1
|
Jara C, Torres AK, Park-Kang HS, Sandoval L, Retamal C, Gonzalez A, Ricca M, Valenzuela S, Murphy MP, Inestrosa NC, Tapia-Rojas C. Curcumin Improves Hippocampal Cell Bioenergetics, Redox and Inflammatory Markers, and Synaptic Proteins, Regulating Mitochondrial Calcium Homeostasis. Neurotox Res 2025; 43:3. [PMID: 39775210 DOI: 10.1007/s12640-024-00726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/09/2024] [Accepted: 12/21/2024] [Indexed: 01/30/2025]
Abstract
Mitochondria produces energy through oxidative phosphorylation (OXPHOS), maintaining calcium homeostasis, survival/death cell signaling mechanisms, and redox balance. These mitochondrial functions are especially critical for neurons. The hippocampus is crucial for memory formation in the brain, which is a process with high mitochondrial function demand. Loss of hippocampal function in aging is related to neuronal damage, where mitochondrial impairment is critical. Synaptic and mitochondrial dysfunction are early events in aging; both are regulated reciprocally and contribute to age-associated memory loss together. We previously showed that prolonged treatment with Curcumin or Mitoquinone (MitoQ) improves mitochondrial functions in aged mice, exerting similar neuroprotective effects. Curcumin has been described as an anti-inflammatory and antioxidant compound, and MitoQ is a potent antioxidant directly targeting mitochondria; however, whether Curcumin exerts a direct impact on the mitochondria is unclear. In this work, we study whether Curcumin could have a mechanism similar to MitoQ targeting the mitochondria. We utilized hippocampal slices of 4-6-month-old C57BL6 mice to assess the cellular changes induced by acute Curcumin treatment ex-vivo compared to MitoQ. Our results strongly suggest that both compounds improve the synaptic structure, oxidative state, and energy production in the hippocampus. Nevertheless, Curcumin and MitoQ modify mitochondrial function differently; MitoQ improves the mitochondrial bioenergetics state, reducing ROS production and increasing ATP generation. In contrast, Curcumin reduces mitochondrial calcium levels and prevents calcium overload related to mitochondrial swelling. Thus, Curcumin is described as a new regulator of mitochondrial calcium homeostasis and could be used in pathological events involving calcium deregulation and excitotoxicity, such as aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Claudia Jara
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, 7510157, Chile
| | - Angie K Torres
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, 7510157, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Avenida Los Flamencos, Punta Arenas, 01364, Chile
| | - Han S Park-Kang
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile
| | - Lisette Sandoval
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Lota 2465, Santiago, 7510157, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Lota 2465, Santiago, 7510157, Chile
| | - Alfonso Gonzalez
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Lota 2465, Santiago, 7510157, Chile
| | - Micaela Ricca
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, 7510157, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile
| | - Sebastián Valenzuela
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, 7510157, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Avenida Los Flamencos, Punta Arenas, 01364, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, 7510157, Chile.
| |
Collapse
|
2
|
Appell C, Jiwan NC, Shen CL, Luk HY. Curcumin Mitigates Muscle Atrophy Potentially by Attenuating Calcium Signaling and Inflammation in a Spinal Nerve Ligation Model. Curr Issues Mol Biol 2024; 46:12497-12511. [PMID: 39590336 PMCID: PMC11592774 DOI: 10.3390/cimb46110742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Denervation-induced calcium/calmodulin-dependent protein kinase II (CaMKII) activation and inflammation can result in muscle atrophy. Curcumin and bisdemethoxycurcumin are well known to exhibit an anti-inflammatory effect. In addition, curcumin has been shown to attenuate CaMKII activation in neuronal cells. This study aimed to examine the effect of curcumin or bisdemethoxycurcumin on CaMKII activation, inflammation, and muscle cross-sectional area (CSA) in spinal nerve ligated rats. Sixteen female rats were assigned to sham (CON), spinal nerve ligation (SNL), SNL+ curcumin 100 mg/kg BW (100CUR), and SNL+ bisdemethoxycurcumin 50 mg/kg BW (50CMO) for 4 weeks. Ipsilateral (surgical) soleus and tibialis anterior (TA) muscles was stained for dystrophin to measure CSA. Ipsilateral and contralateral (non-surgical) plantaris muscles were analyzed for protein content for acetylcholine receptor (AChR), CaMKII, CaMKIIThr286, nuclear factor-κB (NF-κB), NF-κBSer536, and interleukin-1β (IL-1β) and normalized to α-tubulin and then CON. A significant (p < 0.050) group effect was observed for TA CSA where CON (11,082.25 ± 1617.68 μm2; p < 0.001) and 100CUR (9931.04 ± 2060.87 μm2; p = 0.018) were larger than SNL (4062.25 ± 151.86 μm2). In the ipsilateral plantaris, the SNL (4.49 ± 0.69) group had greater CaMKII activation compared to CON (1.00 ± 0.25; p = 0.010), 100CUR (1.12 ± 0.45; p = 0.017), and 50CMO (0.78 ± 0.19; p = 0.009). The ipsilateral plantaris (2.11 ± 0.66) had greater IL-1β protein content than the contralateral leg (0.65 ± 0.14; p = 0.041) in the SNL group. In plantaris, the SNL (1.65 ± 0.51) group had greater NF-κB activation compared to CON (1.00 ± 0.29; p = 0.021), 100CUR (0.61 ± 0.10; p = 0.003), 50CMO (0.77 ± 0.25; p = 0.009) groups. The observed reduction in Ca2+ signaling and inflammation in type II plantaris muscle fibers might reflect the changes within the type II TA muscle fibers which may contribute to the mitigation of TA mass loss with curcumin supplementation.
Collapse
Affiliation(s)
- Casey Appell
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.A.); (N.C.J.)
| | - Nigel C. Jiwan
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.A.); (N.C.J.)
- Department of Kinesiology, Hope College, Holland, MI 49423, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Hui-Ying Luk
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.A.); (N.C.J.)
| |
Collapse
|
3
|
Mirochnik AG, Puzyrkov ZN, Fedorenko EV, Svistunova IV. Synthesis and Spectroscopy of Substituted Benzoylacetonates of Boron Difluoride. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s003602362209008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
De Meester B, Oyarce P, Vanholme R, Van Acker R, Tsuji Y, Vangeel T, Van den Bosch S, Van Doorsselaere J, Sels B, Ralph J, Boerjan W. Engineering Curcumin Biosynthesis in Poplar Affects Lignification and Biomass Yield. FRONTIERS IN PLANT SCIENCE 2022; 13:943349. [PMID: 35860528 PMCID: PMC9289561 DOI: 10.3389/fpls.2022.943349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/14/2022] [Indexed: 06/02/2023]
Abstract
Lignocellulosic biomass is recalcitrant toward deconstruction into simple sugars mainly due to the presence of lignin. By engineering plants to partially replace traditional lignin monomers with alternative ones, lignin degradability and extractability can be enhanced. Previously, the alternative monomer curcumin has been successfully produced and incorporated into lignified cell walls of Arabidopsis by the heterologous expression of DIKETIDE-CoA SYNTHASE (DCS) and CURCUMIN SYNTHASE2 (CURS2). The resulting transgenic plants did not suffer from yield penalties and had an increased saccharification yield after alkaline pretreatment. Here, we translated this strategy into the bio-energy crop poplar. Via the heterologous expression of DCS and CURS2 under the control of the secondary cell wall CELLULOSE SYNTHASE A8-B promoter (ProCesA8-B), curcumin was also produced and incorporated into the lignified cell walls of poplar. ProCesA8-B:DCS_CURS2 transgenic poplars, however, suffered from shoot-tip necrosis and yield penalties. Compared to that of the wild-type (WT), the wood of transgenic poplars had 21% less cellulose, 28% more matrix polysaccharides, 23% more lignin and a significantly altered lignin composition. More specifically, ProCesA8-B:DCS_CURS2 lignin had a reduced syringyl/guaiacyl unit (S/G) ratio, an increased frequency of p-hydroxyphenyl (H) units, a decreased frequency of p-hydroxybenzoates and a higher fraction of phenylcoumaran units. Without, or with alkaline or hot water pretreatment, the saccharification efficiency of the transgenic lines was equal to that of the WT. These differences in (growth) phenotype illustrate that translational research in crops is essential to assess the value of an engineering strategy for applications. Further fine-tuning of this research strategy (e.g., by using more specific promoters or by translating this strategy to other crops such as maize) might lead to transgenic bio-energy crops with cell walls more amenable to deconstruction without settling in yield.
Collapse
Affiliation(s)
- Barbara De Meester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Paula Oyarce
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Rebecca Van Acker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yukiko Tsuji
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI, United States
| | - Thijs Vangeel
- Center for Sustainable Catalysis and Engineering, KU Leuven, Leuven, Belgium
| | | | | | - Bert Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Leuven, Belgium
| | - John Ralph
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI, United States
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
5
|
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci 2022; 15:855752. [PMID: 35795689 PMCID: PMC9252440 DOI: 10.3389/fnmol.2022.855752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic synapses harbor abundant amounts of the multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety of membrane proteins at the synapse and thus exert spatially restricted activity. The abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although its prominent function still appears to be that of a kinase. The multimeric structure of CaMKII also confers several functional capabilities on the enzyme. The versatility of the enzyme has prompted hypotheses proposing several roles for the enzyme such as Ca2+ signal transduction, memory molecule function and scaffolding. The article will review the multiple roles played by CaMKII in glutamatergic synapses and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Archana G. Mohanan
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - R. V. Omkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: R. V. Omkumar,
| |
Collapse
|
6
|
Dwyer BK, Veenma DCM, Chang K, Schulman H, Van Woerden GM. Case Report: Developmental Delay and Acute Neuropsychiatric Episodes Associated With a de novo Mutation in the CAMK2B Gene (c.328G>A p.Glu110Lys). Front Pharmacol 2022; 13:794008. [PMID: 35620293 PMCID: PMC9127182 DOI: 10.3389/fphar.2022.794008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/21/2022] [Indexed: 11/27/2022] Open
Abstract
Mutations in the genes encoding calcium/calmodulin dependent protein kinase II (CAMK2) isoforms cause a newly recognized neurodevelopmental disorder (ND), for which the full clinical spectrum has yet to be described. Here we report the detailed description of a child with a de novo gain of function (GoF) mutation in the gene Ca/Calmodulin dependent protein kinase 2 beta (CAMK2B c.328G > A p.Glu110Lys) who presents with developmental delay and periodic neuropsychiatric episodes. The episodes manifest as encephalopathy with behavioral changes, headache, loss of language and loss of complex motor coordination. Additionally, we provide an overview of the effect of different medications used to try to alleviate the symptoms. We show that medications effective for mitigating the child’s neuropsychiatric symptoms may have done so by decreasing CAMK2 activity and associated calcium signaling; whereas medications that appeared to worsen the symptoms may have done so by increasing CAMK2 activity and associated calcium signaling. We hypothesize that by classifying CAMK2 mutations as “gain of function” or “loss of function” based on CAMK2 catalytic activity, we may be able to guide personalized empiric treatment regimens tailored to specific CAMK2 mutations. In the absence of sufficient patients for traditional randomized controlled trials to establish therapeutic efficacy, this approach may provide a rational approach to empiric therapy for physicians treating patients with dysregulated CAMK2 and associated calcium signaling.
Collapse
Affiliation(s)
- Bonnie K Dwyer
- Department of Maternal Fetal Medicine and Genetics, Palo Alto Medical Foundation, Mountain View, CA, United States
| | - Danielle C M Veenma
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,ENCORE Expertise Center, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Kiki Chang
- University of Texas Houston Health Science Center, Houston, TX, United States
| | - Howard Schulman
- Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA, United States.,Panorama Research Institute, Sunnyvale, CA, United States
| | - Geeske M Van Woerden
- ENCORE Expertise Center, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Neuroscience, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
7
|
Wang Y, Xiong C, Zhong J, Zhou Q. Synthesis of 1,3,5-trisubstituted pyrazole-4-carboxylates through 1,3-dipolar cycloaddition of nitrilimines with allenoates. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Morris G, Gamage E, Travica N, Berk M, Jacka FN, O'Neil A, Puri BK, Carvalho AF, Bortolasci CC, Walder K, Marx W. Polyphenols as adjunctive treatments in psychiatric and neurodegenerative disorders: Efficacy, mechanisms of action, and factors influencing inter-individual response. Free Radic Biol Med 2021; 172:101-122. [PMID: 34062263 DOI: 10.1016/j.freeradbiomed.2021.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
The pathophysiology of psychiatric and neurodegenerative disorders is complex and multifactorial. Polyphenols possess a range of potentially beneficial mechanisms of action that relate to the implicated pathways in psychiatric and neurodegenerative disorders. The aim of this review is to highlight the emerging clinical trial and preclinical efficacy data regarding the role of polyphenols in mental and brain health, elucidate novel mechanisms of action including the gut microbiome and gene expression, and discuss the factors that may be responsible for the mixed clinical results; namely, the role of interindividual differences in treatment response and the potentially pro-oxidant effects of some polyphenols. Further clarification as part of larger, well conducted randomized controlled trials that incorporate precision medicine methods are required to inform clinical efficacy and optimal dosing regimens.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Elizabeth Gamage
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Nikolaj Travica
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
9
|
Rodrigues FC, Kumar NA, Thakur G. The potency of heterocyclic curcumin analogues: An evidence-based review. Pharmacol Res 2021; 166:105489. [PMID: 33588007 DOI: 10.1016/j.phrs.2021.105489] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022]
Abstract
Curcumin, a potent phytochemical, has been a significant lead compound and has been extensively investigated for its multiple bioactivities. Owing to its natural origin, non-toxic, safe, and pleiotropic behavior, it has been extensively explored. However, several limitations such as its poor stability, bioavailability, and fast metabolism prove to be a constraint to achieve its full therapeutic potential. Many approaches have been adopted to improve its profile, amongst which, structural modifications have indicated promising results. Its symmetric structure and simple chemistry have prompted organic and medicinal chemists to manipulate its arrangement and study its implications on the corresponding activity. One such recurring and favorable modification is at the diketo moiety with the aim to achieve isoxazole and pyrazole analogues of curcumin. A modification at this site is not only simple to achieve, but also has indicated a superior activity consistently. This review is a comprehensive and wide-ranged report of the different methods adopted to achieve several cyclized curcumin analogues along with the improvement in the efficacy of the corresponding activities observed.
Collapse
Affiliation(s)
- Fiona C Rodrigues
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Nv Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Goutam Thakur
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India.
| |
Collapse
|
10
|
Roshdy WH, Rashed HA, Kandeil A, Mostafa A, Moatasim Y, Kutkat O, Abo Shama NM, Gomaa MR, El-Sayed IH, El Guindy NM, Naguib A, Kayali G, Ali MA. EGYVIR: An immunomodulatory herbal extract with potent antiviral activity against SARS-CoV-2. PLoS One 2020; 15:e0241739. [PMID: 33206688 PMCID: PMC7673558 DOI: 10.1371/journal.pone.0241739] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Due to the challenges for developing vaccines in devastating pandemic situations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), developing and screening of novel antiviral agents are peremptorily demanded. Herein, we developed EGYVIR as a potent immunomodulatory herbal extract with promising antiviral activity against SARS-CoV-2. It constitutes of a combination of black pepper extract with curcumin extract. The antiviral effect of EGYVIR extract is attributed to the two key phases of the disease in severe cases. First, the inhibition of the nuclear translocation of NF-kβ p50, attenuating the SARS-CoV-2 infection-associated cytokine storm. Additionally, the EGYVIR extract has an in vitro virucidal effect for SARS-CoV-2. The in vitro study of EGYVIR extract against SARS-CoV-2 on Huh-7 cell lines, revealed the potential role of NF-kβ/TNFα/IL-6 during the infection process. EGYVIR antagonizes the NF-kβ pathway in-silico and in-vitro studies. Consequently, it has the potential to hinder the release of IL-6 and TNFα, decreasing the production of essential cytokines storm elements.
Collapse
Affiliation(s)
- Wael H. Roshdy
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Helmy A. Rashed
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Noura M. Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mokhtar R. Gomaa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ibrahim H. El-Sayed
- Biochemistry Department, Faculty of Science, Kafr El Sheikh University, Kafr El-Shaikh, Egypt
| | - Nancy M. El Guindy
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Amal Naguib
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, Texas, United States of America
- Human Link, Baabda, Lebanon
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| |
Collapse
|
11
|
Novel curcumin derivatives as P-glycoprotein inhibitors: Molecular modeling, synthesis and sensitization of multidrug resistant cells to doxorubicin. Eur J Med Chem 2020; 198:112331. [DOI: 10.1016/j.ejmech.2020.112331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 01/18/2023]
|
12
|
Liao VWY, Kumari A, Narlawar R, Vignarajan S, Hibbs DE, Panda D, Groundwater PW. Tubulin-Binding 3,5-Bis(styryl)pyrazoles as Lead Compounds for the Treatment of Castration-Resistant Prostate Cancer. Mol Pharmacol 2020; 97:409-422. [PMID: 32241960 DOI: 10.1124/mol.119.118539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/24/2020] [Indexed: 11/22/2022] Open
Abstract
The microtubule-binding taxanes, docetaxel and cabazitaxel, are administered intravenously for the treatment of castration-resistant prostate cancer (CRPC) as the oral administration of these drugs is largely hampered by their low and highly variable bioavailabilities. Using a simple, rapid, and environmentally friendly microwave-assisted protocol, we have synthesized a number of 3,5-bis(styryl)pyrazoles 2a-l, thus allowing for their screening for antiproliferative activity in the androgen-independent PC3 prostate cancer cell line. Surprisingly, two of these structurally simple 3,5-bis(styryl)pyrazoles (2a and 2l) had concentrations which gave 50% of the maximal inhibition of cell proliferation (GI50) in the low micromolar range in the PC3 cell line and were thus selected for extensive further biologic evaluation (apoptosis and cell cycle analysis, and effects on tubulin and microtubules). Our findings from these studies show that 3,5-bis[(1E)-2(2,6-dichlorophenyl)ethenyl]-1H-pyrazole 2l 1) caused significant effects on the cell cycle in PC3 cells, with the vast majority of treated cells in the G2/M phase (89%); 2) induces cell death in PC3 cells even after the removal of the compound; 3) binds to tubulin [dissociation constant (Kd) 0.4 ± 0.1 μM] and inhibits tubulin polymerization in vitro; 4) had no effect upon the polymerization of the bacterial cell division protein FtsZ (a homolog of tubulin); 5) is competitive with paclitaxel for binding to tubulin but not with vinblastine, crocin, or colchicine; and 6) leads to microtubule depolymerization in PC3 cells. Taken together, these results suggest that 3,5-bis(styryl)pyrazoles warrant further investigation as lead compounds for the treatment of CRPC. SIGNIFICANCE STATEMENT: The taxanes are important components of prostate cancer chemotherapy regimens, but their oral administration is hampered by very low and highly variable oral bioavailabilities resulting from their poor absorption, poor solubility, high first-pass metabolism, and efficient efflux by P-glycoprotein. New chemical entities for the treatment of prostate cancer are thus required, and we report here the synthesis and investigation of the mechanism of action of some bis(styryl)pyrazoles, demonstrating their potential as lead compounds for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Vivian W Y Liao
- Sydney Pharmacy School, Faculty of Medicine and Health (V.W.Y.L., R.N., D.E.H., P.W.G.) and Charles Perkins Centre (S.V.), The University of Sydney, Sydney, New South Wales, Australia; and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India (A.K., D.P.)
| | - Anuradha Kumari
- Sydney Pharmacy School, Faculty of Medicine and Health (V.W.Y.L., R.N., D.E.H., P.W.G.) and Charles Perkins Centre (S.V.), The University of Sydney, Sydney, New South Wales, Australia; and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India (A.K., D.P.)
| | - Rajeshwar Narlawar
- Sydney Pharmacy School, Faculty of Medicine and Health (V.W.Y.L., R.N., D.E.H., P.W.G.) and Charles Perkins Centre (S.V.), The University of Sydney, Sydney, New South Wales, Australia; and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India (A.K., D.P.)
| | - Soma Vignarajan
- Sydney Pharmacy School, Faculty of Medicine and Health (V.W.Y.L., R.N., D.E.H., P.W.G.) and Charles Perkins Centre (S.V.), The University of Sydney, Sydney, New South Wales, Australia; and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India (A.K., D.P.)
| | - David E Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health (V.W.Y.L., R.N., D.E.H., P.W.G.) and Charles Perkins Centre (S.V.), The University of Sydney, Sydney, New South Wales, Australia; and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India (A.K., D.P.)
| | - Dulal Panda
- Sydney Pharmacy School, Faculty of Medicine and Health (V.W.Y.L., R.N., D.E.H., P.W.G.) and Charles Perkins Centre (S.V.), The University of Sydney, Sydney, New South Wales, Australia; and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India (A.K., D.P.)
| | - Paul W Groundwater
- Sydney Pharmacy School, Faculty of Medicine and Health (V.W.Y.L., R.N., D.E.H., P.W.G.) and Charles Perkins Centre (S.V.), The University of Sydney, Sydney, New South Wales, Australia; and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India (A.K., D.P.)
| |
Collapse
|
13
|
Glu 60 of α-Calcium/calmodulin dependent protein kinase II mediates crosstalk between the regulatory T-site and protein substrate binding region of the active site. Arch Biochem Biophys 2020; 685:108348. [PMID: 32198047 DOI: 10.1016/j.abb.2020.108348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 11/20/2022]
Abstract
Memory formation transpires to be by activation and persistent modification of synapses. A chain of biochemical events accompany synaptic activation and culminate in memory formation. These biochemical events are steered by interplay and modulation of various synaptic proteins, achieved by conformational changes and phosphorylation/dephosphorylation of these proteins. Calcium/calmodulin dependent protein kinase II (CaMKII) and N-methyl-d-aspartate receptors (NMDARs) are synaptic proteins whose interactions play a pivotal role in learning and memory process. Catalytic activity of CaMKII is modulated upon its interaction with the GluN2B subunit of NMDAR. The structural basis of this interaction is not clearly understood. We have investigated the role of Glu60 of α-CaMKII, a conserved residue present in the ATP binding region of kinases, in the regulation of catalysis of CaMKII by GluN2B. Mutation of Glu60 to Gly exerts different effects on the kinetic parameters of phosphorylation of GluN2B and GluN2A, of which only GluN2B binds to the T-site of CaMKII. GluN2B induced modulation of the kinetic parameters of peptide substrate was altered in the E60G mutant. The mutation almost abolished the modulation of the apparent Km value for protein substrate. However, although kinetic parameters for ATP were altered by mutating Glu60, modulation of the apparent Km value for ATP by GluN2B seen in WT was exhibited by the E60G mutant of α-CaMKII. Hence our results posit that the communication of the T-site of CaMKII with protein substrate binding region of active site is mediated through Glu60 while the communication of the T-site with the ATP binding region is not entirely dependent on Glu60.
Collapse
|
14
|
Mishra S, Patel S, Halpani CG. Recent Updates in Curcumin Pyrazole and Isoxazole Derivatives: Synthesis and Biological Application. Chem Biodivers 2019; 16:e1800366. [PMID: 30460748 DOI: 10.1002/cbdv.201800366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022]
Abstract
Curcumin is an admired, plant-derived compound that has been extensively investigated for diverse range of biological activities, but the use of this polyphenol is limited due to its instability. Chemical modifications in curcumin are reported to seize this limitation; such efforts are intensively performed to discover molecules with similar but improved stability and better properties. Focal points of these reviews are synthesis of stable pyrazole and isoxazole analogs of curcumin and application in various biological systems. This review aims to emphasize the latest evidence of curcumin pyrazole analogs as a privileged scaffold in medicinal chemistry. Manifold features of curcumin pyrazole analogs will be summarized herein, including the synthesis of novel curcumin pyrazole analogs and the evaluation of their biological properties. This review is expected to be a complete, trustworthy and critical review of the curcumin pyrazole analogs template to the medicinal chemistry community.
Collapse
Affiliation(s)
- Satyendra Mishra
- Medicinal Chemistry Laboratory, Center for Engineering and Enterprise, University and Institute of Advanced Research, Koba Institutional, Area Gandhinagar, Gujarat, 382426, India
| | - Sejal Patel
- Medicinal Chemistry Laboratory, Center for Engineering and Enterprise, University and Institute of Advanced Research, Koba Institutional, Area Gandhinagar, Gujarat, 382426, India
| | - Chandni G Halpani
- Medicinal Chemistry Laboratory, Center for Engineering and Enterprise, University and Institute of Advanced Research, Koba Institutional, Area Gandhinagar, Gujarat, 382426, India
| |
Collapse
|
15
|
Banuppriya G, Sribalan R, Padmini V. Evaluation of Antioxidant, Anti-Inflammatory, Antibacterial Activity and In Silico Molecular Docking Study of Pyrazole Curcumin Bisacetamide Analogs. ChemistrySelect 2017. [DOI: 10.1002/slct.201701533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Govindharasu Banuppriya
- Department of Organic Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai, Tamil Nadu India
| | - Rajendran Sribalan
- Department of Organic Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai, Tamil Nadu India
| | - Vediappen Padmini
- Department of Organic Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai, Tamil Nadu India
| |
Collapse
|
16
|
Research advances in kinase enzymes and inhibitors for cardiovascular disease treatment. Future Sci OA 2017; 3:FSO204. [PMID: 29134113 PMCID: PMC5674217 DOI: 10.4155/fsoa-2017-0010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022] Open
Abstract
The targeting of protein kinases has great future potential for the design of new drugs against cardiovascular diseases (CVDs). Enormous efforts have been made toward achieving this aim. Unfortunately, kinase inhibitors designed to treat CVDs have suffered from numerous limitations such as poor selectivity, bad permeability and toxicity. So, where are we now in terms of discovering effective kinase targeting drugs to treat CVDs? Various drug design techniques have been approached for this purpose since the discovery of the inhibitory activity of Staurosporine against protein kinase C in 1986. This review aims to provide context for the status of several emerging classes of direct kinase modulators to treat CVDs and discuss challenges that are preventing scientists from finding new kinase drugs to treat heart disease.
Collapse
|
17
|
Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. J Tradit Complement Med 2017; 7:205-233. [PMID: 28417091 PMCID: PMC5388087 DOI: 10.1016/j.jtcme.2016.05.005] [Citation(s) in RCA: 468] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022] Open
Abstract
In recent years, several drugs have been developed deriving from traditional products and current drug research is actively investigating the possible therapeutic roles of many Ayruvedic and Traditional Indian medicinal therapies. Among those being investigated is Turmeric. Its most important active ingredient is curcuminoids. Curcuminoids are phenolic compounds commonly used as a spice, pigment and additive also utilized as a therapeutic agent used in several foods. Comprehensive research over the last century has revealed several important functions of curcuminoids. Various preclinical cell culture and animals studies suggest that curcuminoids have extensive biological activity as an antioxidant, neuroprotective, antitumor, anti-inflammatory, anti-acidogenic, radioprotective and arthritis. Different clinical trials also suggest a potential therapeutic role for curcuminoids in numerous chronic diseases such as colon cancer, lung cancer, breast cancer, inflammatory bowel diseases. The aim of this review is to summarize the chemistry, analog, metal complex, formulations of curcuminoids and their biological activities.
Collapse
Affiliation(s)
| | - Anitha Pius
- Department of Chemistry, The Gandhigram Rural Institute – Deemed University, Gandhigram, Dindigul, 624 302, Tamil Nadu, India
| | - Sreerag Gopi
- Department of Chemistry, The Gandhigram Rural Institute – Deemed University, Gandhigram, Dindigul, 624 302, Tamil Nadu, India
| | - Sreeraj Gopi
- R&D Centre, Aurea Biolabs Pvt Ltd, Kolenchery, Cochin, India
| |
Collapse
|
18
|
The therapeutic voyage of pyrazole and its analogs: A review. Eur J Med Chem 2016; 120:170-201. [DOI: 10.1016/j.ejmech.2016.04.077] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 02/05/2023]
|
19
|
|
20
|
Gao L, Chen J, Zheng J, Zhang H. Synthesis of curcumin catalyzed by KF/Al 2O 3. PIGMENT & RESIN TECHNOLOGY 2016; 45:225-233. [DOI: 10.1108/prt-01-2015-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Purpose
The purpose of the study reported in this paper is to synthesis curcumin, which was reported to possess broad pharmacological effects and excellent dyeing properties, via Claisen-Schmidt condensation reaction catalysed by an efficient and green solid base catalyst, KF/Al2O3.
Design/methodology/approach
A series of catalysts with different KF loadings and varying calcination temperatures had been prepared, characterised by Brunauer–Emmett–Taller surface area, temperature-programmed desorption with CO2 using infrared spectroscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy, and tested in the Claisen–Schmidt condensation reaction. The effects of different reaction parameters such as temperature, the amount of catalyst, reactant ratio and time on the synthesis of curcumin were examined. The possibility of recycling the catalyst was also investigated in detail. Moreover, the reaction mechanism and the role of KF/Al2O3 in the synthetic process were discussed.
Findings
The study provides an efficient and green solid base catalyst, KF/Al2O3, and 64.3 per cent yield of curcumin was obtained under the optimum reaction conditions. Experimental results indicate that the third reused catalyst could retain part of the catalytic activity, and the regenerated one could be reused with reasonable catalytic activity. Besides, K3AlF6 was proposed as the active site of the catalyst for the reaction by the analysis of the characterization results of KF/Al2O3.
Originality/value
KF/Al2O3 was found to be an efficient catalyst for catalytic synthesis of curcumin and could be easily recycled several times. This information may be useful for further research and practical applications of curcumin.
Collapse
|
21
|
SHERIN DAISYR, RAJASEKHARAN KALLIKATN. Curcuminoid-derived 3,5-bis(styryl)isoxazoles - Mechanochemical synthesis and antioxidant activity. J CHEM SCI 2016. [DOI: 10.1007/s12039-016-1119-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Banuppriya G, Sribalan R, Padmini V, Shanmugaiah V. Biological evaluation and molecular docking studies of new curcuminoid derivatives: Synthesis and characterization. Bioorg Med Chem Lett 2016; 26:1655-9. [PMID: 26944612 DOI: 10.1016/j.bmcl.2016.02.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/06/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
In the present study, three series of dimethylamino curcuminoids viz. 4-phenylaminomethyl curcumin (3a-d), arylidene curcumin (3e) and pyrazole curcumin (3f-i) derivatives have been synthesized and studied for their in vitro anti-inflammatory, antioxidant and antibacterial activities. Synthesized dimethylamino curcuminoid derivatives namely 3d, 3e, 3h and 3i have shown potent anti-inflammatory properties than parent curcumin. Molecular docking interactions of dimethylamino curcuminoids derivatives against cyclooxygenase enzymes (COX-1 and COX-2) were studied.
Collapse
Affiliation(s)
- Govindharasu Banuppriya
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Rajendran Sribalan
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Vediappen Padmini
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India.
| | - Vellasamy Shanmugaiah
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| |
Collapse
|
23
|
Hu X, Huang F, Szymusiak M, Tian X, Liu Y, Wang ZJ. PLGA-Curcumin Attenuates Opioid-Induced Hyperalgesia and Inhibits Spinal CaMKIIα. PLoS One 2016; 11:e0146393. [PMID: 26744842 PMCID: PMC4706327 DOI: 10.1371/journal.pone.0146393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/16/2015] [Indexed: 01/08/2023] Open
Abstract
Opioid-induced hyperalgesia (OIH) is one of the major problems associated with prolonged use of opioids for the treatment of chronic pain. Effective treatment for OIH is lacking. In this study, we examined the efficacy and preliminary mechanism of curcumin in attenuating OIH. We employed a newly developed PLGA-curcumin nanoformulation (PLGA-curcumin) in order to improve the solubility of curcumin, which has been a major obstacle in properly characterizing curcumin's mechanism of action and efficacy. We found that curcumin administered intrathecally or orally significantly attenuated hyperalgesia in mice with morphine-induced OIH. Furthermore, we demonstrated that the effects of curcumin on OIH correlated with the suppression of chronic morphine-induced CaMKIIα activation in the superficial laminae of the spinal dorsal horn. These data suggest that PLGA-curcumin may reverse OIH possibly by inhibiting CaMKIIα and its downstream signaling.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois, United States of America
| | - Fang Huang
- Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois, United States of America
| | - Magdalena Szymusiak
- Department of Chemical Engineering, University of Illinois, Chicago, Illinois, United States of America
| | - Xuebi Tian
- Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois, United States of America.,Department of Anesthesiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Liu
- Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois, United States of America.,Department of Chemical Engineering, University of Illinois, Chicago, Illinois, United States of America
| | - Zaijie Jim Wang
- Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois, United States of America
| |
Collapse
|
24
|
Sherin DR, Thomas SG, Rajasekharan KN. Mechanochemical synthesis of 2,2-difluoro-4, 6-bis(β-styryl)-1,3,2-dioxaborines and their use in cyanide ion sensing. HETEROCYCL COMMUN 2015. [DOI: 10.1515/hc-2015-0096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe conversion of arylaldehydes to 1,7-diaryl-5-hydroxyhepta-1,4,6-trien-3-ones (curcuminoids) and the mechanochemical cyclization of these products to 2,2-difluoro-4,6-bis(β-styryl)-1,3,2-dioxaborines using BF3-Et2O are described. Investigation of the cyanide ion sensing ability of the 2,2-difluoro-4,6-bis(β-styryl)-1,3,2-dioxaborines, in relation to the substituent groups on the aryl ring, showed that a hydroxy susbstituent is required, preferably para to the intervening carbon bridge.
Collapse
Affiliation(s)
- Daisy R. Sherin
- 1Department of Chemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India
| | - Sherin G. Thomas
- 1Department of Chemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India
| | - Kallikat N. Rajasekharan
- 1Department of Chemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India
| |
Collapse
|
25
|
Sherin DR, Rajasekharan KN. Mechanochemical Synthesis and Antioxidant Activity of Curcumin-Templated Azoles. Arch Pharm (Weinheim) 2015; 348:908-14. [DOI: 10.1002/ardp.201500305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Daisy R. Sherin
- Department of Chemistry; University of Kerala, Kariavattom; Thiruvananthapuram Kerala India
| | | |
Collapse
|
26
|
Hu X, Huang F, Szymusiak M, Liu Y, Wang ZJ. Curcumin attenuates opioid tolerance and dependence by inhibiting Ca2+/calmodulin-dependent protein kinase II α activity. J Pharmacol Exp Ther 2015; 352:420-8. [PMID: 25515789 PMCID: PMC4352596 DOI: 10.1124/jpet.114.219303] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/25/2014] [Indexed: 01/28/2023] Open
Abstract
Chronic use of opioid analgesics has been hindered by the development of opioid addiction and tolerance. We have reported that curcumin, a natural flavonoid from the rhizome of Curcuma longa, attenuated opioid tolerance, although the underlying mechanism remains unclear. In this study, we tested the hypothesis that curcumin may inhibit Ca(2+)/calmodulin-dependent protein kinase II α (CaMKIIα), a protein kinase that has been previously proposed to be critical for opioid tolerance and dependence. In this study, we used state-of-the-art polymeric formulation technology to produce poly(lactic-co-glycolic acid) (PLGA)-curcumin nanoparticles (nanocurcumin) to overcome the drug's poor solubility and bioavailability, which has made it extremely difficult for studying in vivo pharmacological actions of curcumin. We found that PLGA-curcumin nanoparticles reduced the dose requirement by 11- to 33-fold. Pretreatment with PLGA-curcumin (by mouth) prevented the development of opioid tolerance and dependence in a dose-dependent manner, with ED50 values of 3.9 and 3.2 mg/kg, respectively. PLGA-curcumin dose-dependently attenuated already-established opioid tolerance (ED50 = 12.6 mg/kg p.o.) and dependence (ED50 = 3.1 mg/kg p.o.). Curcumin or PLGA-curcumin did not produce antinociception by itself or affect morphine (1-10 mg/kg) antinociception. Moreover, we found that the behavioral effects of curcumin on opioid tolerance and dependence correlated with its inhibition of morphine-induced CaMKIIα activation in the brain. These results suggest that curcumin may attenuate opioid tolerance and dependence by suppressing CaMKIIα activity.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Biopharmaceutical Sciences (X.H., F.H., Y.L., Z.J.W.), Cancer Center (Z.J.W.), and Department of Chemical Engineering (M.S., Y.L.), University of Illinois, Chicago, Illinois
| | - Fang Huang
- Department of Biopharmaceutical Sciences (X.H., F.H., Y.L., Z.J.W.), Cancer Center (Z.J.W.), and Department of Chemical Engineering (M.S., Y.L.), University of Illinois, Chicago, Illinois
| | - Magdalena Szymusiak
- Department of Biopharmaceutical Sciences (X.H., F.H., Y.L., Z.J.W.), Cancer Center (Z.J.W.), and Department of Chemical Engineering (M.S., Y.L.), University of Illinois, Chicago, Illinois
| | - Ying Liu
- Department of Biopharmaceutical Sciences (X.H., F.H., Y.L., Z.J.W.), Cancer Center (Z.J.W.), and Department of Chemical Engineering (M.S., Y.L.), University of Illinois, Chicago, Illinois
| | - Zaijie Jim Wang
- Department of Biopharmaceutical Sciences (X.H., F.H., Y.L., Z.J.W.), Cancer Center (Z.J.W.), and Department of Chemical Engineering (M.S., Y.L.), University of Illinois, Chicago, Illinois
| |
Collapse
|
27
|
Efthymiou AG, Steiner J, Pavan WJ, Wincovitch S, Larson DM, Porter FD, Rao MS, Malik N. Rescue of an in vitro neuron phenotype identified in Niemann-Pick disease, type C1 induced pluripotent stem cell-derived neurons by modulating the WNT pathway and calcium signaling. Stem Cells Transl Med 2015; 4:230-8. [PMID: 25637190 DOI: 10.5966/sctm.2014-0127] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Niemann-Pick disease, type C1 (NPC1) is a familial disorder that has devastating consequences on postnatal development with multisystem effects, including neurodegeneration. There is no Food and Drug Administration-approved treatment option for NPC1; however, several potentially therapeutic compounds have been identified in assays using yeast, rodent models, and NPC1 human fibroblasts. Although these discoveries were made in fibroblasts from NPC1 subjects and were in some instances validated in animal models of the disease, testing these drugs on a cell type more relevant for NPC1 neurological disease would greatly facilitate both study of the disease and identification of more relevant therapeutic compounds. Toward this goal, we have generated an induced pluripotent stem cell line from a subject homozygous for the most frequent NPC1 mutation (p.I1061T) and subsequently created a stable line of neural stem cells (NSCs). These NSCs were then used to create neurons as an appropriate disease model. NPC1 neurons display a premature cell death phenotype, and gene expression analysis of these cells suggests dysfunction of important signaling pathways, including calcium and WNT. The clear readout from these cells makes them ideal candidates for high-throughput screening and will be a valuable tool to better understand the development of NPC1 in neural cells, as well as to develop better therapeutic options for NPC1.
Collapse
Affiliation(s)
- Anastasia G Efthymiou
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NeuroTherapeutics Development Unit, National Institute for Neurological Diseases and Stroke, Genetic Disease Research Branch, National Human Genome Research Institute, Eunice Kennedy Shriver National Institute for Child Health and Human Development, and Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Joe Steiner
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NeuroTherapeutics Development Unit, National Institute for Neurological Diseases and Stroke, Genetic Disease Research Branch, National Human Genome Research Institute, Eunice Kennedy Shriver National Institute for Child Health and Human Development, and Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - William J Pavan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NeuroTherapeutics Development Unit, National Institute for Neurological Diseases and Stroke, Genetic Disease Research Branch, National Human Genome Research Institute, Eunice Kennedy Shriver National Institute for Child Health and Human Development, and Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen Wincovitch
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NeuroTherapeutics Development Unit, National Institute for Neurological Diseases and Stroke, Genetic Disease Research Branch, National Human Genome Research Institute, Eunice Kennedy Shriver National Institute for Child Health and Human Development, and Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Denise M Larson
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NeuroTherapeutics Development Unit, National Institute for Neurological Diseases and Stroke, Genetic Disease Research Branch, National Human Genome Research Institute, Eunice Kennedy Shriver National Institute for Child Health and Human Development, and Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Forbes D Porter
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NeuroTherapeutics Development Unit, National Institute for Neurological Diseases and Stroke, Genetic Disease Research Branch, National Human Genome Research Institute, Eunice Kennedy Shriver National Institute for Child Health and Human Development, and Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Mahendra S Rao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NeuroTherapeutics Development Unit, National Institute for Neurological Diseases and Stroke, Genetic Disease Research Branch, National Human Genome Research Institute, Eunice Kennedy Shriver National Institute for Child Health and Human Development, and Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Nasir Malik
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NeuroTherapeutics Development Unit, National Institute for Neurological Diseases and Stroke, Genetic Disease Research Branch, National Human Genome Research Institute, Eunice Kennedy Shriver National Institute for Child Health and Human Development, and Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Shin S, Koo HJ, Lee I, Choe YS, Choi JY, Lee KH, Kim BT. Synthesis and characterization of 18F-labeled hydrazinocurcumin derivatives for tumor imaging. RSC Adv 2015. [DOI: 10.1039/c5ra15380h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Radiolabeled hydrazinocurcumin derivatives, [18F]1 and [18F]2 were synthesized and both radioligands were resistant to reductive metabolism. MicroPET images of C6 glioma xenografted mice showed high tumor uptake and retention of [18F]2.
Collapse
Affiliation(s)
- Sarah Shin
- Department of Nuclear Medicine
- Samsung Medical Center
- Sungkyunkwan University School of Medicine
- Seoul 06351
- Korea
| | - Hyun-Jung Koo
- Department of Nuclear Medicine
- Samsung Medical Center
- Sungkyunkwan University School of Medicine
- Seoul 06351
- Korea
| | - Iljung Lee
- Department of Nuclear Medicine
- Samsung Medical Center
- Sungkyunkwan University School of Medicine
- Seoul 06351
- Korea
| | - Yearn Seong Choe
- Department of Nuclear Medicine
- Samsung Medical Center
- Sungkyunkwan University School of Medicine
- Seoul 06351
- Korea
| | - Joon Young Choi
- Department of Nuclear Medicine
- Samsung Medical Center
- Sungkyunkwan University School of Medicine
- Seoul 06351
- Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine
- Samsung Medical Center
- Sungkyunkwan University School of Medicine
- Seoul 06351
- Korea
| | - Byung-Tae Kim
- Department of Nuclear Medicine
- Samsung Medical Center
- Sungkyunkwan University School of Medicine
- Seoul 06351
- Korea
| |
Collapse
|
29
|
Glutamate metabolism and HIV-associated neurocognitive disorders. J Neurovirol 2014; 20:315-31. [PMID: 24867611 DOI: 10.1007/s13365-014-0258-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/14/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
HIV-1 infection can lead to neurocognitive impairment collectively known as HIV-associated neurocognitive disorders (HAND). Although combined antiretroviral treatment (cART) has significantly ameliorated HIV's morbidity and mortality, persistent neuroinflammation and neurocognitive dysfunction continue. This review focuses on the current clinical and molecular evidence of the viral and host factors that influence glutamate-mediated neurotoxicity and neuropathogenesis as an important underlying mechanism during the course of HAND development. In addition, discusses potential pharmacological strategies targeting the glutamatergic system that may help prevent and improve neurological outcomes in HIV-1-infected subjects.
Collapse
|