1
|
Mo J, Zhao C, Fang C, Long Y, Han Y, Mei Q, Wu W. Pre-biodrying enhanced lignin degradation to promote aromatic macromolecular humic acid formation in double-phase composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 202:114851. [PMID: 40306170 DOI: 10.1016/j.wasman.2025.114851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/06/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
A 24-h pre-biodrying phase was introduced in 10-d double-phase biodrying-enhanced composting (BEC) to accelerate the humification of kitchen waste by promoting the generation of phenolic-rich aromatic skeletons, key humic precursors for the lignin-protein and polyphenol pathways. To explore how biodrying promotes phenolic hydroxyl accumulation, macromolecule decomposition, particularly lignin, was investigated. Compared to day 9 of 15-d conventional bioaugmented mechanical composting (BMC) without pre-biodrying, BEC achieved 78.32 ± 15.96 % higher lignin degradation by day 9 (p < 0.001), with stronger correlations to humification indicators and greater explanatory power (91 %) for humic acid UV-vis indices than other macromolecules. Structural analysis showed enhanced lignin demethoxylation (minimum 3.92/Ar) and β-O-4 cleavage (minimum 51.69 %), increasing phenolic hydroxyl accumulation (maximum 4.34 mmol·g-1). Microbial analysis further revealed that oxygen availability, improved by frequent stirring and aeration during biodrying, enriched Bacillaceae and Issatchenkia, which accelerated bioheat generation and created thermophilic conditions favorable for Bacillus and Saccharomonospora capable of lignin demethoxylation (via vanAB, ligM) and β-O-4 cleavage (via ligD, ligL, ligE, ligF, ligG). High temperatures also enhanced microbial cooperation, enabling the lignin degraders to obtain nutrients, cofactors, and detoxification agents for basal metabolism and lignin degradation from Oceanobacillus, Gracilibacillus, Sinibacillus, Georgenia, Nigrospora, and Aspergillus, thereby reducing their metabolic burden and allowing them to focus on lignin degradation. This study is the first to unveil the humification mechanism during composting from the perspective of macromolecule decomposition, especially lignin, for the generation of phenolic-rich aromatic skeletons as key humic precursors, providing theoretical support for developing simple, effective strategies to accelerate composting.
Collapse
Affiliation(s)
- Jiefei Mo
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China; State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China
| | - Changxun Zhao
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China; State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China
| | - Chenxuan Fang
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China; State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China
| | - Yuzhou Long
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China; State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China
| | - Yujie Han
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China; State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Mei
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China; State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China
| | - Weixiang Wu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China; State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Zhejiang 311400, China.
| |
Collapse
|
2
|
Wang D, Chen X, Zhang J, Xu J, Kong X, Ye J, Zhang R, Fan H, Liu L, Zhan X, Qin Y, Xu H, Zhu Y, Cai D. Alkaline-thermal synergistic activation of persulfate for sawdust hour-level humification to prepare fulvic-like-acid fertilizer. BIORESOURCE TECHNOLOGY 2025; 426:132388. [PMID: 40074092 DOI: 10.1016/j.biortech.2025.132388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/14/2025]
Abstract
Sawdust is a by-product of wood processing and it was rapidly humified with K2S2O8 under alkaline-thermal synergistic activation to produce a fulvic-like-acid (FLA) organic fertilizer (SFOF) in this study. The optimum conditions were K2S2O8: KOH mass ratio of 1:2 and 150°C, meanwhile FLA yield could reach 180.3 mg/g in 2 h. The carboxylation, Maillard reaction, and aromatization processes occurred during sawdust humification. And then, SFOF was mixed with attapulgite and modified starch binder to get an organic fertilizer (SAM), and coated with amino silicone oil (ASO) to create a slow-release granule (SAM@ASO). The release mechanism of FLA from SAM@ASO was consistent with Ritger-Peppas release kinetics. SAM@ASO, with high biosafety, could promote water spinach growth and remediate acidic soil (pH from 4.9 to 6.3). This method offers a promising approach for sawdust utilization and a novel FLA-based organic fertilizer for acidic soil remediation.
Collapse
Affiliation(s)
- Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Xinyan Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Jing Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Jia Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Xianghai Kong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Jinghong Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Rongjun Zhang
- Weifang Shangchang Ecological Agriculture Technology Co., LTD, Weifang, People's Republic of China
| | - Huiqun Fan
- Shanghai Songjiang District Environmental Monitoring Station, Shanghai 201620, People's Republic of China
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People's Republic of China
| | - Xiuping Zhan
- Shanghai Agricultural Technology Extension Service Center, Shanghai 201103, People's Republic of China
| | - Yan Qin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China; National Circular Economy Engineering Laboratory, Shanghai 201620, People's Republic of China.
| |
Collapse
|
3
|
Mu D, Yang H, Gao W, Zhao J, Wang L, Wang F, Song C, Wei Z. Nuclear magnetic resonance revealed the structural unit difference and polymerization process of pre-humic acid from different organic waste sources. Int J Biol Macromol 2025; 304:140457. [PMID: 39929467 DOI: 10.1016/j.ijbiomac.2025.140457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
Pre-humic acid (HA) is brown humus that is only soluble in dilute alkali in natural soil. However, the mechanism underlying HA structural heterogeneity caused by material differences remains unknown. In this study, nuclear magnetic resonance (1H NMR) and fourier transform infrared spectroscopy were used to analyze the structure of HA with varying molecular weights. 1H NMR revealed that HA structures from the same source exhibit similar chemical shifts at various molecular weights, indicating that macromolecular and micromolecular HA had the same structural unit. Principal coordinate analysis demonstrated that the nitrogen-rich source of HA displayed higher structural similarity, whereas the lignin source of HA exhibited remarkable structural differences. This difference was attributed to the different contents of the 11 core structures of HA from different sources. The accuracy of the structural units from different sources is further verified by the predicted chemical shift and the root mean square error. Moreover, the interaction results indicated that HA derived from nitrogen-rich sources contains several hydrogen bonds, and the pine branch demonstrated the highest π-π interaction leading to a tightly packed three-dimensional conformation. The study on the heterogeneity of HA provides a theoretical basis for its evolution in biogeochemical cycle.
Collapse
Affiliation(s)
- Daichen Mu
- College of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Hongyu Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Jinghan Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Liqin Wang
- College of Life Science, Yulin university, Yulin 719000, China
| | - Feng Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; College of Life Science, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
4
|
Zhu Y, Tang R, Cao Y, Yu Y, Zhu J. Unlocking the potential of vinegar residue: A novel biorefining strategy for amino acid-enriched xylooligosaccharides and humic-like acid. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 192:20-28. [PMID: 39580947 DOI: 10.1016/j.wasman.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
In order to address the issue of low amino acid retention in the production of xylooligosaccharides (XOS) through hydrothermal pretreatment at high temperatures, a novel approach combining low temperature acid hydrolysis and enzymatic hydrolysis was employed. This innovative method not only allows for the production of amino acid-rich XOS, but also yields a valuable byproduct known as humic-like acid (HLA) from vinegar residue (VR). Under the optimal pretreatment conditions (89 °C, 6 h, 1.2 % sulfuric acid), the yield of XOS was 19.88 %. Furthermore, the hydrolyzate extracted from the acid pretreated VR had a content of 2.65 g/L amino acids (corresponding to the retention rate of 82.0 %), and the HLA yield of the sample was 10.51 %. Comprehensive analyses, such as Fourier transform infrared spectroscopy, elemental analysis, total acidic functional group, and nuclear magnetic resonance were employed to examine the structure and composition of the produced HLA, indicating that it was similar to that of natural commercial humic acid (CHA) extracted from minerals. Through this innovative approach, the production of amino acid-rich XOS and HLA from VR offers a sustainable solution that not only addresses the issue of low amino acid retention but also maximizes the potential of VR as a valuable resource.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212001, China; Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212001, China
| | - Ruijun Tang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212001, China; Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212001, China
| | - Yuting Cao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212001, China; Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212001, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212001, China; Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212001, China.
| | - Junjun Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Creteanu A, Lungu CN, Lungu M. Lignin: An Adaptable Biodegradable Polymer Used in Different Formulation Processes. Pharmaceuticals (Basel) 2024; 17:1406. [PMID: 39459044 PMCID: PMC11509946 DOI: 10.3390/ph17101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION LIG is a biopolymer found in vascular plant cell walls that is created by networks of hydroxylated and methoxylated phenylpropane that are randomly crosslinked. Plant cell walls contain LIG, a biopolymer with significant potential for usage in modern industrial and pharmaceutical applications. It is a renewable raw resource. The plant is mechanically protected by this substance, which may increase its durability. Because it has antibacterial and antioxidant qualities, LIG also shields plants from biological and chemical challenges from the outside world. Researchers have done a great deal of work to create new materials and substances based on LIG. Numerous applications, including those involving antibacterial agents, antioxidant additives, UV protection agents, hydrogel-forming molecules, nanoparticles, and solid dosage forms, have been made with this biopolymer. METHODS For this review, a consistent literature screening using the Pubmed database from 2019-2024 has been performed. RESULTS The results showed that there is an increase in interest in lignin as an adaptable biomolecule. The most recent studies are focused on the biosynthesis and antimicrobial properties of lignin-derived molecules. Also, the use of lignin in conjunction with nanostructures is actively explored. CONCLUSIONS Overall, lignin is a versatile molecule with multiple uses in industry and medical science.
Collapse
Affiliation(s)
- Andreea Creteanu
- Department of Pharmaceutical Technology, University of Medicine and Pharmacy Grigore T Popa, 700115 Iași, Romania;
| | - Claudiu N. Lungu
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania;
| | - Mirela Lungu
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania;
| |
Collapse
|
6
|
Phong NT, Yoon HY, Kang MS, Kwon M, Lee Y, Baik JM, Son EJ, Jang KS, Han DW, Kim KS, Jeon JR. Ionic Liquid-Based Extraction of Fulvic-like Substances from Wood Sawdust: Reproducing Unique Biological Activities of Fulvic Acids Using Renewable Natural Sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20981-20990. [PMID: 39148227 DOI: 10.1021/acs.jafc.4c04364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Fulvic acids (FAs) have been commercially used in cosmetics and agronomy due to their unique biological activities, such as plant stimulation and anti-inflammatory effects. However, the extraction sources of FAs, such as peat, are currently limited. Consequently, new extraction methods using renewable resources need to be developed, while reproducing the biological functions. Here, ionic liquids (ILs) effectively extracted fulvic-like substances (FLSs) from wood sawdust. The overall molecular weight distributions of FLSs were similar to those of commercial FAs, and key organic groups (e.g., aromatic, phenolic, and methoxy groups) were also found to be shared between commercial FAs and FLSs. Detailed compositional analysis revealed by high-resolution mass spectrometry showed that the extracts contain both lignin-like and lipid-like molecules, while commercial FAs are biased toward lignin-like and carbohydrate-like molecules. FLSs generally showed better and similar performance in radical scavenging activity against ABTS+· and H2O2. Fibroblast proliferation and lettuce growth enhancements were also observed with the extract containing 1-ethyl-3-methylimidazolium acetate and triethylammonium hydrogen sulfate, respectively, which performed better than commercial FAs. Immunofluorescence staining of in vitro human follicle dermal papilla cells supports that coexpression of hair growth-related proteins can be accelerated with FLSs, and this effect was further evidenced by in vivo mouse model experiments. Finally, the reusability of ILs in the extraction process was confirmed by analyzing the structural features of FLSs from each recycling. Our findings indicate that ILs are useful for obtaining biologically functional fulvic analogs from renewable plant sources.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eun Ju Son
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju 28119, Chungbuk, Republic of Korea
| | - Kyoung-Soon Jang
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju 28119, Chungbuk, Republic of Korea
| | | | | | | |
Collapse
|
7
|
Zhou H, Dang Y, Chen X, Ivanets A, Ratko AA, Kouznetsova T, Liu Y, Yang B, Zhang X, Sun Y, He X, Ren Y, Su X. Rapid humification of cotton stalk catalyzed by coal fly ash and its excellent cadmium passivation performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52582-52595. [PMID: 39153068 DOI: 10.1007/s11356-024-34514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
Due to industrialization, soil heavy metal pollution is a growing concern, with humic substances (HS) playing a pivotal role in soil passivation. To address the long duration of the compost humification problem, coal fly ash (CFA) in situ catalyzes the rapid pyrolysis of the cotton stalk (CS) to produce HS to address Cd passivation. Results indicate that the highest yield of humic acid (HA) (8.42%) and fulvic acid (FA) (1.36%) is obtained when the CS to CFA mass ratio is 1:0.5, at 275 ℃ for 120 min. Further study reveals that CFA catalysis CS humification, through the creation of alkaline pyrolysis conditions, Fe2O3 can stimulate the protein and the decomposition of hemicellulose in CS, and then, through the Maillard and Sugar-amine condensation reaction synthesis HA and FA. Applying HS-CS&CFA in Cd-contaminated soil demonstrates a 26.69% reduction in exchangeable Cd within 30 days by chemical complexation. Excellent maize growth effects and environmental benefits of HS products are the prerequisites for subsequent engineering applications. Similar industrial solid wastes, such as steel slag and red mud, rich in Fe2O3, can be explored to identify their catalytic humification effect. It could provide a novel and effective way for industrial solid wastes to be recycled for biomass humification and widely applied in remediating Cd-contaminated agricultural soil.
Collapse
Affiliation(s)
- Hao Zhou
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yan Dang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xinyu Chen
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Andrei Ivanets
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", 220072, Minsk, Belarus
| | - Alexander A Ratko
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", 220072, Minsk, Belarus
| | - Tatyana Kouznetsova
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", 220072, Minsk, Belarus
| | - Yongqi Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Bo Yang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xulong Zhang
- China Customs Science and Technology Research Center, Beijing, 100026, People's Republic of China
| | - Yiwei Sun
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xiaoyan He
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Chemistry and Environmental Sciences, Yili Normal University, Xinjiang, 835000, Yining, China
| | - Yanjie Ren
- Xinjiang Qinghua Energy Group Co., Ltd, Xinjiang, 844500, Yining, China
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
8
|
El Bouchtaoui FZ, Ablouh EH, Mhada M, Kassem I, Gracia DR, El Achaby M. Humic Acid-Functionalized Lignin-Based Coatings Regulate Nutrient Release and Promote Wheat Productivity and Grain Quality. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30355-30370. [PMID: 38805353 DOI: 10.1021/acsami.4c03224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The rational application of fertilizers is crucial for achieving high crop yields and ensuring global food security. The use of biopolymers for slow-release fertilizers (SRFs) development has emerged as a game-changer and environmentally sustainable pathway to enhance crop yields by optimizing plant growth phases. Herein, with a renewed focus on circular bioeconomy, a novel functionalized lignin-based coating material (FLGe) was developed for the sustained release of nutrients. This innovative approach involved the extraction and sustainable functionalization of lignin through a solvent-free esterification reaction with humic acid─an organic compound widely recognized for its biostimulant properties in agriculture. The primary objective was to fortify the hydration barrier of lignin by reducing the number of its free hydroxyl groups, thereby enhancing release control, while simultaneously harnessing the agronomic benefits offered by humic acid. After confirming the synthesis of functionalized lignin (FLGe) through 13C NMR analysis, it was integrated at varying proportions into either a cellulosic or starch matrix. This resulted in the creation of five distinct formulations, which were then utilized as coatings for diammonium phosphate (DAP) fertilizer. Experimental findings revealed an improved morphology and hardness (almost 3-fold) of DAP fertilizer granules after coating along with a positive impact on the soil's water retention capacity (7%). Nutrient leaching in soil was monitored for 100 days and a substantial reduction of nutrients leaching up to 80% was successfully achieved using coated DAP fertilizer. Furthermore, to get a fuller picture of their efficiency, a pot trial was performed using two different soil textures and demonstrated that the application of FLGe-based SRFs significantly enhanced the physiological and agronomic parameters of wheat, including leaf evolution and root architecture, resulting in an almost 50% increase in grain yield and improved quality. The results proved the potential of lignin functionalization to advance agricultural sustainability and foster a robust bioeconomy aligning with the premise "from the soil to the soil".
Collapse
Affiliation(s)
- Fatima-Zahra El Bouchtaoui
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660─Hay Moulay Rachid, Benguerir 43150, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660─Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Manal Mhada
- College of Agriculture and Environmental Sciences (CAES), AgroBioSciences Program (AgBS) Mohammed VI Polytechnic University (UM6P), Lot 660─Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Ihsane Kassem
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660─Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Dachena Romain Gracia
- College of Agriculture and Environmental Sciences (CAES), AgroBioSciences Program (AgBS) Mohammed VI Polytechnic University (UM6P), Lot 660─Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660─Hay Moulay Rachid, Benguerir 43150, Morocco
| |
Collapse
|
9
|
Qiao X, Li P, Zhao J, Li Z, Zhang C, Wu J. Gaining insight into the effect of laccase expression on humic substance formation during lignocellulosic biomass composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171548. [PMID: 38458466 DOI: 10.1016/j.scitotenv.2024.171548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The aim is to enhance lignin humification by promoting laccase activities which can promote lignin depolymerization and reaggregation during composting. 1-Hydroxybenzotriazole (HBT) is employed to conduct laccase mediator system (LMS), application of oxidized graphene (GO) in combination to strengthen LMS. Compared with control, the addition of GO, HBT, and GH (GO coupled with HBT) significantly improved laccase expression and activities (P < 0.05), with lignin humification efficiency also increased by 68.6 %, 36.7 %, and 107.8 %. GH treatment induces microbial expression of laccase by increasing the abundance and synergy of core microbes. The unsupervised learning model, vector autoregressive model and Mantel test function were combined to elucidate the mechanism of action of exogenous materials. The results showed that GO stabilized the composting environment on the one hand, and acted as a support vector to stabilize the LMS and promote the function of laccase on the other. In GH treatment, degradation of macromolecules and humification of small molecules were promoted simultaneously by activating the dual function of laccase. Additionally, it also reveals the GH enhances the humification of lignocellulosic compost by converting phenolic pollutants into aggregates. These findings provide a new way to enhance the dual function of laccase and promote lignin humification during composting. It could effectively achieve the resource utilization of organic solid waste and reduce composting pollution.
Collapse
Affiliation(s)
- Xingyu Qiao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Peiju Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinghan Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zonglin Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chunhao Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Joe EN, Chae HG, Rehman JU, Oh MS, Yoon HY, Shin HJ, Kim PJ, Lee JG, Gwon HS, Jeon JR. Methane emissions and the microbial community in flooded paddies affected by the application of Fe-stabilized natural organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169871. [PMID: 38185178 DOI: 10.1016/j.scitotenv.2024.169871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Redox chemistry involving the quinone/phenol cycling of natural organic matter (NOM) is known to modulate microbial respiration. Complexation with metals or minerals can also affect NOM solubilization and stability. Inspired by these natural phenomena, a new soil amendment approach was suggested to effectively decrease methane emissions in flooded rice paddies. Structurally stable forms of NOM such as lignin and humic acids (HAs) were shown to decrease methane gas emissions in a vial experiment using different soil types and rice straw as a methanogenic substrate, and this inhibitory behavior was likely enhanced by ferric ion-NOM complexation. A mechanistic study using HAs revealed that complexation facilitated the slow release of the humic components. Interestingly, borohydride-based reduction, which transformed quinone moieties into phenols, caused the HAs to lose their inhibitory capacity, suggesting that the electron-accepting ability of HAs is vital for their inhibitory effect. In rice field tests, the humic-metal complexes were shown to successfully mitigate methane generation, while carbon dioxide emissions were relatively unchanged. Microbial community analysis of the rice fields by season revealed a decrease in specific cellulose-metabolizing and methanogenic genera associated with methane emissions. In contrast, the relative abundance of Thaumarchaeota and Actinomycetota, which are associated with NOM and recalcitrant organics, was higher in the presence of Fe-stabilized HAs. These microbial dynamics suggest that the slow release of humic components is effective in modulating the anoxic soil microbiome, possibly due to their electron-accepting ability. Given the simplicity, cost-effectiveness, and soil-friendly nature of complexation processes, Fe-stabilized NOM represents a promising approach for the mitigation of methane emissions from flooded rice paddies.
Collapse
Affiliation(s)
- Eun-Nam Joe
- Department of Agricultural Chemistry and Food Science & Technology, Division of Applied Life Science (BK21), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho Gyeong Chae
- Department of Agricultural Chemistry and Food Science & Technology, Division of Applied Life Science (BK21), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jalil Ur Rehman
- Department of Agricultural Chemistry and Food Science & Technology, Division of Applied Life Science (BK21), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Seung Oh
- Department of Agricultural Chemistry and Food Science & Technology, Division of Applied Life Science (BK21), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho Young Yoon
- Department of Agricultural Chemistry and Food Science & Technology, Division of Applied Life Science (BK21), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho-Jun Shin
- Department of Agricultural Chemistry and Food Science & Technology, Division of Applied Life Science (BK21), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Pil Joo Kim
- Department of Agricultural Chemistry and Food Science & Technology, Division of Applied Life Science (BK21), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong Gu Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyo Suk Gwon
- Department of Climate Change and Agroecology, National Institute of Agricultural Science, Wanju 55365, Republic of Korea.
| | - Jong-Rok Jeon
- Department of Agricultural Chemistry and Food Science & Technology, Division of Applied Life Science (BK21), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
11
|
Qi X, Niu Z, Xiao S, Waigi MG, Lin H, Sun K. Novel insights into the mechanism of laccase-driven rhizosphere humification for alleviating wheat 17β-estradiol contamination. ENVIRONMENT INTERNATIONAL 2024; 185:108576. [PMID: 38490070 DOI: 10.1016/j.envint.2024.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/18/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Global-scale crop contamination with environmental estrogens has posed a huge risk to agri-food safety and human health. Laccase is regarded as an unexceptionable biocatalyst for regulating pollution and expediting humification, but the knowledge of estrogen bioremediation and C storage strengthened by laccase-driven rhizosphere humification (LDRH) remains largely unknown. Herein, a greenhouse microcosm was performed to explore the migration and fate of 17β-estradiol (E2) in water-wheat (Triticum aestivum L.) matrices by LDRH. Compared to the non-added laccase, the pseudo-first-order decay rate constants of E2 in the rhizosphere solution after 10 and 50 μM exposures by LDRH increased from 0.03 and 0.02 h-1 to 0.36 and 0.09 h-1, respectively. Furthermore, LDRH conferred higher yield, polymerizability, O-containing groups, and functional-C signals in the humified precipitates, because it accelerated the formation of highly complex precipitates by radical-controlled continuous polymerization. In particular, not only did LDRH mitigate the phytotoxicity of E2, but it also diminished the metabolic load of E2 in wheat tissues. This was attributed to the rapid attenuation of E2 in the rhizosphere solution during LDRH, which limited E2 uptake and accumulation in each subcellular fraction of the wheat roots and shoots. Although several typical intermediate products such as estrone, estriol, and E2 oligomers were detected in roots, only small-molecule species were found in shoots, evidencing that the polymeric products of E2 were unable to be translocated acropetally due to the vast hydrophobicity and biounavailability. For the first time, our study highlights a novel, eco-friendly, and sustainable candidate for increasing the low-C treatment of organics in rhizosphere microenvironments and alleviating the potential risks of estrogenic contaminants in agroenvironments.
Collapse
Affiliation(s)
- Xuemin Qi
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Ziyan Niu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shenghua Xiao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Michael Gatheru Waigi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
12
|
Peng XX, Gai S, Liu Z, Cheng K, Yang F. Effects of Fe 3+ on Hydrothermal Humification of Agricultural Biomass. CHEMSUSCHEM 2024; 17:e202301227. [PMID: 37833827 DOI: 10.1002/cssc.202301227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Hydrothermal humification technology for the preparation of artificial humic matters provides a new strategy, greatly promoting the natural maturation process. Iron, as a common metal, is widely used in the conversion of waste biomass; however, the influence of Fe3+ on hydrothermal humification remains unknown. In this study, FeCl3 is used to catalyze the hydrothermal humification of corn straw, and the influence of Fe3+ on the hydrothermal humification is explored by a series of characterization techniques. Results show that Fe3+ as the catalyst can promote the decomposition of corn straw, shorten the reaction time from 24 h to 6 h, and increase the yield from 6.77 % to 14.08 %. However, artificial humic acid (A-HA) obtained from Fe3+ -catalysis hydrothermal humification contains more unstable carbon and low amount of aromatics, resulting in a significantly decreased stability of the artificial humic acid. These results provide theoretical guidance for regulating the structure and properties of artificial humic acid to meet various maintenance needs.
Collapse
Affiliation(s)
- Xiong-Xin Peng
- School of Water Conservancy and Civil Engineering Department, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Shuang Gai
- School of Water Conservancy and Civil Engineering Department, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Zhuqing Liu
- School of Water Conservancy and Civil Engineering Department, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Kui Cheng
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Fan Yang
- School of Water Conservancy and Civil Engineering Department, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| |
Collapse
|
13
|
Chen X, Yang B, Zhou H, Boguta P, Fu X, Ivanets A, Ratko AA, Kouznetsova T, Liu Y, He X, Zhao D, Su X. Iron oxyhydroxide catalyzes production of artificial humic substances from waste biomass. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120152. [PMID: 38266528 DOI: 10.1016/j.jenvman.2024.120152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Production of artificial humic substances (AHS) from waste biomass will contribute to environmental protection and agricultural productivity. However, there is still a lack of a faster, more efficient and eco-friendly way for sustainable production. In this study, we proposed a method to accelerate the production of AHS from cotton stalks by mild pyrolysis and H2O2 oxidation in only 4 hours, and investigated the formation of AHS during biomass transformation. We found that the process increased the aromatic matrix and facilitated biomass transformation by enhancing the depolymerization of lignin into micromolecular phenolics (e.g., guaiacol, p-ethyl guaiacol, etc.). The optimum conditions of pyrolysis at 250 °C and oxidation with 6 mL H2O2 (5 wt%) yielded up to 19.28 ± 1.30 wt% artificial humic acid (AHA) from cotton stalks. In addition, we used iron oxyhydroxide (FeOOH) to catalyze biomass transformation and investigated the effect of FeOOH on the composition and properties of AHS. 1.5 wt% FeOOH promoted the increased content of artificial fulvic acid (AFA) in AHS from 10.1% to 26.5%, eventually improving the activity of AHS. FeOOH raised the content of oxygen-containing groups, such as carboxylic acids and aldehyde, and significantly increased polysaccharide (10.94%-18.95%) and protein (1.95%-2.18%) derivatives. Polymerization of amino acid analogs and many small-molecule carbohydrates (e.g., furans, aldehydes, ketones, and their derivatives) promoted AFA formation. Finally, carbon flow analysis and maize incubation tests confirmed that AHS were expected to achieve carbon emission reductions and reduce environmental pollution from fertilizers. This study provides a sustainable strategy for the accelerated production of AHS, which has important application value for waste biomass resource utilization.
Collapse
Affiliation(s)
- Xinyu Chen
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Bo Yang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Hao Zhou
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Patrycja Boguta
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Xinying Fu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Andrei Ivanets
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", Minsk, 220072, Belarus
| | - Alexander A Ratko
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", Minsk, 220072, Belarus
| | - Tatyana Kouznetsova
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", Minsk, 220072, Belarus
| | - Yongqi Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Xiaoyan He
- Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources in Xinjiang,School of Chemistry and Chemical Engineering,Yili Normal University, Yining 835000, China
| | - Dongmei Zhao
- Xinjiang Huier Agricultural Group Co Ltd, Changji, Xinjiang, 831100, PR China
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
14
|
Shao Y, Li Z, Long Y, Zhao J, Huo W, Luo Z, Lu W. Direct humification of biowaste with hydrothermal technology: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168232. [PMID: 37923260 DOI: 10.1016/j.scitotenv.2023.168232] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Hydrothermal humification of biowaste, in comparison to the traditional coal-based humic acid extraction process, better aligns with the goals of carbon neutrality and sustainability. This article provided a comprehensive review on the current advancements in hydrothermal humification of biowaste. Hydrothermal humic acid (HHA) derived from different biowaste sources was compared, exhibiting significant differences in their hydrophobicity, oxygen-containing functional group content, and structural characteristics. The influence of key parameters, including reaction temperature, residence time, pH and the action of catalysts on HHA yield was analyzed. The pathways through which biowaste and its major components transform into HHA were elucidated. Coal-like hydrochar has shown significant potential for producing HHA through hydrothermal treatment, with HHA selectivity exceeding 65 %. HHA also exhibits promising performance in agriculture and environmental remediation, offering comparable value to commercial humic acid. Future research should concentrate on establishing the correlation between hydrothermal conditions and the efficiency of biowaste humification, thereby facilitating the development of a predictive model for assessing efficiency. Additionally, exploring the application value of hydrothermal-synthesized HHA with diverse chemical characteristics will guide the optimization of hydrothermal conditions and selection of suitable feedstock.
Collapse
Affiliation(s)
- Yuchao Shao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhihua Li
- School of Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jun Zhao
- Department of Biology, Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Weizhong Huo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhangrui Luo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Zhong X, Yang Y, Liu H, Fang X, Zhang Y, Cui Z, Lv J. New insights into the sustainable use of soluble straw humic substances for the remediation of multiple heavy metals in contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166274. [PMID: 37582446 DOI: 10.1016/j.scitotenv.2023.166274] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
This study addresses the research gap in understanding the differences in straw decomposition and variations in humic substances (HS) extracted from various treatment conditions. The aim is to explore the potential of soluble straw HS in remediating heavy metal pollution in soils. The study characterizes straw decomposition structures using scanning electron microscopy (SEM) and X-ray diffraction (XRD), while employing gel permeation chromatography (GPC) and fluorescence spectroscopy (EEM) to analyze the molecular weight and degree of humification of extracted straw HS. The removal efficiency of HS for heavy metals is assessed, with a focus on aerobic humic substances (AE-HS) showing the highest potential for heavy metal removal. Spectral analysis and mass spectrometry analysis reveal the role of phenolic compounds, carboxylic acids, and aromatic compounds in AE-HS, forming humates or complexes to remove heavy metals from contaminated soil. Notably, the optimized AE-HS achieved the highest removal efficiency of 96.18 %, 82.75 %, 60.43 %, and 41.66 % for cadmium, copper, zinc, and lead, respectively. This study provides new insights into the preparation of straw for use as a heavy metal remover and has implications for the use of straw humic substances in soil remediation.
Collapse
Affiliation(s)
- Xianbao Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Hexiang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Xianhui Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Yaohui Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Ziying Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China.
| |
Collapse
|
16
|
Liu Q, Kawai T, Inukai Y, Aoki D, Feng Z, Xiao Y, Fukushima K, Lin X, Shi W, Busch W, Matsushita Y, Li B. A lignin-derived material improves plant nutrient bioavailability and growth through its metal chelating capacity. Nat Commun 2023; 14:4866. [PMID: 37567879 PMCID: PMC10421960 DOI: 10.1038/s41467-023-40497-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The lignocellulosic biorefinery industry can be an important contributor to achieving global carbon net zero goals. However, low valorization of the waste lignin severely limits the sustainability of biorefineries. Using a hydrothermal reaction, we have converted sulfuric acid lignin (SAL) into a water-soluble hydrothermal SAL (HSAL). Here, we show the improvement of HSAL on plant nutrient bioavailability and growth through its metal chelating capacity. We characterize HSAL's high ratio of phenolic hydroxyl groups to methoxy groups and its capacity to chelate metal ions. Application of HSAL significantly promotes root length and plant growth of both monocot and dicot plant species due to improving nutrient bioavailability. The HSAL-mediated increase in iron bioavailability is comparable to the well-known metal chelator ethylenediaminetetraacetic acid. Therefore, HSAL promises to be a sustainable nutrient chelator to provide an attractive avenue for sustainable utilization of the waste lignin from the biorefinery industry.
Collapse
Affiliation(s)
- Qiang Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tsubasa Kawai
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Japan
| | - Dan Aoki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Zhihang Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yihui Xiao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kazuhiko Fukushima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiming Shi
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yasuyuki Matsushita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.
| | - Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Li S, Sheng Y, Xiao S, Liu Q, Sun K. Exolaccase Propels Humification to Decontaminate Bisphenol A and Create Humic-like Biostimulants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37470251 DOI: 10.1021/acs.jafc.3c02958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Exolaccase-propelled humification (E-PH) helps eliminate phenolic pollutants and produce macromolecular precipitates. Herein, we investigated the influencing mechanism of 12 humic precursors (HPs) on exolaccase-enabled bisphenol A (BPA) decontamination and humification. Catechol, vanillic acid, caffeic acid, and gentian acid not only expedited BPA removal but also created large amounts of copolymeric precipitates. These precipitates had rich functional groups similar to natural humic substances, which presented great aromatic and acidic characteristics. The releasing amounts of BPA monomer from four precipitates were 0.08-12.87% at pH 2.0-11.0, suggesting that BPA-HP copolymers had pH stability. More excitingly, certain copolymeric precipitates could stimulate the growth and development of radish seedlings. The radish growth-promotion mechanisms of copolymers were involved in two aspects: (1) Copolymers interacted with root exudates to accelerate nutrient uptake; (2) Copolymers released auxins to provoke radish growth. These results may provide an innovative strategy for decontaminating phenolic pollutants and yielding humic-like biostimulants in E-PH.
Collapse
Affiliation(s)
- Shunyao Li
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, Anhui, China
| | - Yuehui Sheng
- Suzhou Zhongsheng Environmental Remediation Co., Ltd., Suzhou 215104, Jiangsu, China
| | - Shenghua Xiao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qingzhu Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
18
|
Luo G, Liu M, Zeng J, Huang S, Huang J, Ahmed Z, Yang Y, Lai R, Xu D. Improvement of carbon source composition reduces antibiotic resistance genes in the ectopic fermentation system. BIORESOURCE TECHNOLOGY 2023; 380:129064. [PMID: 37068526 DOI: 10.1016/j.biortech.2023.129064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/14/2023]
Abstract
Effectively reduce antibiotic resistance genes (ARGs) in ectopic fermentation system (EFS) is essential for practical production. In this study, three experiments were performed to explore how to remove ARGs in EFS effectively. Results demonstrated that ARGs were easily enriched in rice-husk-sawdust padding; simultaneous addition of laccase and cellulase suppressed the ARGs, mainly by increasing soluble carbohydrate concentration and promoting humic acid concentration; addition of corn stalks into rice-husk-sawdust decreased the abundance of ARGs by improving the carbon source structure and enhancing cellulase activity. In conclusion, the present study provides a guidance to reduce the threat of ARGs in EFS, which paved a potential pathway to safely utilize manure resources.
Collapse
Affiliation(s)
- Gan Luo
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinjie Zeng
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuntao Huang
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingshu Huang
- Agricultural Development Center of Hubei Province, Wuhan 430064, China
| | - Zulfiqar Ahmed
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaokun Yang
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Renhao Lai
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dequan Xu
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| |
Collapse
|
19
|
Ondrašovičová S, Zigo F, Gogoľa J, Lacková Z, Farkašová Z, Arvaiová J, Almášiová V, Rehan IF. The Effects of Humic Acids on the Early Developmental Stages of African Cichlids during Artificial Breeding. Life (Basel) 2023; 13:1071. [PMID: 37240716 PMCID: PMC10223718 DOI: 10.3390/life13051071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of this study was to compare the effect of humic acid (HA) obtained by extraction from alginate on the incubation of roes and fry development in African cichlids, Labidochormis caeruleus, as well as their influence on the stabilization of the physicochemical parameters of water in an aquarium during artificial breeding. The roes were obtained by extruding from a female buccal cavity immediately after fertilization. For the experiment, 4 groups of 40 roes were formed in an incubator with an artificial hatchery. Groups 1-3 were exposed to 1%, 5%, and 10% concentrations of HA, respectively. The control group C was not exposed to HA. In all groups, the mortality and size differences of the fry, as well as the temperature, pH, hardness, nitrite, and nitrate levels in the tanks, were determined during a 30-day monitoring period until the resorption of the yolk sac. The results of this study indicated the ability of HA in 5% and 10% concentrations to reduce nitrite and nitrate levels in the aquatic environment, which significantly reduced the mortality of roes and the survivability of the fry. The determination of the morphological measurements of the fry revealed an increased body length in the groups exposed to 5% and 10% HA concentrations compared to the control group by the end of the monitored period. It was also noted that the yolk sac was resorbed two days earlier in the same groups than in the control. Thus, the results showed that HAs are suitable for use in the artificial aquarium incubation of roes and fry development, which are increasingly exposed to adverse environmental factors. The knowledge obtained in this study and its transfer into practice can allow even less experienced aquarists to successfully breed aquarium fish species that could not normally be bred under artificial conditions without the addition of HA.
Collapse
Affiliation(s)
- Silvia Ondrašovičová
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - František Zigo
- Department of Nutrition and Animal Breeding, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Július Gogoľa
- Private Veterinary Clinic, Zvolenská Slatina SNP 367/25, 962 01 Zvolen, Slovakia
| | - Zuzana Lacková
- Department of Nutrition and Animal Breeding, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Zuzana Farkašová
- Department of Nutrition and Animal Breeding, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Juliana Arvaiová
- Department of Nutrition and Animal Breeding, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Viera Almášiová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Ibrahim F. Rehan
- Department of Husbandry and Development of Animal Health, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom 32511, Egypt
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku-ku, Nagoya-shi 468-8503, Japan
| |
Collapse
|
20
|
Sutradhar S, Fatehi P. Latest development in the fabrication and use of lignin-derived humic acid. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:38. [PMID: 36882875 PMCID: PMC9989592 DOI: 10.1186/s13068-023-02278-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
Humic substances (HS) are originated from naturally decaying biomass. The main products of HS are humic acids, fulvic acids, and humins. HS are extracted from natural origins (e.g., coals, lignite, forest, and river sediments). However, the production of HS from these resources is not environmentally friendly, potentially impacting ecological systems. Earlier theories claimed that the HS might be transformed from lignin by enzymatic or aerobic oxidation. On the other hand, lignin is a by-product of pulp and paper production processes and is available commercially. However, it is still under-utilized. To address the challenges of producing environmentally friendly HS and accommodating lignin in valorized processes, the production of lignin-derived HS has attracted attention. Currently, several chemical modification pathways can be followed to convert lignin into HS-like materials, such as alkaline aerobic oxidation, alkaline oxidative digestion, and oxidative ammonolysis of lignin. This review paper discusses the fundamental aspects of lignin transformation to HS comprehensively. The applications of natural HS and lignin-derived HS in various fields, such as soil enrichment, fertilizers, wastewater treatment, water decontamination, and medicines, were comprehensively discussed. Furthermore, the current challenges associated with the production and use of HS from lignin were described.
Collapse
Affiliation(s)
- Shrikanta Sutradhar
- Biorefining Research Institute, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Pedram Fatehi
- Biorefining Research Institute, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
21
|
Rehman JU, Joe EN, Yoon HY, Kwon S, Oh MS, Son EJ, Jang KS, Jeon JR. Lignin Metabolism by Selected Fungi and Microbial Consortia for Plant Stimulation: Implications for Biologically Active Humus Genesis. Microbiol Spectr 2022; 10:e0263722. [PMID: 36314978 PMCID: PMC9769858 DOI: 10.1128/spectrum.02637-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Plant lignin is regarded as an important source for soil humic substances (HSs). Nonetheless, it remains unclear whether microbial metabolism on lignin is related to the genesis of unique HS biological activities (e.g., direct plant stimulation). Here, selected white-rot fungi (i.e., Ganoderma lucidum and Irpex lacteus) and plant litter- or mountain soil-derived microbial consortia were exploited to structurally modify lignin, followed by assessing the plant-stimulatory activity of the lignin-derived products. Parts solubilized by microbial metabolism on lignin were proven to exhibit organic moieties of phenol, carboxylic acid, and aliphatic groups and the enhancement of chromogenic features (i.e., absorbance at 450 nm), total phenolic contents, and radical-scavenging capacities with the cultivation times. In addition, high-resolution mass spectrometry revealed the shift of lignin-like molecules toward those showing either more molar oxygen-to-carbon or more hydrogen-to-carbon ratios. These results support the findings that the microbes involved, solubilize lignin by fragmentation, oxygenation, and/or benzene ring opening. This notion was also substantiated by the detection of related exoenzymes (i.e., peroxidases, copper radical oxidases, and hydrolases) in the selected fungal cultures, while the consortia treated with antibacterial agents showed that the fungal community is a sufficient condition to induce the lignin biotransformation. Major families of fungi (e.g., Nectriaceae, Hypocreaceae, and Saccharomycodaceae) and bacteria (e.g., Burkholderiaceae) were identified in the lignin-enriched cultures. All the microbially solubilized lignin products were likely to stimulate plant root elongation in the order selected white-rot fungi > microbial consortia > antibacterial agent-treated microbial consortia. Overall, this study supports the idea that microbial transformation of lignin can contribute to the formation of biologically active organic matter. IMPORTANCE Structurally stable humic substances (HSs) in soils are tightly associated with soil fertility, and it is thus important to understand how soil HSs are naturally formed. It is believed that microbial metabolism on plant matter contributes to natural humification, but detailed microbial species and their metabolisms inducing humic functionality (e.g., direct plant stimulation) need to be further investigated. Our findings clearly support that microbial metabolites of lignin could contribute to the formation of biologically active humus. This research direction appears to be meaningful not only for figuring out the natural processes, but also for confirming natural microbial resources useful for artificial humification that can be linked to the development of high-quality soil amendments.
Collapse
Affiliation(s)
- Jalil Ur Rehman
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Eun-Nam Joe
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Ho Young Yoon
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Sumin Kwon
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Min Seung Oh
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Eun Ju Son
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, South Korea
| | - Kyoung-Soon Jang
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, South Korea
| | - Jong-Rok Jeon
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju, Republic of Korea
- IALS, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
22
|
Humic-like crop stimulatory activities of coffee waste induced by incorporation of phytotoxic phenols in melanoidins during coffee roasting: Linking the Maillard reaction to humification. Food Res Int 2022; 162:112013. [DOI: 10.1016/j.foodres.2022.112013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
|
23
|
Zhi Y, Li X, Lian F, Wang C, White JC, Wang Z, Xing B. Nanoscale Iron trioxide catalyzes the synthesis of auxins analogs in artificial humic acids to enhance rice growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157536. [PMID: 35878859 DOI: 10.1016/j.scitotenv.2022.157536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Humic acids (HAs), kinds of valuable active carbon, are critical for improving soil fertility. However, the majority of soils are poor in HAs, arousing the development of artificial HAs. In this study, two iron-based catalysts (nanoscale iron trioxide (nFe2O3) and FeCl3) were used to catalyze the hydrothermal humification of waste corn straw. With the help of ultra-performance liquid chromatography-mass spectrometry, we proposed the specific humification process with the action of catalysis for the first time, which is of great significance for the design, synthesis and application of artificial HAs in the future. Moreover, the growth-promoting effect and mechanisms of the artificial HAs were determined by rice planting in a greenhouse. Results showed that compared to no catalyst treatment, the FeCl3 and nFe2O3 catalysts increased the decomposition rate of macromolecular biomass by 39 and 14 %, respectively, increasing the yield of artificial HAs. During the humification process, nFe2O3 catalysts benefit the formation of many aromatic structure monomers including furfural and hydroxycaproic acids. These monomers were condensed into growth hormone analogs such as vanillin and methionine sulfoxide and were further built in the artificial HAs. Therefore, the artificial HAs from nFe2O3 catalytic treatment promoted the rice growth the best, showing that the resultant germination rate, root activity, and photosynthetic rate of rice increased by 50, 167, and 72 %, respectively; moreover, the uptake and accumulation of water and nutrient by roots as well as the contents of soluble protein and sugar of rice are also significantly increased. This could be ascribed to the upregulated expression of functional genes including OsRHL1, OsZPT5-07, OsSHR2 and OsDCL. Considering both the economic and environmental benefits, we suggested that the artificial HAs, especially that produced with the action of nFe2O3 catalysis, are promising in alleviating environmental stress from waste biomass and sustainably improving agricultural production.
Collapse
Affiliation(s)
- Yancai Zhi
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fei Lian
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
24
|
Abstract
Globally, phenolic contaminants have posed a considerable threat to agro-ecosystems. Exolaccase-boosted humification may be an admirable strategy for phenolic detoxification by creating multifunctional humic-like products (H-LPs). Nonetheless, the potential applicability of the formed H-LPs in agricultural production is still overlooked. This review describes immobilized exolaccase-enabled humification in eliminating phenolic pollutants and producing artificial H-LPs. The similarities and differences between artificial H-LPs and natural humic substances (HSs) in chemical properties are compared. In particular, the agronomic effects of these reproducible artificial H-LPs are highlighted. On the basis of the above summary, the granulation process is employed to prepare granular humic-like organic fertilizers, which can be applied to field crops by mechanical side-deep fertilization. Finally, the challenges and perspectives of exolaccase-boosted humification for practical applications are also discussed. This review is a first step toward a more profound understanding of phenolic detoxification, soil improvement, and agricultural production by exolaccase-boosted humification. Exolaccase-initiated humification is conductive to phenolic detoxification Multiple humic-like products are created in exolaccase-boosted humification Similarities and differences between artificial and natural humus are disclosed Humic-like products can be used to sustain soil health and increase crop yield
Collapse
|
25
|
|
26
|
Raguraj S, Kasim S, Jaafar NM, Nazli MH, Amali RKA. A comparative study of tea waste derived humic-like substances with lignite-derived humic substances on chemical composition, spectroscopic properties and biological activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60631-60640. [PMID: 35426561 DOI: 10.1007/s11356-022-20060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Emerging demand for humic substances escalated the short supply of coal-related resources from which humic substances are extracted in large quantities for various applications. Production of humic-like substances from lignocellulosic waste materials similar in structural and functional properties to humic substances has gained interest recently. Tea waste is a by-product from tea manufacturing factories enriched in lignocellulose is used to extract two types of humic fractions. One fraction has purified humic-like acid (HLA), and the other has unpurified humic and fulvic acids called as humic-like substances (HLS). Elemental composition, spectroscopic (13C CPMAS NMR and FTIR) properties, and biological activity of tea waste derived humic-like substances (TWDHLS) were compared with commercially available humic acid (CHA) extracted from lignite. Elemental analysis and FTIR characterization showed slight differences between HLA and HLS, while NMR results revealed that both have similar carbon distribution and are abundant in cellulosic polysaccharides and lignin derivatives. The presence of more stable compounds in TWDHLS contribute to its recalcitrant nature. NMR spectra of CHA significantly varied with TWDHLS and were rich in aliphatic compounds. The biological activity of TWDHLS and CHA was studied at five different concentrations (0, 20, 40, 80, and 160 mg L-1). The results show that soil application TWDHLS at 80 mg L-1 concentration showed better results on the growth of tea nursery plants similar to CHA, contrasting to the variation in their structural properties. Our findings revealed that TWDHLS could be used not only as a potential plant biostimulant but also as a better substitute for humic substances.
Collapse
Affiliation(s)
- Sriharan Raguraj
- Department of Land Management, Faculty of Agriculture, University Putra Malaysia, 43400, Serdang, Malaysia
- Soils and Plant Nutrition Division, Tea Research Institute of Sri Lanka, Talawakelle, 22100, Sri Lanka
| | - Susilawati Kasim
- Department of Land Management, Faculty of Agriculture, University Putra Malaysia, 43400, Serdang, Malaysia.
| | - Noraini Md Jaafar
- Department of Land Management, Faculty of Agriculture, University Putra Malaysia, 43400, Serdang, Malaysia
| | - Muhamad Hazim Nazli
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400, Serdang, Malaysia
| | | |
Collapse
|
27
|
Li S, Sun K, Latif A, Si Y, Gao Y, Huang Q. Insights into the Applications of Extracellular Laccase-Aided Humification in Livestock Manure Composting. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7412-7425. [PMID: 35638921 DOI: 10.1021/acs.est.1c08042] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditional composting is a well-suited biotechnology for on-farm management of livestock manure (LM) but still leads to the release of toxic micropollutants and imbalance of nutrients. One in situ exoenzyme-assisted composting has shown promise to ameliorate the agronomical quality of end products by improving humification and polymerization. The naturally occurring extracellular laccase from microorganisms belongs to a multicopper phenoloxidase, which is verified for its versatility to tackle micropollutants and conserve organics through the reactive radical-enabled decomposition and polymerization channels. Laccase possesses an indispensable relationship with humus formation during LM composting, but its potential applications for the harmless disposal and resource utilization of LM have until now been overlooked. Herein, we review the extracellular laccase-aided humification mechanism and its optimizing strategy to maintain enzyme activity and in situ production, highlighting the critical roles of laccase in treating micropollutants and preserving organics during LM composting. Particularly, the functional effects of the formed humification products by laccase-amended composting on plant growth are also discussed. Finally, the future perspectives and outstanding questions are summarized. This critical review provides fundamental insights into laccase-boosted humification that ameliorates the quality of end products in LM composting, which is beneficial to guide and advance the practical applications of exoenzyme in humification remediation, the carbon cycle, and agriculture protection.
Collapse
Affiliation(s)
- Shunyao Li
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei 230601, Anhui, China
| | - Kai Sun
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Abdul Latif
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Youbin Si
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yanzheng Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Qingguo Huang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, Georgia 30223, United States
| |
Collapse
|
28
|
Abstract
The aim of the paper is to give an overview on the chemistry of soil organic carbon (SOC) affecting nutrient availability, the emission of greenhouse gases and detoxifying harmful substances in soil. Humic substances represent the stable part of SOC, accounting for between 50 and more than 80% of organically bound carbon in soil. Humic substances strongly affect the soil solution concentration of several plant nutrients and may increase P-, Fe-, and Cu- solubility, thereby increasing their plant availability. Soil organic carbon, mainly humic substances, can detoxify monomeric Al in acid soils, can strongly bind toxic heavy metals, making them unavailable to the plant roots, and may strongly bind a vast variety of harmful organic pollutants. Increasing SOC is an important goal in agriculture. The inclusion of mixtures of semi-perennial plant species and cultivars may strongly increase SOC and humic substance content in soils. To increase SOC, farmyard manure and its rotted or composted forms are superior compared to the separate application of straw and slurry to soil. The storage of carbon, mainly in organic form, in soils is very important in the context of the emission of greenhouse gases. Worldwide, soils release about 10 times more greenhouse gases compared to fossil fuel combustion. Small increments in SOC worldwide will strongly affect the concentration of atmospheric CO2. The public discussion on soil fertility and greenhouse gas emissionshas been politically controlled in a way that leaves the important and positive contribution of soil organic carbon and mainly humic substances partly misinterpreted and partly underestimated.
Collapse
|
29
|
Leonardites Rich in Humic and Fulvic Acids Had Little Effect on Tissue Elemental Composition and Dry Matter Yield in Pot-Grown Olive Cuttings. SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of humic substances in agriculture has increased in recent years, and leonardite has been an important raw material in the manufacture of commercial products rich in humic and fulvic acids. Leonardite-based products have been used to improve soil properties and to help plants cope with abiotic and biotic stresses. In this study, the effects of two commercial leonardites and an organic compost, in addition to a control treatment, were assessed for pot-grown olive plants over a period of fourteen months on soil properties, tissue elemental composition and dry matter yield (DMY). Three organic amendments were applied at single and double rates of that set by the manufacturer. The study was arranged in two experiments: one containing the seven treatments mentioned above and the other containing the same treatments supplemented with mineral nitrogen (N), phosphorus (P) and potassium (K) fertilization. Overall, organic compost increased soil organic carbon by ~8% over the control. In the experiment without NPK supplementation, N concentrations in shoots and P in roots were the highest for the compost application (leaf N 12% and root P 32% higher than in the control), while in the experiment with NPK supplementation, no significant differences were observed between treatments. Total DMY was ~10% higher in the set of treatments with NPK in comparison to treatments without NPK. Leonardites did not affect significantly any measured variables in comparison to the control. In this study, a good management of the majority of environmental variables affecting plant growth may have reduced the possibility of obtaining a positive effect on plant nutritional status and growth from the use of commercial leonardites. The leonardites seemed to have caused a slight effect on biological N immobilization. This is not necessarily an advantage or a drawback; it is rather a feature that must be understood to help farmers make better use of these products.
Collapse
|
30
|
Li S, Hong D, Chen W, Wang J, Sun K. Extracellular laccase-activated humification of phenolic pollutants and its application in plant growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:150005. [PMID: 34525729 DOI: 10.1016/j.scitotenv.2021.150005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Humification processes of phenolic pollutants may play a profound role in environment purification and plant growth. However, little literature is performed to explore exoenzyme-driven humification to polymerize 17β-estradiol (E2) and humic constituents (HCs), and the effects of their polymeric precipitates on plant growth are usually overlooked. Herein, E2 conversion and radish (Raphanus sativus L.) growth were systematically investigated under humification mediated by extracellular laccase (EL) of Trametes versicolor. Results disclosed that EL-assisted humification achieved a wonderful E2 conversion efficiency (>99%) within 2-h, but the presence of HCs such as humic acid (HA), vanillic acid (VA), and ferulic acid (FA) impeded E2 elimination significantly. Compared with HC-free, the kinetics constants declined by 2.84-, 5.72-, and 5.22-fold with HA, VA, and FA present, respectively. Intriguingly, three close-knit self/cross-linked precipitates (i.e., E2-HA, E2-VA, and E2-FA hybrid precipitates) in dark gray, dark brown, and deep yellow were created after a continuous humification by phenolic radical-initiated polymerization mechanisms. The formation of these humified precipitates was extremely effective on circumventing phytotoxicity caused by monomeric E2, VA, or FA. Furthermore, they acted as humic-like organic fertilizers, accelerating seed germination, root elongation, and enhancing NaCl-tolerance of radish through the combination of oxygen-contained functional components and auxin structural analogues with unstable and stubborn carbon skeletons. This is the first study reporting the pollution purification and plant growth promotion in EL-activated humification. Our findings frame valuable perspectives regarding the natural detoxification and carbon sequestration of phenolic pollutants and the application of their polymeric precipitates in global crop production.
Collapse
Affiliation(s)
- Shunyao Li
- School of Resources and Environmental Engineering, Anhui University, Jiulong Road 111, Hefei 230039, Anhui, China
| | - Dan Hong
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Wenjun Chen
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Jun Wang
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Kai Sun
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China.
| |
Collapse
|
31
|
Shu F, Jiang B, Yuan Y, Li M, Wu W, Jin Y, Xiao H. Biological Activities and Emerging Roles of Lignin and Lignin-Based Products─A Review. Biomacromolecules 2021; 22:4905-4918. [PMID: 34806363 DOI: 10.1021/acs.biomac.1c00805] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bioactive substances, displaying excellent biocompatibility, chemical stability, and processability, could be extensively applied in biomedicine and tissue engineering. In recent years, plant-based bioactive substances such as flavonoids, vitamins, terpenes, and lignin have received considerable attention due to their human health benefits and pharmaceutical/medical applications. Among them is lignin, an amorphous biomacromolecule mainly derived from the combinatorial radical coupling of three phenylpropane units (p-hydroxypenyl, guaiacyl, and syringyl) during lignification. Lignin possesses intrinsic bioactivities (antioxidative, antibacterial, anti-UV activities, etc.) against phytopathogens. Lignin also enhances the plant resistance (adaptability) against environmental stresses. The abundant structural features of lignin offer other significant bioactivities including antitumor and antivirus bioactivities, regulation of plant growth, and enzymatic hydrolysis of cellulose. This Review reports the latest research results on the bioactive potential of lignin and lignin-based substances in biomedicine, agriculture, and biomass conversion. Moreover, the interfacial reactions and bonding mechanisms of lignin with biotissue/cells and other constituents were also discussed, aiming at promoting the conversion or evolution of lignin from industrial wastes to value-added bioactive materials.
Collapse
Affiliation(s)
- Fan Shu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.,Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yufeng Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Mohan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.,Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada
| |
Collapse
|
32
|
Moiseenko KV, Glazunova OA, Savinova OS, Vasina DV, Zherebker AY, Kulikova NA, Nikolaev EN, Fedorova TV. Relation between lignin molecular profile and fungal exo-proteome during kraft lignin modification by Trametes hirsuta LE-BIN 072. BIORESOURCE TECHNOLOGY 2021; 335:125229. [PMID: 34010738 DOI: 10.1016/j.biortech.2021.125229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 05/11/2023]
Abstract
The process of kraft lignin modification by the white-rot fungus Trametes hirsuta was investigated using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS), and groups of systematically changing compounds were delineated. In the course of cultivation, fungus tended to degrade progressively more reduced compounds and produced more oxidized ones. However, this process was not gradual - the substantial discontinuity was observed between 6th and 10th days of cultivation. Simultaneously, the secretion of ligninolytic peroxidases by the fungus was changing in a cascade manner - new isoenzymes were added to the mixture of the already secreted ones, and once new isoenzyme appeared both its relative quantity and number of isoforms increased as cultivation proceeded. It was proposed, that the later secreted peroxidases (MnP7 and MnP1) possess higher substrate affinity for some phenolic compounds and act in more specialized manner than the early secreted ones (MnP5 and VP2).
Collapse
Affiliation(s)
- Konstantin V Moiseenko
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia.
| | - Olga A Glazunova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia
| | - Olga S Savinova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia
| | - Daria V Vasina
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia
| | | | - Natalia A Kulikova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia; Department of Soil Science, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Evgeny N Nikolaev
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143025, Russia
| | - Tatiana V Fedorova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia
| |
Collapse
|
33
|
Which Traits of Humic Substances Are Investigated to Improve Their Agronomical Value? Molecules 2021; 26:molecules26030760. [PMID: 33540638 PMCID: PMC7867258 DOI: 10.3390/molecules26030760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Humic substances (HSs) are chromogenic organic assemblies that are widespread in the environment, including soils, oceans, rivers, and coal-related resources. HSs are known to directly and indirectly stimulate plants based on their versatile organic structures. Their beneficial activities have led to the rapid market growth of agronomical HSs. However, there are still several technical issues and concerns to be addressed to advance sustainable agronomical practices for HSs and allow growers to use HSs reliably. First, it is necessary to elucidate the evident structure (component)–function relationship of HSs. Specifically, the core structural features of HSs corresponding to crop species, treatment method (i.e., soil, foliar, or immersion applications), and soil type-dependent plant stimulatory actions as well as specific plant responses (e.g., root genesis and stress resistance) should be detailed to identify practical crop treatment methodologies. These trials must then be accompanied by means to upgrade crop marketability to help the growers. Second, structural differences of HSs depending on extraction sources should be compared to develop quality control and assurance measures for agronomical uses of HSs. In particular, coal-related HSs obtainable in bulk amounts for large farmland applications should be structurally and functionally distinguishable from other natural HSs. The diversity of organic structures and components in coal-based HSs must thus be examined thoroughly to provide practical information to growers. Overall, there is a consensus amongst researchers that HSs have the potential to enhance soil quality and crop productivity, but appropriate research directions should be explored for growers’ needs and farmland applications.
Collapse
|
34
|
Jeong HJ, Oh MS, Rehman JU, Yoon HY, Kim JH, Shin J, Shin SG, Bae H, Jeon JR. Effects of Microbes from Coal-Related Commercial Humic Substances on Hydroponic Crop Cultivation: A Microbiological View for Agronomical Use of Humic Substances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:805-814. [PMID: 33249847 DOI: 10.1021/acs.jafc.0c05474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, coal-related humic substances (HSs) were examined to confirm whether sterilization treatments induce their inferior ability to stimulate lettuce in hydroponic cultivations. Interestingly, a drastic reduction in both lettuce biomass and microbial colony-forming units of the crop culture solutions was observed when the autoclaved HSs were treated. Some microbial genera (i.e., Bacillus and Aspergillus) identifiable in the bare HS-treated hydroponic systems were able to be isolated by direct inoculation of bare HS powders on conventional microbial nutrients, supporting that flourishing microbes in the hydroponic cultivations derive from bare HSs-treated. Moreover, coincubation of some isolated bacterial and fungal strains (i.e., Bacillus and Aspergillus genera) from HSs with lettuce resulted in a significant increase in plant biomass and enhanced resistance to NaCl-related abiotic stresses. Microbial volatile organic compounds renowned for plant stimulation were detected by using solid-phase microextraction coupled with gas chromatography-mass spectrometry. It was finally confirmed that the isolates are capable of utilizing carbon substrates such as pectin and tween 20 or 40, which are relevant to those of microbes isolated from peat and leonardite (i.e., HS extraction sources). Overall, our results suggest that microbiological factors could be considered when commercial coal-related HSs are applied in hydroponic crop cultivations.
Collapse
Affiliation(s)
- Hae Jin Jeong
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Seung Oh
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jalil Ur Rehman
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
- IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho Young Yoon
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
- IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jae-Hwan Kim
- Advanced Geo-materials R&D Department, Korea Institute of Geoscience and Mineral Resources, Pohang Branch, Pohang 37559, Republic of Korea
| | - Juhee Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH), Jinju 52727, Republic of Korea
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH), Jinju 52727, Republic of Korea
| | - Hyomin Bae
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong-Rok Jeon
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
- IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
35
|
Lignocellulose Biomass as a Multifunctional Tool for Sustainable Catalysis and Chemicals: An Overview. Catalysts 2021. [DOI: 10.3390/catal11010125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Today, the theme of environmental preservation plays an important role within the activities of the scientific community and influences the choices of politics and the common population. In this context, the use of non-fossil substances should be promoted for different reasons: to avoid the depletion and damage of the areas involved in the fossil fuel extraction, decrease the impact of emissions/by-products related to the industrial transformation of fossil-based products and possibly exploit residual biomasses as sources of carbon. This latter aspect also can be viewed as a way to revalorize lignocellulose waste, generally destined to dump as putrescible matter or to be incinerated. In this review, we are aiming to present a concise overview of the multiple functions of lignocellulose biomass in the broad field of catalysis for a sustainable development. The originality of the approach is considering the lignocellulose-derived matter in three different aspects: (i) as a precursor to convert into platform molecules, (ii) as an active material (i.e., humic-like substances as photosensitizers) and (iii) as a green support for catalytic applications. We find that this perspective can widen the awareness level of scientists involved in the catalysis field for the exploitation of residual biomass as a valuable and complementary resource.
Collapse
|
36
|
Zhang Y, Yue D, Fang D, Dong X, Li W. Enhanced darkening effect from the interaction of MnO 2 and oxygen on the component evolution of amino-phenolic humic-like substances. CHEMOSPHERE 2021; 263:127956. [PMID: 33297022 DOI: 10.1016/j.chemosphere.2020.127956] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/12/2023]
Abstract
Humification is greatly enhanced by metallic oxides in nature, and the related products are critical to various environmental processes. However, little is known about the interaction between metallic oxides and oxygen in promoting the oxidative polymerization of small organic molecules during the humification process. The synthesis of humic-like acids (HLAs) with MnO2 was performed in the presence and absence of oxygen, and the influence of oxygen and MnO2 on the composition evolution of amino-phenolic HLAs was illustrated. The results of ultraviolet-visible (UV-Vis) spectra of reaction mixtures associated with two-dimensional correlation spectroscopy (2D-COS) combined with the XPS spectra of N 1s content changes in HLAs demonstrated that MnO2 induced pyrrole-type nitrogen formation and enhanced darkening. Furthermore, MnO2 mainly acted as a catalyst, and oxygen activated the regeneration of MnO2 by oxidizing free manganese ions, thus substantially promoting the formation and accumulation of HLAs, whereas it decreased the reaction rate of HLAs formation. Moreover, carbon dioxide release was found during the process of the formation of fulvic-like acids (FLAs), and the reaction was oxygen-independent. Additionally, the formation and transformation of products without MnO2 do not obey kinetics equations, whereas the darkening reaction with MnO2 followed the pseudo-second-order and pseudo-zero-order kinetics equations. These findings provide new insights into the behaviours and fate of the oxygen-mediated humification process and related reaction products.
Collapse
Affiliation(s)
- Yingchao Zhang
- School of Environment, Tsinghua University, Beijing, 100084, PR China; School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Ding Fang
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Xinwei Dong
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Wenlong Li
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
37
|
Yoon HY, Jeong HJ, Cha JY, Choi M, Jang KS, Kim WY, Kim MG, Jeon JR. Structural variation of humic-like substances and its impact on plant stimulation: Implication for structure-function relationship of soil organic matters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138409. [PMID: 32464747 DOI: 10.1016/j.scitotenv.2020.138409] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Here, five aromatic monomers, one bearing a long alkyl chain [3-pentadecylphenol (3-PP)], the second bearing a polycyclic aromatic hydrocarbon [dihydroxynaphthalene (DHN)], the third bearing an organic amine [l-3,4-dihydroxyphenylalanine (l-DOPA)], the fourth bearing a carboxylic acid [vanillic acid (VA)], and the fifth bearing a phenol [catechol (CA)] were oxidatively coupled to produce four humic-like substances (3-PP, DHN, l-DOPA, and CAVA products) to mimic the diverse organic architectures of natural humus. Analysis using several methods, including SEM, EPR, elemental analysis, FT-IR-ATR, 13C NMR and anti-oxidant capability, revealed that each of the monomeric structures was well incorporated into the corresponding humic-like substances. Seed germination acceleration and NaCl-involved abiotic stress resistance of Arabidopsis thaliana were then tested to determine whether the different structures resulted in different levels of plant stimulation. The l-DOPA, CAVA and DHN-based materials showed enhanced stimulatory activities compared with no treatment, whereas the effects of the 3-PP-based materials were meager. Interestingly, high-resolution (15 T) ESI FT-ICR mass spectrometry-based van Krevelen diagrams clearly showed that the presence of molecules with H/C and O/C ratios ranging from 0.5 to 1.0 and 0.2 to 0.4, respectively, could be connected with such biological actions. Here, the l-DOPA sample showed the highest content of such molecules, followed by the CAVA, DHN and 3-PP samples. Next, the ability of l-DOPA and CAVA products to induce resistance in A. thaliana to a pathogen-related biotic stress was tested to confirm whether the proposed molecular features are associated with multi-stimulatory actions on plants. The expression level of pathogenesis-related protein 1 and inspection of plant morphology clearly revealed that both the l-DOPA and CAVA products stimulate plants to respond to biotic stresses. Size-exclusion chromatography together with NMR and IR data of both the materials strongly suggests that lignin-like supramolecular assemblages play an important role in versatile biological activities of humus.
Collapse
Affiliation(s)
- Ho Young Yoon
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hae Jin Jeong
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Mira Choi
- Bio-Chemical Analysis Group, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Kyoung-Soon Jang
- Bio-Chemical Analysis Group, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Woe-Yeon Kim
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea; IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju 52828, Republic of Korea; PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong-Rok Jeon
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea; IALS, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
38
|
Yoon HY, Lee JG, Esposti LD, Iafisco M, Kim PJ, Shin SG, Jeon JR, Adamiano A. Synergistic Release of Crop Nutrients and Stimulants from Hydroxyapatite Nanoparticles Functionalized with Humic Substances: Toward a Multifunctional Nanofertilizer. ACS OMEGA 2020; 5:6598-6610. [PMID: 32258895 PMCID: PMC7114695 DOI: 10.1021/acsomega.9b04354] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/03/2020] [Indexed: 05/03/2023]
Abstract
The use of salt- or macro-sized NPK fertilizers is typically associated with low nutrient use efficiency and water eutrophication. Nanotechnology can overcome such drawbacks, but its practical application on a large scale is limited by (i) high costs and difficult scale-up of nanoparticle synthesis, (ii) questionable advantages over traditional methods, and (iii) health hazards related to nanomaterial introduction in the food stream and the environment. Here, we report on a novel biocompatible and multifunctional P nanofertilizer obtained by self-assembling natural or synthetic humic substances and hydroxyapatite nanoparticles using a simple and straightforward dipping process, exploiting the interaction between the polyphenolic groups of humic substances and the surface of nanohydroxyapatite. Pot tests using the as-prepared materials were performed on Zea mays as a model crop, and the results were compared to those obtained using commercial fused superphosphate and bare nanohydroxyapatites. A significant improvement, in terms of early plant growth, corn productivity, rhizosphere bacteria, and the resistance to NaCl-induced abiotic stresses, was achieved using hydroxyapatite nanoparticles assembled with humic substances. These effects were ascribed to the synergistic co-release of phosphate ions and humic substances, which are two types of plant-beneficial agents for crop nutrition and stimulation, respectively. The release patterns were proven to be tunable with the amount of humic substances adsorbed on the nanoparticles, inducing competition between humic-substance-driven phosphorous dissolution and block of water contact. Such positive effects on plant growth in association with its intrinsic biocompatibility, simple synthesis, and multifunctionality qualify this novel nanofertilizer as a promising material for large-scale use in the agronomic field.
Collapse
Affiliation(s)
- Ho Young Yoon
- Department
of Agricultural Chemistry and Food Science & Technology, Division of Applied
Life Science (BK21Plus), and IALS, Gyeongsang National
University, Jinju 52828, Republic of Korea
| | - Jeong Gu Lee
- Department
of Agricultural Chemistry and Food Science & Technology, Division of Applied
Life Science (BK21Plus), and IALS, Gyeongsang National
University, Jinju 52828, Republic of Korea
| | - Lorenzo Degli Esposti
- Institute
of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Michele Iafisco
- Institute
of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Pil Joo Kim
- Department
of Agricultural Chemistry and Food Science & Technology, Division of Applied
Life Science (BK21Plus), and IALS, Gyeongsang National
University, Jinju 52828, Republic of Korea
| | - Seung Gu Shin
- Department
of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, Jinju 52725, Republic of Korea
| | - Jong-Rok Jeon
- Department
of Agricultural Chemistry and Food Science & Technology, Division of Applied
Life Science (BK21Plus), and IALS, Gyeongsang National
University, Jinju 52828, Republic of Korea
| | - Alessio Adamiano
- Institute
of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| |
Collapse
|