1
|
Fadaly WAA, Nemr MTM, Abd El-Hameed AM, Giovannuzzi S, Alkabbani MA, Hefina MM, Nocentini A, Mohamed MFA, Supuran CT, Eldehna WM, Zidan TH. Novel benzenesulfonamide derivatives linked to diaryl pyrazole tail as potential carbonic anhydrase II/VII inhibitors with anti-epileptic activity. Eur J Med Chem 2025; 291:117619. [PMID: 40249969 DOI: 10.1016/j.ejmech.2025.117619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Two new series of 1,2,3-triazole benzenesulfonamide derivatives 16a-f and imino-thiazolidinone benzenesulfonamide derivatives 19a-f with diaryl pyrazole tail were synthesized as carbonic anhydrase (CA) II, VII inhibitors and assessed for antiepileptic activity. All compounds were tested in vitro for their inhibition activity against the human (h) carbonic anhydrase I, II, and VII isoforms. Among these series, compounds 16b, 16d, 19b, and 19d exhibited exceptional inhibitory activity against hCA II, with Ki 10.9-47.1 nM, and hCA VII, with Ki 8.4-23.6 nM, while the two series did not show significant activity against hCA I. Furthermore, 16b, 16d, 19b, and 19d were tested against in vivo pilocarpine-induced seizure model, and they showed excellent neuroprotective activity; they delayed seizure onset, reduced seizure severity, and improved survival rates compared to the pilocarpine group, which highlighted their efficacy in regulating neuronal excitability through CA inhibition and chloride homeostasis. Also, hippocampal levels of KCC2 and mTOR were analyzed, as these markers are critical in regulating neuronal excitability and are closely linked to epilepsy. Noteworthy, Compounds 16d and 19b surpassed the standard anti-convulsant valproic acid in key parameters, underscoring their superior efficacy. In addition, they do not show any significant neurotoxic effects or alterations in liver and kidney function. Moreover, the results of in vitro cytotoxicity of compounds 16d and 19b against Vero cells indicate their safety at the doses given (IC50 = 59.7, 71.9 μM respectively) compared to acetazolamide (IC50 = 32.3 μM). Finally, molecular docking of sulfonamide derivatives with hCA II (PDB code: 2h4h) and hCA VII (PDB code: 3ml5) was performed.
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini street 11562, Cairo, Egypt
| | - Abeer M Abd El-Hameed
- Chemistry Department, Faculty of Science, Taibah University, P.O. BOX 30002, Al-Madinah Al-Munawarah, 14177, Saudi Arabia
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Mahmoud Abdelrahman Alkabbani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo, 11829, Egypt
| | - Mohamed M Hefina
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524, Sohag, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Valley University, New Valley, 72511, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria, 21648, Egypt.
| | - Taha H Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
2
|
Yaşar Ü, Demir Y, Gönül İ, Özaslan MS, Çelik GG, Türkeş C, Beydemir Ş. Novel Schiff Base Sulfonate Derivatives as Carbonic Anhydrase and Acetylcholinesterase Inhibitors: Synthesis, Biological Activity, and Molecular Docking Insights. Chem Biodivers 2025; 22:e202402893. [PMID: 39654314 DOI: 10.1002/cbdv.202402893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025]
Abstract
Sulfonate derivatives are an essential class of compounds with diverse pharmacological applications. This study presents the synthesis and detailed characterization of six novel Schiff base sulfonate derivatives (L1-L6) through spectroscopic techniques (FT-IR and NMR). Their inhibitory potential was evaluated against human carbonic anhydrase isoenzymes (hCA I and hCA II) and acetylcholinesterase (AChE), which are crucial therapeutic targets for diseases such as glaucoma, epilepsy, and Alzheimer's disease. The KI values for the compounds concerning AChE, hCA I, and hCA II enzymes were in the ranges of 106.10 ± 14.73 to 422.80 ± 17.64 nM (THA: 159.61 ± 8.41 nM), 116.90 ± 24.40 to 268.00 ± 35.84 nM (AAZ: 439.17 ± 9.30 nM), and 177.00 ± 35.03 to 435.20 ± 75.98 nM (AAZ: 98.28 ± 1.69 nM), respectively. Molecular docking analyses revealed key interactions within the active sites of the enzymes, including hydrogen bonding with critical residues and π-π stacking interactions. Notably, L3 demonstrated superior inhibition against hCA I (KI: 116.90 ± 24.40 nM) and AChE (KI: 106.10 ± 14.73 nM), positioning it as a promising lead compound. This comprehensive investigation contributes to the development of isoform-specific inhibitors for therapeutic use and provides valuable insights into their binding mechanisms. The findings underscore the potential of Schiff base sulfonates as scaffolds in drug discovery for neurodegenerative and metabolic disorders.
Collapse
Affiliation(s)
- Ümit Yaşar
- Department of Laboratory and Veterinary Health, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Türkiye
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Türkiye
| | - İlyas Gönül
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences at Mersin, Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| | - Muhammet Serhat Özaslan
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Türkiye
| | - Gizem Gümüşgöz Çelik
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Türkiye
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Türkiye
| |
Collapse
|
3
|
Zeidan MA, Alkabbani MA, Giovannuzzi S, Khaleel EF, El-Hamaky AA, Khattab NA, Badi R, Abubakr A, Hamdy AM, Fares M, Tawfik HO, Supuran CT, Eldehna WM, Shaldam MA. Shooting an Arrow against Convulsion: Novel Triazole-Grafted Benzenesulfonamide Derivatives as Carbonic Anhydrase II and VII Inhibitors. J Med Chem 2025; 68:8873-8893. [PMID: 40237575 DOI: 10.1021/acs.jmedchem.5c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
This study investigates new anticonvulsant substances that target the epilepsy-associated carbonic anhydrase isoforms II and VII. The 1,2,3-triazole with a benzenesulfonamide motif is present in the produced molecules. Of these, 5b and 5c exhibited remarkable selectivity and inhibitory efficacy toward hCA VII and hCA II over hCA I. The KI values of 5b and 5c were 6.3 and 10.1 nM, respectively, and 21.6 and 18.9 nM, respectively. In a pilocarpine-induced paradigm, in vivo assessments showed decreased seizure severity and susceptibility with delayed seizure onset and diminished intensity. The quick absorption and in vivo stability of 5b were demonstrated by pharmacokinetic investigations. Evaluations of toxicity showed no neurotoxic effects and a high safety margin (LD50 > 2000 mg/kg). Mechanistic research has shown effectiveness in maintaining neuronal integrity, reducing mTOR activation, and raising hippocampus KCC2 levels. Compound 5b's binding interactions with hCA II and hCA VII were clarified by docking and dynamics experiments.
Collapse
Affiliation(s)
- Mohamed A Zeidan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Mahmoud Abdelrahman Alkabbani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, Firenze 50019, Italy
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha 61421, Asir, Saudi Arabia
| | - Anwar A El-Hamaky
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Nourhan A Khattab
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Rehab Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha 61421, Asir, Saudi Arabia
| | - Abdelhameed Abubakr
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Badr City PO box 11829, Cairo, Egypt
| | - Abdallah M Hamdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City PO box 11829, Cairo, Egypt
| | - Mohamed Fares
- School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, ERU, Badr City, Cairo 11829, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, Firenze 50019, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh P.O. Box 33516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh P.O. Box 33516, Egypt
| |
Collapse
|
4
|
Szafrański K, Sławiński J, Kawiak A, Chojnacki J, Kosno M, Ammara A, Supuran CT. 4-Substituted Pyridine-3-Sulfonamides as Carbonic Anhydrase Inhibitors Modified by Click Tailing: Synthesis, Activity, and Docking Studies. Int J Mol Sci 2025; 26:3817. [PMID: 40332420 PMCID: PMC12027749 DOI: 10.3390/ijms26083817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
In the search for new selective inhibitors of human carbonic anhydrase (hCA), particularly the cancer-associated isoforms hCA IX and hCA XII, a series of 4-substituted pyridine-3-sulfonamides was synthesized using the "click" CuAAC reaction, proven by X-ray crystallography, and evaluated for their inhibitory activity against hCA I, hCA II, hCA IX, and hCA XII. Additional molecular docking studies and cytostatic activity assays on three cancer cell lines were conducted. The compounds exhibited a broad range of inhibitory activity, with KI reaching 271 nM for hCA II, 137 nM for hCA IX, and 91 nM for hCA XII. Notably, compound 4 demonstrated up to 5.9-fold selectivity toward the cancer-associated hCA IX over the ubiquitous hCA II, while compound 6 exhibited a remarkable 23.3-fold selectivity between transmembrane isoforms hCA IX and hCA XII. Molecular docking studies have shown the possibility of selective interaction with the hydrophilic or lipophilic half of the active site, what results from the adjacent (3,4) position of the "tail" in relation to the sulfonamide group.
Collapse
Affiliation(s)
- Krzysztof Szafrański
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Anna Kawiak
- Intercollegiate Faculty of Biotechnology, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Jarosław Chojnacki
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Michał Kosno
- 2nd Department of Radiology, Medical University of Gdańsk, Mariana Smoluchowskiego 17, 80-210 Gdańsk, Poland
| | - Andrea Ammara
- Section of Pharmaceutical and Nutraceutical Sciences, Department of NEUROFARBA, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Claudiu T. Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of NEUROFARBA, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy
| |
Collapse
|
5
|
Hashem H, Abdelfattah S, Hassan HM, Al-Emam A, Alqarni M, Alotaibi G, Radwan IT, Kaur K, Rao DP, Bräse S, Alkhammash A. Discovery of a novel 4-pyridyl SLC-0111 analog targeting tumor-associated carbonic anhydrase isoform IX through tail-based design approach with potent anticancer activity. Front Chem 2025; 13:1571646. [PMID: 40255643 PMCID: PMC12006758 DOI: 10.3389/fchem.2025.1571646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/11/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction: Carbonic anhydrase IX (CA IX) is a tumor-associated enzyme involved in cancer progression and survival. Targeting CA IX with selective inhibitors like SLC-0111 has shown therapeutic potential. This study aimed to develop a novel 4-pyridyl analog (Pyr) of SLC-0111 with enhanced anticancer activity. Methods: Pyr was synthesized using a tail-based design and characterized by NMR. Its cytotoxicity was tested against cancer and normal cell lines. CA inhibition, cell cycle effects, apoptosis induction, and protein expression changes were evaluated. Molecular docking and ADMET predictions assessed binding and drug-like properties. Results and Discussion: Pyr showed selective cytotoxicity toward cancer cells and potent CA IX inhibition. It induced G0/G1 arrest, apoptosis, and modulated p53, Bax, and Bcl-2 levels. Docking confirmed strong CA IX binding, and ADMET analysis indicated good oral bioavailability. These results support Pyr as a promising anticancer candidate.
Collapse
Affiliation(s)
- Hamada Hashem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Shadwa Abdelfattah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Merit University (MUE), Sohag, Egypt
| | - Hesham M. Hassan
- Department of Pathology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Mohammed Alqarni
- Department of Pharmaceutical chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ghallab Alotaibi
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | - Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt
| | - Kirandeep Kaur
- Department of Chemistry, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Devendra Pratap Rao
- Coordination Chemistry Laboratory, Department of Chemistry, Dayanand Anglo-Vedic (PG) College, Kanpur, Uttar Pradesh, India
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Abdullah Alkhammash
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
6
|
Lolak N, Akocak S, Topal M, Koçyiğit ÜM, Işık M, Türkeş C, Topal F, Durgun M, Beydemir Ş. Sulfonamide-Bearing Pyrazolone Derivatives as Multitarget Therapeutic Agents: Design, Synthesis, Characterization, Biological Evaluation, In Silico ADME/T Profiling and Molecular Docking Study. Pharmacol Res Perspect 2025; 13:e70088. [PMID: 40129107 PMCID: PMC11932959 DOI: 10.1002/prp2.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/12/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
The research and design of new inhibitors for the treatment of diseases such as Alzheimer's disease and glaucoma through inhibition of cholinesterases (ChEs; acetylcholinesterase, AChE and butyrylcholinesterase, BChE) and carbonic anhydrase enzymes are among the important targets. Here, a series of novel sulfonamide-bearing pyrazolone derivatives (1a-f and 2a-f) were successfully synthesized and characterized by using spectroscopic and analytical methods. The inhibitory activities of these newly synthesized compounds were evaluated both in vitro and in silico for their effect on carbonic anhydrases (hCA I and hCA II isoenzymes) and ChEs. The in vitro studies showed that these novel compounds demonstrated potential inhibitory activity, with KI values covering the following ranges: 18.03 ± 2.86-75.54 ± 4.91 nM for hCA I, 24.84 ± 1.57-85.42 ± 6.60 nM for hCA II, 7.45 ± 0.98-16.04 ± 1.60 nM for AChE, and 34.78 ± 5.88-135.70 ± 17.39 nM for BChE. Additionally, many of these compounds showed promising inhibitory activity, and some showed higher potency than reference compounds. While the in silico studies have also identified the potential binding positions of these compounds, using the crystal structures of hCA I, II, AChE and BChE receptors. The varying affinities demonstrated by these designed compounds for ChEs and hCA isoenzymes show that these compounds could hold promise as potential alternative agents for selectively inhibiting ChEs and hCAs in the treatment of diseases such as Alzheimer's disease and glaucoma.
Collapse
Affiliation(s)
- Nebih Lolak
- Department of Pharmaceutical ChemistryFaculty of Pharmacy, Adıyaman UniversityAdıyamanTurkey
| | - Suleyman Akocak
- Department of Pharmaceutical ChemistryFaculty of Pharmacy, Adıyaman UniversityAdıyamanTurkey
| | - Meryem Topal
- Vocational School of Health ServicesGümüşhane UniversityGümüşhaneTurkey
| | | | - Mesut Işık
- Department of BioengineeringFaculty of Engineering, Bilecik Şeyh Edebali UniversityBilecikTurkey
| | - Cüneyt Türkeş
- Department of BiochemistryFaculty of Pharmacy, Erzincan Binali Yıldırım UniversityErzincanTurkey
| | - Fevzi Topal
- Department of Food EngineeringFaculty of Engineering and Natural Sciences, Gümüşhane UniversityGümüşhaneTurkey
- Department of Chemical and Chemical Processing Technologies, Laboratory Technology ProgramGümüşhane UniversityGümüşhaneTurkey
| | - Mustafa Durgun
- Department of ChemistryFaculty of Arts and Sciences, Harran UniversityŞanlıurfaTurkey
| | - Şükrü Beydemir
- Department of BiochemistryFaculty of Pharmacy, Anadolu UniversityEskişehirTurkey
| |
Collapse
|
7
|
Bhukal A, Kumar V, Raman APS, Kumar A, Singh P, Lal K. Pyrazoline Spiro-oxindole tethered 1,2,3-triazole hybrids: Design, synthesis, antimicrobial efficacy and molecular modelling studies. Mol Divers 2025; 29:1479-1492. [PMID: 39060857 DOI: 10.1007/s11030-024-10928-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Inspired from the important applications of spirocyclic compounds in medicinal chemistry, a new series of pyrazoline Spiro-oxindole tethered 1,2,3-triazole hybrids was reported via Cu(I)-catalyzed click reaction from isatin-pyrazoline linked terminal alkynes with in situ derived benzyl azides. Antimicrobial evaluation data showed that all hybrids exhibited promising efficacy towards the tested microbial strains. Antimicrobial screening as well as docking studies suggested that hybrid 6a was found to be most potent towards Aspergillus niger (MIC = 0.0122 μmol/mL) and Escherichia coli (MIC = 0.0061 μmol/mL). Molecular docking studies of 6a within the binding pockets of antibacterial and antifungal targets revealed good interactions with the binding energies of - 144.544 kcal/mol and - 154.364 kcal/mol against 1KZN (E. coli) and 3D3Z (A. niger), respectively. Further, MD simulations were performed to study the stability of the complexes formed at 300 K. Based on the RMSD trajectories, it is evident that 3D3Z-6a complex exhibits minimal deviation, whereas the 1KZN-6a complex displayed little more deviation compared to the protein but, both are in acceptable range. Moreover, 3D3Z-6a and 1KZN-6a showed maximum number of hydrogen bonds at 50 ns and 70 ns, respectively, thereby complementing the stability of these complexes.
Collapse
Affiliation(s)
- Akanksha Bhukal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Vijay Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | | | - Anil Kumar
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India.
| |
Collapse
|
8
|
Khan M, Ahsan Halim S, Ur Rehman N, Khan A, Gibbons S, Csuk R, Uddin J, Al-Harrasi A. Novel Anti-Tumor Effect of Natural Products from Aloe vera Resin and their In-Vitro/In-Silico Targeting Mechanism of Carbonic Anhydrase-II and IX. Chem Biodivers 2025; 22:e202401978. [PMID: 39440953 DOI: 10.1002/cbdv.202401978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Human carbonic anhydrase (hCA) plays a vital role in the development and progression of tumors in hypoxic conditions. Herein we report the hCA-II and hCA-IX activities of natural products isolated from Aloe vera (L.) Burm.f., to know their potential in tumors. These isolated compounds (1-10) displayed varying degrees of inhibition against hCA-II and hCA-IX. All the compounds showed potent activity against hCA-IX with IC50 values in the range of 2.9-29.1 μM. While for hCA-II, compounds 1, 2, 5-10 exhibited IC50 in the range of 4.7-23.4 μM. The most effective hCA IX and II inhibitors, 2 and 5, were chosen for in vitro mechanism studies, revealing that they are competitive inhibitors. Furthermore, when tested for their cytotoxic effect on BJ (normal) cell line, all the compounds showed no cytotoxic behavior, while on Prostate cancer cells (PC-3), compounds 1, 3, 5, 7, and 9 exhibited significant antiproliferative activity. Molecular docking was also conducted within the hCA IX and hCA-II active sites to observe their binding capability. Compounds 1, 5, 7, and 9 were active against both isozymes of hCA and in the PC-3 cell line, therefore these are the best choices for further in vivo studies.
Collapse
Affiliation(s)
- Majid Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
- Department of Biochemistry, University of Malakand, Chakdara, Dir lower, Khyber Pakhtunkhwa, 18800, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Simon Gibbons
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Rene Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 62529, Kingdom of Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| |
Collapse
|
9
|
Babu DD, Saranga Pani A, Joshi SD, Naik P, Jayaprakash GK, Al-Ghorbani M, Rodrigues B, Momidi BK. Computational and experimental insights into pharmacological potential: Synthesis, in vitro evaluation, and molecular docking analysis of bioactive urea and thiourea derivatives. Microb Pathog 2025; 200:107209. [PMID: 39653284 DOI: 10.1016/j.micpath.2024.107209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025]
Abstract
This study delves into the synthesis, in vitro assessment, and molecular docking analysis of bioactive urea and thiourea derivatives, which have garnered significant attention in pharmaceutical chemistry due to their versatile chemical reactivity and potential therapeutic applications One pot synthetic approach was utilized to develop a diverse class of these compounds. Subsequent biological assessments, including antimicrobial assays, demonstrated their pharmacological potential by inhibiting pathogenic microorganisms. Molecular docking analysis offered computational insights into the interactions between these compounds and specific biomolecules, shedding light on their potential mechanisms of action. Overall, this comprehensive exploration contributes to the discovery of innovative therapeutic agents, as these bioactive urea and thiourea derivatives hold promise for addressing pressing healthcare challenges.
Collapse
Affiliation(s)
- Dickson D Babu
- Department of Chemistry, St. Thomas College, Kozhencherry, 689641, Kerala, India
| | - A Saranga Pani
- Department of Chemistry, S.V.Arts College (TTD), Tirupati, 517501, Andhra Pradesh, India
| | - Shrinivas D Joshi
- Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry, S. E. T's College of Pharmacy, Sangolli Rayanna Nagar, Dharwad, 580 002, Karnataka, India
| | - Praveen Naik
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Yelahanka, Bengaluru, 560064, Karnataka, India.
| | - Gururaj Kudur Jayaprakash
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Mohammed Al-Ghorbani
- Department of Chemistry, Faculty of Science, Taibah University, Madinah 42353, Saudi Arabia
| | | | - Bharath Kumar Momidi
- Department of Chemistry, S.V.Arts College (TTD), Tirupati, 517501, Andhra Pradesh, India.
| |
Collapse
|
10
|
Singh P, Nerella SG, Swain B, Angeli A, Kausar S, Ullah Q, Supuran CT, Arifuddin M. Synthesis of Chromene-linked Bis-indole Derivatives as Selective Tumor-associated Carbonic Anhydrase IX Inhibitors. Anticancer Agents Med Chem 2025; 25:399-410. [PMID: 39501943 DOI: 10.2174/0118715206341087241029064945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 04/11/2025]
Abstract
BACKGROUND Sulfonamide derivatives are well-reported hCA IX inhibitors; however, they inhibit all types of hCA without any selectivity, leading to severe adverse effects. Hence, developing a novel nonsulfonamide class of tumor-associated hCA IX inhibitors through non-classical inhibition may provide greater selectivity and better pharmacokinetics. OBJECTIVE The objective of this study was to develop non-sulfonamide derivatives as potential human carbonic anhydrase (hCA) inhibitors and develop a new series of chromene-linked bis-indole derivatives. METHODS We synthesized and characterized the chromene-linked bis-indole derivatives and further evaluated them against four hCA isoforms, i.e., hCA I, hCA II, hCA IX, and hCA XII, and determined the ADMET parameters by the In-silico method. RESULTS Most of the compounds showed significantly greater affinity and selectivity towards the tumorassociated hCA IX over other hCA isoforms within the lower micromolar to submicromolar range. In particular, the bromo-substituted bis-indole derivative 6t showed an excellent inhibition of hCA IX isoform with an affinity (Ki) of 2.61 μM. In contrast, the cyano group substituted bis-indole derivative 6s and also displayed a strong inhibition of hCA IX isoform with an affinity (Ki) of 2.73 μM. Many other potential candidates, including 6g, 6i, 6k, 6m, 6o, 6p, and 6r, showed higher affinity at tumor-associated hCA IX with lower than 10 μM compared to other hCA isoforms. CONCLUSION Therefore, the chromene-linked bis-indole derivatives can serve as a novel non-sulfonamide class of tumor-associated hCA IX inhibitors.
Collapse
Affiliation(s)
- Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Sridhar Goud Nerella
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Samreen Kausar
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University (MANUU), Hyderabad 500032, Telangana, India
| | - Qasim Ullah
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University (MANUU), Hyderabad 500032, Telangana, India
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
- Department of Chemistry, Directorate of Distance Education, Maulana Azad National Urdu University, Hyderabad, 500 032, India
| |
Collapse
|
11
|
Karakuş S, Başçıl E, Tok F, Erdoğan Ö, Çevik Ö, Başoğlu F. Synthesis, biological evaluation and molecular docking studies of novel 1,3,4-thiadiazoles as potential anticancer agents and human carbonic anhydrase inhibitors. Mol Divers 2024; 28:3801-3815. [PMID: 38123787 DOI: 10.1007/s11030-023-10778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Thiosemicarbazide and also 1,3,4-thiadiazole derivatives have been garnering substantial attention from researchers worldwide due to their expansive range of biological activities, encompassing antimicrobial, anti-inflammatory, and anticancer properties. Herein, we embarked on a comprehensive investigation in this study, introducing a novel series of thiosemicarbazides (3a-3i) and their corresponding 1,3,4-thiadiazole (4a-4i) derivatives. The compounds were meticulously designed, synthesized, and subjected to meticulous characterization using various spectroscopic methods such as FT-IR, 1H-NMR, 13C-NMR, and elemental analysis. Afterward, their potential anti-proliferative effectiveness was assessed using MTT assay against two cancer cell lines (U87 and HeLa) and normal fibroblast cells (L929). Among the compounds, 4d showed the highest cytotoxic activity against U87 and 4i against HeLa. Compound 3b exhibited selective cytotoxic activity against both cancer cells. Among the molecules with selective activity against the U87 cell line; 3a, 3b, 4d and 4e were further evaluated by caspase-3 activity levels, Bax and Bcl-2 protein expression, and total oxidant status assay. Besides, carbonic anhydrase IX activity studies were also performed in order to understand the underlying mechanism of action. The results indicated that compound 4e showed higher efficacy than standard acetazolamide (IC50 = 0.58 ± 0.02 µM) with an IC50 value of 0.03 ± 0.01 µM. Furthermore, molecular docking studies were carried out using carbonic anhydrase IX crystals to determine the compound's interactions with the enzyme's active sites. This comprehensive investigation sheds light on the intricate interplay between molecular structure and biological activity, providing valuable insights into the therapeutic potential of these compounds.
Collapse
Affiliation(s)
- Sevgi Karakuş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, 34854, Istanbul, Türkiye
| | - Elif Başçıl
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, 34854, Istanbul, Türkiye
| | - Fatih Tok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, 34854, Istanbul, Türkiye.
| | - Ömer Erdoğan
- Department of Medical Biochemistry, Faculty of Medicine, Gaziantep Islam Science and Technology University, 27010, Gaziantep, Türkiye
| | - Özge Çevik
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, 09010, Aydın, Türkiye
| | - Faika Başoğlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, European University of Lefke, Northern Cyprus TR-10, Mersin, Türkiye.
| |
Collapse
|
12
|
Aydin BO, Anil DA, Demir Y, Alagoz MA. Organohalogen chalcones: design, synthesis, ADMET prediction, molecular dynamics study and inhibition effect on acetylcholinesterase and carbonic anhydrase. Mol Divers 2024; 28:3739-3755. [PMID: 38170420 DOI: 10.1007/s11030-023-10774-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
In an effort to discover potential acetylcholinesterase (AChE) and carbonic anhydrase (CA) inhibitors, a novel series of organohalogen chalcone derivatives (12-20, 23-30) was synthesized, and their chemical structures were characterized by spectral analysis. They showed a highly potent inhibition effect on AChE and hCAs (Ki values range from 5.07 ± 0.062 to 65.53 ± 4.36 nM for AChE, 13.54 ± 2.55 to 94.11 ± 10.39 nM for hCA I, and 5.21 ± 0.54 to 57.44 ± 3.12 nM for hCA II). In addition, the chalcone derivatives with the highest inhibitor score docked into the active site of the indicated metabolic enzyme receptors, and their absorption, metabolism, and toxic properties were evaluated according to ADMET's estimation.Compounds 16 and 19 exhibited the highest inhibition score, emerged as lead compounds, and inspired the development of more potent compounds.
Collapse
Affiliation(s)
- Busra Ozturk Aydin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey
| | - Derya Aktas Anil
- Department of Chemistry, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey.
- Department of Chemistry and Chemical Process Technologies, Technical Sciences Vocational School, Ataturk University, 25240, Erzurum, Turkey.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational School, Ardahan University, 75002, Ardahan, Turkey
| | - Mehmet Abdullah Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| |
Collapse
|
13
|
Jagtap UA, Rathod S, Shukla R, Paul AT. Computational insights into human UCP1 activators through molecular docking, MM-GBSA, and molecular dynamics simulation studies. Comput Biol Chem 2024; 113:108252. [PMID: 39461164 DOI: 10.1016/j.compbiolchem.2024.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024]
Abstract
The prevalence of obesity is rapidly increasing worldwide. Brown adipose tissue activates uncoupling protein 1 (UCP1) to generate heat through bypassing ATP synthesis, offering a potential target for obesity treatment. Targeting UCP1 activation to induce thermogenesis through small molecules presents a promising approach for obesity management. In this study, molecular docking of UCP1 activators, using 2,4-dinitrophenol (DNP) as a reference ligand (PDB ID: 8J1N, docking score: -5.343 kcal/mol), identified seven top-scoring compounds: naringin (-7.284 kcal/mol), quercetin (-6.661 kcal/mol), salsalate (-6.017 kcal/mol), rhein (-5.798 kcal/mol), mirabegron (-5.535 kcal/mol), curcumin (-5.479 kcal/mol), and formoterol (-5.451 kcal/mol). Prime MM-GBSA calculation of the top-scored molecule (i.e., naringin) in the docking study showed ΔGBind of -70.48 kcal/mol. Key interactions of these top 7 activators with UCP1 binding pocket residues Trp280, Arg276, Glu190, Arg83, and Arg91 were observed. Molecular dynamics simulations performed for 100 ns confirmed complex stability, with RMSD values below 6 Å. Additionally, most activators showed favorable intestinal absorption (>90 %) and lipophilicity (LogP 2-4), with pKa values supporting their pharmacological potential as UCP1-targeting therapeutics for obesity. These findings provide a foundation for designing potent UCP1 activators by integrating docking scores, interaction profiles, statistical profiles from MD simulations, and physicochemical assessments to develop effective anti-obesity therapies.
Collapse
Affiliation(s)
- Utkarsh A Jagtap
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani campus, Pilani, Rajasthan 333031, India
| | - Sanket Rathod
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani campus, Pilani, Rajasthan 333031, India; School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Ravi Shukla
- School of Science, RMIT University, Melbourne, VIC 3000, Australia; NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, VIC 3001, Australia
| | - Atish T Paul
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani campus, Pilani, Rajasthan 333031, India.
| |
Collapse
|
14
|
Sadineni K, Haridasyam SB, Gujja V, Muvvala V, Nechipadappu SK, Nanda Pilli KVV, Chepuri K, Allaka TR. Novel tetrazolyl-1,2,3-triazole derivatives as potent antimicrobial targets: design, synthesis and molecular docking techniques. J Biomol Struct Dyn 2024:1-16. [PMID: 39562999 DOI: 10.1080/07391102.2024.2425830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/05/2024] [Indexed: 11/21/2024]
Abstract
The main objective of this study is to produce novel triazoles-loaded tetrazoles, which are crucial in the development of prospective therapeutic agents in medicinal chemistry. Recent investigations have found a wide range of uses for these derivatives, and they are prospective lead molecules for the synthesis of substances with enormous therapeutic utility for various diseases, especially for bacterial therapy. New series of 1,2,3-triazole derivatives have been synthesized from methyl (2S,4S)-4-azido-1-(2,4-difluoro-3-methylbenzoyl)pyrrolidine-2-carboxylate (5) using a well-established click reaction that has several advantages to afford a novel heterocyclic compound based on tetrazole moieties. The structures of the new compounds were ascertained by spectral means (IR, NMR: 1H and 13C) and mass spectrum. All the synthesized compounds were assessed in vitro antimicrobial activity against Gram-+ve (S. pyogenes, S. aureus and B. subtilis), Gram-negative (E. coli and P. aeruginosa) bacterial and fungal strains A. flavus and C. albicans. The prepared compounds 7b and7f proved to have strong impact on S. aureus and S. pyogenes strains with MICs of 2.5 µg/mL and 1.5 µg/mL respectively. Among the tested compounds, hybrids 7b, 7f, 7h, and 7i exhibited exceptional antifungal susceptibilities against C. albicans with zone of inhibition 25 ± 0.2, 30 ± 0.3, 30 ± 0.1, and 28 ± 0.2 mm respectively, which is stronger than fluconazole (28 ± 0.1 mm). The capacity of ligand 7f to form a stable compound on the active site of S. aureus complex with DNA Gyrase (2XCT) was confirmed by docking studies using amino acids Ala233(A), Arg234(A), Gly283(A), Ser286(A), Lys52(A), His280(A), Gly51(A), His282(A) and Val246(A). Furthermore, the physicochemical and ADME (absorption, distribution, metabolism, and excretion) filtration molecular properties, estimation of toxicity, and bioactivity scores of these scaffolds were evaluated.
Collapse
Affiliation(s)
- Kumaraswamy Sadineni
- Department of Chemistry, School of Science, Gitam Deemed to be University, Rudraram, Hyderabad, India
| | - Sharath Babu Haridasyam
- Department of Chemistry, School of Science, Gitam Deemed to be University, Rudraram, Hyderabad, India
| | - Venkanna Gujja
- Department of Chemistry, School of Science, Gitam Deemed to be University, Rudraram, Hyderabad, India
| | - Venkatanaryana Muvvala
- Department of Chemistry, School of Science, Gitam Deemed to be University, Rudraram, Hyderabad, India
| | - Sunil Kumar Nechipadappu
- Department of Analytical and Structural Chemistry, CSIR-IICT, Tarnaka, Hyderabad, Telangana, India
| | - Kishore Veera Venkata Nanda Pilli
- Department of Chemistry, School of Applied Sciences and Humanities, Vignans Foundation for Science, Technology and Research University), Vadlamudi, Guntur, India
| | - Kalyani Chepuri
- Centre for Biotechnology, University College of Engineering, Science and Technology Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
| | - Tejeswara Rao Allaka
- Centre for Chemical Sciences and Technology, University College of Engineering, Science and Technology Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
| |
Collapse
|
15
|
Naeem N, Sadiq A, Othman GA, Yassin HM, Mughal EU. Exploring heterocyclic scaffolds in carbonic anhydrase inhibition: a decade of structural and therapeutic insights. RSC Adv 2024; 14:35769-35970. [PMID: 39534850 PMCID: PMC11555472 DOI: 10.1039/d4ra06290f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Heterocyclic compounds represent a prominent class of molecules with diverse pharmacological activities. Among their therapeutic applications, they have gained significant attention as carbonic anhydrase (CA) inhibitors, owing to their potential in the treatment of various diseases such as epilepsy, cancer and glaucoma. CA is a widely distributed zinc metalloenzyme that facilitates the reversible interconversion of carbon dioxide and bicarbonate. This reaction is essential for numerous physiological and pathological processes. In humans, CA exists in sixteen different isoforms, labeled hCA-I to hCA-XV, each distributed across various tissues and organs and involved in crucial physiological functions. Clinically utilized CA inhibitors, such as brinzolamide, dorzolamide and acetazolamide, exhibit poor selectivity, leading to undesirable side effects. A significant challenge in designing effective CA inhibitors is achieving balanced isoform selectivity, prompting the exploration of new chemotypes. This review compiles recent strategies employed by various researchers in developing CAIs across different structural classes, including pyrazoline, quinoline, imidazole, oxadiazole, pyrimidine, coumarin, chalcone, rhodanine, phthalazine, triazole, isatin, and indole. Additionally, the review summarizes structure-activity relationship (SAR) analyses, isoform selectivity evaluations, along with mechanistic and in silico investigations. Insights derived from SAR studies provide crucial directions for the rational design of next-generation heterocyclic CA inhibitors, with improved therapeutic efficacy and reduced side effects. To the best of our knowledge, for the first time, we have comprehensively summarized all known isoforms of CA in relation to various heterocyclic motifs. This review examines the use of different heterocycles as CA inhibitors, drawing on research published over the past 11 years. It offers a valuable resource for early-career researchers, encouraging further exploration of synthetic heterocycles in the development of CA inhibitors.
Collapse
Affiliation(s)
- Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot 51300 Pakistan
| | - Gehan Ahmed Othman
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Habab M Yassin
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | | |
Collapse
|
16
|
Buza A, Türkeş C, Arslan M, Demir Y, Dincer B, Nixha AR, Beydemir Ş. Novel benzenesulfonamides containing a dual triazole moiety with selective carbonic anhydrase inhibition and anticancer activity. RSC Med Chem 2024; 16:d4md00617h. [PMID: 39493223 PMCID: PMC11525713 DOI: 10.1039/d4md00617h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
A series of sulfonamides incorporating a 1,2,3-triazolyloxime substituted 1,2,3-triazolyl moiety were conceptualized and synthesized as human carbonic anhydrase (hCA) inhibitors. The synthesized small structures, denoted 7a through 7o, exhibited moderate inhibitory effects against the tumor-associated isoforms hCA IX and hCA XII compared to the well-known hCA inhibitor acetazolamide. In contrast, these molecules demonstrated higher potency and a diverse range of selectivity against the cytosolic isoforms hCA I and hCA II. Notably, the 4-hydroxyphenyl derivative (compound 7dversus cytosolic isoforms), the 4-acetylphenyl derivative (compound 7o), and the phenyl derivative (compound 7a) emerged as the most potent and selective inhibitors in this series, with inhibition constants (K I) of 47.1, 35.9, 170.0, and 149.9 nM, respectively, against hCA I, II, IX, and XII. Further cytotoxicity assays of compounds 7a-o against cancer cell lines Hep3B and A549, as well as normal cell line L929, were conducted to assess their selectivity towards malignant cells. Compounds 7d, 7g, and 7k exhibited selective cytotoxicity towards the Hep3B cell line, with reduced selectivity towards A549, whereas compound 7j demonstrated higher selectivity for the A549 cell line. Additionally, molecular docking studies were performed to elucidate the binding modes of these compounds within the active sites of hCAs, revealing crucial interactions that underpin their significant activity and selectivity for the tumor-specific isoforms.
Collapse
Affiliation(s)
- Aida Buza
- Department of Chemistry, Faculty of Mathematical and Natural Sciences, University of Prishtina Prishtina 1000 Republic of Kosova
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Sciences, Sakarya University Sakarya 54187 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University Ardahan 75700 Turkey
| | - Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Ondokuz Mayıs University Samsun 55020 Turkey
| | - Arleta Rifati Nixha
- Department of Chemistry, Faculty of Mathematical and Natural Sciences, University of Prishtina Prishtina 1000 Republic of Kosova
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University Eskişehir 26470 Turkey
| |
Collapse
|
17
|
Duran HE, Beydemir Ş. Naphthoquinones and anthraquinones: Exploring their impact on acetylcholinesterase enzyme activity. Biotechnol Appl Biochem 2024; 71:1079-1093. [PMID: 38715453 DOI: 10.1002/bab.2599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 10/10/2024]
Abstract
The identification of novel acetylcholinesterase inhibitors holds significant relevance in the treatment of Alzheimer's disease (AD), the prevailing form of dementia. The exploration of alternative inhibitors to the conventional acetylcholinesterase inhibitors is steadily gaining prominence. Quinones, categorized as plant metabolites, represent a specific class of compounds. In this study, the inhibitory effects of various naphthoquinone derivatives, along with anthraquinone and its derivatives, on the acetylcholinesterase (AChE) enzyme were investigated for this purpose. An in vitro investigation was conducted to examine the effects of these compounds in order to clarify the possible mechanism of inhibition in the interaction between the enzyme and chemicals. In addition, an in silico investigation was carried out to understand the conceivable inhibitor binding process to the enzyme's active site. The acquired outcomes corroborated the in vitro results. The AChE enzyme was found to be effectively inhibited by both naphthoquinones and anthraquinones, with inhibition constant (KI) values ranging from 0.014 to 0.123 μM (micormolar). The AChE enzyme was inhibited differently by this quinone and its derivatives. Although derivatives of naphthoquinone and anthraquinone exhibited a competitive inhibitory effect, derivatives of anthraquinone exhibited a noncompetitive inhibition effect. Furthermore, because it had the lowest KI value of any of these substances, 1,5-dihydroxyanthraquinone (1c) was shown to be the most potent inhibitor. The findings will add to the body of knowledge on the creation of fresh, potent, and successful treatment approaches.
Collapse
Affiliation(s)
- Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
18
|
Sharma V, Vats L, Giovannuzzi S, Mohan B, Supuran CT, Sharma PK. In-vitro and in-silico investigations of SLC-0111 hydrazinyl analogs as human carbonic anhydrase I, II, IX, and XII inhibitors. Arch Pharm (Weinheim) 2024; 357:e2400157. [PMID: 38713910 DOI: 10.1002/ardp.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024]
Abstract
Two novel series of hydrazinyl-based benzenesulfonamides 9a-j and 10a-j were designed and synthesized using SLC-0111 as the lead molecule. The newly synthesized compounds were evaluated for their inhibitory activity against four different human carbonic anhydrase (hCA) isoforms I, II, IX, and XII. Both the series reported here were practically inactive against the off-target isozyme hCA I. Notably, derivative 10a exhibited superior potency (Ki of 10.2 nM) than acetazolamide (AAZ) against the cytosolic isoform hCA II. The hCA IX and XII isoforms implicated in tumor progression were effectively inhibited with Kis in the low nanomolar range of 20.5-176.6 nM and 6.0-127.5 nM, respectively. Compound 9g emerged as the most potent and selective hCA IX and XII inhibitor with Ki of 20.5 nM and SI of 200.1, and Ki of 6.0 nM and SI of 683.7, respectively, over hCA I. Furthermore, six compounds (9a, 9h, 10a, 10g, 10i, and 10j) exhibited significant inhibition toward hCA IX (Kis = 27.0, 41.1, 27.4, 25.9, 40.7, and 30.8 nM) relative to AAZ and SLC-0111 (Kis = 25.0 and 45.0 nM, respectively). These findings underscore the potential of these derivatives as potent and selective inhibitors of hCA IX and XII over the off-target hCA I and II.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
- Department of Chemistry, Pt. Chiranji Lal Sharma Government College, Karnal, Haryana, India
| | - Lalit Vats
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
- Department of Chemistry, Government College Bherian, Pehowa, Kurukshetra, Haryana, India
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Pawan K Sharma
- Department of Chemistry, Central University of Haryana, Mahendragarh, India
- Department of Chemistry, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
19
|
Korkusuz E, Sert Y, Arslan S, Aydın H, Yıldırım İ, Demir Y, Gülçin İ, Koca İ. Synthesis and biological studies of pyrimidine derivatives targeting metabolic enzymes. Arch Pharm (Weinheim) 2024; 357:e2300634. [PMID: 38772694 DOI: 10.1002/ardp.202300634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/08/2024] [Accepted: 04/04/2024] [Indexed: 05/23/2024]
Abstract
Novel synthesized pyrimidine derivatives were investigated against carbonic anhydrase isoenzymes I and II (hCA I and II), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-glycosidase, and aldose reductase (AR) enzymes associated with some common diseases such as epilepsy, glaucoma, Alzheimer's disease, diabetes, and neuropathy. When the results were examined, novel synthesized pyrimidine derivatives were found to have effective inhibition abilities toward the metabolic enzymes. IC50 values and Ki values were calculated for each pyrimidine derivative and compared to positive controls. The synthesized novel pyrimidine derivatives exhibited Ki values in the range of 39.16 ± 7.70-144.62 ± 26.98 nM against hCA I, 18.21 ± 3.66-136.35 ± 21.48 nM toward hCA II, which is associated with different pathological and physiological processes, 33.15 ± 4.85-52.98 ± 19.86 nM on AChE, and 31.96 ± 8.24-69.57 ± 21.27 nM on BChE. Also, Ki values were determined in the range of 17.37 ± 1.11-253.88 ± 39.91 nM against α-glycosidase and 648.82 ± 53.74-1902.58 ± 98.90 nM toward AR enzymes. Within the scope of the study, the inhibition types of the novel synthesized pyrimidine derivatives were evaluated.
Collapse
Affiliation(s)
- Elif Korkusuz
- Mustafa Cikrikcioglu Vocational College, Kayseri University, Kayseri, Turkey
| | - Yusuf Sert
- Department of Physics, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - Seher Arslan
- Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - Hava Aydın
- Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - İsmail Yıldırım
- Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - Yeliz Demir
- Nihat Delibalta Gole Vocational High School, Ardahan University, Ardahan, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
- Science and Technology Application and Research Center, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
20
|
Güleç Ö, Türkeş C, Arslan M, Demir Y, Dincer B, Ece A, Beydemir Ş. Novel beta-lactam substituted benzenesulfonamides: in vitro enzyme inhibition, cytotoxic activity and in silico interactions. J Biomol Struct Dyn 2024; 42:6359-6377. [PMID: 37540185 DOI: 10.1080/07391102.2023.2240889] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/01/2023] [Indexed: 08/05/2023]
Abstract
In this study, a library of twelve beta-lactam-substituted benzenesulfonamides (5a-l) was synthesized using the tail-approach method. The compounds were characterized using IR, 1H NMR, 13C NMR and elemental analysis techniques. These newly synthesized compounds were tested for their ability to inhibit the activity of two carbonic anhydrases (hCA) isoforms, I and II, and acetylcholinesterase (AChE) in vitro. The results showed that the synthesized compounds were potent inhibitors of hCA I, with KIs in the low nanomolar range (66.60-278.40 nM) than the reference drug acetazolamide (AAZ), which had a KI of 439.17 nM. The hCA II was potently inhibited by compounds 5a, 5d-g and 5l, with KIs of 69.56, 39.64, 79.63, 74.76, 78.93 and 74.94 nM, respectively (AAZ, KI of 98.28 nM). Notably, compound 5a selectively inhibited hCA II with a selectivity of > 4-fold over hCA I. In terms of inhibition of AChE, the synthesized compounds had KIs ranging from 30.95 to 154.50 nM, compared to the reference drug tacrine, which had a KI of 159.61 nM. Compounds 5f, 5h and 5l were also evaluated for their ability to inhibit the MCF-7 cancer cell line proliferation and were found to have promising anticancer activity, more potent than 5-fluorouracil and cisplatin. Molecular docking studies suggested that the sulfonamide moiety of these compounds fits snugly into the active sites of hCAs and interacts with the Zn2+ ion. Furthermore, molecular dynamics simulations were performed for 200 ns to assess the stability and dynamics of each enzyme-ligand complex. The acceptability of the compounds based on Lipinski's and Jorgensen's rules was also estimated from the ADME/T results. These results indicate that the synthesized molecules have the potential to be developed into effective and safe inhibitors of hCAs and AChE and could be lead agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
21
|
Sadanala BD, Trivedi R. Ferrocenyl Azoles: Versatile N-Containing Heterocycles and their Anticancer Activities. CHEM REC 2024; 24:e202300347. [PMID: 38984727 DOI: 10.1002/tcr.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/04/2024] [Indexed: 07/11/2024]
Abstract
The medicinal chemistry of ferrocene has gained its momentum after the discovery of biological activities of ferrocifen and ferroquine. These ferrocenyl drugs have been designed by replacing the aromatic moiety of the organic drugs, tamoxifen and chloroquine respectively, with a ferrocenyl unit. The promising biological activities of these ferrocenyl drugs have paved a path to explore the medicinal applications of several ferrocenyl conjugates. In these conjugates, the ferrocenyl moiety has played a vital role in enhancing or imparting the anticancer activity to the molecule. The ferrocenyl conjugates induce the cytotoxicity by generating reactive oxygen species and thereby damaging the DNA. In medicinal chemistry, the five membered nitrogen heterocycles (azoles) play a significant role due to their rigid ring structure and hydrogen bonding ability with the biomolecules. Several potent drug candidates with azole groups have been in use as chemotherapeutics. Considering the importance of ferrocenyl moiety and azole groups, several ferrocenyl azole conjugates have been synthesized and screened for their biological activities. Hence, in the view of a wide scope in the development of potent drugs based on ferrocenyl azole conjugates, herein we present the details of synthesis and the anticancer activities of ferrocenyl compounds bearing azole groups such as imidazole, triazoles, thiazole and isoxazoles.
Collapse
Affiliation(s)
- Bhavya Deepthi Sadanala
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
- Present address, Department of Chemistry, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Rajiv Trivedi
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research, AcSIR, Headquarters, CSIR-HRDC campus Sector 19, Kamala Nehru Nagar, Ghaziabad, U.P., 201 002, India
| |
Collapse
|
22
|
Bendi A, Taruna, Rajni, Kataria S, Singh L, Kennedy JF, Supuran CT, Raghav N. Chemistry of heterocycles as carbonic anhydrase inhibitors: A pathway to novel research in medicinal chemistry review. Arch Pharm (Weinheim) 2024; 357:e2400073. [PMID: 38683875 DOI: 10.1002/ardp.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Nowadays, the scientific community has focused on dealing with different kinds of diseases by exploring the chemistry of various heterocycles as novel drugs. In this connection, medicinal chemists identified carbonic anhydrases (CA) as one of the biologically active targets for curing various diseases. The widespread distribution of these enzymes and the high degree of homology shared by the different isoforms offer substantial challenges to discovering potential drugs. Medicinal and synthetic organic chemists have been continuously involved in developing CA inhibitors. This review explored the chemistry of different heterocycles as CA inhibitors using the last 11 years of published research work. It provides a pathway for young researchers to further explore the chemistry of a variety of synthetic as well as natural heterocycles as CA inhibitors.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, India
| | - Taruna
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Rajni
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Sweety Kataria
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Lakhwinder Singh
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | | | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Neutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
23
|
Farzaliyev V, Ertürk A, Abbasova M, Nabiyev O, Demir Y, Kızıltaş H, Sujayev A, Gülçin İ. Synthesis and Inhibitor Effect Novel Alkoxymethyl Derivatives of Dihetero Cycloalkanes on Carbonic Anhydrase and Acetylcholinesterase. Chem Biodivers 2024; 21:e202400296. [PMID: 38575390 DOI: 10.1002/cbdv.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
1,3-Diheterocycloalkanes derivatives are important starting materials in fine organic synthesis. These compounds can be widely used in various fields such as industry, medicine, biotechnology and chemical technology. The paper is focused on synthesis and study of alkoxymethyl derivatives of diheterocycloalkanes (M1-M15) and inhibition effect on carbonic anhydrase and acetylcholinesterase. The structures of compounds were confirmed by 1H and 13C NMR spectroscopy. Also, in this study alkoxymethyl derivatives of diheterocycloalkanes were assessed for their influence on various metabolic enzymes, including acetylcholinesterase (AChE) and human carbonic anhydrase isoenzymes (hCA I and hCA II). The results demonstrated that all these compounds exhibited potent inhibitory effects on all the target enzymes, surpassing the standard inhibitors, as evidenced by their IC50 and Ki values. The Ki values for the compounds concerning AChE, hCA I, and hCA II enzymes were in the ranges of 1.02±0.17-8.38±1.02, 15.30±3.15-58.14±5.17 and 24.05±3.70-312.94±27.24 nM, respectively.
Collapse
Affiliation(s)
- Vagif Farzaliyev
- Institute of Chemistry of Additives, Ministry of Science and Education of the Republic of Azerbaijan, 1029, Baku, Azerbaijan
- Baku State University, Z. Khalilov Str. 23, AZ-1148, Baku, Azerbaijan
| | - Adem Ertürk
- Ataturk University, Faculty of Science, Department of Chemistry, 25240, Erzurum, Türkiye
| | - Malahat Abbasova
- Institute of Chemistry of Additives, Ministry of Science and Education of the Republic of Azerbaijan, 1029, Baku, Azerbaijan
| | - Oruj Nabiyev
- Institute of Chemistry of Additives, Ministry of Science and Education of the Republic of Azerbaijan, 1029, Baku, Azerbaijan
| | - Yeliz Demir
- Ardahan University, Nihat Delibalta Göle Vocational High School, Department of Pharmacy Services, 75700, Ardahan, Türkiye
| | - Hatice Kızıltaş
- Van Yüzüncü Yıl University, Van Vocational School of Health Services, 65080, Van, Türkiye
| | - Afsun Sujayev
- Institute of Chemistry of Additives, Ministry of Science and Education of the Republic of Azerbaijan, 1029, Baku, Azerbaijan
| | - İlhami Gülçin
- Ataturk University, Faculty of Science, Department of Chemistry, 25240, Erzurum, Türkiye
| |
Collapse
|
24
|
Özaslan MS. Some pyrroles as inhibitors of the pentose phosphate pathways enzymes: An in vitro and molecular docking study. J Mol Recognit 2024; 37:e3083. [PMID: 38514991 DOI: 10.1002/jmr.3083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) are pentose phosphate pathway enzymes. Compounds with a heterocyclic pyrrole ring system containing this atom can be derivatized with various functional groups into highly effective bioactive agents. In this study, pyrrole derivatives on these enzyme's activity were investigated. The IC50 values of different concentrations of pyrrole derivatives for G6PD were found in the range of 0.022-0.221 mM Ki values 0.021 ± 0.003-0.177 ± 0.021 and for 6PGD IC50 values 0.020-0.147, mM Ki values 0.013 ± 0.002-0.113 ± 0.030 mM. The 2-acetyl-1-methylpyrrole (1g) showed the best inhibition value for G6PD and 6PGD enzymes. In addition, in silico molecular docking experiments were performed to elucidate how these pyrrole derivatives (1a-g) interact with the binding sites of the target enzymes. The study's findings on pyrrole derivatives could be used to create innovative therapeutics that could be a treatment for many diseases, especially cancer manifestations.
Collapse
Affiliation(s)
- Muhammet Serhat Özaslan
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| |
Collapse
|
25
|
Rasheed S, Huda NU, Fisher SZ, Falke S, Gul S, Ahmad MS, Choudhary MI. Identification, crystallization, and first X-ray structure analyses of phenyl boronic acid-based inhibitors of human carbonic anhydrase-II. Int J Biol Macromol 2024; 267:131268. [PMID: 38580011 DOI: 10.1016/j.ijbiomac.2024.131268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Human carbonic anhydrases (hCAs) play a central role in various physiological processes in the human body. HCAs catalyze the reversible hydration of CO2 into HCO3-, and hence maintains the fluid and pH balance. Overexpression of CA II is associated with diseases, such as glaucoma, and epilepsy. Therefore, CAs are important clinical targets and inhibition of different isoforms, especially hCA II is used in treatment of glaucoma, altitude sickness, and epilepsy. Therapeutically used CA inhibitors (CAI) are sulfonamide-based, such as acetazolamide, dichlorphenamide, methazolamide, ethoxzolamide, etc. However, they exhibit several undesirable effects such as numbness, tingling of extremities, malaise, metallic taste, fatigue, renal calculi, and metabolic acidosis. Therefore, there is an urgent need to identify safe and effective inhibitors of the hCAs. In this study, different phenyl boronic acids 1-5 were evaluated against bovine (bCA II) and hCA II. Among all, compound 1 (4-acetylphenyl boronic acid) was found to be active against bCAII and hCA II with IC50 values of 246 ± 0.48 and 281.40 ± 2.8 μM, respectively, while the remaining compounds were found in-active. Compound 1 was identified as competitive inhibitor of hCA II enzyme (Ki = 283.7 ± 0.002 μM). Additionally, compound 1 was found to be non-toxic against BJ Human fibroblast cell line. The X-ray crystal structure for hCA II in-complex with compound 1 was evaluated to a resolution of 2.6 Å. In fact, this the first structural analysis of a phenyl boron-based inhibitor bound to hCA II, allowing an additional structure-activity analysis of the compounds. Compound 1 was found to be directly bound in the active site of hCA II by interacting with His94, His119, and Thr199 residues. In addition, a bond of 3.11 Å between the zinc ion and coordinated boron atom of the boronic acid moiety of compound 1 was also observed, contributing to binding affinity of compound 1 for hCA II. PDB ID: 8IGF.
Collapse
Affiliation(s)
- Saima Rasheed
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Noor Ul Huda
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - S Zoë Fisher
- European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund, Sweden
| | - Sven Falke
- Deutsches Elektronen-Synchrotron, Center for Free-Electron Laser Science (CFEL), Notkestraße 85, 22607 Hamburg, Germany
| | - Sadaf Gul
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Malik Shoaib Ahmad
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M Iqbal Choudhary
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21412, Saudi Arabia
| |
Collapse
|
26
|
Köroğlu Z, Kizir D, Karaman M, Demir Y, Türkeş C, Beydemir Ş. Protective effects of esculetin against doxorubicin-induced toxicity correlated with oxidative stress in rat liver: In vivo and in silico studies. J Biochem Mol Toxicol 2024; 38:e23702. [PMID: 38567888 DOI: 10.1002/jbt.23702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Doxorubicin (DOX) is widely used in cancer treatment but the dose-related toxicity of DOX on organs including the liver limit its use. Therefore, there is great interest in combining DOX with natural compounds with antioxidant properties to reduce toxicity and increase drug efficacy. Esculetin is a natural coumarin derivative with biological properties encompassing anti-inflammatory and antioxidant activities. In light of these properties, this study was meticulously crafted to investigate the potential of esculetin in preventing doxorubicin (DOX)-induced hepatotoxicity in Sprague-Dawley rats. The rats were divided into a total of six groups: control group, DOX group (administered DOX at a cumulative dose of 5 mg/kg intraperitoneally every other day for 2 weeks), E50 group (administered 50 mg/kg of esculetin intraperitoneally every day), E100 group (administered 100 mg/kg of esculetin intraperitoneally every day) and combined groups (DOX + E50 and DOX + E100) in which esculetin was administered together with DOX. The treatments, both with DOX alone and in combination with E50, manifested a reduction in catalase (CAT mRNA) levels in comparison to the control group. Notably, the enzymatic activities of superoxide dismutase (SOD), CAT, and glutathione peroxidase (GPx) witnessed significant decreases in the liver of rats treated with DOX. Moreover, DOX treatment induced a statistically significant elevation in malondialdehyde (MDA) levels, coupled with a concurrent decrease in glutathione (GSH) levels. Additionally, molecular docking studies were conducted. However, further studies are needed to confirm the hepatoprotective properties of esculetin and to precisely elucidate its mechanisms of action.
Collapse
Affiliation(s)
- Zeynep Köroğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Türkiye
| | - Duygu Kizir
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Türkiye
| | - Melike Karaman
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Türkiye
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Türkiye
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Rectorate, Bilecik Şeyh Edebali University, Bilecik, Türkiye
| |
Collapse
|
27
|
Güleç Ö, Türkeş C, Arslan M, Demir Y, Dincer B, Ece A, İrfan Küfrevioğlu Ö, Beydemir Ş. Novel spiroindoline derivatives targeting aldose reductase against diabetic complications: Bioactivity, cytotoxicity, and molecular modeling studies. Bioorg Chem 2024; 145:107221. [PMID: 38387398 DOI: 10.1016/j.bioorg.2024.107221] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Despite significant developments in therapeutic strategies, Diabetes Mellitus remains an increasing concern, leading to various complications, e.g., cataracts, neuropathy, retinopathy, nephropathy, and several cardiovascular diseases. The polyol pathway, which involves Aldose reductase (AR) as a critical enzyme, has been focused on by many researchers as a target for intervention. On the other hand, spiroindoline-based compounds possess remarkable biological properties. This guided us to synthesize novel spiroindoline oxadiazolyl-based acetate derivatives and investigate their biological activities. The synthesized molecules' structures were confirmed herein, using IR, NMR (1H and 13C), and Mass spectroscopy. All compounds were potent inhibitors with KI constants spanning from 0.186 ± 0.020 μM to 0.662 ± 0.042 μM versus AR and appeared as better inhibitors than the clinically used drug, Epalrestat (EPR, KI: 0.841 ± 0.051 μM). Besides its remarkable inhibitory profile compared to EPR, compound 6k (KI: 0.186 ± 0.020 μM) was also determined to have an unusual pharmacokinetic profile. The results showed that 6k had less cytotoxic effect on normal mouse fibroblast (L929) cells (IC50 of 569.58 ± 0.80 μM) and reduced the viability of human breast adenocarcinoma (MCF-7) cells (IC50 of 110.87 ± 0.42 μM) more than the reference drug Doxorubicin (IC50s of 98.26 ± 0.45 μM and 158.49 ± 2.73 μM, respectively), thus exhibiting more potent anticancer activity. Moreover, molecular dynamic simulations for 200 ns were conducted to predict the docked complex's stability and reveal significant amino acid residues that 6k interacts with throughout the simulation.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, 54187 Sakarya, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002 Erzincan, Turkey.
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, 54187 Sakarya, Turkey.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700 Ardahan, Turkey
| | - Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Ondokuz Mayıs University, 55020 Samsun, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, 34010 İstanbul, Turkey
| | | | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey; Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
| |
Collapse
|
28
|
Dawbaa S, Türkeş C, Nuha D, Demir Y, Evren AE, Yurttaş L, Beydemir Ş. New N-(1,3,4-thiadiazole-2-yl)acetamide derivatives as human carbonic anhydrase I and II and acetylcholinesterase inhibitors. J Biomol Struct Dyn 2024:1-19. [PMID: 38533902 DOI: 10.1080/07391102.2024.2331085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Various carbonic anhydrase (CA) enzyme isoforms are known today. In addition to the use of CA inhibitors as diuretics, antiepileptics and antiglaucoma agents, the inhibition of other specific isoforms of CA was reported to have clinical benefits in cancers. In this study, two groups of 1,3,4-thiadiazole derivatives were designed and synthesized to act as human CA I and II (hCA I and hCA II) inhibitors. The activities of these compounds were tested in vitro and evaluated in silico studies. The activity of the synthesized compounds was also tested against acetylcholinesterase (AChE) to evaluate the relation of the newly designed structures to the activity against AChE. The synthesized compounds were analyzed by 1H NMR,13C NMR and high-resolution mass spectroscopy (HRMS). The results displayed a better activity of all the synthesized compounds against hCA I than that of the commonly used standard drug, Acetazolamide (AAZ). The compounds also showed better activity against hCA II, except for compounds 5b and 6b. Only compounds 6a and 6c showed superior activity against AChE compared to the standard agent, tacrine (THA). In silico studies, including absorption, distribution, metabolism and excretion (ADME) and drug-likeness evaluation, molecular docking, molecular dynamic simulations (MDSs) and density functional theory (DFT) calculations, were compatible with the in vitro results and presented details regarding the structure-activity relationship.
Collapse
Affiliation(s)
- Sam Dawbaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Department of Doctor of Pharmacy (PharmD), Faculty of Medical Sciences, Thamar University, Dhamar, Yemen
- Department of Pharmacy, Faculty of Medical Sciences, Al-Hikma University, Dhamar, Yemen
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Demokrat Nuha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Department of Chemistry, Faculty of Science, Eskisehir Technical University, Eskişehir, Turkey
- Faculty of Pharmacy, University for Business and Technology, Prishtina, Kosovo
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Department of Pharmacy Services, Vocational School of Health Services, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Seyh Edebali University, Bilecik, Turkey
| |
Collapse
|
29
|
Caglayan C, Temel Y, Türkeş C, Ayna A, Ece A, Beydemir Ş. The effects of morin and methotrexate on pentose phosphate pathway enzymes and GR/GST/TrxR enzyme activities: An in vivo and in silico study. Arch Pharm (Weinheim) 2024; 357:e2300497. [PMID: 37972283 DOI: 10.1002/ardp.202300497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
In this study, the mechanisms by which the enzymes glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), glutathione reductase (GR), glutathione-S-transferase (GST), and thioredoxin reductase (TrxR) are inhibited by methotrexate (MTX) were investigated, as well as whether the antioxidant morin can mitigate or prevent these adverse effects in vivo and in silico. For 10 days, rats received oral doses of morin (50 and 100 mg/kg body weight). On the fifth day, a single intraperitoneal injection of MTX (20 mg/kg body weight) was administered to generate toxicity. Decreased activities of G6PD, 6PGD, GR, GST, and TrxR were associated with MTX-related toxicity while morin treatment increased the activity of the enzymes. The docking analysis indicated that H-bonds, pi-pi stacking, and pi-cation interactions were the dominant interactions in these enzyme-binding pockets. Furthermore, the docked poses of morin and MTX against GST were subjected to molecular dynamic simulations for 200 ns, to assess the stability of both complexes and also to predict key amino acid residues in the binding pockets throughout the simulation. The results of this study suggest that morin may be a viable means of alleviating the enzyme activities of important regulatory enzymes against MTX-induced toxicity.
Collapse
Affiliation(s)
- Cuneyt Caglayan
- Department of Medical Biochemistry, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Yusuf Temel
- Department of Solhan School of Health Services, Bingol University, Bingol, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Adnan Ayna
- Department of Chemistry, Faculty of Sciences and Arts, Bingol University, Bingol, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
30
|
Srivastava M, Singh K, Kumar S, Hasan SM, Mujeeb S, Kushwaha SP, Husen A. In silico Approaches for Exploring the Pharmacological Activities of Benzimidazole Derivatives: A Comprehensive Review. Mini Rev Med Chem 2024; 24:1481-1495. [PMID: 38288816 DOI: 10.2174/0113895575287322240115115125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND This article reviews computational research on benzimidazole derivatives. Cytotoxicity for all compounds against cancer cell lines was measured and the results revealed that many compounds exhibited high inhibitions. This research examines the varied pharmacological properties like anticancer, antibacterial, antioxidant, anti-inflammatory and anticonvulsant activities of benzimidazole derivatives. The suggested method summarises In silico research for each activity. This review examines benzimidazole derivative structure-activity relationships and pharmacological effects. In silico investigations can anticipate structural alterations and their effects on these derivative's pharmacological characteristics and efficacy through many computational methods. Molecular docking, molecular dynamics simulations and virtual screening help anticipate pharmacological effects and optimize chemical design. These trials will improve lead optimization, target selection, and ADMET property prediction in drug development. In silico benzimidazole derivative studies will be assessed for gaps and future research. Prospective studies might include empirical verification, pharmacodynamic analysis, and computational methodology improvement. OBJECTIVES This review discusses benzimidazole derivative In silico research to understand their specific pharmacological effects. This will help scientists design new drugs and guide future research. METHODS Latest, authentic and published reports on various benzimidazole derivatives and their activities are being thoroughly studied and analyzed. RESULT The overview of benzimidazole derivatives is more comprehensive, highlighting their structural diversity, synthetic strategies, mechanisms of action, and the computational tools used to study them. CONCLUSION In silico studies help to understand the structure-activity relationship (SAR) of benzimidazole derivatives. Through meticulous alterations of substituents, ring modifications, and linker groups, this study identified the structural factors influencing the pharmacological activity of benzimidazole derivatives. These findings enable the rational design and optimization of more potent and selective compounds.
Collapse
Affiliation(s)
- Manisha Srivastava
- Reseach scholar, Integral University, Kursi Road, Lucknow, Uttar Pradesh, India
| | - Kuldeep Singh
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh, India
| | - Sanjay Kumar
- Hygia Institute of Pharmacy, Lucknow, Uttar Pradesh, India
| | - Syed Misbahul Hasan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh, India
| | - Samar Mujeeb
- Hygia Institute of Pharmacy, Lucknow, Uttar Pradesh, India
| | | | - Ali Husen
- Hygia Institute of Pharmacy, Lucknow, Uttar Pradesh, India
| |
Collapse
|
31
|
Ullah A, Ullah S, Waqas M, Khan M, Rehman NU, Khalid A, Jan A, Aziz S, Naeem M, Halim SA, Khan A, Al-Harrasi A. Novel Natural Inhibitors for Glioblastoma by Targeting Epidermal Growth Factor Receptor and Phosphoinositide 3-kinase. Curr Med Chem 2024; 31:6596-6613. [PMID: 38616761 DOI: 10.2174/0109298673293279240404080046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND/AIM Glioblastoma is an extensively malignant neoplasm of the brain that predominantly impacts the human population. To address the challenge of glioblastoma, herein, we have searched for new drug-like candidates by extensive computational and biochemical investigations. METHODS Approximately 950 compounds were virtually screened against the two most promising targets of glioblastoma, i.e., epidermal growth factor receptor (EGFR) and phosphoinositide 3-kinase (PI3K). Based on highly negative docking scores, excellent binding capabilities and good pharmacokinetic properties, eight and seven compounds were selected for EGFR and PI3K, respectively. RESULTS Among those hits, four natural products (SBEH-40, QUER, QTME-12, and HCFR) exerted dual inhibitory effects on EGFR and PI3K in our in-silico analysis; therefore, their capacity to suppress the cell proliferation was assessed in U87 cell line (type of glioma cell line). The compounds SBEH-40, QUER, and QTME-12 exhibited significant anti-proliferative capability with IC50 values of 11.97 ± 0.73 μM, 28.27 ± 1.52 μM, and 22.93 ± 1.63 μM respectively, while HCFR displayed weak inhibitory potency (IC50 = 74.97 ± 2.30 μM). CONCLUSION This study has identified novel natural products that inhibit the progression of glioblastoma; however, further examinations of these molecules are required in animal and tissue models to better understand their downstream targeting mechanisms.
Collapse
Affiliation(s)
- Atta Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia
| | - Afnan Jan
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar 25130, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| |
Collapse
|
32
|
Farghaly TA, Masaret GS, Riyadh SM, Harras MF. A Literature Review Focusing on the Antiviral Activity of [1,2,4] and [1,2,3]-triazoles. Mini Rev Med Chem 2024; 24:1602-1629. [PMID: 38008942 DOI: 10.2174/0113895575277122231108095511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 11/28/2023]
Abstract
Out of a variety of heterocycles, triazole scaffolds have been shown to play a significant part in a wide array of biological functions. Many drug compounds containing a triazole moiety with important antimicrobial, anticancer and antidepressant properties have been commercialized. In addition, the triazole scaffold exhibits remarkable antiviral activity either incorporated into nucleoside analogs or non-nucleosides. Many synthetic techniques have been produced by scientists around the world as a result of their wide-ranging biological function. In this review, we have tried to summarize new synthetic methods produced by diverse research groups as well as provide a comprehensive description of the function of [1,2,4] and [1,2,3]-triazole derivatives as antiviral agents. Antiviral triazole compounds have been shown to target a wide variety of molecular proteins. In addition, several strains of viruses, including the human immunodeficiency virus, SARS virus, hepatitis B and C viruses, influenza virus, Hantavirus, and herpes virus, were discovered to be susceptible to triazole derivatives. This review article covered the reports for antiviral activity of both 1,2,3- and 1,2,4-triazole moieties up to 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Sayed M Riyadh
- Chemistry Department, Faculty of Science, University of Cairo, Giza 12613, Egypt
| | - Marwa F Harras
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
33
|
Mughal EU, Amjid S, Sadiq A, Naeem N, Nazir Y, Alrafai HA, Hassan AA, Al-Nami SY, Abdel Hafez AA, Ali Shah SW, Ghias M. Design and synthesis of 2-amino-4,6-diarylpyrimidine derivatives as potent α-glucosidase and α-amylase inhibitors: structure-activity relationship, in vitro, QSAR, molecular docking, MD simulations and drug-likeness studies. J Biomol Struct Dyn 2024; 42:244-260. [PMID: 37096830 DOI: 10.1080/07391102.2023.2198609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/10/2023] [Indexed: 04/26/2023]
Abstract
In the present study, a series of 2-amino-4,6-diarylpyrimidine derivatives was designed, synthesized, characterized and evaluated for their in vitro α-glucosidase and α-amylase enzyme inhibition assays. The outcomes proved that this class of compounds exhibit considerable inhibitory activity against both enzymes. Among the target compounds, compounds 4p and 6p demonstrated the most potent dual inhibition with IC50 = 0.087 ± 0.01 μM for α-glucosidase; 0.189 ± 0.02 μM for α-amylase and IC50 = 0.095 ± 0.03 μM for α-glucosidase; 0.214 ± 0.03 μM for α-amylase, respectively as compared to the standard rutin (IC50 = 0.192 ± 0.02 μM for α-glucosidase and 0.224 ± 0.02 μM for α-amylase). Remarkably, the enzyme inhibition results indicate that test compounds have stronger inhibitory effect on the target enzymes than the positive control, with a significantly lower IC50 value. Moreover, these series of compounds were found to inhibit α-glucosidase activity in a reversible mixed-type manner with IC50 between 0.087 ± 0.01 μM to 1.952 ± 0.26 μM. Furthermore, molecular docking studies were performed to affirm the binding interactions of this scaffold to the active sites of α-glucosidase and α-amylase enzymes. The quantitative structure-activity relationship (QSAR) investigations showed a strong association between 1p-15p structures and their inhibitory actions (IC50) with a correlation value (R2) of 0.999916. Finally, molecular dynamic (MD) simulations were carried out to assess the dynamic behavior, stability of the protein-ligand complex, and binding affinity of the most active inhibitor 4p. The experimental and theoretical results therefore exposed a very good compatibility. Additionally, the drug-likeness assay revealed that some compounds exhibit a linear association with Lipinski's rule of five, indicating good drug-likeness and bioactivity scores for pharmacological targets.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Samreen Amjid
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University, Sialkot, Pakistan
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Yasir Nazir
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | - H A Alrafai
- Department of Chemistry, Faculty of Science, King Khalid University, Abraham, Saudi Arabia
| | - Abeer A Hassan
- Department of Chemistry, Faculty of Science, King Khalid University, Abraham, Saudi Arabia
| | - Samar Y Al-Nami
- Department of Chemistry, Faculty of Science, King Khalid University, Abraham, Saudi Arabia
| | - Amal A Abdel Hafez
- Department of Chemistry, Faculty of Science, King Khalid University, Abraham, Saudi Arabia
| | - Syed Wadood Ali Shah
- Department of Pharmacy, University of Malakand, Chakdara Dir, Khyber Pakhtunkhwa, Pakistan
| | - Mehreen Ghias
- Department of Pharmacy, University of Malakand, Chakdara Dir, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
34
|
Öner E, Gök Y, Demir Y, Taskin-Tok T, Aktaş A, Gülçin İ, Yalın S. Benzimidazolium Salts Bearing Nitrile Moieties: Synthesis, Enzyme Inhibition Profiling, and Molecular Docking Analysis for Carbonic Anhydrase and Acetylcholinesterase. Chem Biodivers 2023; 20:e202301362. [PMID: 37953698 DOI: 10.1002/cbdv.202301362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
This report presents the synthesis and characterization of a range of benzimidazolium salts featuring 3-cyanopropyl groups on the 1st nitrogen atom and varied alkyl groups on the 3rd nitrogen atom within the benzimidazole structure. Benzimidazolium salts were synthesized by N-alkylation of 1-alkyl benzimidazole with 3-cyanopropyl-bromide. The new salts were characterized by 1 H and 13 C-NMR, FT-IR spectroscopic and elemental analysis techniques. In this study, the enzyme inhibition abilities of seven nitrile substituted benzimidazolium salts were investigated against acetylcholinesterase (AChE) and carbonic anhydrase isoenzymes I and II (hCA I and hCA II). They showed a highly potent inhibition effect on AChE, hCA I and hCA II (Ki values are in the range of 26.71-119.09 nM for AChE, 19.77 to 133.68 nM for hCA I and 13.09 to 266.38 nM for hCA II). Reflecting the binding mode of the synthesized cyanopropyl series, the importance of the 2,3,5,6-tetramethylbenzyl, 3-methylbenzyl and 3-benzyl groups for optimal interactions with target proteins, evaluated by molecular docking studies. At the same time, the docking findings support the inhibition constants (Ki ) values of the related compounds in this study. Potential compounds were also evaluated by their pharmacokinetic properties were predicted.
Collapse
Affiliation(s)
- Erkan Öner
- Department of Biochemistry, Faculty of Pharmacy, Adıyaman University, 02040-, Adıyaman, Türkiye
| | - Yetkin Gök
- Department of Chemistry, Faculty of Arts and Science, Inönü University, 44280-, Malatya, Türkiye
- Organic and Organometallic Chemistry Research Laboratory, Department of Chemistry, Faculty of Arts and Science, Inönü University, 44280-, Malatya, Türkiye
| | - Yeliz Demir
- Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, -Ardahan, Türkiye
| | - Tugba Taskin-Tok
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, 27310-, Gaziantep, Türkiye
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, 27310-, Gaziantep, Türkiye
| | - Aydın Aktaş
- Organic and Organometallic Chemistry Research Laboratory, Department of Chemistry, Faculty of Arts and Science, Inönü University, 44280-, Malatya, Türkiye
- Vocational School of Health Service, Inonu University, 44280-, Malatya, Türkiye
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240-, Erzurum, Türkiye
| | - Serap Yalın
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Türkiye
| |
Collapse
|
35
|
Türkeş C. Carbonic anhydrase inhibition by antiviral drugs in vitro and in silico. J Mol Recognit 2023; 36:e3063. [PMID: 37807620 DOI: 10.1002/jmr.3063] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Enzyme inhibition is a commonly utilized method for controlling enzymatic activity in various physiologically relevant biological systems. Herein, the selected five active antiviral drugs, abacavir, emtricitabine, lamivudine, ribavirin, and ritonavir, were assayed as inhibitors of two human isoforms of the metalloenzyme carbonic anhydrase (hCA, EC 4.2.1.1) involved in various physiological/pathological conditions. For this aim, in vitro and in silico studies were performed to gain insights into the plausible binding interactions and affinities for the antiviral drugs within hCA I and II isoforms' active sites. The hCA I, an isoform involved in some pathological conditions such as retinal or cerebral edema, was moderately inhibited by these five drugs at micromolar concentrations with KI s spanning from 0.49 ± 0.05 to 3.51 ± 0.37 μM compared with the reference drug acetazolamide (AAZ, KI of 0.19 ± 0.01 μM). Moreover, hCA II, a promising target for edema, glaucoma, epilepsy, and altitude sickness, was a reasonably inhibited isoform by these agents, with KI s in the range of 0.64 ± 0.08-5.80 ± 0.64 μM compared with AAZ (KI of 0.17 ± 0.01 μM). Both in vitro and in silico results demonstrated significant interactions between these five drugs and hCAs and that they can support therapeutic targets against the above-mentioned pathological conditions. Additionally, the results obtained will help optimize the clinical dosage regimens of these drugs and avoid drug-drug interactions unexpectedly when used in combination with other agents.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
36
|
Erdoğan M, Serdar Çavuş M, Muğlu H, Yakan H, Türkeş C, Demir Y, Beydemir Ş. Synthesis, Theoretical, in Silico and in Vitro Biological Evaluation Studies of New Thiosemicarbazones as Enzyme Inhibitors. Chem Biodivers 2023; 20:e202301063. [PMID: 37769192 DOI: 10.1002/cbdv.202301063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Eleven new thiosemicarbazone derivatives (1-11) were designed from nine different biologically and pharmacologically important isothiocyanate derivatives containing functional groups such as fluorine, chlorine, methoxy, methyl, and nitro at various positions of the phenyl ring, in addition to the benzyl unit in the molecular skeletal structure. First, their substituted-thiosemicarbazide derivatives were synthesized from the treatment of isothiocyanate with hydrazine to synthesize the designed compounds. Through a one-step easy synthesis and an eco-friendly process, the designed compounds were synthesized with yields of up to 95 % from the treatment of the thiosemicarbazides with aldehyde derivatives having methoxy and hydroxy groups. The structures of the synthesized molecules were elucidated with elemental analysis and FT-IR, 1 H-NMR, and 13 C-NMR spectroscopic methods. The electronic and spectroscopic properties of the compounds were determined by the DFT calculations performed at the B3LYP/6-311++G(2d,2p) level of theory, and the experimental findings were supported. The effects of some global reactivity parameters and nucleophilic-electrophilic attack abilities of the compounds on the enzyme inhibition properties were also investigated. They exhibited a highly potent inhibition effect on acetylcholinesterase (AChE) and carbonic anhydrases (hCAs) (KI values are in the range of 23.54±4.34 to 185.90±26.16 nM, 103.90±23.49 to 325.90±77.99 nM, and 86.15±18.58 to 287.70±43.09 nM for AChE, hCA I, and hCA II, respectively). Furthermore, molecular docking simulations were performed to explain each enzyme-ligand complex's interaction.
Collapse
Affiliation(s)
- Musa Erdoğan
- Department of Food Engineering, Faculty of Engineering and Architecture, Kafkas University, 36100, Kars, Turkey
| | - M Serdar Çavuş
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37200, Kastamonu, Turkey
| | - Halit Muğlu
- Department of Chemistry, Faculty of Sciences, Kastamonu University, 37200, Kastamonu, Turkey
| | - Hasan Yakan
- Department of Chemistry Education, Faculty of Education, Ondokuz Mayis University, 55200, Samsun, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, Ardahan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey, Department of Chemistry Education, Faculty of Education, Ondokuz Mayis University, Samsun, 55200, Turkey
| |
Collapse
|
37
|
Akinmurele OJ, Sonibare MA, Elujoba AA, Ogunlakin AD, Yeye OE, Gyebi GA, Ojo OA, Alanzi AR. Antispasmodic Effect of Alstonia boonei De Wild. and Its Constituents: Ex Vivo and In Silico Approaches. Molecules 2023; 28:7069. [PMID: 37894548 PMCID: PMC10609272 DOI: 10.3390/molecules28207069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Alstonia boonei, belonging to the family Apocynaceae, is one of the best-known medicinal plants in Africa and Asia. Stem back preparations are traditionally used as muscle relaxants. This study investigated the antispasmodic properties of Alstonia boonei Stem back and its constituents. METHOD The freeze-dried aqueous Stem back extract of A. boonei, as well as dichloromethane (DCM), ethyl acetate, and aqueous fractions, were evaluated for their antispasmodic effect via the ex vivo method. Two compounds were isolated from the DCM fraction using chromatographic techniques, and their antispasmodic activity was evaluated. An in silico study was conducted by evaluating the interaction of isolated compounds with human PPARgamma-LBD and human carbonic anhydrase isozyme. RESULTS The Stem back crude extract, DCM, ethyl acetate, and aqueous fractions showed antispasmodic activity on high-potassium-induced (K+ 80 mM) contractions on isolated rat ileum with IC50 values of 0.03 ± 0.20, 0.02 ± 0.05, 0.03 ± 0.14, and 0.90 ± 0.06 mg/mL, respectively. The isolated compounds from the DCM fraction were β-amyrin and boonein, with only boonein exhibiting antispasmodic activity on both high-potassium-induced (IC50 = 0.09 ± 0.01 µg/mL) and spontaneous (0.29 ± 0.05 µg/mL) contractions. However, β-amyrin had a stronger interaction with the two proteins during the simulation. CONCLUSION The isolated compounds boonein and β-amyrin could serve as starting materials for the development of antispasmodic drugs.
Collapse
Affiliation(s)
- Opeyemi Josephine Akinmurele
- Department of Pharmacognosy, Faculty of Pharmacy, Madonna University, Elele 512101, Nigeria;
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan 200005, Nigeria
- Comsat International Institute of Technology (CIIT), Abbotabad 22020, Pakistan
| | - Mubo Adeola Sonibare
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan 200005, Nigeria
| | - Anthony A. Elujoba
- Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife 220101, Nigeria;
| | - Akingbolabo Daniel Ogunlakin
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo 232101, Nigeria;
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Oloruntoba Emmanuel Yeye
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
- Department of Chemistry, Faculty of Science, University of Ibadan, Ibadan 200005, Nigeria
| | - Gideon Ampoma Gyebi
- Natural products and Structural (Bio-Chem)-Informatics Research Laboratory (NpsBC-RI), Department of Biochemistry, Bingham University, Karu 961105, Nigeria;
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo 232101, Nigeria;
| | - Abdullah R. Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 12271, Saudi Arabia;
| |
Collapse
|
38
|
Dincer B, Yildiztekin G, Cinar I. Unlocking Synergistic Potential: Agomelatine Enhances the Chemotherapeutic Effect of Paclitaxel in Breast Cancer Cell Through MT1 Melatonin Receptors and ER-alpha Axis. Chem Biodivers 2023; 20:e202301093. [PMID: 37690997 DOI: 10.1002/cbdv.202301093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/12/2023]
Abstract
This study investigates the potential of agomelatine (AGO), a synthetic melatoninergic drug, in combination with paclitaxel (PTX) for the treatment of breast cancer. The effects of AGO, PTX and melatonin (MTN) on breast cancer cell viability were investigated, focusing on the role of MT1 receptors. Cell viability and gene expression were analyzed in MCF-7 and MDA-MB-231 breast cancer cell experiments. The results show that AGO has cytotoxic effects on breast cancer cells similar to MTN. Combining AGO and MTN with PTX showed synergistic effects in MCF-7 cells. The study also reveals differences in the molecular mechanisms of breast cancer between estrogen-positive MCF-7 cells and estrogen-negative MDA-MB-231 cells. Combination with AGO and PTX affects apoptosis-associated proteins in both cell types. The findings suggest that AGO, combined with PTX, may be a promising adjuvant therapy for breast cancer and highlight the importance of MTN receptors in its mechanism of action.
Collapse
Affiliation(s)
- Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, 55100, Turkey
| | - Gizem Yildiztekin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey
| | - Irfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu, 37150, Turkey
| |
Collapse
|
39
|
Akocak S, Lolak N, Duran HE, Işık M, Türkeş C, Durgun M, Beydemir Ş. Synthesis and Characterization of Novel 1,3-Diaryltriazene-Substituted Sulfaguanidine Derivatives as Selective Carbonic Anhydrase Inhibitors: Biological Evaluation, in Silico ADME/T and Molecular Docking Study. Chem Biodivers 2023; 20:e202300611. [PMID: 37470688 DOI: 10.1002/cbdv.202300611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Sulfonamide compounds known as human carbonic anhydrase (hCA) inhibitors are used in the treatment of many diseases such as epilepsy, antibacterial, glaucoma, various diseases. 1,3-diaryl-substituted triazenes and sulfaguanidine are used for therapeutic purposes in many drug structures. Based on these two groups, the synthesis of new compounds is important. In the present study, the novel 1,3-diaryltriazene-substituted sulfaguanidine derivatives (SG1-13) were synthesized and fully characterized by spectroscopic and analytic methods. Inhibitory effect of these compounds on the hCA I and hCA II was screened as in vitro. All the series of synthesized compounds have been identified as potential hCA isoenzymes inhibitory with KI values in the range of 6.44±0.74-86.85±7.01 nM for hCA I and with KI values in the range of 8.16±0.40-77.29±9.56 nM for hCA II. Moreover, the new series of compounds showed a more effective inhibition effect than the acetazolamide used as a reference. The possible binding positions of the compounds with a binding affinity to the hCA I and hCA II was demonstrated by in silico studies. In conclusion, compounds with varying degrees of affinity for hCA isoenzymes have been designed and as selective hCA inhibitors. These compounds may be potential alternative agents that can be used to treat or prevent diseases associated with glaucoma and hCA inhibition.
Collapse
Affiliation(s)
- Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, 02040, Turkey
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, 02040, Turkey
| | - Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars, 36100, Turkey
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik, 11230, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, 24002, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, 63290, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Turkey
- Bilecik Şeyh Edebali University, Bilecik, 11230, Turkey
| |
Collapse
|
40
|
Abul N, Gerni S, Korkmaz IN, Demir Y, Özdemir H, Gülçin İ. Screening of in Vitro Inhibition of Lactoperoxidase Enzyme by Methyl Benzoate Derivatives with Molecular Docking Studies. Chem Biodivers 2023; 20:e202300687. [PMID: 37427460 DOI: 10.1002/cbdv.202300687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/11/2023]
Abstract
Lactoperoxidase enzyme (LPO) is secreted from salivary, mammary, and other mucosal glands including the bronchi, lungs, and nose, which had functions as a natural and the first line of defense towards viruses and bacteria. In this study, methyl benzoates were examined in LPO enzyme activity. Methyl benzoates are used as precursors in the synthesis of aminobenzohydrazides used as LPO inhibitors. For this purpose, LPO was purified in a single step using sepharose-4B-l-tyrosine-sulfanilamide affinity gel chromatography with a yield of 9.91 % from cow milk. Also, some inhibition parameters including the half maximal inhibitory concentration (IC50 ) value and an inhibition constant (Ki ) values of methyl benzoates were determined. These compounds inhibited LPO with Ki values ranging from 0.033±0.004 to 1540.011±460.020 μM. Compound 1 a (methyl 2-amino-3-bromobenzoate) showed the best inhibition (Ki =0.033±0.004 μM). The most potent inhibitor (1 a) showed with a docking score of -3.36 kcal/mol and an MM-GBSA value of -25.05 kcal/mol, of these methyl benzoate derivatives (1 a-16 a) series are established H-bond within the binding cavity with residues Asp108 (distance of 1.79 Å), Ala114 (distance of 2.64 Å), and His351 (distance of 2.12 Å).
Collapse
Affiliation(s)
- Nurgül Abul
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, 25240, Turkey
| | - Serpil Gerni
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, 25240, Turkey
| | - Işıl Nihan Korkmaz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, 25240, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75700, Turkey
| | - Hasan Özdemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, 25240, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, 25240, Turkey
| |
Collapse
|
41
|
Balandis B, Kavaliauskas P, Grybaitė B, Petraitis V, Petraitienė R, Naing E, Garcia A, Grigalevičiūtė R, Mickevičius V. Synthesis of Novel Benzenesulfonamide-Bearing Functionalized Imidazole Derivatives as Novel Candidates Targeting Multidrug-Resistant Mycobacterium abscessus Complex. Microorganisms 2023; 11:microorganisms11040935. [PMID: 37110358 PMCID: PMC10145568 DOI: 10.3390/microorganisms11040935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
Infections caused by drug-resistant (DR) Mycobacterium abscessus (M. abscessus) complex (MAC) are an important public health concern, particularly when affecting individuals with various immunodeficiencies or chronic pulmonary diseases. Rapidly growing antimicrobial resistance among MAC urges us to develop novel antimicrobial candidates for future optimization. Therefore, we have designed and synthesized benzenesulfonamide-bearing functionalized imidazole or S-alkylated derivatives and evaluated their antimicrobial activity using multidrug-resistant M. abscessus strains and compared their antimycobacterial activity using M. bovis BCG and M. tuberculosis H37Ra. Benzenesulfonamide-bearing imidazole-2-thiol compound 13, containing 4-CF3 substituent in benzene ring, showed strong antimicrobial activity against the tested mycobacterial strains and was more active than some antibiotics used as a reference. Furthermore, an imidazole-bearing 4-F substituent and S-methyl group demonstrated good antimicrobial activity against M. abscessus complex strains, as well as M. bovis BCG and M. tuberculosis H37Ra. In summary, these results demonstrated that novel benzenesulfonamide derivatives, bearing substituted imidazoles, could be further explored as potential candidates for the further hit-to-lead optimization of novel antimycobacterial compounds.
Collapse
Affiliation(s)
- Benas Balandis
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | - Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute for Genome Sciences, School of Medicine, University of Maryland Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, LT-59116 Prienai, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, Tilžės Str. 18/7, LT-47181 Kaunas, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | - Vidmantas Petraitis
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, LT-59116 Prienai, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, Tilžės Str. 18/7, LT-47181 Kaunas, Lithuania
| | - Rūta Petraitienė
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, LT-59116 Prienai, Lithuania
| | - Ethan Naing
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
| | - Andrew Garcia
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
| | - Ramunė Grigalevičiūtė
- Biological Research Center, Lithuanian University of Health Sciences, Tilžės Str. 18/7, LT-47181 Kaunas, Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
42
|
Tokalı FS, Demir Y, Türkeş C, Dinçer B, Beydemir Ş. Novel acetic acid derivatives containing quinazolin-4(3H)-one ring: Synthesis, in vitro, and in silico evaluation of potent aldose reductase inhibitors. Drug Dev Res 2023; 84:275-295. [PMID: 36598092 DOI: 10.1002/ddr.22031] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Aldose reductase (AR) is a crucial enzyme of the polyol pathway through which glucose is metabolized under conditions of hyperglycemia related to diabetes. A series of novel acetic acid derivatives containing quinazolin-4(3H)-one ring (1-22) was synthesized and tested for in vitro AR inhibitory effect. All the target compounds exhibited nanomolar activity against the target enzyme, and all compounds displayed higher activity as compared to the reference drug epalrestat. Among them, Compound 19, named 2-(4-[(2-[(4-methylpiperazin-1-yl)methyl]-4-oxoquinazolin-3(4H)-ylimino)methyl]phenoxy)acetic acid, displayed the strongest inhibitory effect with a KI value of 61.20 ± 10.18 nM. Additionally, these compounds were investigated for activity against L929, nontumoral fibroblast cells, and MCF-7, breast cancer cells using the MTT assay. Compounds 16 and 19 showed lower toxicity against the normal L929 cells. The synthesized compounds' (1-22) absorption, distribution, metabolism, and excretion properties were also evaluated. Molecular docking simulations were used to look into the possible binding mechanisms of these inhibitors against AR.
Collapse
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Büşra Dinçer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
43
|
Buza A, Türkeş C, Arslan M, Demir Y, Dincer B, Nixha AR, Beydemir Ş. Discovery of novel benzenesulfonamides incorporating 1,2,3-triazole scaffold as carbonic anhydrase I, II, IX, and XII inhibitors. Int J Biol Macromol 2023; 239:124232. [PMID: 37001773 DOI: 10.1016/j.ijbiomac.2023.124232] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Sulfonamides are among the most promising potential inhibitors for carbonic anhydrases (CAs), which are pharmaceutically relevant targets for treating several disease conditions. Herein, a series of benzenesulfonamides bearing 1,2,3-triazole moiety as inhibitors of human (h) α-CAs (hCAs) were designed using the tail approach. The design method combines a benzenesulfonamide moiety with a tail of oxime and a zinc-binding group on a 1,2,3-triazole scaffold. Among the synthesized derivatives, the naphthyl (6m, KI of 68.6 nM, SI of 10.3), and methyl (6a, KI of 56.3 nM, SI of 11.7) derivatives (over hCA IX) and propyl (6c, KI of 95.6 nM, SI of 2.7), and pentyl (6d, KI of 51.1 nM, SI of 6.6) derivatives (over hCA XII) displayed a noticeable selectivity for isoforms hCA I and II, respectively. Meanwhile, derivative 6e displayed a potent inhibitory effect versus the cytosolic isoform hCA I (KI of 47.8 nM) and tumor-associated isoforms hCA IX and XII (KIs of 195.9 and 116.9 nM, respectively) compared with the reference drug acetazolamide (AAZ, KIs of 451.8, 437.2, and 338.9 nM, respectively). Derivative 6b showed higher potency (KI of 33.2 nM) than AAZ (KI of 327.3 nM) towards another cytosolic isoform hCA II. Nevertheless, substituting the lipophilic large naphthyl tail to the 1,2,3-triazole linked benzenesulfonamides (6a-n) raised inhibitory effect versus hCA I and XII and selectivity towards hCA I and II isoforms over hCA IX. Evaluation of the cytotoxic potential of the synthesized derivatives was conducted in L929, MCF-7, and Hep-3B cell lines. Several compounds in the series demonstrated significant antiproliferative activity and minimal cytotoxicity. In the molecular docking study, the sulfonamide moiety interacted with the zinc-ion and neatly fit into the hCAs active sites. The extension of the tail was found to participate in diverse hydrophilic and hydrophobic interactions with adjacent amino acids, ultimately influencing the effectiveness and specificity of the derivatives.
Collapse
|
44
|
How Triazole Rings Capture Carbon Dioxide: Energy Effects and Activation Barriers. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
45
|
Dikbaş N, Parlakova Karagöz F, Uçar S, Demir Y. Ornamental cabbage (Brassica oleracea var. acephala) responses to phytase enzyme purified from Lactobacillus coryniformis application. Biotechnol Appl Biochem 2023. [PMID: 36779503 DOI: 10.1002/bab.2449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/04/2023] [Indexed: 02/14/2023]
Abstract
In order to increase the quality and yield of ornamental plants, especially potted ornamental plants, it is necessary to enrich the physical properties of the growing medium and to ensure the continuity of the growing medium. In order to achieve this, organic substances that create a serious cost in ornamental plant cultivation are added to the growing medium. This study was planned to assess the role of inoculation of different levels in the seeds and soaking times of purified phytase, on the plant growth and ornamental plant decorative values in ornamental cabbage plants under nutrient limiting condition in greenhouse. Different doses (E0 : 0 EU, E1 : 5 EU, E2 : 10 EU), soaking times (W15 : 15 min, W30 : 30 min, W60 : 60 min), and their combinations (W15 + E0 , W15 + E1 , W15 + E2 , W30 + E0 , W30 + E1 , W30 + E2 , W60 + E0 , W60 + E1 , W60 + E2 ) of phytase enzyme purified and isolated from the Lactobacillus coryniformis were applied to ornamental cabbage seeds, and they were sown in plug trays filled with appropriate growing medium. Seedlings were planted in plastic pots during their period when the seedlings had four to five true leaves. Treatments of phytase enzyme purified and isolated from the microorganism generally improved the observed parameters. The application of, especially, the highest level of phytase enzyme doses increased the plant height, main stem height, and stem diameter of ornamental cabbage as compared to control (E0 treatment: distilled water). While the highest number of leaves per plant was obtained at E1 and E2 application doses and W30 and W60 soaking times; the highest stem diameter was obtained at E2 application doses and W30 and W60 soaking times. The present study clarified that the purified phytase enzyme can increase ornamental cabbage quality at the appropriate concentration and soaking time and is a promising biotechnology material for agricultural applications, and especially in different ornamental plant species.
Collapse
Affiliation(s)
- Neslihan Dikbaş
- Department of Agricultural Biotechnology, Agricultural Faculty, Ataturk University, Erzurum, Turkey
| | | | - Sevda Uçar
- Department of Herbal Production and Technologies, Faculty of Agricultural Sciences and Technology, Sivas Science and Technology University, Sivas, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| |
Collapse
|
46
|
Türkeş C, Demir Y, Biçer A, Cin GT, Gültekin MS, Beydemir Ş. Exploration of Some Bis‐Sulfide and Bis‐Sulfone Derivatives as Non‐Classical Aldose Reductase İnhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202204350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | - Abdullah Biçer
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| | - Günseli Turgut Cin
- Department of Chemistry Faculty of Science Akdeniz University Antalya 07058 Turkey
| | | | - Şükrü Beydemir
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
| |
Collapse
|
47
|
Yakan H, Muğlu H, Türkeş C, Demir Y, Erdoğan M, Çavuş MS, Beydemir Ş. A novel series of thiosemicarbazone hybrid scaffolds: Design, Synthesis, DFT studies, metabolic enzyme inhibition properties, and molecular docking calculations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
48
|
Demir Y, Türkeş C, Çavuş MS, Erdoğan M, Muğlu H, Yakan H, Beydemir Ş. Enzyme inhibition, molecular docking, and density functional theory studies of new thiosemicarbazones incorporating the 4-hydroxy-3,5-dimethoxy benzaldehyde motif. Arch Pharm (Weinheim) 2022; 356:e2200554. [PMID: 36575148 DOI: 10.1002/ardp.202200554] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022]
Abstract
New Schiff base-bearing thiosemicarbazones (1-13) were obtained from 4-hydroxy-3,5-dimethoxy benzaldehyde and various isocyanates. The structures of the synthesized molecules were elucidated in detail. Density functional theory calculations were also performed to determine the spectroscopic properties of the compounds. Moreover, the enzyme inhibition activities of these compounds were investigated. They showed highly potent inhibition effects on acetylcholinesterase (AChE) and human carbonic anhydrases (hCAs) (KI values are in the range of 51.11 ± 6.01 to 278.10 ± 40.55 nM, 60.32 ± 9.78 to 300.00 ± 77.41 nM, and 64.21 ± 9.99 to 307.70 ± 61.35 nM for AChE, hCA I, and hCA II, respectively). In addition, molecular docking studies were performed, confirmed by binding affinities studies of the most potent derivatives.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Muhammet S Çavuş
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Musa Erdoğan
- Department of Food Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| | - Halit Muğlu
- Department of Chemistry, Faculty of Sciences, Kastamonu University, Kastamonu, Turkey
| | - Hasan Yakan
- Department of Chemistry Education, Faculty of Education, Ondokuz Mayis University, Samsun, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
49
|
Türkeş C, Demir Y, Beydemir Ş. In Vitro
Inhibitory Activity and Molecular Docking Study of Selected Natural Phenolic Compounds as AR and SDH Inhibitors**. ChemistrySelect 2022. [DOI: 10.1002/slct.202204050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | - Şükrü Beydemir
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|