1
|
Gomes MPO, Adolpho LF, Souza ATP, Bighetti-Trevisan RL, Calixto RD, Oliveira FS, Almeida ALG, Ramos AP, Gori F, Baron R, Rosa AL, Beloti MM. Agrin-deficient osteocytes disrupt bone tissue homeostasis in male mice. Int J Biol Macromol 2025; 308:142551. [PMID: 40158584 DOI: 10.1016/j.ijbiomac.2025.142551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Osteocytes are terminally differentiated osteoblasts that secrete molecules that regulate bone-tissue homeostasis. Considering that the extracellular matrix protein agrin (AGRN) is secreted by osteoblasts and modulates their differentiation, we hypothesized that AGRN is also expressed by osteocytes and plays a role in their function and therefore in bone remodeling. To test this hypothesis, we deleted agrin specifically in osteocytes using dentin matrix acidic phosphoprotein 1 (DMP1)-Cre mice (C57/BL6 background) and silenced agrin in vitro using clustered regularly interspaced short palindromic repeats/associated nuclease Cas-9 in the Ocy454 osteocyte cell line. We found that osteocytes express agrin and its receptors, low-density lipoprotein receptor-related protein 4, and α-dystroglycan, and that mice with agrin-deficient osteocytes exhibited lower bone mass and impaired mechanical and chemical properties of bone tissue. Agrin knockdown in Ocy454 cells disrupted osteocyte differentiation and function, which reduced osteoblast and increased osteoclast differentiation in a cell co-culture model. Our results showed that agrin is expressed by osteocytes, which are key regulators of bone mass and its mechanical and chemical properties. These findings indicate that agrin may be a therapeutic target because it is important to maintain the balance of the osteocyte-osteoblast-osteoclast circuit, and consequently, bone tissue homeostasis.
Collapse
Affiliation(s)
- Maria Paula Oliveira Gomes
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leticia Faustino Adolpho
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alann Thaffarell Portilho Souza
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil; School of Dentistry, Metropolitan University Center of the Amazon, Belém, PA 66053-000, Brazil
| | - Rayana Longo Bighetti-Trevisan
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil; Faculty of Dentistry, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Robson Diego Calixto
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Ana Paula Ramos
- Chemistry Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Francesca Gori
- Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Roland Baron
- Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Adalberto Luiz Rosa
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
Lee YH, Yi HK, Pradhan PM, Kim TK, Jang S. Effect of c-Myb overexpression on osteoblastic-, odontoblastic-, and cementoblastic differentiation of primary human periodontal ligament cells. Eur J Oral Sci 2025; 133:e13040. [PMID: 39865493 DOI: 10.1111/eos.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The periodontal ligament (PDL) is a connective tissue, and PDL cells have a potential to differentiate into cementoblasts, osteoblasts, and gingival fibroblasts. This study investigated whether transcription factor c-Myb could induce differentiation of PDL cells for periodontal regeneration. PDL cells were isolated from extracted teeth and cultured. c-Myb was transfected to PDL cells using replication-deficient adenoviral vector. Differentiation of the PDL cells was analyzed by immunoblot, alkaline phosphatase activity, Alizarin red stain, and immunofluorescence analysis. Cell viability on titanium surfaces was analyzed by crystal violet stain and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. PDL cells cultured in osteogenic medium showed increased production of osteogenic and cementogenic molecules. Moreover, c-Myb-transfected cells showed increased production of dentinogenic molecules, in addition to the osteogenic and cementogenic molecules, even in normal culture condition. c-Myb-transfected cells also exhibited increased autophagy and type I collagen production under nutrient deprivation. When grown on a titanium surface, c-Myb-transfected cells showed increased production of osteogenesis-, dentinogenesis-, and cementogenesis-related molecules and cell viability. Thus, these results suggest that c-Myb might play an essential role during periodontal regeneration by improving the differentiation of PDL cells, and c-Myb can be utilized for enhancing the attachment of PDL cells to dental implant surfaces.
Collapse
Affiliation(s)
- Young-Hee Lee
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea
| | - Paras Man Pradhan
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea
| | - Tae-Kun Kim
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea
| |
Collapse
|
3
|
Qian YX, Rao SS, Tan YJ, Wang Z, Yin H, Wan TF, He ZH, Wang X, Hong CG, Zeng HJ, Luo Y, Duan YX, Zhu H, Hu XY, Zou L, Zhang Y, Liu BB, Wang ZX, Du W, Chen CY, Xie H. Intermittent Fasting Targets Osteocyte Neuropeptide Y to Relieve Osteoarthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400196. [PMID: 38978353 PMCID: PMC11425897 DOI: 10.1002/advs.202400196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/20/2024] [Indexed: 07/10/2024]
Abstract
Osteoarthritis is a highly prevalent progressive joint disease that still requires an optimal therapeutic approach. Intermittent fasting is an attractive dieting strategy for improving health. Here this study shows that intermittent fasting potently relieves medial meniscus (DMM)- or natural aging-induced osteoarthritic phenotypes. Osteocytes, the most abundant bone cells, secrete excess neuropeptide Y (NPY) during osteoarthritis, and this alteration can be altered by intermittent fasting. Both NPY and the NPY-abundant culture medium of osteocytes (OCY-CM) from osteoarthritic mice possess pro-inflammatory, pro-osteoclastic, and pro-neurite outgrowth effects, while OCY-CM from the intermittent fasting-treated osteoarthritic mice fails to induce significant stimulatory effects on inflammation, osteoclast formation, and neurite outgrowth. Depletion of osteocyte NPY significantly attenuates DMM-induced osteoarthritis and abolishes the benefits of intermittent fasting on osteoarthritis. This study suggests that osteocyte NPY is a key contributing factor in the pathogenesis of osteoarthritis and intermittent fasting represents a promising nonpharmacological antiosteoarthritis method by targeting osteocyte NPY.
Collapse
Affiliation(s)
- Yu-Xuan Qian
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Shan-Shan Rao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Yi-Juan Tan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Zun Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Hao Yin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Teng-Fei Wan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Ze-Hui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Xin Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Chun-Gu Hong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Hai-Jin Zeng
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Yi Luo
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Yan-Xin Duan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Hao Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Xin-Yue Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ling Zou
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Yan Zhang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bing-Bing Liu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Wei Du
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
4
|
Owen R, Wittkowske C, Lacroix D, Perrault CM, Reilly GC. β-glycerophosphate, not low magnitude fluid shear stress, increases osteocytogenesis in the osteoblast-to-osteocyte cell line IDG-SW3. Connect Tissue Res 2024; 65:313-329. [PMID: 38982804 PMCID: PMC11371265 DOI: 10.1080/03008207.2024.2375065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
AIM As osteoblasts deposit a mineralized collagen network, a subpopulation of these cells differentiates into osteocytes. Biochemical and mechanical stimuli, particularly fluid shear stress (FSS), are thought to regulate this, but their relative influence remains unclear. Here, we assess both biochemical and mechanical stimuli on long-term bone formation and osteocytogenesis using the osteoblast-osteocyte cell line IDG-SW3. METHODS Due to the relative novelty and uncommon culture conditions of IDG-SW3 versus other osteoblast-lineage cell lines, effects of temperature and media formulation on matrix deposition and osteocytogenesis were initially characterized. Subsequently, the relative influence of biochemical (β-glycerophosphate (βGP) and ascorbic acid 2-phosphate (AA2P)) and mechanical stimulation on osteocytogenesis was compared, with intermittent application of low magnitude FSS generated by see-saw rocker. RESULTS βGP and AA2P supplementation were required for mineralization and osteocytogenesis, with 33°C cultures retaining a more osteoblastic phenotype and 37°C cultures undergoing significantly higher osteocytogenesis. βGP concentration positively correlated with calcium deposition, whilst AA2P stimulated alkaline phosphatase (ALP) activity and collagen deposition. We demonstrate that increasing βGP concentration also significantly enhances osteocytogenesis as quantified by the expression of green fluorescent protein linked to Dmp1. Intermittent FSS (~0.06 Pa) rocker had no effect on osteocytogenesis and matrix deposition. CONCLUSIONS This work demonstrates the suitability and ease with which IDG-SW3 can be utilized in osteocytogenesis studies. IDG-SW3 mineralization was only mediated through biochemical stimuli with no detectable effect of low magnitude FSS. Osteocytogenesis of IDG-SW3 primarily occurred in mineralized areas, further demonstrating the role mineralization of the bone extracellular matrix has in osteocyte differentiation.
Collapse
Affiliation(s)
- Robert Owen
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Claudia Wittkowske
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Damien Lacroix
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Cecile M. Perrault
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Marozin S, Simon-Nobbe B, Huth A, Beyerer E, Weber L, Nüssler A, Lepperdinger G. Aggregation of human osteoblasts unlocks self-reliant differentiation and constitutes a microenvironment for 3D-co-cultivation with other bone marrow cells. Sci Rep 2024; 14:10345. [PMID: 38710795 PMCID: PMC11074281 DOI: 10.1038/s41598-024-60986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Skeletal bone function relies on both cells and cellular niches, which, when combined, provide guiding cues for the control of differentiation and remodeling processes. Here, we propose an in vitro 3D model based on human fetal osteoblasts, which eases the study of osteocyte commitment in vitro and thus provides a means to examine the influences of biomaterials, substances or cells on the regulation of these processes. Aggregates were formed from human fetal osteoblasts (hFOB1.19) and cultivated under proliferative, adipo- and osteoinductive conditions. When cultivated under osteoinductive conditions, the vitality of the aggregates was compromised, the expression levels of the mineralization-related gene DMP1 and the amount of calcification and matrix deposition were lower, and the growth of the spheroids stalled. However, within spheres under growth conditions without specific supplements, self-organization processes occur, which promote extracellular calcium deposition, and osteocyte-like cells develop. Long-term cultivated hFOB aggregates were free of necrotic areas. Moreover, hFOB aggregates cultivated under standard proliferative conditions supported the co-cultivation of human monocytes, microvascular endothelial cells and stromal cells. Overall, the model presented here comprises a self-organizing and easily accessible 3D osteoblast model for studying bone marrow formation and in vitro remodeling and thus provides a means to test druggable molecular pathways with the potential to promote life-long bone formation and remodeling.
Collapse
Affiliation(s)
- Sabrina Marozin
- Department of Biosciences and Medical Biology, University Salzburg, 5020, Salzburg, Austria.
| | - Birgit Simon-Nobbe
- Department of Biosciences and Medical Biology, University Salzburg, 5020, Salzburg, Austria
| | - Astrid Huth
- Department of Biosciences and Medical Biology, University Salzburg, 5020, Salzburg, Austria
| | - Evelyn Beyerer
- Department of Biosciences and Medical Biology, University Salzburg, 5020, Salzburg, Austria
| | - Laurenz Weber
- Department of Biosciences and Medical Biology, University Salzburg, 5020, Salzburg, Austria
| | - Andreas Nüssler
- Siegfried Weller Institut (SWI) | BG Klinik Tübingen, Tübingen, Germany
| | - Günter Lepperdinger
- Department of Biosciences and Medical Biology, University Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
6
|
Fan H, Qiao Z, Li J, Shang G, Shang C, Chen S, Leng Z, Su H, Kou H, Liu H. Recent advances in senescence-associated secretory phenotype and osteoporosis. Heliyon 2024; 10:e25538. [PMID: 38375248 PMCID: PMC10875379 DOI: 10.1016/j.heliyon.2024.e25538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
The worldwide elderly population is on the rise, and aging is a major osteoporosis risk factor. Senescent cells accumulation can have a detrimental effect the body as we age. The senescence-associated secretory phenotype (SASP), an essential cellular senescence hallmark, is an important mechanism connecting cellular senescence to osteoporosis. This review describes in detail the characteristics of SASPs and their regulatory agencies, and shed fresh light on how SASPs from different senescent cells contribute to osteoporosis development. Furthermore, we summarized various innovative therapy techniques that target SASPs to lower the burden of osteoporosis in the elderly and discussed the potential challenges of SASPs-based therapy for osteoporosis as a new clinical trial.
Collapse
Affiliation(s)
- Haonan Fan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zhi Qiao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Jitian Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang 471000, China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Chunfeng Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zikuan Leng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Huifang Su
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Hongwei Kou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
7
|
Root SH, Matthews BG, Torreggiani E, Aguila HL, Kalajzic I. Hematopoietic and stromal DMP1-Cre labeled cells form a unique niche in the bone marrow. Sci Rep 2023; 13:22403. [PMID: 38104230 PMCID: PMC10725438 DOI: 10.1038/s41598-023-49713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Skeletogenesis and hematopoiesis are interdependent. Niches form between cells of both lineages where microenvironmental cues support specific lineage commitment. Because of the complex topography of bone marrow (BM), the identity and function of cells within specialized niches has not been fully elucidated. Dentin Matrix Protein 1 (DMP1)-Cre mice have been utilized in bone studies as mature osteoblasts and osteocytes express DMP1. DMP1 has been identified in CXCL12+ cells and an undefined CD45+ population. We crossed DMP1-Cre with Ai9 reporter mice and analyzed the tdTomato+ (tdT+) population in BM and secondary hematopoietic organs. CD45+tdT+ express myeloid markers including CD11b and are established early in ontogeny. CD45+tdT+ cells phagocytose, respond to LPS and are radioresistant. Depletion of macrophages caused a significant decrease in tdT+CD11b+ myeloid populations. A subset of CD45+tdT+ cells may be erythroid island macrophages (EIM) which are depleted after G-CSF treatment. tdT+CXCL12+ cells are in direct contact with F4/80 macrophages, express RANKL and form a niche with B220+ B cells. A population of resident cells within the thymus are tdT+ and express myeloid markers and RANKL. In conclusion, in addition to targeting osteoblast/osteocytes, DMP1-Cre labels unique cell populations of macrophage and stromal cells within BM and thymus niches and expresses key microenvironmental factors.
Collapse
Affiliation(s)
- Sierra H Root
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
- Division of Pediatric Dentistry, MC1610, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Brya G Matthews
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Elena Torreggiani
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | | | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
8
|
Schoonraad SA, Jaimes AA, Singh AJX, Croland KJ, Bryant SJ. Osteogenic effects of covalently tethered rhBMP-2 and rhBMP-9 in an MMP-sensitive PEG hydrogel nanocomposite. Acta Biomater 2023; 170:53-67. [PMID: 37634836 PMCID: PMC10831697 DOI: 10.1016/j.actbio.2023.08.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
While bone morphogenic protein-2 (BMP-2) is one of the most widely studied BMPs in bone tissue engineering, BMP-9 has been purported to be a highly osteogenic BMP. This work investigates the individual osteogenic effects of recombinant human (rh) BMP-2 and rhBMP-9, when tethered into a hydrogel, on encapsulated human mesenchymal stem cells (MSCs). A matrix-metalloproteinase (MMP)-sensitive hydrogel nanocomposite, comprised of poly(ethylene glycol) crosslinked with MMP-sensitive peptides, tethered RGD, and entrapped hydroxyapatite nanoparticles was used. The rhBMPs were functionalized with free thiols and then covalently tethered into the hydrogel by a thiol-norbornene photoclick reaction. rhBMP-2 retained its full bioactivity post-thiolation, while the bioactivity of rhBMP-9 was partially reduced. Nonetheless, both rhBMPs were highly effective at enhancing osteogenesis over 12-weeks in a chemically-defined medium. Expression of ID1 and osterix, early markers of osteogenesis; collagen type I, a main component of the bone extracellular matrix (ECM); and osteopontin, bone sialoprotein II and dentin matrix protein I, mature osteoblast markers, increased with increasing concentrations of tethered rhBMP-2 or rhBMP-9. When comparing the two BMPs, rhBMP-9 led to more rapid collagen deposition and greater mineralization long-term. In summary, rhBMP-2 retained its bioactivity post-thiolation while rhBMP-9 is more susceptible to thiolation. Despite this shortcoming with rhBMP-9, both rhBMPs when tethered into this hydrogel, enhanced osteogenesis of MSCs, leading to a mature osteoblast phenotype surrounded by a mineralized ECM. STATEMENT OF SIGNIFICANCE: Osteoinductive hydrogels are a promising vehicle to deliver mesenchymal stem cells (MSCs) for bone regeneration. This study examines the in vitro osteoinductive capabilities when tethered bone morphogenic proteins (BMPs) are incorporated into a degradable biomimetic hydrogel with cell adhesive ligands, matrix metalloproteinase sensitive crosslinks for cell-mediated degradation, and hydroxyapatite nanoparticles. This study demonstrates that BMP-2 is readily thiolated and tethered without loss of bioactivity while bioactivity of BMP-9 is more susceptible to immobilization. Nonetheless, when either BMP2 or BMP9 are tethered into this hydrogel, osteogenesis of human MSCs is enhanced, bone extracellular matrix is deposited, and a mature osteoblast phenotype is achieved. This bone-biomimetic hydrogel is a promising design for stem cell-mediated bone regeneration.
Collapse
Affiliation(s)
- Sarah A Schoonraad
- Materials Science & Engineering Program, University of Colorado, 4001 Discovery Dr, Boulder, CO 80309-0613, United States
| | - Alan A Jaimes
- Department of Biochemistry, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, United States
| | - Arjun J X Singh
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, United States
| | - Kiera J Croland
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, United States
| | - Stephanie J Bryant
- Materials Science & Engineering Program, University of Colorado, 4001 Discovery Dr, Boulder, CO 80309-0613, United States; Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, United States; BioFrontiers Institute, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, United States.
| |
Collapse
|
9
|
Michalski MN, Williams BO. The Past, Present, and Future of Genetically Engineered Mouse Models for Skeletal Biology. Biomolecules 2023; 13:1311. [PMID: 37759711 PMCID: PMC10526739 DOI: 10.3390/biom13091311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The ability to create genetically engineered mouse models (GEMMs) has exponentially increased our understanding of many areas of biology. Musculoskeletal biology is no exception. In this review, we will first discuss the historical development of GEMMs and how these developments have influenced musculoskeletal disease research. This review will also update our 2008 review that appeared in BONEKey, a journal that is no longer readily available online. We will first review the historical development of GEMMs in general, followed by a particular emphasis on the ability to perform tissue-specific (conditional) knockouts focusing on musculoskeletal tissues. We will then discuss how the development of CRISPR/Cas-based technologies during the last decade has revolutionized the generation of GEMMs.
Collapse
Affiliation(s)
- Megan N. Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA;
| | - Bart O. Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA;
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
10
|
Laster DJ, Akel NS, Hendrixson JA, James A, Crawford JA, Fu Q, Berryhill SB, Thostenson JD, Nookaew I, O’Brien CA, Onal M. CRISPR interference provides increased cell type-specificity compared to the Cre-loxP system. iScience 2023; 26:107428. [PMID: 37575184 PMCID: PMC10415806 DOI: 10.1016/j.isci.2023.107428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Cre-mediated recombination is frequently used for cell type-specific loss of function (LOF) studies. A major limitation of this system is recombination in unwanted cell types. CRISPR interference (CRISPRi) has been used effectively for global LOF in mice. However, cell type-specific CRISPRi, independent of recombination-based systems, has not been reported. To test the feasibility of cell type-specific CRISPRi, we produced two novel knock-in mouse models that achieve gene suppression when used together: one expressing dCas9::KRAB under the control of a cell type-specific promoter and the other expressing a single guide RNA from a safe harbor locus. We then compared the phenotypes of mice in which the same gene was targeted by either CRISPRi or the Cre-loxP system, with cell specificity conferred by Dmp1 regulatory elements in both cases. We demonstrate that CRISPRi is effective for cell type-specific LOF and that it provides improved cell type-specificity compared to the Cre-loxP system.
Collapse
Affiliation(s)
- Dominique J. Laster
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Nisreen S. Akel
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - James A. Hendrixson
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alicen James
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Julie A. Crawford
- Center for Musculoskeletal Disease Research (CMDR), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Qiang Fu
- Center for Musculoskeletal Disease Research (CMDR), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stuart B. Berryhill
- Center for Musculoskeletal Disease Research (CMDR), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jeff D. Thostenson
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Intawat Nookaew
- Center for Musculoskeletal Disease Research (CMDR), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Charles A. O’Brien
- Center for Musculoskeletal Disease Research (CMDR), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Melda Onal
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Center for Musculoskeletal Disease Research (CMDR), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
11
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Vos SJ, Pavelko KD, Farr JN, Monroe DG, Khosla S. Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton. Nat Commun 2023; 14:4587. [PMID: 37524694 PMCID: PMC10390564 DOI: 10.1038/s41467-023-40393-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we apply mass cytometry by time-of-flight using carefully validated antibodies to analyze senescent cells at single-cell resolution. We use multiple criteria to identify senescent mesenchymal cells that are growth-arrested and resistant to apoptosis. These p16 + Ki67-BCL-2+ cells are highly enriched for senescence-associated secretory phenotype and DNA damage markers, are strongly associated with age, and their percentages are increased in late osteoblasts/osteocytes and CD24high osteolineage cells. Moreover, both late osteoblasts/osteocytes and CD24high osteolineage cells are robustly cleared by genetic and pharmacologic senolytic therapies in aged mice. Following isolation, CD24+ skeletal cells exhibit growth arrest, senescence-associated β-galactosidase positivity, and impaired osteogenesis in vitro. These studies thus provide an approach using multiplexed protein profiling to define senescent mesenchymal cells in vivo and identify specific skeletal cell populations cleared by senolytics.
Collapse
Affiliation(s)
- Madison L Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Tübingen, Germany
| | - Japneet Kaur
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jennifer L Rowsey
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Stephanie J Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin D Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joshua N Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - David G Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
12
|
Abstract
Although osteoblasts and osteocytes are descended from the same lineage, they each have unique and essential roles in bone. Targeting gene deletion to osteoblasts and osteocytes using the Cre/loxP system has greatly increased our current understanding of how these cells function. Additionally, the use of the Cre/loxP system in conjunction with cell-specific reporters has enabled lineage tracing of these bone cells both in vivo and ex vivo. However, concerns have been raised regarding the specificity of the promoters used and the resulting off-target effects on cells within and outside of the bone. In this review, we have summarized the main mouse models that have been used to determine the functions of specific genes in osteoblasts and osteocytes. We discuss the expression patterns and specificity of the different promoter fragments during osteoblast to osteocyte differentiation in vivo. We also highlight how their expression in non-skeletal tissues may complicate the interpretation of study results. A thorough understanding of when and where these promoters are activated will enable improved study design and greater confidence in data interpretation.
Collapse
Affiliation(s)
- Y Kitase
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States of America
| | - M Prideaux
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States of America.
| |
Collapse
|
13
|
Ghassib I, Zhang H, Qi S, Moshen R, Mishina Y, Bellido T, Liu F. Off-target activity of the 8 kb Dmp1-Cre results in the deletion of Tsc1 gene in mouse intestinal mesenchyme. Transgenic Res 2023; 32:135-141. [PMID: 36547785 DOI: 10.1007/s11248-022-00332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
The Dmp1-Cre mouse, expressing Cre from an 8-kb DNA fragment of the mouse Dmp1 gene, is a common tool to study gene functions in osteocytes. Here we report that the deletion of Tsc1 (TSC complex subunit 1) by 8 kb Dmp1-Cre causes rectal prolapse in mice. Histological examination shows the presence of colon polyps in Tsc1-deficient mice in association with significantly larger colon and narrower lumen, which recapitulates the common polyps pathology in Tuberous Sclerosis, an autosomal dominant disorder caused by mutations in either TSC1 or TSC2. The intestine in Tsc1-deficient mice is also enlarged with the presence of taller villi. Using the Ai14 reporter mice that express a red fluorescence protein upon Cre recombination, we show that 8 kb Dmp1-Cre activity is evident in portion of the mesenchyme of the colon and small intestine. Lastly, our data show that Tsc1 deletion by Dmp1-Cre leads to an increased proliferation in the mesenchyme of colon, which at least partly contributes to the polyps pathology seen in this mouse model and is likely a contributing factor of the polyps in Tuberous Sclerosis.
Collapse
Affiliation(s)
- Iya Ghassib
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Honghao Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Shuqun Qi
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Rawan Moshen
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Fei Liu
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Hanai A, Kawabata A, Nakajima K, Masuda K, Urakawa I, Abe M, Yamazaki Y, Fukumoto S. Single-cell RNA sequencing identifies Fgf23-expressing osteocytes in response to 1,25-dihydroxyvitamin D 3 treatment. Front Physiol 2023; 14:1102751. [PMID: 36776964 PMCID: PMC9911654 DOI: 10.3389/fphys.2023.1102751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23), a hormone, mainly produced by osteocytes, regulates phosphate and vitamin D metabolism. By contrast, 1,25-dihydroxyvitamin D3, the active form of vitamin D, has been shown to enhance FGF23 production. While it is likely that osteocytes are heterogenous in terms of gene expression profiles, specific subpopulations of Fgf23-expressing osteocytes have not been identified. Single-cell RNA sequencing (scRNA-seq) technology can characterize the transcriptome of an individual cell. Recently, scRNA-seq has been used for bone tissue analysis. However, owing to technical difficulties associated with isolation of osteocytes, studies using scRNA-seq analysis to characterize FGF23-producing osteocytes are lacking. In this study, we characterized osteocytes secreting FGF23 from murine femurs in response to calcitriol (1,25-dihydroxyvitamin D3) using scRNA-seq. We first detected Dmp1, Mepe, and Phex expression in murine osteocytes by in situ hybridization and used these as marker genes of osteocytes. After decalcification, enzyme digestion, and removal of CD45+ cells, femoral bone cells were subjected to scRNA-seq. We identified cell clusters containing osteocytes using marker gene expression. While Fgf23 expression was observed in some osteocytes isolated from femurs of calcitriol-injected mice, no Fgf23 expression was detected in untreated mice. In addition, the expression of several genes which are known to be changed after 1,25-dihydroxyvitamin D3 treatment such as Ccnd2, Fn1, Igfbp7, Pdgfa, and Timp1 was also affected by calcitriol treatment in Fgf23-expressing osteocytes, but not in those lacking Fgf23 expression, even after calcitriol administration. Furthermore, box-and-whisker plots indicated that Fgf23 expression was observed in osteocytes with higher expression levels of the Fam20c, Dmp1, and Phex genes, whose inactivating mutations have been shown to cause FGF23-related hypophosphatemic diseases. These results indicate that osteocytes are heterogeneous with respect to their responsiveness to 1,25-dihydroxyvitamin D3, and sensitivity to 1,25-dihydroxyvitamin D3 is one of the characteristics of osteocytes with Fgf23 expression. It is likely that there is a subpopulation of osteocytes expressing several genes, including Fgf23, involved in phosphate metabolism.
Collapse
Affiliation(s)
- Ayako Hanai
- R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan,Department of Endocrinology, Metabolism and Hematology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan,*Correspondence: Ayako Hanai,
| | | | | | | | | | - Masahiro Abe
- Department of Endocrinology, Metabolism and Hematology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | | | - Seiji Fukumoto
- Department of Molecular Endocrinology, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
15
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Vos SJ, Pavelko KD, Farr JN, Monroe DG, Khosla S. Multiparametric senescent cell phenotyping reveals CD24 osteolineage cells as targets of senolytic therapy in the aged murine skeleton. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523760. [PMID: 36711531 PMCID: PMC9882155 DOI: 10.1101/2023.01.12.523760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we applied mass cytometry by time-of-flight (CyTOF) using carefully validated antibodies to analyze senescent cells at single-cell resolution. We used multiple criteria to identify senescent mesenchymal cells that were growth arrested and resistant to apoptosis (p16+/Ki67-/BCL-2+; "p16KB" cells). These cells were highly enriched for senescence-associated secretory phenotype (SASP) and DNA damage markers and were strongly associated with age. p16KB cell percentages were also increased in CD24+ osteolineage cells, which exhibited an inflammatory SASP in aged mice and were robustly cleared by both genetic and pharmacologic senolytic therapies. Following isolation, CD24+ skeletal cells exhibited growth arrest, SA-βgal positivity, and impaired osteogenesis in vitro . These studies thus provide a new approach using multiplexed protein profiling by CyTOF to define senescent mesenchymal cells in vivo and identify a highly inflammatory, senescent CD24+ osteolineage population cleared by senolytics.
Collapse
Affiliation(s)
- Madison L. Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Germany
| | - Japneet Kaur
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer L. Rowsey
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie J. Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joshua N. Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - David G. Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
16
|
Xu X, Yang H, Bullock WA, Gallant MA, Ohlsson C, Bellido TM, Main RP. Osteocyte Estrogen Receptor β (Ot-ERβ) Regulates Bone Turnover and Skeletal Adaptive Response to Mechanical Loading Differently in Male and Female Growing and Adult Mice. J Bone Miner Res 2023; 38:186-197. [PMID: 36321245 PMCID: PMC10108310 DOI: 10.1002/jbmr.4731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/15/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Age-related bone loss is a failure of balanced bone turnover and diminished skeletal mechanoadaptation. Estrogen receptors, ERα and ERβ, play critical roles in osteoprotective regulation activated by estrogen and mechanical signals. Previous studies mainly focused on ERα and showed that osteocyte-ERα (Ot-ERα) regulated trabecular, but not cortical bone, and played a minor role in load-induced cortical adaptation. However, the role of Ot-ERβ in bone mass regulation remains unrevealed. To address this issue, we characterized bone (re)modeling and gene expression in male and female mice with Ot-ERβ deletion (ERβ-dOT) and littermate control (LC) at 10 weeks (young) or 28 weeks (adult) of age, as well as their responses to in vivo tibial compressive loading. Increased cancellous bone mass appeared in the L4 vertebral body of young male ERβ-dOT mice. At the same time, femoral cortical bone gene expression showed signs consistent with elevated osteoblast and osteoclast activities (type-I collagen, Cat K, RANKL). Upregulated androgen receptor (AR) expression was observed in young male ERβ-dOT mice relative to LC, suggesting a compensatory effect of testosterone on male bone protection. In contrast, bone mass in L4 decreased in adult male ERβ-dOT mice, attributed to potentially increased bone resorption activity (Cat K) with no change in bone formation. There was no effect of ERβ-dOT on bone mass or gene expression in female mice. Sex-dependent regulation of Ot-ERβ also appeared in load-induced cortical responsiveness. Young female ERβ-dOT mice showed an enhanced tibial cortical anabolic adaptation compared with LC. In contrast, an attenuated cortical anabolic response presented at the proximal tibia in male ERβ-dOT mice at both ages. For the first time, our findings suggest that Ot-ERβ regulates bone (re)modeling and the response to mechanical signals through different mechanisms in males and females. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xiaoyu Xu
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteINUSA
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| | | | - Maxim A. Gallant
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical NutritionInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Drug TreatmentSahlgrenska University HospitalGothenburgSweden
| | - Teresita M. Bellido
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Russell P. Main
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteINUSA
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
17
|
Hong AR, Yang JY, Lee JY, Suh J, Lee YS, Kim JE, Kim SW. Reactivation of Bone Lining Cells are Attenuated Over Repeated Anti-sclerostin Antibody Administration. Calcif Tissue Int 2022; 111:495-505. [PMID: 35925416 DOI: 10.1007/s00223-022-01013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
Reactivation of bone lining cells (BLCs) is a crucial mechanism governing the anabolic action of anti-sclerostin antibody (Scl-Ab) via modeling-based bone formation; however, it remains unclear whether this reactivation can be attenuated after persistent administration of Scl-Ab. Here, we aimed to investigate the reproducibility of persistent Scl-Ab administration for the reactivation of BLCs, and to elucidate the relationship between the activity of BLCs and serum levels of N-terminal procollagen type I (P1NP) during chronic Scl-Ab administration. We conducted an osteoblast lineage tracing study. Briefly, Dmp1-CreERt2(+):Rosa26R mice were injected with 1 mg of 4-hydroxy-tamoxifen weekly from postnatal weeks four to eight. Mice were treated twice with either vehicle or Scl-Ab (25 mg/kg) at weeks 12, 16, and 20, and were euthanized at weeks 8, 12, 13, 16, 17, 20, and 21 (4-6 mice in each group). After euthanization, the number and thickness of X-gal (+) cells on the periosteum of the femoral bones and the serum levels of P1NP were quantified at each time point. Scl-Ab induced a significant increase in the thickness of X-gal (+) cells on periosteal bone surfaces at postnatal weeks 13 (after 1st dose), 17 (after 2nd dose), and 21 (after 3rd dose) compared to that in vehicle-treated mice (all P < 0.001). In the Scl-Ab group, significant increases in the thickness of labeled cells were observed between weeks 16 and 17 and weeks 20 and 21 (both P < 0.001). The percentage increase in X-gal (+) cell thickness was 108.9% from week 12 to week 13, 54.6% from week 16 to week 17, and 49.2% from week 20 to week 21 in the Scl-Ab group. Although Scl-Ab treatment increased the serum levels of P1NP at postnatal weeks 13 and 17 compared with those at week 12 (P = 0.017 and P = 0.038, respectively), the same was not observed at week 21 (P = 0.296). A significant increase in P1NP levels was observed between weeks 16 and 17 and weeks 20 and 21 in the Scl-Ab group (P = 0.005 and P = 0.007, respectively). The percentage increase in P1NP levels was 141.7% from weeks 12 to 13, 114.8% from weeks 16 to 17, and 99.4% from weeks 20 to 21. Serum P1NP levels were positively correlated with X-gal (+) cell thickness (R2 = 0.732, P < 0.001). Reactivation of BLCs is modestly attenuated, but reproducible, during persistent Scl-Ab administration. Serum P1NP levels appear to be an indicator of the impact of Scl-Ab on the conversion of BLCs into mature osteoblasts on periosteal bone surfaces, thus contributing to modeling-based bone formation.
Collapse
Affiliation(s)
- A Ram Hong
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Jae-Yeon Yang
- Department of Research and Experiment, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| | - Ji Yeon Lee
- Department of Research and Experiment, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| | - Joonho Suh
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Boramae Medical Center, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061, South Korea.
| |
Collapse
|
18
|
Thaler R, Khani F, Sturmlechner I, Dehghani SS, Denbeigh JM, Zhou X, Pichurin O, Dudakovic A, Jerez SS, Zhong J, Lee JH, Natarajan R, Kalajzic I, Jiang YH, Deyle DR, Paschalis EP, Misof BM, Ordog T, van Wijnen AJ. Vitamin C epigenetically controls osteogenesis and bone mineralization. Nat Commun 2022; 13:5883. [PMID: 36202795 PMCID: PMC9537512 DOI: 10.1038/s41467-022-32915-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Vitamin C deficiency disrupts the integrity of connective tissues including bone. For decades this function has been primarily attributed to Vitamin C as a cofactor for collagen maturation. Here, we demonstrate that Vitamin C epigenetically orchestrates osteogenic differentiation and function by modulating chromatin accessibility and priming transcriptional activity. Vitamin C regulates histone demethylation (H3K9me3 and H3K27me3) and promotes TET-mediated 5hmC DNA hydroxymethylation at promoters, enhancers and super-enhancers near bone-specific genes. This epigenetic circuit licenses osteoblastogenesis by permitting the expression of all major pro-osteogenic genes. Osteogenic cell differentiation is strictly and continuously dependent on Vitamin C, whereas Vitamin C is dispensable for adipogenesis. Importantly, deletion of 5hmC-writers, Tet1 and Tet2, in Vitamin C-sufficient murine bone causes severe skeletal defects which mimic bone phenotypes of Vitamin C-insufficient Gulo knockout mice, a model of Vitamin C deficiency and scurvy. Thus, Vitamin C's epigenetic functions are central to osteoblastogenesis and bone formation and may be leveraged to prevent common bone-degenerating conditions.
Collapse
Affiliation(s)
- Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Farzaneh Khani
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ines Sturmlechner
- Departments of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Janet M Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Xianhu Zhou
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Oksana Pichurin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sofia S Jerez
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jian Zhong
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jeong-Heon Lee
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ramesh Natarajan
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn Health, Farmington, CT, USA
| | - Yong-Hui Jiang
- Department of Genetics, Neuroscience, and Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - David R Deyle
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Tamas Ordog
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
19
|
Canalis E, Yee SP, Economides AN, Schilling L, Yu J. Induction of a NOTCH3 Lehman syndrome mutation in osteocytes causes osteopenia in male C57BL/6J mice. Bone 2022; 162:116476. [PMID: 35760307 PMCID: PMC10870228 DOI: 10.1016/j.bone.2022.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022]
Abstract
Lateral Meningocele or Lehman Syndrome (LMS) is associated with NOTCH3 mutations causing deletions of the PEST domain and a gain-of-NOTCH3 function. We demonstrated that Notch3em1Ecan mice harboring Notch3 mutations analogous to those found in LMS are osteopenic because of enhanced bone resorption. To determine the contribution of specific cell lineages to the phenotype, we created a conditional-by-inversion (Notch3COIN) model termed Notch3em2Ecan in which Cre recombination generates a Notch3INV allele expressing a NOTCH3 mutant lacking the PEST domain. Germ line Notch3COIN inversion caused osteopenia and phenocopied the Notch3em1Ecan mutant, validating the model. To induce the mutation in osteocytes, smooth muscle and endothelial cells, Notch3COIN mice were bred with mice expressing Cre from the Dmp1, Sm22a and Cdh5 promoters, respectively, creating experimental mice harboring Notch3INV alleles in Cre-expressing cells and control littermates harboring Notch3COIN alleles. Notch3COIN inversion in osteocytes led to femoral and vertebral cancellous bone osteopenia, whereas Notch3COIN inversion in mural Sm22a or endothelial Cdh5-expressing cells did not result in a skeletal phenotype. In conclusion, introduction of the LMS mutation in osteocytes but not in vascular cells causes osteopenia and phenocopies Notch3em1Ecan global mutant mice.
Collapse
Affiliation(s)
- E Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States; Department of Medicine, UConn Health, Farmington, CT 06030, United States; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, United States.
| | - S P Yee
- Department of Cell Biology, UConn Health, Farmington, CT 06030, United States
| | - A N Economides
- Regeneron Pharmaceuticals, Tarrytown, NY 10531, United States
| | - L Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, United States
| | - J Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, United States
| |
Collapse
|
20
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Eckhardt B, Vos S, Grain S, Kroupova K, Ruan M, Weivoda M, Oursler MJ, Farr JN, Monroe DG, Khosla S. Skeletal Effects of Inducible ERα Deletion in Osteocytes in Adult Mice. J Bone Miner Res 2022; 37:1750-1760. [PMID: 35789113 PMCID: PMC9474695 DOI: 10.1002/jbmr.4644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/12/2022]
Abstract
Estrogen is known to regulate bone metabolism in both women and men, but substantial gaps remain in our knowledge of estrogen and estrogen receptor alpha (ERα) regulation of adult bone metabolism. Studies using global ERα-knockout mice were confounded by high circulating sex-steroid levels, and osteocyte/osteoblast-specific ERα deletion may be confounded by ERα effects on growth versus the adult skeleton. Thus, we developed mice expressing the tamoxifen-inducible CreERT2 in osteocytes using the 8-kilobase (kb) Dmp1 promoter (Dmp1CreERT2 ). These mice were crossed with ERαfl//fl mice to create ERαΔOcy mice, permitting inducible osteocyte-specific ERα deletion in adulthood. After intermittent tamoxifen treatment of adult 4-month-old mice for 1 month, female, but not male, ERαΔOcy mice exhibited reduced spine bone volume fraction (BV/TV (-20.1%, p = 0.004) accompanied by decreased trabecular bone formation rate (-18.9%, p = 0.0496) and serum P1NP levels (-38.9%, p = 0.014). Periosteal (+65.6%, p = 0.004) and endocortical (+64.1%, p = 0.003) expansion were higher in ERαΔOcy mice compared to control (Dmp1CreERT2 ) mice at the tibial diaphysis, reflecting the known effects of estrogen to inhibit periosteal apposition and promote endocortical formation. Increases in Sost (2.1-fold, p = 0.001) messenger RNA (mRNA) levels were observed in trabecular bone at the spine in ERαΔOcy mice, consistent with previous reports that estrogen deficiency is associated with increased circulating sclerostin as well as bone SOST mRNA levels in humans. Further, the biological consequences of increased Sost expression were reflected in significant overall downregulation in panels of osteoblast and Wnt target genes in osteocyte-enriched bones from ERαΔOcy mice. These findings thus establish that osteocytic ERα is critical for estrogen action in female, but not male, adult bone metabolism. Moreover, the reduction in bone formation accompanied by increased Sost, decreased osteoblast, and decreased Wnt target gene expression in ERαΔOcy mice provides a direct link in vivo between ERα and Wnt signaling. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Madison L. Doolittle
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Dominik Saul
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Japneet Kaur
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Jennifer L. Rowsey
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Brittany Eckhardt
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Stephanie Vos
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Sarah Grain
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Kveta Kroupova
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
- University Hospital Hradec Kralove and the Faculty of Medicine in Hradec Kralove, Czech Republic
| | - Ming Ruan
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Megan Weivoda
- Robert and Arlene Kogod Center on Aging and Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN
| | - Merry Jo Oursler
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Joshua N. Farr
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - David G. Monroe
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
21
|
Hua R, Gu S, Jiang JX. Connexin 43 Hemichannels Regulate Osteoblast to Osteocyte Differentiation. Front Cell Dev Biol 2022; 10:892229. [PMID: 35693933 PMCID: PMC9184820 DOI: 10.3389/fcell.2022.892229] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Connexin 43 (Cx43) is the predominant connexin subtype expressed in osteocytes. Osteocytes, accounting for 90%-95% of total bone cells, function as orchestrators coordinating balanced activity between bone-resorbing osteoclasts and bone-forming osteoblasts. In this study, two newly developed osteocytic cell lines, OCY454 and IDG-SW3, were used to determine the role of Cx43 gap junctions and hemichannels (HCs) in the regulation of osteoblast to osteocyte differentiation. We found that the Cx43 level was substantially increased during the differentiation of IDG-SW3 cells and is also much higher than that of OCY454 cells. We knocked down Cx43 expression using the lentiviral CRISPR/Cas9 approach and inhibition of Cx43 HCs using Cx43 (E2) antibody in IDG-SW3 cells. Cx43 knockdown (KD) or Cx43 HC inhibition decreased gene expression for osteoblast and osteocyte markers, including alkaline phosphatase, type I collagen, dentin matrix protein 1, sclerostin, and fibroblast growth factor 23, whereas increasing the osteoclastogenesis indicator and the receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio at early and late differentiation stages. Moreover, mineralization was remarkably attenuated in differentiated Cx43-deficient IDG-SW3 cells compared to ROSA26 control. The conditioned medium collected from fully differentiated IDG-SW3 cells with Cx43 KD promoted osteoclastogenesis of RAW264.7 osteoclast precursors. Our results demonstrated that Cx43 HCs play critical roles in osteoblast to osteocyte differentiation process and regulate osteoclast differentiation via secreted factors.
Collapse
Affiliation(s)
| | | | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
22
|
Ressler A, Antunović M, Teruel-Biosca L, Ferrer GG, Babić S, Urlić I, Ivanković M, Ivanković H. Osteogenic differentiation of human mesenchymal stem cells on substituted calcium phosphate/chitosan composite scaffold. Carbohydr Polym 2022; 277:118883. [PMID: 34893286 DOI: 10.1016/j.carbpol.2021.118883] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022]
Abstract
Ionic substitutions are a promising strategy to enhance the biological performance of calcium phosphates (CaP) and composite materials for bone tissue engineering applications. However, systematic studies have not been performed on multi-substituted organic/inorganic scaffolds. In this work, highly porous composite scaffolds based on CaPs substituted with Sr2+, Mg2+, Zn2+ and SeO32- ions, and chitosan have been prepared by freeze-gelation technique. The scaffolds have shown highly porous structure, with very well interconnected pores and homogeneously dispersed CaPs, and high stability during 28 days in the degradation medium. Osteogenic potential of human mesenchymal stem cells seeded on scaffolds has been determined by histological, immunohistochemical and RT-qPCR analysis of cultured cells in static and dynamic conditions. Results indicated that ionic substitutions have a beneficial effect on cells and tissues. The scaffolds with multi-substituted CaPs have shown increased expression of osteogenesis related markers and increased phosphate deposits, compared to the scaffolds with non-substituted CaPs.
Collapse
Affiliation(s)
- Antonia Ressler
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10 000 Zagreb, Croatia.
| | - Maja Antunović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10 000 Zagreb, Croatia
| | - Laura Teruel-Biosca
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain.
| | - Slaven Babić
- UHC "Sestre Milosrdnice", Department for Traumatology, Draškovićeva 19, 10 000 Zagreb, Croatia
| | - Inga Urlić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10 000, Croatia.
| | - Marica Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10 000 Zagreb, Croatia.
| | - Hrvoje Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10 000 Zagreb, Croatia.
| |
Collapse
|
23
|
Abstract
Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone and in distant tissues. Osteocytes are a major source of molecules that regulate bone homeostasis by integrating both mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in both rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of several disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte-secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of several bone therapeutics used in the clinic. Here we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematologic and metastatic cancers in the skeleton.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Teresita Bellido
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas,3Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
24
|
Zhang Y, Chen C, Liu Y, Rao S, Tan Y, Qian Y, Xia K, Huang J, Liu X, Hong C, Yin H, Cao J, Feng S, He Z, Li Y, Luo Z, Wu B, Yan Z, Chen T, Chen M, Wang Y, Wang Z, Liu Z, Luo M, Hu X, Jin L, Wan T, Yue T, Tang S, Xie H. Neuronal Induction of Bone-Fat Imbalance through Osteocyte Neuropeptide Y. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100808. [PMID: 34719888 PMCID: PMC8693044 DOI: 10.1002/advs.202100808] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/24/2021] [Indexed: 05/08/2023]
Abstract
A differentiation switch of bone marrow mesenchymal stem/stromal cells (BMSCs) from osteoblasts to adipocytes contributes to age- and menopause-associated bone loss and marrow adiposity. Here it is found that osteocytes, the most abundant bone cells, promote adipogenesis and inhibit osteogenesis of BMSCs by secreting neuropeptide Y (NPY), whose expression increases with aging and osteoporosis. Deletion of NPY in osteocytes generates a high bone mass phenotype, and attenuates aging- and ovariectomy (OVX)-induced bone-fat imbalance in mice. Osteocyte NPY production is under the control of autonomic nervous system (ANS) and osteocyte NPY deletion blocks the ANS-induced regulation of BMSC fate and bone-fat balance. γ-Oryzanol, a clinically used ANS regulator, significantly increases bone formation and reverses aging- and OVX-induced osteocyte NPY overproduction and marrow adiposity in control mice, but not in mice lacking osteocyte NPY. The study suggests a new mode of neuronal control of bone metabolism through the ANS-induced regulation of osteocyte NPY.
Collapse
|
25
|
Couasnay G, Madel MB, Lim J, Lee B, Elefteriou F. Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. J Bone Miner Res 2021; 36:1661-1679. [PMID: 34278610 DOI: 10.1002/jbmr.4415] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
The Cre/Lox system is a powerful tool in the biologist's toolbox, allowing loss-of-function and gain-of-function studies, as well as lineage tracing, through gene recombination in a tissue-specific and inducible manner. Evidence indicates, however, that Cre transgenic lines have a far more nuanced and broader pattern of Cre activity than initially thought, exhibiting "off-target" activity in tissues/cells other than the ones they were originally designed to target. With the goal of facilitating the comparison and selection of optimal Cre lines to be used for the study of gene function, we have summarized in a single manuscript the major sites and timing of Cre activity of the main Cre lines available to target bone mesenchymal stem cells, chondrocytes, osteoblasts, osteocytes, tenocytes, and osteoclasts, along with their reported sites of "off-target" Cre activity. We also discuss characteristics, advantages, and limitations of these Cre lines for users to avoid common risks related to overinterpretation or misinterpretation based on the assumption of strict cell-type specificity or unaccounted effect of the Cre transgene or Cre inducers. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Greig Couasnay
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
26
|
Wang K, Ren Y, Lin S, Jing Y, Ma C, Wang J, Yuan XB, Han X, Zhao H, Wang Z, Zheng M, Xiao Y, Chen L, Olsen BR, Feng JQ. Osteocytes but not osteoblasts directly build mineralized bone structures. Int J Biol Sci 2021; 17:2430-2448. [PMID: 34326685 PMCID: PMC8315029 DOI: 10.7150/ijbs.61012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023] Open
Abstract
Bone-forming osteoblasts have been a cornerstone of bone biology for more than a century. Most research toward bone biology and bone diseases center on osteoblasts. Overlooked are the 90% of bone cells, called osteocytes. This study aims to test the hypothesis that osteocytes but not osteoblasts directly build mineralized bone structures, and that defects in osteocytes lead to the onset of hypophosphatemia rickets. The hypothesis was tested by developing and modifying multiple imaging techniques, including both in vivo and in vitro models plus two types of hypophosphatemia rickets models (Dmp1-null and Hyp, Phex mutation mice), and Dmp1-Cre induced high level of β-catenin models. Our key findings were that osteocytes (not osteoblasts) build bone similar to the construction of a high-rise building, with a wire mesh frame (i.e., osteocyte dendrites) and cement (mineral matrices secreted from osteocytes), which is a lengthy and slow process whose mineralization direction is from the inside toward the outside. When osteoblasts fail to differentiate into osteocytes but remain highly active in Dmp-1-null or Hyp mice, aberrant and poor bone mineralization occurs, caused by a sharp increase in Wnt-β-catenin signaling. Further, the constitutive expression of β-catenin in osteocytes recaptures a similar osteomalacia phenotype as shown in Dmp1 null or Hyp mice. Thus, we conclude that osteocytes directly build bone, and osteoblasts with a short life span serve as a precursor to osteocytes, which challenges the existing dogma.
Collapse
Affiliation(s)
- Ke Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Yinshi Ren
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX 75219 USA
| | - Shuxian Lin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, 200092, China
| | - Yan Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Chi Ma
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX 75219 USA
| | - Jun Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - X Baozhi Yuan
- Angitia Biopharmaceuticals, Guangzhou, 510000, China
| | - Xianglong Han
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hu Zhao
- Department of Restorative Dentistry, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Zheng Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Minghao Zheng
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Perth, 6009, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, 4059, Australia
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Bjorn Reino Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
27
|
Abstract
The Cre-LoxP technology permits gene ablation in specific cell lineages, at chosen differentiation stages of this lineage and in an inducible manner. It has allowed tremendous advances in our understanding of skeleton biology and related pathophysiological mechanisms, through the generation of loss/gain of function or cell tracing experiments based on the creation of an expanding toolbox of transgenic mice expressing the Cre recombinase in skeletal stem cells, chondrocytes, osteoblasts, or osteoclasts. In this chapter, we provide an overview of the different Cre-LoxP systems and Cre mouse lines used in the bone field, we discuss their advantages, limitations, and we outline best practices to interpret results obtained from the use of Cre mice.
Collapse
Affiliation(s)
- Florent Elefteriou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA.
| | - Greig Couasnay
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
28
|
Abstract
Osteocytes are an ancient cell, appearing in fossilized skeletal remains of early fish and dinosaurs. Despite its relative high abundance, even in the context of nonskeletal cells, the osteocyte is perhaps among the least studied cells in all of vertebrate biology. Osteocytes are cells embedded in bone, able to modify their surrounding extracellular matrix via specialized molecular remodeling mechanisms that are independent of the bone forming osteoblasts and bone-resorbing osteoclasts. Osteocytes communicate with osteoclasts and osteoblasts via distinct signaling molecules that include the RankL/OPG axis and the Sost/Dkk1/Wnt axis, among others. Osteocytes also extend their influence beyond the local bone environment by functioning as an endocrine cell that controls phosphate reabsorption in the kidney, insulin secretion in the pancreas, and skeletal muscle function. These cells are also finely tuned sensors of mechanical stimulation to coordinate with effector cells to adjust bone mass, size, and shape to conform to mechanical demands.
Collapse
Affiliation(s)
- Alexander G Robling
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| |
Collapse
|
29
|
MEKK2 mediates aberrant ERK activation in neurofibromatosis type I. Nat Commun 2020; 11:5704. [PMID: 33177525 PMCID: PMC7658220 DOI: 10.1038/s41467-020-19555-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Neurofibromatosis type I (NF1) is characterized by prominent skeletal manifestations caused by NF1 loss. While inhibitors of the ERK activating kinases MEK1/2 are promising as a means to treat NF1, the broad blockade of the ERK pathway produced by this strategy is potentially associated with therapy limiting toxicities. Here, we have sought targets offering a more narrow inhibition of ERK activation downstream of NF1 loss in the skeleton, finding that MEKK2 is a novel component of a noncanonical ERK pathway in osteoblasts that mediates aberrant ERK activation after NF1 loss. Accordingly, despite mice with conditional deletion of Nf1 in mature osteoblasts (Nf1fl/fl;Dmp1-Cre) and Mekk2−/− each displaying skeletal defects, Nf1fl/fl;Mekk2−/−;Dmp1-Cre mice show an amelioration of NF1-associated phenotypes. We also provide proof-of-principle that FDA-approved inhibitors with activity against MEKK2 can ameliorate NF1 skeletal pathology. Thus, MEKK2 functions as a MAP3K in the ERK pathway in osteoblasts, offering a potential new therapeutic strategy for the treatment of NF1. Neurofibromatosis type I (NF1) is characterized by prominent skeletal abnormalities mediated in part by aberrant ERK pathway activation due to NF1 loss-of-function. Here, the authors report the MEKK2 is a key mediator of this aberrant ERK activation and that MEKK2 inhibitors, including ponatinib, ameliorate skeletal defects in a mouse model of NF1.
Collapse
|
30
|
Thiele S, Werner R, Stubbe A, Hiort O, Hoeppner W. Validation of a next-generation sequencing (NGS) panel to improve the diagnosis of X-linked hypophosphataemia (XLH) and other genetic disorders of renal phosphate wasting. Eur J Endocrinol 2020; 183:497-504. [PMID: 33107440 PMCID: PMC7592643 DOI: 10.1530/eje-20-0275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/14/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Hypophosphataemic rickets (HR) comprise a clinically and genetically heterogeneous group of conditions, defined by renal-tubular phosphate wasting and consecutive loss of bone mineralisation. X-linked hypophosphataemia (XLH) is the most common form, caused by inactivating dominant mutations in PHEX, a gene encompassing 22 exons located at Xp22.1. XLH is treatable by anti-Fibroblast Growth Factor 23 antibody, while for other forms of HR such as therapy may not be indicated. Therefore, a genetic differentiation of HR is recommended. OBJECTIVE To develop and validate a next-generation sequencing panel for HR with special focus on PHEX. DESIGN AND METHODS We designed an AmpliSeq gene panel for the IonTorrent PGM next-generation platform for PHEX and ten other HR-related genes. For validation of PHEX sequencing 50 DNA-samples from XLH-patients, in whom 42 different mutations in PHEX and 1 structural variation have been proven before, were blinded, anonymised and investigated with the NGS panel. In addition, we analyzed one known homozygous DMP1 mutation and two samples of HR-patients, where no pathogenic PHEX mutation had been detected by conventional sequencing. RESULTS The panel detected all 42 pathogenic missense/nonsense/splice-site/indel PHEX-mutations and in one the known homozygous DMP1 mutation. In the remaining two patients, we revealed a somatic mosaicism of a PHEX mutation in one; as well as two variations in DMP1 and a very rare compound heterozygous variation in ENPP1 in the second patient. CONCLUSIONS This developed NGS panel is a reliable tool with high sensitivity and specificity for the diagnosis of XLH and related forms of HR.
Collapse
Affiliation(s)
- Susanne Thiele
- Division of Paediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Ralf Werner
- Division of Paediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
- Institute for Molecular Medicine, University of Lübeck, Lübeck, Germany
| | - Annika Stubbe
- Labor Dr. Heidrich und Kollegen MVZ GmbH, Hamburg, Germany
| | - Olaf Hiort
- Division of Paediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
- Correspondence should be addressed to O Hiort;
| | - Wolfgang Hoeppner
- Labor Dr. Heidrich und Kollegen MVZ GmbH, Hamburg, Germany
- Bioglobe GmbH, Hamburg, Germany
| |
Collapse
|
31
|
Wilmoth RL, Ferguson VL, Bryant SJ. A 3D, Dynamically Loaded Hydrogel Model of the Osteochondral Unit to Study Osteocyte Mechanobiology. Adv Healthc Mater 2020; 9:e2001226. [PMID: 33073541 PMCID: PMC7677224 DOI: 10.1002/adhm.202001226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Osteocytes are mechanosensitive cells that orchestrate signaling in bone and cartilage across the osteochondral unit. The mechanisms by which osteocytes regulate osteochondral homeostasis and degeneration in response to mechanical cues remain unclear. This study introduces a novel 3D hydrogel bilayer composite designed to support osteocyte differentiation and bone matrix deposition in a bone-like layer and to recapitulate key aspects of the osteochondral unit's complex loading environment. The bilayer hydrogel is fabricated with a soft cartilage-like layer overlaying a stiff bone-like layer. The bone-like layer contains a stiff 3D-printed hydrogel structure infilled with a soft, degradable, cellular hydrogel. The IDG-SW3 cells embedded within the soft hydrogel mature into osteocytes and produce a mineralized collagen matrix. Under dynamic compressive strains, near-physiological levels of strain are achieved in the bone layer (≤ 0.08%), while the cartilage layer bears the majority of the strains (>99%). Under loading, the model induces an osteocyte response, measured by prostaglandin E2, that is frequency, but not strain, dependent: a finding attributed to altered fluid flow within the composite. Overall, this new hydrogel platform provides a novel approach to study osteocyte mechanobiology in vitro in an osteochondral tissue-mimetic environment.
Collapse
Affiliation(s)
- Rachel L Wilmoth
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO, 80309-0427, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO, 80309-0427, USA
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO, 80309-0596, USA
- Materials Science and Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO, 80309, USA
| | - Stephanie J Bryant
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO, 80309-0596, USA
- Materials Science and Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO, 80309, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO, 80309-0596, USA
| |
Collapse
|
32
|
Shahabipour F, Oskuee RK, Shokrgozar MA, Naderi-Meshkin H, Goshayeshi L, Bonakdar S. CRISPR/Cas9 mediated GFP-human dentin matrix protein 1 (DMP1) promoter knock-in at the ROSA26 locus in mesenchymal stem cell for monitoring osteoblast differentiation. J Gene Med 2020; 22:e3288. [PMID: 33047833 DOI: 10.1002/jgm.3288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Dentin matrix protein 1 (DMP1) is highly expressed in mineralized tooth and bone, playing a critical role in mineralization and phosphate metabolism. One important role for the expression of DMP1 in the nucleus of preosteoblasts is the up-regulation of osteoblast-specific genes such as osteocalcin and alkaline phosphatase1 . The present study aimed to investigate the potential application of human DMP1 promoter as an indicator marker of osteoblastic differentiation. METHODS In the present study, we developed DMP1 promoter-DsRed-GFP knock-in mesenchymal stem cell (MSCs) via the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system that enabled automatic detection of osteoblast differentiation. With the application of a homology-directed knock-in strategy, a 2-kb fragment of DMP1 promoter, which was inserted upstream of the GFP and DsRed reporter cassette, was integrated into the human ROSA locus to generate double fluorescent cells. We further differentiated MSCs under osteogenic media to monitor the fate of MSCs. First, cells were transfected using CRISPR/Cas9 plasmids, which culminated in MSCs with a green fluorescence intensity, then GFP-positive cells were selected using puromycin. Second, the GFP-positive MSCs were differentiated toward osteoblasts, which demonstrated an increased red fluorescence intensity. The osteoblast differentiation of MSCs was also verified by performing alkaline phosphatase and Alizarin Red assays. RESULTS We have exploited the DMP1 promoter as a predictive marker of MSC differentiation toward osteoblasts. Using the CRISPR/Cas9 technology, we have identified a distinctive change in the fluorescence intensities of GFP knock-in (green) and osteoblast differentiated MSCs 2 . CONCLUSIONS The data show that DMP1-DsRed-GFP knock-in MSCs through CRISPR/Cas9 technology provide a valuable indicator for osteoblast differentiation. Moreover, The DMP1 promoter might be used as a predictive marker of MSCs differentiated toward osteoblasts.
Collapse
Affiliation(s)
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hojjat Naderi-Meshkin
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.,Welcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Lena Goshayeshi
- Division of Biotechnology, Faculty of veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
33
|
Dallas SL, Moore DS. Using confocal imaging approaches to understand the structure and function of osteocytes and the lacunocanalicular network. Bone 2020; 138:115463. [PMID: 32512167 PMCID: PMC7423610 DOI: 10.1016/j.bone.2020.115463] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Although overlooked in the past, osteocytes have come to the forefront of skeletal biology and are now recognized as a key cell type that integrates hormonal, mechanical and other signals to control bone mass through regulation of both osteoblast and osteoclast activity. With the surge of recent interest in osteocytes as bone regulatory cells and the discovery that they also function as endocrine regulators of phosphate homeostasis, there has been renewed interest in understanding the structure and function of these unique and relatively inaccessible cells. Osteocytes are embedded within the mineralized bone matrix and are housed within a complex lacunocanalicular system which connects them with the circulation and with other organ systems. This has presented unique challenges for imaging these cells. This review summarizes recent advances in confocal imaging approaches for visualizing osteocytes and their lacunocanalicular networks in both living and fixed bone specimens and discusses how computational approaches can be combined with live and fixed cell imaging techniques to generate quantitative outputs and predictive models. The integration of advanced imaging with computational approaches promises to lead to a more in depth understanding of the structure and function of osteocyte networks and the lacunocanalicular system in the healthy and aging state as well as in pathological conditions in bone.
Collapse
Affiliation(s)
- Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, United States of America.
| | - David S Moore
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, United States of America
| |
Collapse
|
34
|
Wei T, Xie Y, Wen X, Zhao N, Shen G. Establishment of in vitro three-dimensional cementocyte differentiation scaffolds to study orthodontic root resorption. Exp Ther Med 2020; 20:3174-3184. [PMID: 32855686 PMCID: PMC7444329 DOI: 10.3892/etm.2020.9074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Orthodontic-induced root resorption is a severe side effect that can lead to tooth root shortening and loss. Compressive force induces tissue stress in the cementum that covers the tooth root, which is associated with activation of bone metabolism and cementum resorption. To investigate the role of cementocytes in mechanotransduction and osteoclast differentiation, the present study established an in vitro three-dimensional (3D) model replicating cellular cementum and observed the effects of static compression on the cellular behavior of the cementocytes. Cell Counting Kit-8 assay, alkaline phosphatase staining and dentin matrix protein 1 quantification were used to evaluate the cementocyte differentiation in the 3D scaffolds. Cellular viability under static compression was evaluated using live/dead staining, and expression of mineral metabolism-related genes were analyzed via reverse transcription-quantitative PCR. The results suggested that the cementocytes maintained their phenotype and increased the expression of osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL) and sclerostin (SOST) in the 3D model compared with cells cultured in two dimensions. Compression force increased cell death and induced osteoclastic differentiation via the upregulation of SOST and RANKL/OPG ratio, and the downregulation of osteocalcin. The effect of compression showed a force magnitude-dependent pattern. The present study established an in vitro model of cellular cementum to study the biology of cementocytes. The results indicated that cementocytes are sensitive to mechanical loading and may serve potential roles in the metabolic regulation of minerals during orthodontic root resorption. These findings provide a novel tool to study biological processes in the field of orthodontics and expand knowledge of the biological function of cementocytes.
Collapse
Affiliation(s)
- Tingting Wei
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yufei Xie
- Department of Orthodontics, Shanghai Xuhui District Dental Disease Prevention and Control Institute, Shanghai 200001, P.R. China
| | - Xin Wen
- Department of Orthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Ning Zhao
- Department of Orthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Gang Shen
- Department of Orthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
35
|
Du JH, Lin SX, Wu XL, Yang SM, Cao LY, Zheng A, Wu JN, Jiang XQ. The Function of Wnt Ligands on Osteocyte and Bone Remodeling. J Dent Res 2020; 98:930-938. [PMID: 31282847 DOI: 10.1177/0022034519854704] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone homeostasis is continually maintained by the process of bone remodeling throughout life. Recent studies have demonstrated that Wnt signaling pathways play a fundamental role in the process of bone homeostasis and remodeling. Intracellular Wnt signaling cascades are initially triggered by a Wnt ligand-receptor complex formation. In previous studies, the blocking of Wnt ligands from different osteoblastic differentiation stages could cause defective bone development at an early stage. Osteocytes, the most abundant and long-lived type of bone cell, are a crucial orchestrator of bone remodeling. However, the role of Wnt ligands on osteocyte and bone remodeling remains unclear. In our present study, we found that, besides osteoblasts, osteocytes also express multiple Wnt ligands in the bone environment. Then, we used a Dmp1-Cre mouse line, in which there is expression in a subset of osteoblasts but mainly osteocytes, to study the function of Wnt ligands on osteocyte and bone remodeling in vivo. Furthermore, we explored the role of Wnt ligands on osteocytic mineralization ability, as well as the regulatory function of osteocytes on the process of osteoblastic differentiation and osteoclastic migration and maturity in vitro. We concluded that Wnt proteins play an important regulatory role in 1) the process of perilacunar/canalicular remodeling, as mediated by osteocytes, and 2) the balance of osteogenesis and bone resorption at the bone surface, as mediated by osteoblasts and osteoclasts, at least partly through the canonical Wnt/β-catenin signaling pathway and the OPG/RANKL signaling pathway.
Collapse
Affiliation(s)
- J H Du
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - S X Lin
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,5 Department of Prosthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - X L Wu
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - S M Yang
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - L Y Cao
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - A Zheng
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - J N Wu
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - X Q Jiang
- 1 Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 National Clinical Research Center for Oral Diseases, Shanghai, China.,3 Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,4 Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
36
|
Zhao D, Liu R, Li G, Chen M, Shang P, Yang H, Jiang JX, Xu H. Connexin 43 Channels in Osteocytes Regulate Bone Responses to Mechanical Unloading. Front Physiol 2020; 11:299. [PMID: 32296345 PMCID: PMC7137730 DOI: 10.3389/fphys.2020.00299] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/16/2020] [Indexed: 01/01/2023] Open
Abstract
Connexin (Cx) 43 forms gap junctions and hemichannels that mediate communication between osteocytes and adjacent cells or the extracellular environment in bone, respectively. To investigate the role of each channel type in response to mechanical unloading, two transgenic mouse models overexpressing dominant-negative Cx43 predominantly in osteocytes driven by a 10 kb dentin matrix protein 1 (Dmp1) promoter were generated. The R76W mutation resulted in gap junction inhibition and enhancement of hemichannels, whereas the Δ130-136 mutation inhibited both gap junctions and hemichannels. Both mutations led to cortical bone loss with increased endocortical osteoclast activity during unloading. Increased periosteal osteoclasts with decreased apoptotic osteocytes were observed only in R76W mice. These findings indicated that inhibiting osteocytic Cx43 channels promotes bone loss induced by unloading, mainly in the cortical area; moreover, hemichannels protect osteocytes against apoptosis and promote periosteal bone remodeling, whereas gap junctions modulate endocortical osteoclast activity in response to unloading.
Collapse
Affiliation(s)
- Dezhi Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Ruofei Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Guobin Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Meng Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Research and Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center of Special Environmental Biomechanics and Medical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, United States
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Key Laboratory for Space Bioscience and Biotechnology, Research and Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
- Research Center of Special Environmental Biomechanics and Medical Engineering, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
37
|
Lee SJ, Song SY, Rhee Y. Skeletal changes during lactation and after weaning in osteocyte-specific sclerostin overexpressed mice. J Bone Miner Metab 2020; 38:172-178. [PMID: 31501981 DOI: 10.1007/s00774-019-01044-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/14/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Lactation inevitably leads to a state of rapid bone loss; however, maternal bone undergoes rapid remineralization after weaning. Sclerostin, encoded by the gene SOST, is exclusively secreted from osteocytes and plays important roles in bone remodeling. However, there are few studies about the effect of sclerostin during lactation and weaning on bone microstructures. Therefore, we conducted the study to demonstrate any possible association of sclerostin with bone metabolism and skeletal changes during lactation and after weaning. MATERIALS AND METHODS We analyzed bone mineral density (BMD) by dual-energy X-ray absorptiometry at the spine and femur, bone microstructure by micro-computed tomography (μCT) at the distal and mid-shaft of the femur and biochemical markers such as sclerostin and bone turnover markers at 1 week and 3 weeks of lactation and 2 weeks post-weaning in osteocyte-specific sclerostin-overexpressed transgenic mice, and compared them with wild type. RESULTS Lactation significantly resulted in decreased spine and femur BMD at day 7 and day 21 of breastfeeding; specifically, cortical microstructure (cross-sectional thickness and cross-sectional area) at the mid-shaft of the femur had significantly deteriorated. At day 14 after weaning, femur BMD and cortical microstructure at the mid-shaft of the femur in both the wild and DMP-SOST mice had incompletely recovered; however, spine BMD and trabecular microstructures at the distal femur recovered in wild type mice. CONCLUSIONS Sclerostin, secreted by osteocytes, played a role in bone loss during lactation and also in the recovery of trabecular bone compartment by activating bone formation after weaning.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sun Yong Song
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Yumie Rhee
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
38
|
Root SH, Wee NKY, Novak S, Rosen CJ, Baron R, Matthews BG, Kalajzic I. Perivascular osteoprogenitors are associated with transcortical channels of long bones. Stem Cells 2020; 38:769-781. [PMID: 32053258 DOI: 10.1002/stem.3159] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
Bone remodeling and regeneration are dependent on resident stem/progenitor cells with the ability to replenish mature osteoblasts and repair the skeleton. Using lineage tracing approaches, we identified a population of Dmp1+ cells that reside within cortical bone and are distinct from osteocytes. Our aims were to characterize this stromal population of transcortical perivascular cells (TPCs) in their resident niche and evaluate their osteogenic potential. To distinguish this population from osteoblasts/osteocytes, we crossed mice containing inducible DMP1CreERT2/Ai9 Tomato reporter (iDMP/T) with Col2.3GFP reporter (ColGFP), a marker of osteoblasts and osteocytes. We observed iDMP/T+;ColGFP- TPCs within cortical bone following tamoxifen injection. These cells were perivascular and located within transcortical channels. Ex vivo bone outgrowth cultures showed TPCs migrated out of the channels onto the plate and expressed stem cell markers such as Sca1, platelet derived growth factor receptor beta (PDGFRβ), and leptin receptor. In a cortical bone transplantation model, TPCs migrate from their vascular niche within cortical bone and contribute to new osteoblast formation and bone tube closure. Treatment with intermittent parathyroid hormone increased TPC number and differentiation. TPCs were unable to differentiate into adipocytes in the presence of rosiglitazone in vitro or in vivo. Altogether, we have identified and characterized a novel stromal lineage-restricted osteoprogenitor that is associated with transcortical vessels of long bones. Functionally, we have demonstrated that this population can migrate out of cortical bone channels, expand, and differentiate into osteoblasts, therefore serving as a source of progenitors contributing to new bone formation.
Collapse
Affiliation(s)
- Sierra H Root
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut, USA
| | - Natalie K Y Wee
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut, USA
| | - Sanja Novak
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut, USA
| | - Clifford J Rosen
- Department of Medicine, Tufts University School of Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Brya G Matthews
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut, USA.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
39
|
Kegelman CD, Coulombe JC, Jordan KM, Horan DJ, Qin L, Robling AG, Ferguson VL, Bellido TM, Boerckel JD. YAP and TAZ Mediate Osteocyte Perilacunar/Canalicular Remodeling. J Bone Miner Res 2020; 35:196-210. [PMID: 31610061 PMCID: PMC7066596 DOI: 10.1002/jbmr.3876] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/13/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
Bone fragility fractures are caused by low bone mass or impaired bone quality. Osteoblast/osteoclast coordination determines bone mass, but the factors that control bone quality are poorly understood. Osteocytes regulate osteoblast and osteoclast activity on bone surfaces but can also directly reorganize the bone matrix to improve bone quality through perilacunar/canalicular remodeling; however, the molecular mechanisms remain unclear. We previously found that deleting the transcriptional regulators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-motif (TAZ) from osteoblast-lineage cells caused lethality in mice due to skeletal fragility. Here, we tested the hypothesis that YAP and TAZ regulate osteocyte-mediated bone remodeling by conditional ablation of both YAP and TAZ from mouse osteocytes using 8 kb-DMP1-Cre. Osteocyte-conditional YAP/TAZ deletion reduced bone mass and dysregulated matrix collagen content and organization, which together decreased bone mechanical properties. Further, YAP/TAZ deletion impaired osteocyte perilacunar/canalicular remodeling by reducing canalicular network density, length, and branching, as well as perilacunar flourochrome-labeled mineral deposition. Consistent with recent studies identifying TGF-β as a key inducer of osteocyte expression of matrix-remodeling enzymes, YAP/TAZ deletion in vivo decreased osteocyte expression of matrix proteases MMP13, MMP14, and CTSK. In vitro, pharmacologic inhibition of YAP/TAZ transcriptional activity in osteocyte-like cells abrogated TGF-β-induced matrix protease gene expression. Together, these data show that YAP and TAZ control bone matrix accrual, organization, and mechanical properties by regulating osteocyte-mediated bone remodeling. Elucidating the signaling pathways that control perilacunar/canalicular remodeling may enable future therapeutic targeting of bone quality to reverse skeletal fragility. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Christopher D Kegelman
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer C Coulombe
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Kelsey M Jordan
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Horan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Teresita M Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Zhao Y, Yuan X, Bellido T, Helms JA. A Correlation between Wnt/Beta-catenin Signaling and the Rate of Dentin Secretion. J Endod 2019; 45:1357-1364.e1. [PMID: 31522810 PMCID: PMC10900857 DOI: 10.1016/j.joen.2019.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/21/2019] [Accepted: 07/26/2019] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Odontoblasts produce dentin throughout life and in response to trauma. The purpose of this study was to identify the roles of endogenous Wnt signaling in regulating the rate of dentin accumulation. METHODS Histology, immunohistochemistry, vital dye labeling, and histomorphometric assays were used to quantify the rate of dentin accumulation as a function of age. Two strains of Wnt reporter mice were used to identify and follow the distribution and number of Wnt-responsive odontoblasts as a function of age. To show a causal relationship between dentin secretion and Wnt signaling, dentin accumulation was monitored in a strain of mice in which Wnt signaling was aberrantly elevated. RESULTS Dentin deposition occurs throughout life, but the rate of accumulation slows with age. This decline in dentin secretion correlates with a decrease in endogenous Wnt signaling. In a genetically modified strain of mice, instead of tubular dentin, aberrantly elevated Wnt signaling resulted in accumulation of reparative dentin or osteodentin secreted from predontoblasts. CONCLUSIONS Wnt signaling regulates dentin secretion by odontoblasts, and the formation of reparative or osteodentin is the direct consequence of elevated Wnt signaling. These preclinical data have therapeutic implications for the development of a biologically based pulp capping medicant.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Cariology and Endodontology, School of Dentistry, Lanzhou University, Lanzhou, China; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California
| | - Xue Yuan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California
| | - Teresita Bellido
- Departments of Anatomy and Cell Biology and Medicine, Division of Endocrinology, Indiana University School of Medicine and Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California.
| |
Collapse
|
41
|
Kim J, Adachi T. Cell Condensation Triggers the Differentiation of Osteoblast Precursor Cells to Osteocyte-Like Cells. Front Bioeng Biotechnol 2019; 7:288. [PMID: 31709248 PMCID: PMC6819367 DOI: 10.3389/fbioe.2019.00288] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022] Open
Abstract
Though the three-dimensional (3D) in vitro culture system has received attention as a powerful tool for conducting biological research, in vitro bone formation and osteocyte differentiation studies have mostly been based on results obtained using two-dimensional (2D) culture systems. Here, we introduced a rotatory culture system to fabricate 3D spheroids, using mouse osteoblast precursor cells. These spheroids, incubated for 2 days without chemical induction by osteogenic supplements, exhibited notably up-regulated osteocyte marker levels; osteoblast marker levels were down-regulated, as compared to those of the conventional 2D monolayer model. The cell condensation achieved with the 3D spheroid structure triggered a greater level of differentiation of osteoblast precursor cells into osteocyte-like cells than that observed during chemical induction. Our study might imply that osteoblasts proliferate and become condensed at the targeted bone remodeling site, because of which osteoblasts achieved the capability to differentiate into osteocytes in vivo.
Collapse
Affiliation(s)
- Jeonghyun Kim
- Biomechanics Laboratory, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Taiji Adachi
- Biomechanics Laboratory, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
42
|
Vijaykumar A, Ghassem-Zadeh S, Vidovic-Zdrilic I, Komitas K, Adameyko I, Krivanek J, Fu Y, Maye P, Mina M. Generation and characterization of DSPP-Cerulean/DMP1-Cherry reporter mice. Genesis 2019; 57:e23324. [PMID: 31271259 PMCID: PMC6939995 DOI: 10.1002/dvg.23324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022]
Abstract
To gain a better understanding of the progression of progenitor cells in the odontoblast lineage, we have examined and characterized the expression of a series of GFP reporters during odontoblast differentiation. However, previously reported GFP reporters (pOBCol2.3-GFP, pOBCol3.6-GFP, and DMP1-GFP), similar to the endogenous proteins, are also expressed by bone-forming cells, which made it difficult to delineate the two cell types in various in vivo and in vitro studies. To overcome these difficulties we generated DSPP-Cerulean/DMP1-Cherry transgenic mice using a bacterial recombination strategy with the mouse BAC clone RP24-258g7. We have analyzed the temporal and spatial expression of both transgenes in tooth and bone in vivo and in vitro. This transgenic animal enabled us to visualize the interactions between odontoblasts and surrounding tissues including dental pulp, ameloblasts and cementoblasts. Our studies showed that DMP1-Cherry, similar to Dmp1, was expressed in functional and fully differentiated odontoblasts as well as osteoblasts, osteocytes and cementoblasts. Expression of DSPP-Cerulean transgene was limited to functional and fully differentiated odontoblasts and correlated with the expression of Dspp. This transgenic animal can help in the identification and isolation of odontoblasts at later stages of differentiation and help in better understanding of developmental disorders in dentin and odontoblasts.
Collapse
Affiliation(s)
- Anushree Vijaykumar
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| | - Sean Ghassem-Zadeh
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| | - Ivana Vidovic-Zdrilic
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| | - Karren Komitas
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jan Krivanek
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Yu Fu
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| | - Peter Maye
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| | - Mina Mina
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| |
Collapse
|
43
|
Blank M, Sims NA. Cellular Processes by Which Osteoblasts and Osteocytes Control Bone Mineral Deposition and Maturation Revealed by Stage-Specific EphrinB2 Knockdown. Curr Osteoporos Rep 2019; 17:270-280. [PMID: 31401710 DOI: 10.1007/s11914-019-00524-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW We outline the diverse processes contributing to bone mineralization and bone matrix maturation by describing two mouse models with bone strength defects caused by restricted deletion of the receptor tyrosine kinase ligand EphrinB2. RECENT FINDINGS Stage-specific EphrinB2 deletion differs in its effects on skeletal strength. Early-stage deletion in osteoblasts leads to osteoblast apoptosis, delayed initiation of mineralization, and increased bone flexibility. Deletion later in the lineage targeted to osteocytes leads to a brittle bone phenotype and increased osteocyte autophagy. In these latter mice, although mineralization is initiated normally, all processes involved in matrix maturation, including mineral accrual, carbonate substitution, and collagen compaction, progress more rapidly. Osteoblasts and osteocytes control the many processes involved in bone mineralization; defining the contributing signaling activities may lead to new ways to understand and treat human skeletal fragilities.
Collapse
Affiliation(s)
- Martha Blank
- St. Vincent's Institute of Medical Research, and the Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, and the Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia.
| |
Collapse
|
44
|
Shiflett LA, Tiede-Lewis LM, Xie Y, Lu Y, Ray EC, Dallas SL. Collagen Dynamics During the Process of Osteocyte Embedding and Mineralization. Front Cell Dev Biol 2019; 7:178. [PMID: 31620436 PMCID: PMC6759523 DOI: 10.3389/fcell.2019.00178] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Lora A. Shiflett
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, United States
| | - LeAnn M. Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Yixia Xie
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Eleanor C. Ray
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Sarah L. Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, United States
- *Correspondence: Sarah L. Dallas,
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW In perilacunar/canalicular remodeling (PLR), osteocytes dynamically resorb, and then replace, the organic and mineral components of the pericellular extracellular matrix. Given the enormous surface area of the osteocyte lacuna-canalicular network (LCN), PLR is important for maintaining homeostasis of the skeleton. The goal of this review is to examine the motivations and critical considerations for the analysis of PLR, in both in vitro and in vivo systems. RECENT FINDINGS Morphological approaches alone are insufficient to elucidate the complex mechanisms regulating PLR in the healthy skeleton and in disease. Understanding the role and regulation of PLR will require the incorporation of standardized PLR outcomes as a routine part of skeletal phenotyping, as well as the development of improved molecular and cellular outcomes. Current PLR outcomes assess PLR enzyme expression, the LCN, and bone matrix composition and organization, among others. Here, we discuss current PLR outcomes and how they have been applied to study PLR induction and suppression in vitro and in vivo. Given the role of PLR in skeletal health and disease, integrated analysis of PLR has potential to elucidate new mechanisms by which osteocytes participate in skeletal health and disease.
Collapse
Affiliation(s)
- Cristal S Yee
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Charles A Schurman
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, 94143, USA
| | - Carter R White
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA.
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, 94143, USA.
| |
Collapse
|
46
|
Increased autophagy in EphrinB2-deficient osteocytes is associated with elevated secondary mineralization and brittle bone. Nat Commun 2019; 10:3436. [PMID: 31366886 PMCID: PMC6668467 DOI: 10.1038/s41467-019-11373-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/10/2019] [Indexed: 12/30/2022] Open
Abstract
Mineralized bone forms when collagen-containing osteoid accrues mineral crystals. This is initiated rapidly (primary mineralization), and continues slowly (secondary mineralization) until bone is remodeled. The interconnected osteocyte network within the bone matrix differentiates from bone-forming osteoblasts; although osteoblast differentiation requires EphrinB2, osteocytes retain its expression. Here we report brittle bones in mice with osteocyte-targeted EphrinB2 deletion. This is not caused by low bone mass, but by defective bone material. While osteoid mineralization is initiated at normal rate, mineral accrual is accelerated, indicating that EphrinB2 in osteocytes limits mineral accumulation. No known regulators of mineralization are modified in the brittle cortical bone but a cluster of autophagy-associated genes are dysregulated. EphrinB2-deficient osteocytes displayed more autophagosomes in vivo and in vitro, and EphrinB2-Fc treatment suppresses autophagy in a RhoA-ROCK dependent manner. We conclude that secondary mineralization involves EphrinB2-RhoA-limited autophagy in osteocytes, and disruption leads to a bone fragility independent of bone mass. Osteoblasts mediate bone formation, and their differentiation requires expression of EphrinB2. Here, the authors show that EphrinB2 is also expressed by osteocytes, and that its genetic ablation in mice is associated with altered autophagy, elevated mineralization and brittle bone.
Collapse
|
47
|
Abstract
Over the past two decades there have been unprecedented advances in the capabilities for live cell imaging using light and confocal microscopy. Together with the discovery of green fluorescent protein and its derivatives and the development of a vast array of fluorescent imaging probes and conjugates, it is now possible to image virtually any intracellular or extracellular protein or structure. Traditional static imaging of fixed bone cells and tissues takes a snapshot view of events at a specific time point, but can often miss the dynamic aspects of the events being investigated. This chapter provides an overview of the application of live cell imaging approaches for the study of bone cells and bone organ cultures. Rather than emphasizing technical aspects of the imaging equipment, which may vary in different laboratories, we focus on what we consider to be the important principles that are of most practical use for an investigator setting up these techniques in their own laboratory. We also provide detailed protocols that our laboratory has used for live imaging of bone cell and organ cultures.
Collapse
Affiliation(s)
- Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA.
| | - Patricia A Veno
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - LeAnn M Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| |
Collapse
|
48
|
Kalajzic I. A New Osteocytic Cell Line, Raising New Questions and Opportunities. J Bone Miner Res 2019; 34:977-978. [PMID: 31173397 PMCID: PMC6860015 DOI: 10.1002/jbmr.3736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Ivo Kalajzic
- Reconstructive Sciences, School of Dental Medicine, UConn Health, Farmington, CT, USA
| |
Collapse
|
49
|
Wang K, Le L, Chun BM, Tiede-Lewis LM, Shiflett LA, Prideaux M, Campos RS, Veno PA, Xie Y, Dusevich V, Bonewald LF, Dallas SL. A Novel Osteogenic Cell Line That Differentiates Into GFP-Tagged Osteocytes and Forms Mineral With a Bone-Like Lacunocanalicular Structure. J Bone Miner Res 2019; 34:979-995. [PMID: 30882939 PMCID: PMC7350928 DOI: 10.1002/jbmr.3720] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 01/20/2023]
Abstract
Osteocytes, the most abundant cells in bone, were once thought to be inactive, but are now known to have multifunctional roles in bone, including in mechanotransduction, regulation of osteoblast and osteoclast function and phosphate homeostasis. Because osteocytes are embedded in a mineralized matrix and are challenging to study, there is a need for new tools and cell models to understand their biology. We have generated two clonal osteogenic cell lines, OmGFP66 and OmGFP10, by immortalization of primary bone cells from mice expressing a membrane-targeted GFP driven by the Dmp1-promoter. One of these clones, OmGFP66, has unique properties compared with previous osteogenic and osteocyte cell models and forms 3-dimensional mineralized bone-like structures, containing highly dendritic GFP-positive osteocytes, embedded in clearly defined lacunae. Confocal and electron microscopy showed that structurally and morphologically, these bone-like structures resemble bone in vivo, even mimicking the lacunocanalicular ultrastructure and 3D spacing of in vivo osteocytes. In osteogenic conditions, OmGFP66 cells express alkaline phosphatase (ALP), produce a mineralized type I collagen matrix, and constitutively express the early osteocyte marker, E11/gp38. With differentiation they express osteocyte markers, Dmp1, Phex, Mepe, Fgf23, and the mature osteocyte marker, Sost. They also express RankL, Opg, and Hif1α, and show expected osteocyte responses to PTH, including downregulation of Sost, Dmp1, and Opg and upregulation of RankL and E11/gp38. Live cell imaging revealed the dynamic process by which OmGFP66 bone-like structures form, the motile properties of embedding osteocytes and the integration of osteocyte differentiation with mineralization. The OmGFP10 clone showed an osteocyte gene expression profile similar to OmGFP66, but formed less organized bone nodule-like mineral, similar to other osteogenic cell models. Not only do these cell lines provide useful new tools for mechanistic and dynamic studies of osteocyte differentiation, function, and biomineralization, but OmGFP66 cells have the unique property of modeling osteocytes in their natural bone microenvironment. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kun Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Lisa Le
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Brad M Chun
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - LeAnn M Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Lora A Shiflett
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Matthew Prideaux
- Department of Anatomy and Cell Biology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Richard S Campos
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Patricia A Veno
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Yixia Xie
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Vladimir Dusevich
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Lynda F Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, School of Medicine, Indiana University, Indianapolis, IN, USA.,Department of Orthopaedic Surgery, Indiana University, Indianapolis, IN, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| |
Collapse
|
50
|
Wu Y, Yuan X, Perez KC, Hyman S, Wang L, Pellegrini G, Salmon B, Bellido T, Helms JA. Aberrantly elevated Wnt signaling is responsible for cementum overgrowth and dental ankylosis. Bone 2019; 122:176-183. [PMID: 30408613 PMCID: PMC6559382 DOI: 10.1016/j.bone.2018.10.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 02/05/2023]
Abstract
Vertebrate teeth are attached to the jawbones using a variety of methods but in mammals, a fibrous connection is the norm. This fibrous periodontal ligament (PDL) allows teeth to move in the jawbones in response to natural eruptive forces, mastication, and orthodontic tooth movement. In some disease states the PDL either calcifies or is replaced by a mineralized tissue and the result is ankylosis, where the tooth is fused to the alveolar bone. To understand how the PDL maintains this fibrous state, we examined a strain of mice in which tooth movement is arrested. DaβcatOt mice express a stabilized form of β-catenin in DMP1-positive alveolar bone osteocytes and cementocytes, which results in elevated Wnt signaling throughout the periodontium. As a consequence, there is an accrual of massive amounts of cellular cementum and alveolar bone, the PDL itself calcifies and teeth become ankylosed. These data suggest that to maintain its fibrous nature, Wnt signaling must normally be repressed in the PDL space.
Collapse
Affiliation(s)
- Yan Wu
- Orthodontic Department, Stomatology Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory, Chongqing 401147, China; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Xue Yuan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Kristy C Perez
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Sydnee Hyman
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Liao Wang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Gretel Pellegrini
- Department of Anatomy and Cell Biology, Department of Medicine, Division of Endocrinology, Indiana University School of Medicine and Roudebush Veterans Administration Medical Center, Indianapolis, IN 46022, USA
| | - Benjamin Salmon
- Paris Descartes University - Sorbonne Paris Cité, EA 2496 - Orofacial Pathologies, Imaging and Biotherapies Lab and Dental Medicine Department, Bretonneau Hospital, HUPNVS, AP-HP, Paris, France
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Department of Medicine, Division of Endocrinology, Indiana University School of Medicine and Roudebush Veterans Administration Medical Center, Indianapolis, IN 46022, USA
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|