - M Pinto
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - M Correia-da-Silva
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - H Cidade
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
46
|
Amit M, Yuran S, Gazit E, Reches M, Ashkenasy N. Tailor-Made Functional Peptide Self-Assembling Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707083. [PMID: 29989255 PMCID: PMC7616936 DOI: 10.1002/adma.201707083] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/05/2018] [Indexed: 05/08/2023]
Abstract
Noncovalent interactions are the main driving force in the folding of proteins into a 3D functional structure. Motivated by the wish to reveal the mechanisms of the associated self-assembly processes, scientists are focusing on studying self-assembly processes of short protein segments (peptides). While this research has led to major advances in the understanding of biological and pathological process, only in recent years has the applicative potential of the resulting self-assembled peptide assemblies started to be explored. Here, major advances in the development of biomimetic supramolecular peptide assemblies as coatings, gels, and as electroactive materials, are highlighted. The guiding lines for the design of helical peptides, β strand peptides, as well as surface binding monolayer-forming peptides that can be utilized for a specific function are highlighted. Examples of their applications in diverse immerging applications in, e.g., ecology, biomedicine, and electronics, are described. Taking into account that, in addition to extraordinary design flexibility, these materials are naturally biocompatible and ecologically friendly, and their production is cost effective, the emergence of devices incorporating these biomimetic materials in the market is envisioned in the near future.
Collapse
Affiliation(s)
- Moran Amit
- Department of Materials Engineering Ben Gurion University of the Negev Beer-Sheva 84105, Israel; Department of Electrical and Computer Engineering, UC San Diego, La Jolla, CA 92093-0407, USA
| | - Sivan Yuran
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nurit Ashkenasy
- Department of Materials Engineering Ben Gurion University of the Negev Beer-Sheva 84105, Israel
| |
Collapse
|
47
|
Kotsiri M, Protopapa M, Roumelioti GM, Economou-Amilli A, Efthimiadou EK, Dedos SG. Probing the settlement signals of Amphibalanus amphitrite. BIOFOULING 2018; 34:492-506. [PMID: 29792352 DOI: 10.1080/08927014.2018.1465566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
To achieve their reproductive potential, barnacles combine tactile exploration of surface structural properties and integration of cellular signals originating from their antennular sensory setae within a developmentally defined, temporally narrow window of settlement opportunity. Behavioural assays with cyprids coupled with biometric analysis of scanning electron microscopy-acquired images in the presence of specific chemical compounds were used to investigate how settlement on a substratum is altered in response to the presence of these compounds. It is shown that impeding tactile exploration, altering cellular signalling and/or inducing malformations of anatomical features of the antennular sensory setae can disrupt the settlement behaviour of the model barnacle species Amphibalanus amphitrite. It is concluded that surface exploration by the cyprids relies on mechanical and nociception-related and calcium-mediated signals while a protein kinase C signalling cascade controls the timely metamorphosis of the cyprids to sessile juveniles.
Collapse
Affiliation(s)
- Mado Kotsiri
- a Department of Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Maria Protopapa
- a Department of Biology , National and Kapodistrian University of Athens , Athens , Greece
| | | | - Athena Economou-Amilli
- a Department of Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Eleni K Efthimiadou
- b Department of Chemistry , National and Kapodistrian University of Athens , Athens , Greece
| | - Skarlatos G Dedos
- a Department of Biology , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
48
|
Chen Y, Song Q, Zhao J, Gong X, Schlaad H, Zhang G. Betulin-Constituted Multiblock Amphiphiles for Broad-Spectrum Protein Resistance. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6593-6600. [PMID: 29378120 DOI: 10.1021/acsami.7b16255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multiblock-like amphiphilic polyurethanes constituted by poly(ethylene oxide) and biosourced betulin are designed for antifouling and synthesized by a convenient organocatalytic route comprising tandem chain-growth and step-growth polymerizations. The doping density of betulin (DB) in the polymer chain structure is readily varied by a mixed-initiator strategy. The spin-coated polymer films exhibit unique nanophase separation and protein resistance behaviors. Higher DB leads to enhanced surface hydrophobicity and, unexpectedly, improved protein resistance. It is found that the surface holds molecular-level heterogeneity when DB is substantially high due to restricted phase separation; therefore, broad-spectrum protein resistance is achieved despite considerable surface hydrophobicity. As DB decreases, the distance between adjacent betulin units increases so that hydrophobic nanodomains are formed, which provide enough landing areas for relatively small-sized proteins to adsorb on the surface.
Collapse
Affiliation(s)
- Ye Chen
- Faculty of Materials Science and Engineering, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Qilei Song
- Faculty of Materials Science and Engineering, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Xiangjun Gong
- Faculty of Materials Science and Engineering, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Helmut Schlaad
- Institute of Chemistry, University of Potsdam , Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology , Guangzhou 510640, People's Republic of China
| |
Collapse
|
49
|
New Marine Antifouling Compounds from the Red Alga Laurencia sp. Mar Drugs 2017; 15:md15090267. [PMID: 28846653 PMCID: PMC5618406 DOI: 10.3390/md15090267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/20/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023] Open
Abstract
Six new compounds, omaezol, intricatriol, hachijojimallenes A and B, debromoaplysinal, and 11,12-dihydro-3-hydroxyretinol have been isolated from four collections of Laurencia sp. These structures were determined by MS and NMR analyses. Their antifouling activities were evaluated together with eight previously known compounds isolated from the same samples. In particular, omaezol and hachijojimallene A showed potent activities (EC50 = 0.15–0.23 µg/mL) against larvae of the barnacle Amphibalanus amphitrite.
Collapse
|
50
|
Norcy TL, Niemann H, Proksch P, Linossier I, Vallée-Réhel K, Hellio C, Faÿ F. Anti-Biofilm Effect of Biodegradable Coatings Based on Hemibastadin Derivative in Marine Environment. Int J Mol Sci 2017; 18:E1520. [PMID: 28703765 PMCID: PMC5536010 DOI: 10.3390/ijms18071520] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 12/17/2022] Open
Abstract
Dibromohemibastadin-1 (DBHB) is an already known potent inhibitor of blue mussel phenoloxidase (which is a key enzyme involved in bioadhesion). Within this study, the potentiality of DBHB against microfouling has been investigated. The activity of DBHB was evaluated on key strains of bacteria and microalgae involved in marine biofilm formation and bioassays assessing impact on growth, adhesion and biofilm formation were used. To assess the efficiency of DBHB when included in a matrix, DBHB varnish was prepared and the anti-microfouling activity of coatings was assessed. Both in vitro and in situ immersions were carried out. Confocal Laser Scanning Microscopy (CLSM) was principally used to determine the biovolume and average thickness of biofilms developed on the coatings. Results showed an evident efficiency of DBHB as compound and varnish to reduce the biofilm development. The mode of action seems to be based principally on a perturbation of biofilm formation rather than on a biocidal activity in the tested conditions.
Collapse
Affiliation(s)
- Tiffany Le Norcy
- Laboratoire de Biotechnologie et Chimie Marines, Institut Universitaire Européen de la Mer, Université de Bretagne-Sud, 56100 Lorient, France.
| | - Hendrik Niemann
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Isabelle Linossier
- Laboratoire de Biotechnologie et Chimie Marines, Institut Universitaire Européen de la Mer, Université de Bretagne-Sud, 56100 Lorient, France.
| | - Karine Vallée-Réhel
- Laboratoire de Biotechnologie et Chimie Marines, Institut Universitaire Européen de la Mer, Université de Bretagne-Sud, 56100 Lorient, France.
| | - Claire Hellio
- Biodimar, LEMAR UMR 6539, Institut Européen de la Mer, Université de Bretagne Occidentale, 29200 Brest, France.
| | - Fabienne Faÿ
- Laboratoire de Biotechnologie et Chimie Marines, Institut Universitaire Européen de la Mer, Université de Bretagne-Sud, 56100 Lorient, France.
| |
Collapse
|