1
|
Chen Z, Wu Y, Qin L, Wang C, Li Z, Luo X, Wei W, Zhao J. A systematic study of regulating inorganic polyphosphates production in Saccharomyces cerevisiae. Synth Syst Biotechnol 2025; 10:816-826. [PMID: 40291979 PMCID: PMC12032877 DOI: 10.1016/j.synbio.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Inorganic polyphosphate (polyP), a linear polymer of orthophosphate residues, plays critical roles in diverse biological processes spanning blood coagulation, immunomodulation, and post-translational protein modifications in eukaryotes. Notably, long-chain polyP (>100 phosphate units) exhibits distinct biological functionalities compared to shorter-chain counterparts. While Saccharomyces cerevisiae serves as a promising microbial platform for polyP biosynthesis, the genetic regulatory mechanisms underlying polyP metabolism remain poorly elucidated. Here, we systematically investigated the genetic determinants governing intracellular polyP levels and chain length dynamics in yeast. Through screening a library of 55 single-gene knockout strains, we identified six mutants (Δddp1, Δvip1, Δppn1, Δppn2, Δecm33, and Δccr4) exhibiting elevated polyP accumulation, whereas deletions of vtc1, kcs1, vma22, vma5, pho85, vtc4, vma2, vma3, ecm14, and vph2 resulted in near-complete polyP depletion. Subsequent combinatorial deletions in the Δppn1 background revealed that the Δppn1Δvip1 double mutant achieved synergistic enhancement in both polyP concentration (53.01 mg-P/g-DCW) and chain length, attributable to increased ATP availability and reduced polyphosphatase activity. Leveraging CRISPR/Cas9-mediated overexpression in Δppn1Δvip1, we engineered strain PP2 (vtc4 overexpression), which demonstrated a 2-fold increase in polyP yield (62.6 mg-P/g-DCW) relative to wild-type BY4741, with predominant synthesis of long-chain species. Mechanistically, qRT-PCR analysis confirmed that PP2 exhibited 46-fold up-regulation of vtc4 coupled with down-regulation of polyphosphatases encoding genes, ppn2, ddp1, and ppx1. This study performed a systematic study of regulating inorganic polyphosphates production in yeast and provides a synthetic biology strategy to engineer high-yield polyP-producing strains, advancing both fundamental understanding and biotechnological applications.
Collapse
Affiliation(s)
- Zipeng Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Yanling Wu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Lingfeng Qin
- School of Life Sciences, Nanjing University, Nanjing, 210093, PR China
| | - Chen Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Zhixin Li
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
- School of Life Sciences, Nanjing University, Nanjing, 210093, PR China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing, 210000, PR China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Wuxi, 214101, PR China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
- School of Life Sciences, Nanjing University, Nanjing, 210093, PR China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Wuxi, 214101, PR China
| |
Collapse
|
2
|
Du X, Zong H, Lu X, Zhuge B. Reconstructing Candida glycerinogenes Metabolism to Efficiently Synthesize (-)-α-Bisabolol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8990-8999. [PMID: 40196929 DOI: 10.1021/acs.jafc.4c11943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
(-)-α-Bisabolol is one of the important derivatives in the mevalonate (MVA) pathway. Yeast not only possesses a complete MVA metabolic pathway but also has mature modification and optimization strategies, among which transcription factor regulation is a very effective method. In this study, by screening transcription factors associated with the MVA pathway, a new regulatory factor, ECM22, was discovered that can be used for terpenoid synthesis, and ECM22 proved to be the most effective compared to other screened transcription factors. Previous studies have indicated that ECM22 is related to sterol synthesis, as it enters the nucleus through its N-terminal domain to recognize and bind to sterol regulatory elements (SREs) on promoters, thereby activating the transcriptional activity of target genes. Based on the characteristics of this transcription factor, we achieved fine-tuning of (-)-α-bisabolol synthesis by optimizing sterol elements and varying sterol content, resulting in a 280% diversion of carbon flux toward (-)-α-bisabolol synthesis. This is the first time ECM22 has been utilized in the terpenoid synthesis process, allocating the largest metabolic flux to the synthesis pathway of terpenoids. Ultimately, we obtained 1442.22 mg/L of (-)-α-bisabolol through fed-batch fermentation in a 5 L bioreactor, advancing the precise directional regulation of terpenoid metabolic engineering.
Collapse
Affiliation(s)
- Xueqing Du
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Yeager CM, Hillson NJ, Wozniak KL, Mutalik VK, Johnson CW, Pomraning K, Laible P, Dale T, Guss AM. The tier system: a host development framework for bioengineering. Curr Opin Biotechnol 2025; 92:103260. [PMID: 39933241 DOI: 10.1016/j.copbio.2025.103260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/01/2025] [Indexed: 02/13/2025]
Abstract
Development of microorganisms into mature bioproduction host strains has typically been a slow and circuitous process, wherein multiple groups apply disparate approaches with minimal coordination over decades. To help organize and streamline host development efforts, we introduce the Tier System for Host Development, a conceptual model and guide for developing microbial hosts that can ultimately lead to a systematic, standardized, less expensive, and more rapid workflow. The Tier System is made up of three Tiers, each consisting of a unique set of strain development Targets, including experimental tools, strain properties, experimental information, and process models. By introducing the Tier System, we hope to improve host development activities through standardization and systematization pertaining to nontraditional chassis organisms.
Collapse
Affiliation(s)
- Chris M Yeager
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States; Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87544, United States
| | - Nathan J Hillson
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States; Biological Systems & Engineering Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, United States
| | - Katherine L Wozniak
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States; Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87544, United States
| | - Vivek K Mutalik
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab
| | - Christopher W Johnson
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States; Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory
| | - Kyle Pomraning
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States; Energy and Environment Directorate, Pacific Northwest National Laboratory
| | - Philip Laible
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States; Biosciences Division, Argonne National Laboratory
| | - Taraka Dale
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States; Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, United States
| | - Adam M Guss
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| |
Collapse
|
4
|
Wu X, Wan X, Yu H, Liu H. Recent advances in CRISPR-Cas system for Saccharomyces cerevisiae engineering. Biotechnol Adv 2025; 81:108557. [PMID: 40081781 DOI: 10.1016/j.biotechadv.2025.108557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Yeast Saccharomyces cerevisiae (S. cerevisiae) is a crucial industrial platform for producing a wide range of chemicals, fuels, pharmaceuticals, and nutraceutical ingredients. It is also commonly used as a model organism for fundamental research. In recent years, the CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) system has become the preferred technology for genetic manipulation in S. cerevisiae owing to its high efficiency, precision, and user-friendliness. This system, along with its extensive toolbox, has significantly accelerated the construction of pathways, enzyme optimization, and metabolic engineering in S. cerevisiae. Furthermore, it has allowed researchers to accelerate phenotypic evolution and gain deeper insights into fundamental biological questions, such as genotype-phenotype relationships. In this review, we summarize the latest advancements in the CRISPR-Cas toolbox for S. cerevisiae and highlight its applications in yeast cell factory construction and optimization, enzyme and phenotypic evolution, genome-scale functional interrogation, gene drives, and the advancement of biotechnologies. Finally, we discuss the challenges and potential for further optimization and applications of the CRISPR-Cas system in S. cerevisiae.
Collapse
Affiliation(s)
- Xinxin Wu
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaowen Wan
- State Key Laboratory of Biotherapy and Cancer Centre/Collaborative Innovation Centre for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongbin Yu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huayi Liu
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Biotherapy and Cancer Centre/Collaborative Innovation Centre for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Zheng Y, Wang S, Deng Y, Hu P, Xue Q, Li J, Lei L, Chan Z, Yang J, Peng W. Enhanced production of recombinant calf chymosin in Kluyveromyces lactis via CRISPR-Cas9 engineering. BIORESOURCE TECHNOLOGY 2025; 419:132116. [PMID: 39863179 DOI: 10.1016/j.biortech.2025.132116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/04/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
As an important industrial enzyme, chymosin has been widely used in cheese manufacturing. Fermentation with Kluyveromyces lactis has allowed recombinant chymosin production to fit the growing global demand for cheese consumption; yet improvements can be made to allow for stable and larger-scale production. In this work, various chymosin producing (CP) strains were constructed via targeted chromosomal integration of various copies of a prochymosin expression cassette (PEC) using a CRISPR-Cas9 platform optimized for K. lactis. It enabled the demonstration that chymosin yields could be increased along with gradual chromosomal accumulation of PEC inserts within up to 3 copies. Finally, an optimal CP3i strain was constructed, and with which high yields of recombinant chymosin were attained, reaching ca. 1,200 SU/mL in shake-flask fermentation and ca. 28,000 SU/mL in batch-mode bioreaction, respectively. The activity of the product in milk-curding was observed. These findings provide direction to apply K. lactis-based platforms in the subsequent industrial-scale production of recombinant chymosin.
Collapse
Affiliation(s)
- Yanli Zheng
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Shiqing Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yuhui Deng
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Ping Hu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China; Marine Biological Resources Development and Utilization Engineering Technology Innovation Center, TIO, MNR, Xiamen, Fujian 361005, PR China
| | - Qingxin Xue
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jiaxin Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Lei Lei
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhuhua Chan
- Marine Biological Resources Development and Utilization Engineering Technology Innovation Center, TIO, MNR, Xiamen, Fujian 361005, PR China.
| | - Jiangke Yang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
6
|
Li XY, Zhou MH, Zeng DW, Zhu YF, Zhang FL, Liao S, Fan YC, Zhao XQ, Zhang L, Bai FW. Membrane transport engineering for efficient yeast biomanufacturing. BIORESOURCE TECHNOLOGY 2025; 418:131890. [PMID: 39644936 DOI: 10.1016/j.biortech.2024.131890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Yeast strains have been widely recognized as useful cell factories for biomanufacturing. To improve production efficiency, their biosynthetic pathways and regulatory strategies have been continuously optimized. However, commercial production using yeasts is still limited by low product yield and high production cost. Accumulating evidences have demonstrated the importance of metabolite transport processes in addressing these challenges. Engineering yeast membrane transporters for transporting precursors, substrates, intermediates, products and toxic inhibitors has been successful. In addition, membrane properties are also important for metabolite production. Here we propose membrane transport engineering (MTE) to integrate manipulation of both membrane transporters and membrane properties. We emphasize that systematic optimization of both transporters and membrane lipid bilayers benefits production efficiency. We also envision the potential of artificial intelligence and automation process in MTE for economic and sustainable bioproduction using yeast cell factories.
Collapse
Affiliation(s)
- Xin-Yue Li
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming-Hai Zhou
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Du-Wen Zeng
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Fan Zhu
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng-Li Zhang
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sha Liao
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Ya-Chao Fan
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Xin-Qing Zhao
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lin Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China.
| | - Feng-Wu Bai
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Robertson NR, Lee S, Tafrishi A, Wheeldon I. Advances in CRISPR-enabled genome-wide screens in yeast. FEMS Yeast Res 2025; 25:foaf013. [PMID: 40113237 PMCID: PMC11995697 DOI: 10.1093/femsyr/foaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 03/22/2025] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas genome-wide screens are powerful tools for unraveling genotype-phenotype relationships, enabling precise manipulation of genes to study and engineer industrially useful traits. Traditional genetic methods, such as random mutagenesis or RNA interference, often lack the specificity and scalability required for large-scale functional genomic screens. CRISPR systems overcome these limitations by offering precision gene targeting and manipulation, allowing for high-throughput investigations into gene function and interactions. Recent work has shown that CRISPR genome editing is widely adaptable to several yeast species, many of which have natural traits suited for industrial biotechnology. In this review, we discuss recent advances in yeast functional genomics, emphasizing advancements made with CRISPR tools. We discuss how the development and optimization of CRISPR genome-wide screens have enabled a host-first approach to metabolic engineering, which takes advantage of the natural traits of nonconventional yeast-fast growth rates, high stress tolerance, and novel metabolism-to create new production hosts. Lastly, we discuss future directions, including automation and biosensor-driven screens, to enhance high-throughput CRISPR-enabled yeast engineering.
Collapse
Affiliation(s)
- Nicholas R Robertson
- Bioengineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Sangcheon Lee
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Aida Tafrishi
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, United States
- Center for Industrial Biotechnology, University of California, Riverside, Riverside, CA 92521, United States
| |
Collapse
|
8
|
Yook S, Alper HS. Recent advances in genetic engineering and chemical production in yeast species. FEMS Yeast Res 2025; 25:foaf009. [PMID: 40082732 PMCID: PMC11963765 DOI: 10.1093/femsyr/foaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025] Open
Abstract
Yeasts have emerged as well-suited microbial cell factory for the sustainable production of biofuels, organic acids, terpenoids, and specialty chemicals. This ability is bolstered by advances in genetic engineering tools, including CRISPR-Cas systems and modular cloning in both conventional (Saccharomyces cerevisiae) and non-conventional (Yarrowia lipolytica, Rhodotorula toruloides, Candida krusei) yeasts. Additionally, genome-scale metabolic models and machine learning approaches have accelerated efforts to create a broad range of compounds that help reduce dependency on fossil fuels, mitigate climate change, and offer sustainable alternatives to petrochemical-derived counterparts. In this review, we highlight the cutting-edge genetic tools driving yeast metabolic engineering and then explore the diverse applications of yeast-based platforms for producing value-added products. Collectively, this review underscores the pivotal role of yeast biotechnology in efforts to build a sustainable bioeconomy.
Collapse
Affiliation(s)
- Sangdo Yook
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, United States
| |
Collapse
|
9
|
Dong Y, Wei W, Li M, Qian T, Xu J, Chu X, Ye BC. De novo biosynthesis of quercetin in Yarrowia Lipolytica through systematic metabolic engineering for enhanced yield. BIORESOUR BIOPROCESS 2025; 12:5. [PMID: 39841399 PMCID: PMC11754545 DOI: 10.1186/s40643-024-00825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/13/2024] [Indexed: 01/23/2025] Open
Abstract
Kaempferol and quercetin possess various biological activities, making them valuable in food and medicine. However, their production via traditional methods is often inefficient. This study aims to address this gap by engineering the yeast Yarrowia lipolytica to achieve high yields of these flavonoids. We designed a kaempferol biosynthetic pathway by integrating multiple-copy fusion enzyme expression modules, F3H-(GGGGS)2-FLS, into the genome with an optimized linker (GGGGS)2 to enhance kaempferol production from naringenin. To synthesize quercetin de novo, we introduced the FMOCPR gene into the kaempferol-synthesizing strain using the optimized pFBAin promoter. Notably, increasing glucose concentration effectively boosted the production of both flavonoids. Our results demonstrated kaempferol and quercetin titers reaching 194.30 ± 7.69 and 278.92 ± 11.58 mg/L, respectively, in shake-flask cultures. These findings suggest that Y. lipolytica is a promising platform for the efficient production of flavonoid-derived products.
Collapse
Affiliation(s)
- Yuxing Dong
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Wenping Wei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Mengfan Li
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Tao Qian
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jiayun Xu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiaohe Chu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
10
|
Wang Y, Wang Y, Cui J, Wu C, Yu B, Wang L. Non-conventional yeasts: promising cell factories for organic acid bioproduction. Trends Biotechnol 2025:S0167-7799(24)00364-0. [PMID: 39799011 DOI: 10.1016/j.tibtech.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025]
Abstract
Microbial production of organic acids has been hindered by the poor acid tolerance of microorganisms and the high costs of waste salt reprocessing. The robustness of non-conventional microorganisms in an acidic environment makes it possible to produce organic acids at low pH and greatly simplifies downstream processing. In this review we discuss the environmental adaptability features of non-conventional yeasts, as well as the latest developments in genomic engineering strategies that have facilitated metabolic engineering of these strains. We also use selected examples of three-carbon (C3), C4, and C6 organic acids to illustrate the ongoing efforts and challenges of using non-conventional yeasts for organic acid production. This review provides theoretical guidance for the construction of highly robust organic acid producers.
Collapse
Affiliation(s)
- Yupeng Wang
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wang
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiakai Cui
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Chenchen Wu
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Yu
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Limin Wang
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
11
|
Maneira C, Chamas A, Lackner G. Engineering Saccharomyces cerevisiae for medical applications. Microb Cell Fact 2025; 24:12. [PMID: 39789534 PMCID: PMC11720383 DOI: 10.1186/s12934-024-02625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid. MAIN TEXT In this review, we scrutinize the main applications of engineered S. cerevisiae in the medical field focusing on its use as a cell factory for pharmaceuticals and vaccines, a biosensor for diagnostic and biomimetic assays, and as a live biotherapeutic product for the smart in situ treatment of intestinal ailments. An extensive view of these fields' academic and commercial developments as well as main hindrances is presented. CONCLUSION Although the field still faces challenges, the development of yeast-based medical applications is often considered a success story. The rapid advances in synthetic biology strongly support the case for a future where engineered yeasts play an important role in medicine.
Collapse
Affiliation(s)
- Carla Maneira
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany
| | - Alexandre Chamas
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gerald Lackner
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.
| |
Collapse
|
12
|
de Moura Ferreira MA, da Silveira WB. Automated Machine Learning Tools to Build Regression Models for Schizosaccharomyces pombe Omics Data. Methods Mol Biol 2025; 2862:353-361. [PMID: 39527213 DOI: 10.1007/978-1-0716-4168-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Machine learning is a powerful tool for analyzing biological data and making useful predictions. The surge of biological data from high-throughput omics technologies has raised the need for modeling approaches capable of tackling such amounts of data, which is pivotal to understanding the nature of complex molecular systems. Here, we show how to construct a simple model using automated machine learning (AutoML) to predict protein abundance in Schizosaccharomyces pombe, using data obtained from codon usage bias and quantitative proteomics.
Collapse
|
13
|
Wu X, Ren Y, Chen S, Cai P, Zhou YJ. Production of L-lactic acid from methanol by engineered yeast Pichia pastoris. BIORESOURCE TECHNOLOGY 2025; 415:131730. [PMID: 39486649 DOI: 10.1016/j.biortech.2024.131730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Lactic acid (LA) serves as a widely used platform compound and has received significant attention as a raw material for synthesis of biodegradable polylactic acid. Currently, LA is mainly produced through microbial fermentation, but its high costs undermine its competitive advantage against other materials, necessitating the development of novel production routes. Methanol bioconversion represents an emerging low-carbon circular economy, where LA could become an outstanding representative product. This study successfully established an efficient methanol-based LA synthesis route in Pichia pastoris. Through systematic metabolic engineering strategies, including screening lactate dehydrogenase, modification of cofactor preference, blocking LA consumption pathway, and mitochondrial LA synthesis compartmentalization, 4.2 g/L L-LA was produced in fed-batch fermentation by using methanol as the sole carbon source. Through multi-dimensional and spatial engineering of enzyme, a cell factory was developed for efficient synthesis of L-LA, highlights the significant potential of the low-carbon synthesis route for L-LA via methanol bioconversion.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyao Ren
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shushu Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; College of Life and Health, Dalian University, Dalian 116622, China
| | - Peng Cai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Bamba T, Munakata R, Ushiro Y, Kumokita R, Tanaka S, Hori Y, Kondo A, Yazaki K, Hasunuma T. De Novo Production of the Bioactive Phenylpropanoid Artepillin C Using Membrane-Bound Prenyltransferase in Komagataella phaffii. ACS Synth Biol 2024; 13:4040-4049. [PMID: 39530514 DOI: 10.1021/acssynbio.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Artepillin C is a diprenylated phenylpropanoid with various pharmacological benefits for human health. Its natural occurrence is limited to a few Asteraceae plants, such as Baccharis species, necessitating a stable supply through synthetic biology. In Saccharomyces cerevisiae, the utilization of aromatic substrates within the cell was limited, resulting in very low production of artepillin C. In this study, we used AcPT1, a p-coumaric acid (p-CA)-specific diprenyltransferase, in Komagataella phaffii to produce artepillin C. Detailed studies revealed that the critical bottleneck in K. phaffii was the supply of prenyl diphosphates, not phenylpropanoid flux. By enhancing the prenyl substrate pathway through overexpression of isopentenyl diphosphate isomerase and a truncated HMG-CoA reductase, we achieved a strong increase in artepillin C production. A major part of artepillin C was accumulated in yeast cells. One of the advantages of K. phaffii is its superior growth and ability to achieve high cell density cultivation compared to that of S. cerevisiae. Therefore, fed-batch cultivation with glycerol was performed. As a result, the dry cell weight (DCW) reached 61.0 g/L, and the intracellular amount of de novo produced artepillin C reached 187.3 μg/DCW. Analysis of intermediates revealed that the supply of p-CA constituted a bottleneck in artepillin C production in the engineered strain. By enhancing the p-CA supply, the intracellular accumulation of artepillin C reached 1200 μg/DCW even in batch cultivation. Moreover, the total intra- and extracellular amounts of artepillin C reached 12.5 mg/L, marking the highest de novo synthesis amount of artepillin C reported thus far, even under batch cultivation conditions.
Collapse
Affiliation(s)
- Takahiro Bamba
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ryosuke Munakata
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Yuya Ushiro
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ryota Kumokita
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Sayaka Tanaka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yoshimi Hori
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
15
|
Fan S, Ren H, Fu X, Kong X, Wu H, Lu Z. Genome streamlining of Pseudomonas putida B6-2 for bioremediation. mSystems 2024; 9:e0084524. [PMID: 39530686 DOI: 10.1128/msystems.00845-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Microbial transformation is a favored approach for environmental remediation. However, the effectiveness of microbial remediation has been limited by the lack of chassis cells with satisfactory contaminant degradation performance. Pseudomonas putida B6-2, with a wide substrate spectrum and high solvent tolerance, is a chassis strain with great potential for application in environmental remediation. Here, guided by bioinformatic analyses and genome-scale metabolic model (GEM) predictions, we successfully optimized P. putida B6-2 by rationally reducing its nonessential genetic components and generating a more robust genome-streamlined strain, P. putida BGR4. Several improvements were observed compared with the original P. putida B6-2 strain, including a 1.4 × 105-fold increase in electroporation efficiency, an 8.3-fold increase in conjugation efficiency, improved glycerol utilization capability, and increased phenol utilization after heterologous expression of the phenol monooxygenase encoded by dmpKLMNOP. Additionally, P. putida BGR4 exhibited enhanced tolerance to several stressors, including starvation, oxidative stress, and DNA damage. Transcriptomic analysis revealed that genome streamlining led to the upregulation of genes involved in the "carbon metabolism" and "tricarboxylic acid cycle" pathways in P. putida BGR4, which likely contributed to the superior phenotype of P. putida BGR4 in terms of carbon source utilization and contaminant degradation capabilities. Furthermore, the absence of four prophages was identified as a potential cause of the enhanced stress resistance observed in P. putida BGR4. Overall, we developed a combined genome-streamlining strategy involving bioinformatic analyses and GEM predictions and generated a more robust chassis strain, P. putida BGR4, which expands the repertoire of chassis cells for environmental remediation.IMPORTANCEDespite the development of many chassis cells, there is still a lack of robust chassis cells with satisfactory contaminant degradation performance. Targeted genome streamlining is an effective way to provide powerful chassis cells. However, genome streamlining does not always lead to the improved phenotypes of genome-streamlined chassis cells. In this research, a novel procedure that combined bioinformatic analyses and GEM predictions was proposed to guide genome streamlining and predict the effects of genome streamlining. This genome streamlining procedure was successfully applied to Pseudomonas putida B6-2, which was a chassis cell with great potential for application in environmental remediation and resulted in the generation of a more robust chassis cell, P. putida BGR4, thereby providing a superior chassis cell for efficient and sustainable environmental remediation and a valuable framework for guiding the genome streamlining of strains for other applications.
Collapse
Affiliation(s)
- Siqing Fan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xueni Fu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Xu X, Sun Y, Zhang A, Li S, Zhang S, Chen S, Lou C, Cai L, Chen Y, Luo C, Yin WB. Quantitative Characterization of Gene Regulatory Circuits Associated With Fungal Secondary Metabolism to Discover Novel Natural Products. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407195. [PMID: 39467708 DOI: 10.1002/advs.202407195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Microbial genetic circuits are vital for regulating gene expression and synthesizing bioactive compounds. However, assessing their strength and timing, especially in multicellular fungi, remains challenging. Here, an advanced microfluidic platform is combined with a mathematical model enabling precise characterization of fungal gene regulatory circuits (GRCs) at the single-cell level. Utilizing this platform, the expression intensity and timing of 30 transcription factor-promoter combinations derived from two representative fungal GRCs, using the model fungus Aspergillus nidulans are determined. As a proof of concept, the selected GRC combination is utilized to successfully refactor the biosynthetic pathways of bioactive molecules, precisely control their production, and activate the expression of the silenced biosynthetic gene clusters (BGCs). This study provides insights into microbial gene regulation and highlights the potential of platform in fungal synthetic biology applications and the discovery of novel natural products.
Collapse
Affiliation(s)
- Xinran Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanhong Sun
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Anxin Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sijia Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Shu Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Sijing Chen
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Chunbo Lou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yihua Chen
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Chunxiong Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, P. R. China
- Wenzhou Institute University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
17
|
Guo Y, Liu G, Li S, Chen N, Zhang Z, Zhang P, Gao L. Co-production of plant- and microbial- proteins from waste tobacco leaves by optimizing alkaline extraction and strengthening pectin bioconversion. BIORESOURCE TECHNOLOGY 2024; 412:131370. [PMID: 39209229 DOI: 10.1016/j.biortech.2024.131370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The production of alternative proteins is of great significance in the mitigation of food problems. This study proposes an integrated approach including protein extraction, enzymatic hydrolysis, and fermentation to produce both plant proteins and single-cell proteins as alternative proteins from tobacco leaves, a highly-abundant and protein-rich agricultural waste. Alkaline extraction of proteins before polysaccharide hydrolysis was found to be preferable for increasing the yields of plant proteins and mono-sugars. The combined use of pectinase-rich enzymes from Aspergillus brunneoviolaceus and hemicellulase-rich enzymes from Penicillium oxalicum achieved the release of 80.7 % of the sugars after 72 h. Cutaneotrichosporon cutaneum could simultaneously utilize multiple sugars, including galacturonic acid, in the enzymatic hydrolysate to produce single-cell proteins. Via this approach, 43.54 g crude proteins of high protein contents and rich in essential amino acids can be produced from 100.00 g waste tobacco leaves, providing a promising strategy for its valorization.
Collapse
Affiliation(s)
- Yingjie Guo
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Sulei Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Na Chen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhongfeng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Peng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Liwei Gao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
18
|
Xie L, Yu W, Gao J, Wang H, Zhou YJ. Ogataea polymorpha as a next-generation chassis for industrial biotechnology. Trends Biotechnol 2024; 42:1363-1378. [PMID: 38622041 DOI: 10.1016/j.tibtech.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
Ogataea (Hansenula) polymorpha is a nonconventional yeast with some unique characteristics, including fast growth, thermostability, and broad substrate spectrum. Other than common applications for protein production, O. polymorpha is attracting interest for chemical and protein production from methanol; a promising feedstock for the next-generation biomanufacturing due to its abundant sources and excellent characteristics. Benefiting from the development of synthetic biology, it has been engineered to produce value-added chemicals by extensively rewiring cellular metabolism. This Review discusses recently developed synthetic biology tools of O. polymorpha. The advances of chemicals production and systems biology were reviewed comprehensively. Finally, we look ahead to the developments of biomanufacturing in O. polymorpha to make an overall understanding of this chassis for academia and industry.
Collapse
Affiliation(s)
- Linfeng Xie
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| | - Haoyu Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|
19
|
Gong G, Wu B, Liu L, Li J, He M. Engineering oleaginous red yeasts as versatile chassis for the production of oleochemicals and valuable compounds: Current advances and perspectives. Biotechnol Adv 2024; 76:108432. [PMID: 39163921 DOI: 10.1016/j.biotechadv.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Enabling the transition towards a future circular bioeconomy based on industrial biomanufacturing necessitates the development of efficient and versatile microbial platforms for sustainable chemical and fuel production. Recently, there has been growing interest in engineering non-model microbes as superior biomanufacturing platforms due to their broad substrate range and high resistance to stress conditions. Among these non-conventional microbes, red yeasts belonging to the genus Rhodotorula have emerged as promising industrial chassis for the production of specialty chemicals such as oleochemicals, organic acids, fatty acid derivatives, terpenoids, and other valuable compounds. Advancements in genetic and metabolic engineering techniques, coupled with systems biology analysis, have significantly enhanced the production capacity of red yeasts. These developments have also expanded the range of substrates and products that can be utilized or synthesized by these yeast species. This review comprehensively examines the current efforts and recent progress made in red yeast research. It encompasses the exploration of available substrates, systems analysis using multi-omics data, establishment of genome-scale models, development of efficient molecular tools, identification of genetic elements, and engineering approaches for the production of various industrially relevant bioproducts. Furthermore, strategies to improve substrate conversion and product formation both with systematic and synthetic biology approaches are discussed, along with future directions and perspectives in improving red yeasts as more versatile biotechnological chassis in contributing to a circular bioeconomy. The review aims to provide insights and directions for further research in this rapidly evolving field. Ultimately, harnessing the capabilities of red yeasts will play a crucial role in paving the way towards next-generation sustainable bioeconomy.
Collapse
Affiliation(s)
- Guiping Gong
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Bo Wu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Linpei Liu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
20
|
Tönjes S, Uitterhaegen E, Palmans I, Ibach B, De Winter K, Van Dijck P, Soetaert W, Vandecruys P. Metabolic Engineering and Process Intensification for Muconic Acid Production Using Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:10245. [PMID: 39408575 PMCID: PMC11476194 DOI: 10.3390/ijms251910245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
The efficient production of biobased organic acids is crucial to move to a more sustainable and eco-friendly economy, where muconic acid is gaining interest as a versatile platform chemical to produce industrial building blocks, including adipic acid and terephthalic acid. In this study, a Saccharomyces cerevisiae platform strain able to convert glucose and xylose into cis,cis-muconic acid was further engineered to eliminate C2 dependency, improve muconic acid tolerance, enhance production and growth performance, and substantially reduce the side production of the intermediate protocatechuic acid. This was achieved by reintroducing the PDC5 gene and overexpression of QDR3 genes. The improved strain was integrated in low-pH fed-batch fermentations at bioreactor scale with integrated in situ product recovery. By adding a biocompatible organic phase consisting of CYTOP 503 and canola oil to the process, a continuous extraction of muconic acid was achieved, resulting in significant alleviation of product inhibition. Through this, the muconic acid titer and peak productivity were improved by 300% and 185%, respectively, reaching 9.3 g/L and 0.100 g/L/h in the in situ product recovery process as compared to 3.1 g/L and 0.054 g/L/h in the control process without ISPR.
Collapse
Affiliation(s)
- Sinah Tönjes
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.T.)
- Bio Base Europe Pilot Plant (BBEPP), 9042 Ghent, Belgium
| | | | - Ilse Palmans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, 3001 Leuven, Belgium; (I.P.); (P.V.D.); (P.V.)
| | - Birthe Ibach
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, 3001 Leuven, Belgium; (I.P.); (P.V.D.); (P.V.)
| | | | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, 3001 Leuven, Belgium; (I.P.); (P.V.D.); (P.V.)
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.T.)
- Bio Base Europe Pilot Plant (BBEPP), 9042 Ghent, Belgium
| | - Paul Vandecruys
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, 3001 Leuven, Belgium; (I.P.); (P.V.D.); (P.V.)
| |
Collapse
|
21
|
Zhu F, Xia L, Wen J, Zhang L. Recent Advances in the Biosynthesis of Mid- and Long-Chain Dicarboxylic Acids Using Terminally Oxidizing Unconventional Yeasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19566-19580. [PMID: 39207200 DOI: 10.1021/acs.jafc.4c05028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As high-performance monomers for the manufacture of polyamide materials, mid- and long-chain dicarboxylic acids (DCAi, i ≥ 6) have received extensive attention from researchers. Biosynthesis is gradually replacing chemical synthesis due to its outstanding advantages in the industrial production of mid- and long-chain dicarboxylic acids, which is mostly achieved by using the strong terminal oxidation ability of nonmodel microorganisms such as Candida tropicalis to oxidize hydrophobic substrates such as alkanes. Here, we first summarize the metabolic pathways of oxidative alkane conversion into dicarboxylic acid by terminally oxidizing unconventional yeasts and the corresponding metabolic engineering strategies. Then, we summarize the research progress on new dicarboxylic acid production processes. Finally, the future development directions in the biosynthesis of mid- and long-chain dicarboxylic acids are prospected from synthetic biology and bioprocess engineering, which can also provide a reference for the synthesis of other biobased chemicals and biomaterials.
Collapse
Affiliation(s)
- Fuzhou Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Li Xia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| |
Collapse
|
22
|
Kundu P, Beura S, Mondal S, Das AK, Ghosh A. Machine learning for the advancement of genome-scale metabolic modeling. Biotechnol Adv 2024; 74:108400. [PMID: 38944218 DOI: 10.1016/j.biotechadv.2024.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/13/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Constraint-based modeling (CBM) has evolved as the core systems biology tool to map the interrelations between genotype, phenotype, and external environment. The recent advancement of high-throughput experimental approaches and multi-omics strategies has generated a plethora of new and precise information from wide-ranging biological domains. On the other hand, the continuously growing field of machine learning (ML) and its specialized branch of deep learning (DL) provide essential computational architectures for decoding complex and heterogeneous biological data. In recent years, both multi-omics and ML have assisted in the escalation of CBM. Condition-specific omics data, such as transcriptomics and proteomics, helped contextualize the model prediction while analyzing a particular phenotypic signature. At the same time, the advanced ML tools have eased the model reconstruction and analysis to increase the accuracy and prediction power. However, the development of these multi-disciplinary methodological frameworks mainly occurs independently, which limits the concatenation of biological knowledge from different domains. Hence, we have reviewed the potential of integrating multi-disciplinary tools and strategies from various fields, such as synthetic biology, CBM, omics, and ML, to explore the biochemical phenomenon beyond the conventional biological dogma. How the integrative knowledge of these intersected domains has improved bioengineering and biomedical applications has also been highlighted. We categorically explained the conventional genome-scale metabolic model (GEM) reconstruction tools and their improvement strategies through ML paradigms. Further, the crucial role of ML and DL in omics data restructuring for GEM development has also been briefly discussed. Finally, the case-study-based assessment of the state-of-the-art method for improving biomedical and metabolic engineering strategies has been elaborated. Therefore, this review demonstrates how integrating experimental and in silico strategies can help map the ever-expanding knowledge of biological systems driven by condition-specific cellular information. This multiview approach will elevate the application of ML-based CBM in the biomedical and bioengineering fields for the betterment of society and the environment.
Collapse
Affiliation(s)
- Pritam Kundu
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Satyajit Beura
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Suman Mondal
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Kumar Das
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
23
|
Zuo W, Yin G, Zhang L, Zhang W, Xu R, Wang Y, Li J, Kang Z. Engineering artificial cross-species promoters with different transcriptional strengths. Synth Syst Biotechnol 2024; 10:49-57. [PMID: 39224149 PMCID: PMC11366860 DOI: 10.1016/j.synbio.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
As a fundamental tool in synthetic biology, promoters are pivotal in regulating gene expression, enabling precise genetic control and spurring innovation across diverse biotechnological applications. However, most advances in engineered genetic systems rely on host-specific regulation of the genetic portion. With the burgeoning diversity of synthetic biology chassis cells, there emerges a pressing necessity to broaden the universal promoter toolkit spectrum, ensuring adaptability across various microbial chassis cells for enhanced applicability and customization in the evolving landscape of synthetic biology. In this study, we analyzed and validated the primary structures of natural endogenous promoters from Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Pichia pastoris, and through strategic integration and rational modification of promoter motifs, we developed a series of cross-species promoters (Psh) with transcriptional activity in five strains (prokaryotic and eukaryotic). This series of cross species promoters can significantly expand the synthetic biology promoter toolkit while providing a foundation and inspiration for standardized development of universal components The combinatorial use of key elements from prokaryotic and eukaryotic promoters presented in this study represents a novel strategy that may offer new insights and methods for future advancements in promoter engineering.
Collapse
Affiliation(s)
- Wenjie Zuo
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guobin Yin
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Luyao Zhang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Weijiao Zhang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Ruirui Xu
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
24
|
Liao L, Shen X, Shen Z, Du G, Li J, Zhang G. CRISPR/Cas9-Based Genome Editing for Protein Expression and Secretion in Kluyveromyces lactis. ACS Synth Biol 2024; 13:2105-2114. [PMID: 38871652 DOI: 10.1021/acssynbio.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The budding yeast Kluyveromyces lactis has emerged as a promising microbial chassis in industrial biotechnology. However, a lack of efficient molecular genetic manipulation tools and strategies has hindered the development of K. lactis as a biomanufacturing platform. In this study, we developed and applied a CRISPR/Cas9-based genome editing method to K. lactis. Single-gene editing efficiency was increased to 80% by disrupting the nonhomologous end-joining-related gene KU80 and performing a series of process optimizations. Subsequently, the CRISPR/Cas9 system was explored based on different sgRNA delivery modes for simultaneous multigene editing. With the aid of the color indicator, the editing efficiencies of two and three genes reached 73.3 and 36%, respectively, in the KlΔKU80 strain. Furthermore, the CRISPR/Cas9 system was used for multisite integration to enhance lactase production and combinatorial knockout of TMED10 and HSP90 to characterize the extracellular secretion of lactase in K. lactis. Generally, genome editing is a powerful tool for constructing K. lactis cell factories for protein and chemical production.
Collapse
Affiliation(s)
- Lingtong Liao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiuru Shen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhiyu Shen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guoqiang Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
25
|
Zhang S, Ma T, Zheng FH, Aslam M, Wang YJ, Chi ZM, Liu GL. Customizable and stable multilocus chromosomal integration: a novel glucose-dependent selection system in Aureobasidium spp. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:81. [PMID: 38886802 PMCID: PMC11181563 DOI: 10.1186/s13068-024-02531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Non-conventional yeasts hold significant potential as biorefinery cell factories for microbial bioproduction. Currently, gene editing systems used for these yeasts rely on antibiotic and auxotrophic selection mechanisms. However, the drawbacks of antibiotics, including high costs, environmental concerns, and the dissemination of resistance genes, make them unsuitable for large-scale industrial fermentation. For auxotrophic selection system, the engineered strains harboring auxotrophic marker genes are typically supplemented with complex nutrient-rich components instead of precisely defined synthetic media in large-scale industrial fermentations, thus lack selection pressure to ensure the stability of heterologous metabolic pathways. Therefore, it is a critical to explore alternative selection systems that can be adapted for large-scale industrial fermentation. RESULTS Here, a novel glucose-dependent selection system was developed in a high pullulan-producing non-conventional strain A. melanogenum P16. The system comprised a glucose-deficient chassis cell Δpfk obtained through the knockout of the phosphofructokinase gene (PFK) and a series of chromosomal integration plasmids carrying a selection marker PFK controlled by different strength promoters. Utilizing the green fluorescent protein gene (GFP) as a reporter gene, this system achieved a 100% positive rate of transformation, and the chromosomal integration numbers of GFP showed an inverse relationship with promoter strength, with a customizable copy number ranging from 2 to 54. More importantly, the chromosomal integration numbers of target genes remained stable during successive inoculation and fermentation process, facilitated simply by using glucose as a cost-effective and environmental-friendly selectable molecule to maintain a constant and rigorous screening pressure. Moreover, this glucose-dependent selection system exhibited no significant effect on cell growth and product synthesis, and the glucose-deficient related selectable marker PFK has universal application potential in non-conventional yeasts. CONCLUSION Here, we have developed a novel glucose-dependent selection system to achieve customizable and stable multilocus chromosomal integration of target genes. Therefore, this study presents a promising new tool for genetic manipulation and strain enhancement in non-conventional yeasts, particularly tailored for industrial fermentation applications.
Collapse
Affiliation(s)
- Shuo Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China
| | - Tao Ma
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China
| | - Fu-Hui Zheng
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China
| | - Muhammad Aslam
- Faculty of Basic Sciences, Bolan University of Medical and Health Sciences, Quetta, 87600, Pakistan
| | - Yu-Jie Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China
| | - Zhen-Ming Chi
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, No.1 Wenhai Road, Qingdao, 266237, China
| | - Guang-Lei Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, No.1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
26
|
Peng T, Guo J, Tong X. Advances in biosynthesis and metabolic engineering strategies of cordycepin. Front Microbiol 2024; 15:1386855. [PMID: 38903790 PMCID: PMC11188397 DOI: 10.3389/fmicb.2024.1386855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024] Open
Abstract
Cordyceps militaris, also called as bei-chong-cao, is an insect-pathogenic fungus from the Ascomycota phylum and the Clavicipitaceae family. It is a valuable filamentous fungus with medicinal and edible properties that has been utilized in traditional Chinese medicine (TCM) and as a nutritious food. Cordycepin is the bioactive compound firstly isolated from C. militaris and has a variety of nutraceutical and health-promoting properties, making it widely employed in nutraceutical and pharmaceutical fields. Due to the low composition and paucity of wild resources, its availability from natural sources is limited. With the elucidation of the cordycepin biosynthetic pathway and the advent of synthetic biology, a green cordycepin biosynthesis in Saccharomyces cerevisiae and Metarhizium robertsii has been developed, indicating a potential sustainable production method of cordycepin. Given that, this review primarily focused on the metabolic engineering and heterologous biosynthesis strategies of cordycepin.
Collapse
Affiliation(s)
| | - Jinlin Guo
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinxin Tong
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Gong Z, Chen J, Jiao X, Gong H, Pan D, Liu L, Zhang Y, Tan T. Genome-scale metabolic network models for industrial microorganisms metabolic engineering: Current advances and future prospects. Biotechnol Adv 2024; 72:108319. [PMID: 38280495 DOI: 10.1016/j.biotechadv.2024.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
The construction of high-performance microbial cell factories (MCFs) is the centerpiece of biomanufacturing. However, the complex metabolic regulatory network of microorganisms poses great challenges for the efficient design and construction of MCFs. The genome-scale metabolic network models (GSMs) can systematically simulate the metabolic regulation process of microorganisms in silico, providing effective guidance for the rapid design and construction of MCFs. In this review, we summarized the development status of 16 important industrial microbial GSMs, and further outline the technologies or methods that continuously promote high-quality GSMs construction from five aspects: I) Databases and modeling tools facilitate GSMs reconstruction; II) evolving gap-filling technologies; III) constraint-based model reconstruction; IV) advances in algorithms; and V) developed visualization tools. In addition, we also summarized the applications of GSMs in guiding metabolic engineering from four aspects: I) exploring and explaining metabolic features; II) predicting the effects of genetic perturbations on metabolism; III) predicting the optimal phenotype; IV) guiding cell factories construction in practical experiment. Finally, we discussed the development of GSMs, aiming to provide a reference for efficiently reconstructing GSMs and guiding metabolic engineering.
Collapse
Affiliation(s)
- Zhijin Gong
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiayao Chen
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyu Jiao
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Gong
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Danzi Pan
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lingli Liu
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Zhang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
28
|
Wang S, Meng D, Feng M, Li C, Wang Y. Efficient Plant Triterpenoids Synthesis in Saccharomyces cerevisiae: from Mechanisms to Engineering Strategies. ACS Synth Biol 2024; 13:1059-1076. [PMID: 38546129 DOI: 10.1021/acssynbio.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Triterpenoids possess a range of biological activities and are extensively utilized in the pharmaceutical, food, cosmetic, and chemical industries. Traditionally, they are acquired through chemical synthesis and plant extraction. However, these methods have drawbacks, including high energy consumption, environmental pollution, and being time-consuming. Recently, the de novo synthesis of triterpenoids in microbial cell factories has been achieved. This represents a promising and environmentally friendly alternative to traditional supply methods. Saccharomyces cerevisiae, known for its robustness, safety, and ample precursor supply, stands out as an ideal candidate for triterpenoid biosynthesis. However, challenges persist in industrial production and economic feasibility of triterpenoid biosynthesis. Consequently, metabolic engineering approaches have been applied to improve the triterpenoid yield, leading to substantial progress. This review explores triterpenoids biosynthesis mechanisms in S. cerevisiae and strategies for efficient production. Finally, the review also discusses current challenges and proposes potential solutions, offering insights for future engineering.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dong Meng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Meilin Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
29
|
Kumokita R, Bamba T, Yasueda H, Tsukida A, Nakagawa K, Kitagawa T, Yoshioka T, Matsuyama H, Yamamoto Y, Maruyama S, Hayashi T, Kondo A, Hasunuma T. High-level phenol bioproduction by engineered Pichia pastoris in glycerol fed-batch fermentation using an efficient pertraction system. BIORESOURCE TECHNOLOGY 2024; 393:130144. [PMID: 38042432 DOI: 10.1016/j.biortech.2023.130144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
This study aimed to establish a high-level phenol bioproduction system from glycerol through metabolic engineering of the yeast Pichia pastoris (Komagataella phaffii). Introducing tyrosine phenol-lyase to P. pastoris led to a production of 59 mg/L of phenol in flask culture. By employing a strain of P. pastoris that overproduces tyrosine-a precursor to phenol-we achieved a phenol production of 1052 mg/L in glycerol fed-batch fermentation. However, phenol concentrations exceeding 1000 mg/L inhibited P. pastoris growth. A phenol pertraction system utilizing a hollow fiber membrane contactor and tributyrin as the organic solvent was developed to reduce phenol concentration in the culture medium. Integrating this system with glycerol fed-batch fermentation resulted in a 214 % increase in phenol titer (3304 mg/L) compared to glycerol fed-batch fermentation alone. These approaches offer a significant framework for the microbial production of chemicals and materials that are highly toxic to microorganisms.
Collapse
Affiliation(s)
- Ryota Kumokita
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Takahiro Bamba
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Hisashi Yasueda
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba, 305-8550, Japan
| | - Ayato Tsukida
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Keizo Nakagawa
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Tooru Kitagawa
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Yoshioka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yasuhito Yamamoto
- Biotechnology Laboratory, Science and Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, 227-8502, Japan
| | - Satoshi Maruyama
- Biotechnology Laboratory, Science and Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, 227-8502, Japan
| | - Takahiro Hayashi
- Biotechnology Laboratory, Science and Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, 227-8502, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
30
|
Tanaka K, Bamba T, Kondo A, Hasunuma T. Metabolomics-based development of bioproduction processes toward industrial-scale production. Curr Opin Biotechnol 2024; 85:103057. [PMID: 38154323 DOI: 10.1016/j.copbio.2023.103057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Microbial biomanufacturing offers a promising, environment-friendly platform for next-generation chemical production. However, its limited industrial implementation is attributed to the slow production rates of target compounds and the time-intensive engineering of high-yield strains. This review highlights how metabolomics expedites bioproduction development, as demonstrated through case studies of its integration into microbial strain engineering, culture optimization, and model construction. The Design-Build-Test-Learn (DBTL) cycle serves as a standard workflow for strain engineering. Process development, including the optimization of culture conditions and scale-up, is crucial for industrial production. In silico models facilitate the development of strains and processes. Metabolomics is a powerful driver of the DBTL framework, process development, and model construction.
Collapse
Affiliation(s)
- Kenya Tanaka
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Takahiro Bamba
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
31
|
Zhang J, Yan X, Park H, Scrutton NS, Chen T, Chen GQ. Nonsterile microbial production of chemicals based on Halomonas spp. Curr Opin Biotechnol 2024; 85:103064. [PMID: 38262074 DOI: 10.1016/j.copbio.2023.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/09/2023] [Accepted: 12/30/2023] [Indexed: 01/25/2024]
Abstract
The use of extremophile organisms such as Halomomas spp. can eliminate the need for fermentation sterilization, significantly reducing process costs. Microbial fermentation is considered a pivotal strategy to reduce reliance on fossil fuel resources; however, sustainable processes continue to incur higher costs than their chemical industry counterparts. Most organisms require equipment sterilization to prevent contamination, a practice that introduces complexity and financial strain. Fermentations involving extremophile organisms can eliminate the sterilization process, relying instead on conditions that are conductive solely to the growth of the desired organism. This review discusses current challenges in pilot- and industrial-scale bioproduction when using the extremophile bacteria Halomomas spp. under nonsterile conditions.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China
| | - Xu Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Helen Park
- School of Life Sciences, Tsinghua University, Beijing 100084, China; EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Tao Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
32
|
Sun ML, Gao X, Lin L, Yang J, Ledesma-Amaro R, Ji XJ. Building Yarrowia lipolytica Cell Factories for Advanced Biomanufacturing: Challenges and Solutions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:94-107. [PMID: 38126236 DOI: 10.1021/acs.jafc.3c07889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Microbial cell factories have shown great potential for industrial production with the benefit of being environmentally friendly and sustainable. Yarrowia lipolytica is a promising and superior non-model host for biomanufacturing due to its cumulated advantages compared to model microorganisms, such as high fluxes of metabolic precursors (acetyl-CoA and malonyl-CoA) and its naturally hydrophobic microenvironment. However, although diverse compounds have been synthesized in Y. lipolytica cell factories, most of the relevant studies have not reached the level of industrialization and commercialization due to a number of remaining challenges, including unbalanced metabolic flux, conflict between cell growth and product synthesis, and cytotoxic effects. Here, various metabolic engineering strategies for solving the challenges are summarized, which is developing fast and extremely conducive to rational design and reconstruction of robust Y. lipolytica cell factories for advanced biomanufacturing. Finally, future engineering efforts for enhancing the production efficiency of this platform strain are highlighted.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiaoxia Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jing Yang
- 2011 College, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
33
|
Chanchal DK, Chaudhary JS, Kumar P, Agnihotri N, Porwal P. CRISPR-Based Therapies: Revolutionizing Drug Development and Precision Medicine. Curr Gene Ther 2024; 24:193-207. [PMID: 38310456 DOI: 10.2174/0115665232275754231204072320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 02/05/2024]
Abstract
With the discovery of CRISPR-Cas9, drug development and precision medicine have undergone a major change. This review article looks at the new ways that CRISPR-based therapies are being used and how they are changing the way medicine is done. CRISPR technology's ability to precisely and flexibly edit genes has opened up new ways to find, validate, and develop drug targets. Also, it has made way for personalized gene therapies, precise gene editing, and advanced screening techniques, all of which hold great promise for treating a wide range of diseases. In this article, we look at the latest research and clinical trials that show how CRISPR could be used to treat genetic diseases, cancer, infectious diseases, and other hard-to-treat conditions. However, ethical issues and problems with regulations are also discussed in relation to CRISPR-based therapies, which shows how important it is to use them safely and responsibly. As CRISPR continues to change how drugs are made and used, this review shines a light on the amazing things that have been done and what the future might hold in this rapidly changing field.
Collapse
Affiliation(s)
- Dilip Kumar Chanchal
- Department of Pharmacy, Smt. Vidyawati College of Pharmacy, Jhansi, Uttar Pradesh, India
- Glocal School of Pharmacy, Glocal University Mirzapur Pole, Saharanpur - 247121, Uttar Pradesh, India
| | | | - Pushpendra Kumar
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, Uttar Pradesh, India
| | - Neha Agnihotri
- Department of Pharmacy, Maharana Pratap College of Pharmacy, Kothi, Mandhana, Kanpur-209217, Uttar Pradesh, India
| | - Prateek Porwal
- Glocal School of Pharmacy, Glocal University Mirzapur Pole, Saharanpur - 247121, Uttar Pradesh, India
| |
Collapse
|
34
|
Gao J, Cheng J, Lian J. Multiplex Marker-Less Genome Integration in Pichia pastoris Using CRISPR/Cas9. Methods Mol Biol 2024; 2760:157-167. [PMID: 38468088 DOI: 10.1007/978-1-0716-3658-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Pichia pastoris is known for its excellent protein expression ability. As an industrial methyl nutritional yeast, it can effectively utilize methanol as the sole carbon source, serving as a potential platform for C1 biotransformation. Unfortunately, the lack of synthetic biology tools in P. pastoris limits its broad applications, particularly when multigene pathways should be manipulated. Here, the CRISPR/Cas9 system is established to efficiently integrate multiple heterologous genes to construct P. pastoris cell factories. In this protocol, with the 2,3-butanediol (BDO) biosynthetic pathway as a representative example, the procedures to construct P. pastoris cell factories are detailed using the established CRISPR-based multiplex genome integration toolkit, including donor plasmid construction, competent cell preparation and transformation, and transformant verification. The application of the CRISPR toolkit is demonstrated by the construction of engineered P. pastoris for converting methanol to BDO. This lays the foundation for the construction of P. pastoris cell factories harboring multi-gene biosynthetic pathways for the production of high-value compounds.
Collapse
Affiliation(s)
- Jucan Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jintao Cheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, China.
| |
Collapse
|
35
|
Wei S, Wang H, Fan M, Cai X, Hu J, Zhang R, Song B, Li J. Application of adaptive laboratory evolution to improve the tolerance of Rhodotorula strain to methanol in crude glycerol and development of an effective method for cell lysis. Biotechnol J 2024; 19:e2300483. [PMID: 38041508 DOI: 10.1002/biot.202300483] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
Rhodotorula toruloides can utilize crude glycerol as the low-cost carbon source for lipid production, but its growth is subjected to inhibition by methanol in crude glycerol. Here, transcriptome profiling demonstrated that 1004 genes were significantly regulated in the strain R. toruloides TO2 under methanol stress. Methanol impaired the function of membrane transport and subsequently weakened the utilization of glycerol, activities of the primary metabolism and functions of nucleus and ribosome. Afterwards the tolerance of TO2 to methanol was improved by using two-round adaptive laboratory evolution (ALE). The final strain M2-ale had tolerance up to 3.5% of methanol. 1 H NMR-based metabolome analysis indicated that ALE not only improved the tolerance of M2-ale to methanol but also tuned the carbon flux towards the biosynthesis of glycerolipid-related metabolites. The biomass and lipid titer of M2-ale reached 14.63 ± 0.45 g L-1 and 7.06 ± 0.44 g L-1 at 96 h in the crude glycerol medium, which increased up to 17.69% and 31.39%, respectively, comparing with TO2. Afterwards, an effective method for cell lysis was developed by combining sonication and enzymatic hydrolysis (So-EnH). The lytic effect of So-EnH was validated by using confocal imaging and flow cytometry. At last, lipid recovery rate reached 95.4 ± 2.7% at the optimized condition.
Collapse
Affiliation(s)
- Shiyu Wei
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Hongyang Wang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Meixi Fan
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Xinrui Cai
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Junpeng Hu
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Ruixin Zhang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Baocai Song
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Jing Li
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
36
|
Estrada M, Navarrete C, Møller S, Quirós M, Martínez JL. Open (non-sterile) cultivations of Debaryomyces hansenii for recombinant protein production combining industrial side-streams with high salt content. N Biotechnol 2023; 78:105-115. [PMID: 37848161 DOI: 10.1016/j.nbt.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/04/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023]
Abstract
The halotolerant non-conventional yeast Debaryomyces hansenii can grow in media containing high concentrations of salt (up to 4 M), metabolize alternative carbon sources than glucose, such as lactose or glycerol, and withstand a wide range of temperatures and pH. These inherent capabilities allow this yeast to grow in harsh environments and use alternative feedstock than traditional commercial media. For example, D. hansenii could be a potential cell factory for revalorizing industrial salty by-products, using them as a substrate for producing new valuable bioproducts, boosting a circular economy. In this work, three different salty by-products derived from the dairy and biopharmaceutical industry have been tested as a possible feedstock for D. hansenii's growth. The yeast was not only able to grow efficiently in all of them but also to produce a recombinant protein (Yellow Fluorescent Protein, used as a model) without altering its performance. Moreover, open cultivations at different laboratory scales (1.5 mL and 1 L) were performed under non-sterile conditions and without adding fresh water or any nutritional supplement to the cultivation, making the process cheaper and more sustainable.
Collapse
Affiliation(s)
- Mònica Estrada
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Søltofts Plads Building 223, 2800 Kgs. Lyngby, Denmark
| | - Clara Navarrete
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Søltofts Plads Building 223, 2800 Kgs. Lyngby, Denmark
| | - Sønke Møller
- SBU Food, Arla Food Ingredients Group P/S, Sønderhøj 10-12, 8260 Viby J, Denmark
| | - Manuel Quirós
- Novo Nordisk A/S. Biotech and Rare Disease API Manufacturing Development, Hagedornsvej 1, 2880 Gentofte, Denmark
| | - José L Martínez
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Søltofts Plads Building 223, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
37
|
Schütz A, Bernhard F, Berrow N, Buyel JF, Ferreira-da-Silva F, Haustraete J, van den Heuvel J, Hoffmann JE, de Marco A, Peleg Y, Suppmann S, Unger T, Vanhoucke M, Witt S, Remans K. A concise guide to choosing suitable gene expression systems for recombinant protein production. STAR Protoc 2023; 4:102572. [PMID: 37917580 PMCID: PMC10643540 DOI: 10.1016/j.xpro.2023.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 11/04/2023] Open
Abstract
This overview guides both novices and experienced researchers facing challenging targets to select the most appropriate gene expression system for producing a particular protein. By answering four key questions, readers can determine the most suitable gene expression system following a decision scheme. This guide addresses the most commonly used and accessible systems and provides brief descriptions of the main gene expression systems' key characteristics to assist decision making. Additionally, information has been included for selected less frequently used "exotic" gene expression systems.
Collapse
Affiliation(s)
- Anja Schütz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform for Protein Production & Characterization, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe-University of Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Nick Berrow
- Protein Expression Core Facility, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Johannes F Buyel
- Univeristy of Natural Resources and Life Sciences, Vienna (BOKU), Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Frederico Ferreira-da-Silva
- Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Jurgen Haustraete
- VIB, Center for Inflammation Research & Ugent, Department of Biomedical Molecular Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Joop van den Heuvel
- Helmholtz Centre for Infection Research (HZI), Department of Structure and Function of Proteins, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Jan-Erik Hoffmann
- Protein Chemistry Facility, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Ario de Marco
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000 Nova Gorica, Slovenia
| | - Yoav Peleg
- Structural Proteomics Unit (SPU), Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sabine Suppmann
- Protein Expression and Purification Core Facility, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Tamar Unger
- Structural Proteomics Unit (SPU), Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Martine Vanhoucke
- BCCM/GeneCorner Plasmid Collection, Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Gent, Belgium
| | - Susanne Witt
- Centre for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE), Notkestr. 85, 22607 Hamburg, Germany
| | - Kim Remans
- European Molecular Biology Laboratory (EMBL), Protein Expression and Purification Core Facility, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
38
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Current achievements, strategies, obstacles, and overcoming the challenges of the protein engineering in Pichia pastoris expression system. World J Microbiol Biotechnol 2023; 40:39. [PMID: 38062216 DOI: 10.1007/s11274-023-03851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Yeasts serve as exceptional hosts in the manufacturing of functional protein engineering and possess industrial or medical utilities. Considerable focus has been directed towards yeast owing to its inherent benefits and recent advancements in this particular cellular host. The Pichia pastoris expression system is widely recognized as a prominent and widely accepted instrument in molecular biology for the purpose of generating recombinant proteins. The advantages of utilizing the P. pastoris system for protein production encompass the proper folding process occurring within the endoplasmic reticulum (ER), as well as the subsequent secretion mediated by Kex2 as a signal peptidase, ultimately leading to the release of recombinant proteins into the extracellular environment of the cell. In addition, within the P. pastoris expression system, the ease of purifying recombinant protein arises from its restricted synthesis of endogenous secretory proteins. Despite its achievements, scientists often encounter persistent challenges when attempting to utilize yeast for the production of recombinant proteins. This review is dedicated to discussing the current achievements in the usage of P. pastoris as an expression host. Furthermore, it sheds light on the strategies employed in the expression system and the optimization and development of the fermentative process of this yeast. Finally, the impediments (such as identifying high expression strains, improving secretion efficiency, and decreasing hyperglycosylation) and successful resolution of certain difficulties are put forth and deliberated upon in order to assist and promote the expression of complex proteins in this prevalent recombinant host.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
39
|
Hu L, Qiu H, Huang L, Zhang F, Tran VG, Yuan J, He N, Cao M. Emerging nonmodel eukaryotes for biofuel production. Curr Opin Biotechnol 2023; 84:103015. [PMID: 37913603 DOI: 10.1016/j.copbio.2023.103015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/07/2023] [Indexed: 11/03/2023]
Abstract
Microbial synthesis of biofuels offers a promising solution to the global environmental and energy concerns. However, the main challenge of microbial cell factories is their high fermentation costs. Model hosts, such as Escherichia coli and Saccharomyces cerevisiae, are typically used for proof-of-concept studies of producing different types of biofuels, however, they have a limited potential for biofuel production at an industrially relevant scale due to the weak stability/robustness and narrow substrate scope. With the advancements of synthetic biology and metabolic engineering, nonmodel eukaryotes, with naturally favorable phenotypic and metabolic features, have been emerging as promising biofuel producers. Here, we introduce the emerging nonmodel eukaryotes for the biofuel production and discuss their specific advantages, especially those with the capacity of producing cellulosic ethanol, higher alcohols, and fatty acid-/terpene-derived biofuel molecules. We also propose the challenges and prospects for developing nonmodel eukaryotic as the ideal hosts for future biofuel production.
Collapse
Affiliation(s)
- Lin Hu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China
| | - Huihui Qiu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China
| | - Liuheng Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China
| | - Fenghui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Fujian 361005, China.
| |
Collapse
|
40
|
Schwarz LV, Sandri FK, Scariot F, Delamare APL, Valera MJ, Carrau F, Echeverrigaray S. High nitrogen concentration causes G2/M arrest in Hanseniaspora vineae. Yeast 2023; 40:640-650. [PMID: 37997429 DOI: 10.1002/yea.3911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Yeasts have been widely used as a model to better understand cell cycle mechanisms and how nutritional and genetic factors can impact cell cycle progression. While nitrogen scarcity is well known to modulate cell cycle progression, the relevance of nitrogen excess for microorganisms has been overlooked. In our previous work, we observed an absence of proper entry into the quiescent state in Hanseniaspora vineae and identified a potential link between this behavior and nitrogen availability. Furthermore, the Hanseniaspora genus has gained attention due to a significant loss of genes associated with DNA repair and cell cycle. Thus, the aim of our study was to investigate the effects of varying nitrogen concentrations on H. vineae's cell cycle progression. Our findings demonstrated that nitrogen excess, regardless of the source, disrupts cell cycle progression and induces G2/M arrest in H. vineae after reaching the stationary phase. Additionally, we observed a viability decline in H. vineae cells in an ammonium-dependent manner, accompanied by increased production of reactive oxygen species, mitochondrial hyperpolarization, intracellular acidification, and DNA fragmentation. Overall, our study highlights the events of the cell cycle arrest in H. vineae induced by nitrogen excess and attempts to elucidate the possible mechanism triggering this absence of proper entry into the quiescent state.
Collapse
Affiliation(s)
- Luisa Vivian Schwarz
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fernanda Knaach Sandri
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fernando Scariot
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | | | - Maria Jose Valera
- Enology and Fermentation Biotechnology Area, Departamento Ciencia y Tecnología Alimentos, Facultad de Química, Universidad de la Republica, Montevideo, Uruguay
| | - Francisco Carrau
- Enology and Fermentation Biotechnology Area, Departamento Ciencia y Tecnología Alimentos, Facultad de Química, Universidad de la Republica, Montevideo, Uruguay
| | - Sergio Echeverrigaray
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
41
|
Meng HH, Liu WY, Zhao WL, Zheng Q, Wang JS. Study on the acute toxicity of trichlorfon and its breakdown product dichlorvos to goldfish (Carassius auratus) based on 1H NMR metabonomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125664-125676. [PMID: 38001290 DOI: 10.1007/s11356-023-31012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Trichlorfon, one of the most widely used organophosphate insecticides, is commonly employed in aquaculture and agriculture to combat parasitic infestations. However, its inherent instability leads to rapid decomposition into dichlorvos (DDVP), increasing its toxicity by eightfold. Therefore, the environmental effects of trichlorfon in real-world scenarios involve the combined effects of trichlorfon and its degradation product, DDVP. In this study, we systematically investigated the degradation of trichlorfon in tap water over time using HPLC and LC-MS/MS analysis. Subsequently, an experiment was conducted to assess the acute toxicity of trichlorfon and DDVP on goldfish (Carassius auratus), employing a 1H NMR-based metabolic approach in conjunction with serum biochemistry, histopathological inspection, and correlation network analysis. Exposure to trichlorfon and its degradation product DDVP leads to increased lipid peroxidation, reduced antioxidant activity, and severe hepatotoxicity and nephrotoxicity in goldfish. Based on the observed pathological changes and metabolite alterations, short-term exposure to trichlorfon significantly affected the liver and kidney functions of goldfish, while exerting minimal influence on the brain, potentially due to the presence of the blood-brain barrier. The changes in the metabolic profile indicated that trichlorfon and DDVP influenced several pathways, including oxidative stress, protein synthesis, energy metabolism, and nucleic acid metabolism. This study demonstrated the applicability and potential of 1H NMR-based metabonomics in pesticide environmental risk assessment, providing a feasible method for the comprehensive study of pesticide toxicity in water environments.
Collapse
Affiliation(s)
- Hui-Hui Meng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Wen-Ya Liu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Wen-Long Zhao
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Qi Zheng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Jun-Song Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| |
Collapse
|
42
|
Kumokita R, Yoshida T, Shirai T, Kondo A, Hasunuma T. Aromatic secondary metabolite production from glycerol was enhanced by amino acid addition in Pichia pastoris. Appl Microbiol Biotechnol 2023; 107:7391-7401. [PMID: 37755508 PMCID: PMC10656317 DOI: 10.1007/s00253-023-12798-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
Aromatic secondary metabolites are widely used in various industries, including the nutraceutical, dietary supplement, and pharmaceutical industries. Their production currently relies on plant extraction. Microbe-based processes have recently attracted attention as sustainable alternatives to plant-based processes. We previously showed that the yeast Pichia pastoris (Komagataella phaffii) is an optimal host for producing aromatic secondary metabolites. Additionally, titers of resveratrol, an aromatic secondary metabolite, increased by 156 % when glycerol was used as a carbon source instead of glucose. However, the mechanisms by which glycerol resulted in higher production has remained unclear. In this study, we aimed to elucidate how P. pastoris produces higher levels of aromatic secondary metabolites from glycerol than from glucose. Titers of p-coumarate, naringenin, and resveratrol increased by 103 %, 118 %, and 157 %, respectively, in natural complex media containing glycerol compared with that in media containing glucose. However, the titers decreased in minimal synthetic medium without amino acids, indicating that P. pastoris cells used the amino acids only when glycerol was the carbon source. Fermentation with the addition of single amino acids showed that resveratrol titers from glycerol varied depending on the amino acid supplemented. In particular, addition of aspartate or tryptophan into the medium improved resveratrol titers by 146 % and 156 %, respectively. These results suggest that P. pastoris could produce high levels of aromatic secondary metabolites from glycerol with enhanced utilization of specific amino acids. This study provides a basis for achieving high-level production of aromatic secondary metabolites by P. pastoris. KEY POINTS: • P. pastoris can produce high levels of aromatic metabolites from glycerol • P. pastoris cells use amino acids only when glycerol is the carbon source • Aromatic metabolite titers from glycerol increase with amino acids utilization.
Collapse
Affiliation(s)
- Ryota Kumokita
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Takanobu Yoshida
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomokazu Shirai
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan.
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
43
|
Zhang W, Chen SJ, Guo LY, Zhang Z, Zhang JB, Wang XM, Meng XB, Zhang MY, Zhang KK, Chen LL, Li YW, Wen Y, Wang L, Hu JH, Bai YY, Zhang XJ. Nitric oxide synthase and its function in animal reproduction: an update. Front Physiol 2023; 14:1288669. [PMID: 38028794 PMCID: PMC10662090 DOI: 10.3389/fphys.2023.1288669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Nitric oxide (NO), a free radical labile gas, is involved in the regulation of various biological functions and physiological processes during animal reproduction. Recently, increasing evidence suggests that the biological role and chemical fate of NO is dependent on dynamic regulation of its biosynthetic enzyme, three distinct nitric oxide synthase (NOS) according to their structure, location and function. The impact of NOS isoforms on reproductive functions need to be timely elucidated. Here, we focus on and the basic background and latest studies on the development, structure, importance inhibitor, location pattern, complex functions. Moreover, we summarize the exactly mechanisms which involved some cell signal pathways in the regulation of NOS with cellular and molecular level in the animal reproduction. Therefore, this growing research area provides the new insight into the important role of NOS male and female reproduction system. It also provides the treatment evidence on targeting NOS of reproductive regulation and diseases.
Collapse
Affiliation(s)
- Wei Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Su juan Chen
- Department of Life Science and Technology, Xinxiang Medical College, Xinxiang, Henan, China
| | - Li ya Guo
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Jia bin Zhang
- College of Veterinary Medicine, Jilin Agriculture University, Changchun, China
| | - Xiao meng Wang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xiang bo Meng
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Min ying Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Ke ke Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Lin lin Chen
- College of Veterinary Medicine, Jilin Agriculture University, Changchun, China
| | - Yi wei Li
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yuliang Wen
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Lei Wang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Jian he Hu
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yue yu Bai
- Animal Health Supervision in Henan Province, Zhengzhou, Henan, China
| | - Xiao jian Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
44
|
Balabova DV, Belash EA, Belenkaya SV, Shcherbakov DN, Belov AN, Koval AD, Mironova AV, Bondar AA, Volosnikova EA, Arkhipov SG, Sokolova OO, Chirkova VY, Elchaninov VV. Biochemical Properties of a Promising Milk-Clotting Enzyme, Moose ( Alces alces) Recombinant Chymosin. Foods 2023; 12:3772. [PMID: 37893665 PMCID: PMC10606240 DOI: 10.3390/foods12203772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Moose (Alces alces) recombinant chymosin with a milk-clotting activity of 86 AU/mL was synthesized in the Kluyveromyces lactis expression system. After precipitation with ammonium sulfate and chromatographic purification, a sample of genetically engineered moose chymosin with a specific milk-clotting activity of 15,768 AU/mg was obtained, which was used for extensive biochemical characterization of the enzyme. The threshold of the thermal stability of moose chymosin was 55 °C; its complete inactivation occurred after heating at 60 °C. The total proteolytic activity of moose chymosin was 0.332 A280 units. The ratio of milk-clotting and total proteolytic activities of the enzyme was 0.8. The Km, kcat and kcat/Km values of moose chymosin were 4.7 μM, 98.7 s-1, and 21.1 μM-1 s-1, respectively. The pattern of change in the coagulation activity as a function of pH and Ca2+ concentration was consistent with the requirements for milk coagulants for cheese making. The optimum temperature of the enzyme was 50-55 °C. The introduction of Mg2+, Zn2+, Co2+, Ba2+, Fe2+, Mn2+, Ca2+, and Cu2+ into milk activated the coagulation ability of moose chymosin, while Ni ions on the contrary inhibited its activity. Using previously published data, we compared the biochemical properties of recombinant moose chymosin produced in bacterial (Escherichia coli) and yeast (K. lactis) producers.
Collapse
Affiliation(s)
- Dina V. Balabova
- Institute of Biology and Biotechnology, Altai State University, 656049 Barnaul, Russia
| | - Ekaterina A. Belash
- Institute of Biology and Biotechnology, Altai State University, 656049 Barnaul, Russia
| | - Svetlana V. Belenkaya
- State Research Center for Virology and Biotechnology “Vector”, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Dmitry N. Shcherbakov
- Institute of Biology and Biotechnology, Altai State University, 656049 Barnaul, Russia
- State Research Center for Virology and Biotechnology “Vector”, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Alexander N. Belov
- Federal Altai Scientific Center for Agrobiotechnologies, Siberian Research Institute of Cheese Making, 656910 Barnaul, Russia
| | - Anatoly D. Koval
- Federal Altai Scientific Center for Agrobiotechnologies, Siberian Research Institute of Cheese Making, 656910 Barnaul, Russia
| | - Anna V. Mironova
- Federal Altai Scientific Center for Agrobiotechnologies, Siberian Research Institute of Cheese Making, 656910 Barnaul, Russia
| | - Alexander A. Bondar
- JCF “Genomics”, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ekaterina A. Volosnikova
- State Research Center for Virology and Biotechnology “Vector”, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Sergey G. Arkhipov
- Boreskov Institute of Catalysis, Siberan Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Olga O. Sokolova
- Boreskov Institute of Catalysis, Siberan Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Varvara Y. Chirkova
- Institute of Biology and Biotechnology, Altai State University, 656049 Barnaul, Russia
| | - Vadim V. Elchaninov
- Federal Altai Scientific Center for Agrobiotechnologies, Siberian Research Institute of Cheese Making, 656910 Barnaul, Russia
| |
Collapse
|
45
|
Dai W, Dong H, Zhang Z, Wu X, Bao T, Gao L, Chen X. Enhancing the Heterologous Expression of a Thermophilic Endoglucanase and Its Cost-Effective Production in Pichia pastoris Using Multiple Strategies. Int J Mol Sci 2023; 24:15017. [PMID: 37834464 PMCID: PMC10573353 DOI: 10.3390/ijms241915017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Although Pichia pastoris was successfully used for heterologous gene expression for more than twenty years, many factors influencing protein expression remain unclear. Here, we optimized the expression of a thermophilic endoglucanase from Thermothielavioides terrestris (TtCel45A) for cost-effective production in Pichia pastoris. To achieve this, we established a multifactorial regulation strategy that involved selecting a genome-editing system, utilizing neutral loci, incorporating multiple copies of the heterologous expression cassette, and optimizing high-density fermentation for the co-production of single-cell protein (SCP). Notably, even though all neutral sites were used, there was still a slight difference in the enzymatic activity of heterologously expressed TtCel45A. Interestingly, the optimal gene copy number for the chromosomal expression of TtCel45A was found to be three, indicating limitations in translational capacity, post-translational processing, and secretion, ultimately impacting protein yields in P. pastoris. We suggest that multiple parameters might influence a kinetic competition between protein elongation and mRNA degradation. During high-density fermentation, the highest protein concentration and endoglucanase activity of TtCel45A with three copies reached 15.8 g/L and 9640 IU/mL, respectively. At the same time, the remaining SCP of P. pastoris exhibited a crude protein and amino acid content of up to 59.32% and 46.98%, respectively. These findings suggested that SCP from P. pastoris holds great promise as a sustainable and cost-effective alternative for meeting the global protein demand, while also enabling the production of thermophilic TtCel45A in a single industrial process.
Collapse
Affiliation(s)
- Wuling Dai
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Haofan Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China; (H.D.); (Z.Z.); (X.W.); (T.B.)
| | - Zhaokun Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China; (H.D.); (Z.Z.); (X.W.); (T.B.)
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China; (H.D.); (Z.Z.); (X.W.); (T.B.)
| | - Tongtong Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China; (H.D.); (Z.Z.); (X.W.); (T.B.)
| | - Le Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China; (H.D.); (Z.Z.); (X.W.); (T.B.)
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| |
Collapse
|
46
|
Liu H, Xiao Q, Wu X, Ma H, Li J, Guo X, Liu Z, Zhang Y, Luo Y. Mechanistic investigation of a D to N mutation in DAHP synthase that dictates carbon flux into the shikimate pathway in yeast. Commun Chem 2023; 6:152. [PMID: 37454208 DOI: 10.1038/s42004-023-00946-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS) is a key enzyme in the shikimate pathway for the biosynthesis of aromatic compounds. L-Phe and L-Tyr bind to the two main DAHPS isoforms and inhibit their enzyme activities, respectively. Synthetic biologists aim to relieve such inhibitions in order to improve the productivity of aromatic compounds. In this work, we reported a point mutant of yeast DHAPS, Aro3D154N, which retains the wild type enzyme activity but converts it highly inert to the inhibition by L-Phe. The Aro3 crystal structure along with the molecular dynamics simulations analysis suggests that the D154N mutation distant from the inhibitor binding cavity may reduce the binding affinity of L-Phe. Growth assays demonstrated that substitution of the conserved D154 with asparagine suffices to relieve the inhibition of L-Phe on Aro3, L-Tyr on Aro4, and the inhibitions on their corresponding homologues from diverse yeasts. The importance of our discovery is highlighted by the observation of 29.1% and 43.6% increase of yield for the production of tyrosol and salidroside respectively upon substituting ARO3 with ARO3D154N. We anticipate that this allele would be used broadly to increase the yield of various aromatic products in metabolically diverse microorganisms.
Collapse
Affiliation(s)
- Huayi Liu
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen, 518071, China
| | - Qingjie Xiao
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), Chinese Academy of Sciences, Shanghai, 201210, China
| | - Xinxin Wu
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - He Ma
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jian Li
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xufan Guo
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhenyu Liu
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yunzi Luo
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen, 518071, China.
| |
Collapse
|
47
|
Tan H, Wang L, Wang H, Cheng Y, Li X, Wan H, Liu C, Liu T, Li Q. Engineering Komagataella phaffii to biosynthesize cordycepin from methanol which drives global metabolic alterations at the transcription level. Synth Syst Biotechnol 2023; 8:242-252. [PMID: 37007278 PMCID: PMC10060148 DOI: 10.1016/j.synbio.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Cordycepin has the potential to be an alternative to the disputed herbicide glyphosate. However, current laborious and time-consuming production strategies at low yields based on Cordyceps militaris lead to extremely high cost and restrict its application in the field of agriculture. In this study, Komagataella phaffii (syn. Pichia pastoris) was engineered to biosynthesize cordycepin from methanol, which could be converted from CO2. Combined with fermentation optimization, cordycepin content in broth reached as high as 2.68 ± 0.04 g/L within 168 h, around 15.95 mg/(L·h) in productivity. Additionally, a deaminated product of cordycepin was identified at neutral or weakly alkaline starting pH during fermentation. Transcriptome analysis found the yeast producing cordycepin was experiencing severe inhibition in methanol assimilation and peroxisome biogenesis, responsible for delayed growth and decreased carbon flux to pentose phosphate pathway (PPP) which led to lack of precursor supply. Amino acid interconversion and disruption in RNA metabolism were also due to accumulation of cordycepin. The study provided a unique platform for the manufacture of cordycepin based on the emerging non-conventional yeast and gave practical strategies for further optimization of the microbial cell factory.
Collapse
Affiliation(s)
- Huiping Tan
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| | - Liang Wang
- School of Biological Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan Road, Ganjingzi District, Dalian, 116034, China
| | - Huiguo Wang
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| | - Yanghao Cheng
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| | - Xiang Li
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| | - Huihui Wan
- Analytical Instrumentation Centre, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, China
| | - Chenguang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Tian Liu
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, China
| | - Qian Li
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| |
Collapse
|
48
|
Wang N, Peng H, Yang C, Guo W, Wang M, Li G, Liu D. Metabolic Engineering of Model Microorganisms for the Production of Xanthophyll. Microorganisms 2023; 11:1252. [PMID: 37317226 PMCID: PMC10223009 DOI: 10.3390/microorganisms11051252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
Xanthophyll is an oxidated version of carotenoid. It presents significant value to the pharmaceutical, food, and cosmetic industries due to its specific antioxidant activity and variety of colors. Chemical processing and conventional extraction from natural organisms are still the main sources of xanthophyll. However, the current industrial production model can no longer meet the demand for human health care, reducing petrochemical energy consumption and green sustainable development. With the swift development of genetic metabolic engineering, xanthophyll synthesis by the metabolic engineering of model microorganisms shows great application potential. At present, compared to carotenes such as lycopene and β-carotene, xanthophyll has a relatively low production in engineering microorganisms due to its stronger inherent antioxidation, relatively high polarity, and longer metabolic pathway. This review comprehensively summarized the progress in xanthophyll synthesis by the metabolic engineering of model microorganisms, described strategies to improve xanthophyll production in detail, and proposed the current challenges and future efforts needed to build commercialized xanthophyll-producing microorganisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dehu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
49
|
Qiu Y, Lei P, Wang R, Sun L, Luo Z, Li S, Xu H. Kluyveromyces as promising yeast cell factories for industrial bioproduction: From bio-functional design to applications. Biotechnol Adv 2023; 64:108125. [PMID: 36870581 DOI: 10.1016/j.biotechadv.2023.108125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
As the two most widely used Kluyveromyces yeast, Kluyveromyces marxianus and K. lactis have gained increasing attention as microbial chassis in biocatalysts, biomanufacturing and the utilization of low-cost raw materials owing to their high suitability to these applications. However, due to slow progress in the development of molecular genetic manipulation tools and synthetic biology strategies, Kluyveromyces yeast cell factories as biological manufacturing platforms have not been fully developed. In this review, we provide a comprehensive overview of the attractive characteristics and applications of Kluyveromyces cell factories, with special emphasis on the development of molecular genetic manipulation tools and systems engineering strategies for synthetic biology. In addition, future avenues in the development of Kluyveromyces cell factories for the utilization of simple carbon compounds as substrates, the dynamic regulation of metabolic pathways, and for rapid directed evolution of robust strains are proposed. We expect that more synthetic systems, synthetic biology tools and metabolic engineering strategies will adapt to and optimize for Kluyveromyces cell factories to achieve green biofabrication of multiple products with higher efficiency.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengshan Luo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
50
|
Guo X, Wu X, Ma H, Liu H, Luo Y. Yeast: A platform for the production of L -tyrosine derivatives. Yeast 2023; 40:214-230. [PMID: 37078622 DOI: 10.1002/yea.3850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/16/2023] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
L -Tyrosine derivatives are widely applied in the pharmaceutical, food, and chemical industries. Their production is mainly confined to chemical synthesis and plant extract. Microorganisms, as cell factories, exhibit promising advantages for valuable chemical production to fulfill the increase in the demand of global markets. Yeast has been used to produce natural products owing to its robustness and genetic maneuverability. Focusing on the progress of yeast cell factories for the production of L -tyrosine derivatives, we summarized the emerging metabolic engineering approaches in building L -tyrosoine-overproducing yeast and constructing cell factories of three typical chemicals and their derivatives: tyrosol, p-coumaric acid, and L -DOPA. Finally, the challenges and opportunities of L -tyrosine derivatives production in yeast cell factories were also discussed.
Collapse
Affiliation(s)
- Xufan Guo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xinxin Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - He Ma
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Huayi Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yunzi Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, China
| |
Collapse
|