1
|
Choe H, Tatro JM, Hausman BS, Hujer KM, Marshall SH, Akkus O, Rather PN, Lee Z, Bonomo RA, Greenfield EM. Staphylococcus aureus and Acinetobacter baumannii Inhibit Osseointegration of Orthopedic Implants. Infect Immun 2022; 90:e0066921. [PMID: 35099267 PMCID: PMC8929340 DOI: 10.1128/iai.00669-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Bacterial infections routinely cause inflammation and thereby impair osseointegration of orthopedic implants. Acinetobacter spp., which cause osteomyelitis following trauma, on or off the battlefield, were, however, reported to cause neither osteomyelitis nor osteolysis in rodents. We therefore compared the effects of Acinetobacter strain M2 to those of Staphylococcus aureus in a murine implant infection model. Sterile implants and implants with adherent bacteria were inserted in the femur of mice. Bacterial burden, levels of proinflammatory cytokines, and osseointegration were measured. All infections were localized to the implant site. Infection with either S. aureus or Acinetobacter strain M2 increased the levels of proinflammatory cytokines and the chemokine CCL2 in the surrounding femurs, inhibited bone formation around the implant, and caused loss of the surrounding cortical bone, leading to decreases in both histomorphometric and biomechanical measures of osseointegration. Genetic deletion of TLR2 and TLR4 from the mice partially reduced the effects of Acinetobacter strain M2 on osseointegration but did not alter the effects of S. aureus. This is the first report that Acinetobacter spp. impair osseointegration of orthopedic implants in mice, and the murine model developed for this study will be useful for future efforts to clarify the mechanism of implant failure due to Acinetobacter spp. and to assess novel diagnostic tools or therapeutic agents.
Collapse
Affiliation(s)
- Hyonmin Choe
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Orthopaedics, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Joscelyn M. Tatro
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Bryan S. Hausman
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kristine M. Hujer
- CWRU–Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Steve H. Marshall
- CWRU–Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Ozan Akkus
- Department of Mechanical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Phillip N. Rather
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Research Service, Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA
| | - Zhenghong Lee
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert A. Bonomo
- CWRU–Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Edward M. Greenfield
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Özkan MB, Turhan VB. Use of Parathyroid Function Index and Wisconsin Index to Differentiate Primary Hyperparathyroidism From Secondary Hyperparathyroidism: A Case-Control Study. Cureus 2022; 14:e23043. [PMID: 35419240 PMCID: PMC8994672 DOI: 10.7759/cureus.23043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction: Patients with primary hyperparathyroidism (PHPT) can be asymptomatic or have a normal calcium level (NHPT). Patients with 25(OH) vitamin D insufficiency, on the other hand, may present with a similar presentation. In regions where 25(OH) vitamin D deficiency is common, patients are usually diagnosed with secondary hyperparathyroidism (SHPT). Therefore, it is necessary to separate PHPT and NHPT from SHPT. Parathormone and calcium values are used for differentiation in the clinic. The predictive value of the newly developed parathyroid function test (PFindex), which previously had a high diagnostic value, was evaluated in this patient population in our investigation. Methods: The study comprised 163 PHPT and NHPT patients with pathological confirmation and 56 SHPT patients. The PHPT, NHPT, and SHPT properties were defined using PFindex. The diagnostic power of PFindex was investigated using a receiver operating characteristic (ROC) curve of the results assessed in three groups. Results: The PHPT group had the highest PFindex (1365.4±784.6) compared to the other two groups (NHPT: 723.5±509.4; SHPT:227.2±49.9, all p < 0.001). A PFindex threshold of 327.8 yielded 91.9% and 90.9% sensitivity and specificity rates for distinguishing PHPT and NHPT from SHPT, respectively. Conclusion: PFindex gave the outstanding diagnostic capacity to distinguish PHPT from SHPT due to our research. This straightforward tool can assist in making quick decisions about vitamin D therapy or surgery for PHPT.
Collapse
|
3
|
Hardy E, Fernandez-Patron C. Destroy to Rebuild: The Connection Between Bone Tissue Remodeling and Matrix Metalloproteinases. Front Physiol 2020; 11:47. [PMID: 32116759 PMCID: PMC7013034 DOI: 10.3389/fphys.2020.00047] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Bone is a dynamic organ that undergoes constant remodeling, an energetically costly process by which old bone is replaced and localized bone defects are repaired to renew the skeleton over time, thereby maintaining skeletal health. This review provides a general overview of bone’s main players (bone lining cells, osteocytes, osteoclasts, reversal cells, and osteoblasts) that participate in bone remodeling. Placing emphasis on the family of extracellular matrix metalloproteinases (MMPs), we describe how: (i) Convergence of multiple protease families (including MMPs and cysteine proteinases) ensures complexity and robustness of the bone remodeling process, (ii) Enzymatic activity of MMPs affects bone physiology at the molecular and cellular levels and (iii) Either overexpression or deficiency/insufficiency of individual MMPs impairs healthy bone remodeling and systemic metabolism. Today, it is generally accepted that proteolytic activity is required for the degradation of bone tissue in osteoarthritis and osteoporosis. However, it is increasingly evident that inactivating mutations in MMP genes can also lead to bone pathology including osteolysis and metabolic abnormalities such as delayed growth. We argue that there remains a need to rethink the role played by proteases in bone physiology and pathology.
Collapse
Affiliation(s)
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Guo Y, Wang Q, Lu C, Fan P, Li J, Luo X, Chen D. New parathyroid function index for the differentiation of primary and secondary hyperparathyroidism: a case-control study. BMC Endocr Disord 2020; 20:5. [PMID: 31914999 PMCID: PMC6950802 DOI: 10.1186/s12902-019-0487-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Patients with primary hyperparathyroidism (PHPT) may be asymptomatic, and some may present with normocalcemic PHPT (NPHPT). Patients with vitamin D deficiency may also be asymptomatic, with normal calcium and elevated PTH concentrations. These latter patients are usually diagnosed with vitamin D deficiency-induced secondary hyperparathyroidism (VD-SHPT). Therefore, it is very difficult to distinguish PHPT and NPHPT from VD-SHPT based on calcium or PTH concentrations in clinical settings. In this case-control study, we aimed to verify the diagnostic power of a new parathyroid function index (PFindex = Ca*PTH/P). METHODS This study enrolled 128 patients with surgically and pathologically confirmed PHPT, including 36 with NPHPT, at a hospital in West China between January 2009 and September 2017. Thirty-seven patients with VD-SHPT and 45 healthy controls were selected from the population of a cross-sectional epidemiological study as the SHPT and healthy groups, respectively. We used the PFindex to describe the characteristics of PHPT, NPHPT, and VD-SHPT.. Differences between the four groups were compared, and a receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic power of PFindex. RESULTS The PHPT group had the highest PFindex (454 ± 430), compared to the other three groups (NPHPT: 101 ± 111; SHPT: 21.7 ± 6.38; healthy: 12.2 ± 2.98, all p < 0.001). A PFindex cut-off value of 34 yielded sensitivity and specificity rates of 96.9 and 97.6% and of 94.4 and 94.6% for the diagnoses of PHPT and NPHPT, respectively. The use of a PFindex > 34 to differentiate NPHPT from VD-SHPT yielded the highest positive likelihood ratio and lowest negative likelihood ratio. CONCLUSION The PFindex provided excellent diagnostic power for the differentiation of NPHPT from VD-SHPT. This simple tool may be useful for guiding timely decision-making processes regarding the initiation of vitamin D treatment or surgery for PHPT.
Collapse
Affiliation(s)
- Yanhong Guo
- Endocrinology Department of West China Hospital, Sichuan University, Chengdu, China
- Endocrinology Department, Hospital of Chengdu Office of People's Government of Tibetan autonomous Region, Chengdu, China
| | - Qin Wang
- Endocrinology Department of West China Hospital, Sichuan University, Chengdu, China
| | - Chunyan Lu
- Endocrinology Department of West China Hospital, Sichuan University, Chengdu, China
| | - Pianpian Fan
- Endocrinology Department of West China Hospital, Sichuan University, Chengdu, China
| | - Jing Li
- Endocrinology Department of West China Hospital, Sichuan University, Chengdu, China
| | - Ximing Luo
- Endocrinology Department of West China Hospital, Sichuan University, Chengdu, China
| | - Decai Chen
- Endocrinology Department of West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Wear Particle-induced Priming of the NLRP3 Inflammasome Depends on Adherent Pathogen-associated Molecular Patterns and Their Cognate Toll-like Receptors: An In Vitro Study. Clin Orthop Relat Res 2018; 476:2442-2453. [PMID: 30427314 PMCID: PMC6259896 DOI: 10.1097/corr.0000000000000548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Orthopaedic wear particles activate the NLRP3 inflammasome to produce active interleukin 1β (IL1β). However, the NLRP3 inflammasome must be primed before it can be activated, and it is unknown whether wear particles induce priming. Toll-like receptors (TLRs) are thought to mediate particle bioactivity. It remains controversial whether pathogen-associated molecular patterns (PAMPs) and/or alarmins are responsible for TLR activation by wear particles. QUESTIONS/PURPOSES (1) Does priming of the NLRP3 inflammasome by wear particles depend on adherent PAMPs? (2) Does priming of the NLRP3 inflammasome by wear particles depend on TLRs and TIRAP/Mal? (3) Does priming of the NLRP3 inflammasome by wear particles depend on cognate TLRs? (4) Does activation of the NLRP3 inflammasome by wear particles depend on adherent PAMPs? METHODS Immortalized murine macrophages were stimulated by as-received titanium particles with adherent bacterial debris, endotoxin-free titanium particles, or titanium particles with adherent ultrapure lipopolysaccharide. To study priming, NLRP3 and IL1β mRNA and IL1β protein levels were assessed in wild-type, TLR4, TLR2, and TIRAP/Mal macrophages. To study activation, IL1β protein secretion was assessed in wild-type macrophages preprimed with ultrapure lipopolysaccharide. RESULTS Compared with titanium particles with adherent bacterial debris, endotoxin-free titanium particles induced 86% less NLRP3 mRNA (0.05 ± 0.03 versus 0.35 ± 0.01 NLRP3/GAPDH, p < 0.001) and 91% less IL1β mRNA (0.02 ± 0.01 versus 0.22 ± 0.03 IL1β/GAPDH, p < 0.001). ProIL1β protein level was robustly increased in wild-type macrophages stimulated by particles with adherent PAMPs but was not detectably produced in macrophages stimulated by endotoxin-free particles. Adherence of ultrapure lipopolysaccharide to endotoxin-free particles reconstituted stimulation of NLRP3 and IL1β mRNA. Particles with adherent bacterial debris induced 79% less NLRP3 mRNA (0.09 ± 0.004 versus 0.43 ± 0.13 NLRP3/GAPDH, p < 0.001) and 40% less IL1β mRNA (0.09 ± 0.04 versus 0.15 ± 0.03 IL1β/GAPDH, p = 0.005) in TLR4 macrophages than in wild-type. Similarly, those particles induced 49% less NLRP3 mRNA (0.22 ± 0.10 versus 0.43 ± 0.13 NLRP3/GAPDH, p = 0.004) and 47% less IL1β mRNA (0.08 ± 0.02 versus 0.15 ± 0.03 IL1β/GAPDH, p = 0.012) in TIRAP/Mal macrophages than in wild-type. Particles with adherent ultrapure lipopolysaccharide induced 96% less NLRP3 mRNA (0.012 ± 0.001 versus 0.27 ± 0.05 NLRP3/GAPDH, p = 0.003) and 91% less IL1β mRNA (0.03 ± 0.01 versus 0.34 ± 0.07 IL1β/GAPDH, p < 0.001) expression in TLR4 macrophages than in wild-type. In contrast, those particles did not induce less NLRP3 and IL1β mRNA in TLR2 macrophages. IL1β protein secretion was equivalently induced by particles with adherent bacterial debris or by endotoxin-free particles in a time-dependent manner in wild-type macrophages. For example, particles with adherent bacterial debris induced 99% ± 2% of maximal IL1β secretion after 12 hours, whereas endotoxin-free particles induced 92% ± 11% (p > 0.5). CONCLUSIONS This cell culture study showed that adherent PAMPs are required for priming of the NLRP3 inflammasome by wear particles and this process is dependent on their cognate TLRs and TIRAP/Mal. In contrast, activation of the NLRP3 inflammasome by titanium particles is not dependent on adherent PAMPs. Animal and implant retrieval studies are needed to determine whether wear particles have similar effects on the NLRP3 inflammasome in vivo. CLINICAL RELEVANCE Our findings, together with recent findings that aseptic loosening associates with polymorphisms in the TIRAP/Mal locus, support that adherent PAMPs may contribute to aseptic loosening in patients undergoing arthroplasty.
Collapse
|
6
|
Wang T, Azeddine B, Mah W, Harvey EJ, Rosenblatt D, Séguin C. Osteonecrosis of the femoral head: genetic basis. INTERNATIONAL ORTHOPAEDICS 2018; 43:519-530. [PMID: 30328481 DOI: 10.1007/s00264-018-4172-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Genetic factors and hereditary forms of osteonecrosis of the femoral head (ONFH) have been elucidated through genetic association studies. The significance of these cases is that they suggest an alternative hypothesis to the development of the disease. This review presents a summary of single nucleotide polymorphisms (SNPs) and other genetic mutation variations found in association with ONFH, including our recent identification of a novel mutation in the transient receptor potential vanilloid 4 (TRPV4) gene in association with inherited ONFH. The purpose of this review is to consolidate and categorize genetic linkages according to physiological pathways. METHODS A systematic review of literature from PubMed and Google Scholar was undertaken with a focus on genetic linkages and hereditary case studies of the disease. Recent genetic analysis studies published after 2007 were the focus of genetic linkages in non-hereditary cases. RESULTS The summary of these genetic findings identifies biological processes believed to be involved in the development of ONFH, which include circulation, steroid metabolism, immunity, and the regulation of bone formation. CONCLUSION Taken together, these associations may lead to new pathways of bone repair and remodeling while opening new avenues for therapeutic targets. Knowledge of genetic variations could help identify individuals considered to be at higher risk of developing ONFH and prevent the multiple hit effect.
Collapse
Affiliation(s)
- Tracy Wang
- Vascular Biology Research lab, Research Institute (RI) McGill University Health Centre, C9 Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada.
| | - Bouziane Azeddine
- Vascular Biology Research lab, Research Institute (RI) McGill University Health Centre, C9 Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - Wayne Mah
- Vascular Biology Research lab, Research Institute (RI) McGill University Health Centre, C9 Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - Edward J Harvey
- Department Surgery, Division Orthopaedic Surgery, McGill University Health Centre, B5 Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - David Rosenblatt
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Chantal Séguin
- Vascular Biology Research lab, Research Institute (RI) McGill University Health Centre, C9 Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada. .,Department of Medicine, Division of Hematology and Oncology, McGill University Health Centre, Montreal, Quebec, H4A 3J1, Canada. .,Glen Site, Cedars Cancer Centre, McGill University Health Centre, 1001 Décarie Blvd., room D02.7519, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
7
|
NLRP3 inflammasome activation in inflammaging. Semin Immunol 2018; 40:61-73. [PMID: 30268598 DOI: 10.1016/j.smim.2018.09.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
Abstract
The process of aging is associated with the appearance of low-grade subclinical inflammation, termed inflammaging, that can accelerate age-related diseases. In Western societies the age-related inflammatory response can additionally be aggravated by an inflammatory response related to modern lifestyles and excess calorie consumption, a pathophysiologic inflammatory response that was coined metaflammation. Here, we summarize the current knowledge of mechanisms that drive both of these processes and focus our discussion the emerging concept that a key innate immune pathway, the NLRP3 inflammasome, is centrally involved in the recognition of triggers that appear during physiological aging and during metabolic stress. We further discuss how these processes are involved in the pathogenesis of common age-related pathologies and highlight potential strategies by which the detrimental inflammatory responses could be pharmacologically addressed.
Collapse
|
8
|
Alippe Y, Wang C, Ricci B, Xiao J, Qu C, Zou W, Novack DV, Abu-Amer Y, Civitelli R, Mbalaviele G. Bone matrix components activate the NLRP3 inflammasome and promote osteoclast differentiation. Sci Rep 2017; 7:6630. [PMID: 28747793 PMCID: PMC5529467 DOI: 10.1038/s41598-017-07014-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/20/2017] [Indexed: 12/11/2022] Open
Abstract
The NLRP3 inflammasome senses a variety of signals referred to as danger associated molecular patterns (DAMPs), including those triggered by crystalline particulates or degradation products of extracellular matrix. Since some DAMPs confer tissue-specific activation of the inflammasomes, we tested the hypothesis that bone matrix components function as DAMPs for the NLRP3 inflammasome and regulate osteoclast differentiation. Indeed, bone particles cause exuberant osteoclastogenesis in the presence of RANKL, a response that correlates with NLRP3 abundance and the state of inflammasome activation. To determine the relevance of these findings to bone homeostasis, we studied the impact of Nlrp3 deficiency on bone using pre-clinical mouse models of high bone turnover, including estrogen deficiency and sustained exposure to parathyroid hormone or RANKL. Despite comparable baseline indices of bone mass, bone loss caused by hormonal or RANKL perturbations is significantly reduced in Nlrp3 deficient than in wild type mice. Consistent with the notion that osteolysis releases DAMPs from bone matrix, pharmacologic inhibition of bone resorption by zoledronate attenuates inflammasome activation in mice. Thus, signals originating from bone matrix activate the NLRP3 inflammasome in the osteoclast lineage, and may represent a bone-restricted positive feedback mechanism that amplifies bone resorption in pathologic conditions of accelerated bone turnover.
Collapse
Affiliation(s)
- Yael Alippe
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Biancamaria Ricci
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Jianqiu Xiao
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Chao Qu
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Wei Zou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Deborah V Novack
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Yousef Abu-Amer
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Roberto Civitelli
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States.
| |
Collapse
|
9
|
Rodríguez-Carballo E, Gámez B, Ventura F. p38 MAPK Signaling in Osteoblast Differentiation. Front Cell Dev Biol 2016; 4:40. [PMID: 27200351 PMCID: PMC4858538 DOI: 10.3389/fcell.2016.00040] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
The skeleton is a highly dynamic tissue whose structure relies on the balance between bone deposition and resorption. This equilibrium, which depends on osteoblast and osteoclast functions, is controlled by multiple factors that can be modulated post-translationally. Some of the modulators are Mitogen-activated kinases (MAPKs), whose role has been studied in vivo and in vitro. p38-MAPK modifies the transactivation ability of some key transcription factors in chondrocytes, osteoblasts and osteoclasts, which affects their differentiation and function. Several commercially available inhibitors have helped to determine p38 action on these processes. Although it is frequently mentioned in the literature, this chemical approach is not always as accurate as it should be. Conditional knockouts are a useful genetic tool that could unravel the role of p38 in shaping the skeleton. In this review, we will summarize the state of the art on p38 activity during osteoblast differentiation and function, and emphasize the triggers of this MAPK.
Collapse
Affiliation(s)
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| |
Collapse
|
10
|
Bechtel CP, Gebhart JJ, Tatro JM, Kiss-Toth E, Wilkinson JM, Greenfield EM. Particle-Induced Osteolysis Is Mediated by TIRAP/Mal in Vitro and in Vivo: Dependence on Adherent Pathogen-Associated Molecular Patterns. J Bone Joint Surg Am 2016; 98:285-94. [PMID: 26888676 DOI: 10.2106/jbjs.o.00736] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Proinflammatory signaling by toll-like receptors (TLRs) likely contributes to biologic responses to wear particles causing aseptic loosening. We recently reported associations with aseptic loosening in patients with polymorphisms in the locus encoding an adapter protein specific for TLR-2 and TLR-4 known as toll/interleukin-1 receptor domain-containing adapter protein/MyD88 adapter-like (TIRAP/Mal). To directly examine the contribution of TIRAP/Mal, we tested the hypothesis that TIRAP/Mal deficiency reduces the activity of wear particles. Signaling by TLR-2 and TLR-4 through TIRAP/Mal can be activated by bacterial pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide or endogenous alarmins. To distinguish between those possibilities, we tested the hypothesis that the effects of TIRAP/Mal depend on the adherence of bacterial PAMPs to the particles. METHODS In vitro mRNA levels and secretion of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 were measured after incubating wild-type and TIRAP/Mal(-/-) macrophages in the presence or absence of titanium particles with adherent bacterial debris, so-called endotoxin-free particles, or particles with adherent lipopolysaccharide. In vivo osteolysis was measured after implanting titanium particles on the calvaria of wild-type and TIRAP/Mal(-/-) mice. RESULTS TIRAP/Mal deficiency significantly inhibited the activity of titanium particles with adherent bacterial debris to stimulate in vivo osteolysis and in vitro cytokine mRNAs and secretion. Those effects are dependent on adherent PAMPs because removal of >99% of the adherent bacterial debris from the particles significantly reduced their activity and the remaining activity was not dependent on TIRAP/Mal. Moreover, adherence of highly purified lipopolysaccharide to the endotoxin-free particles reconstituted the activity and the dependence on TIRAP/Mal. CONCLUSIONS TIRAP/Mal deficiency reduces inflammatory responses and osteolysis induced by particles with adherent PAMPs. CLINICAL RELEVANCE Our results, coupled with the genetic associations between aseptic loosening and polymorphisms within the TIRAP/Mal locus, support TLR signaling through TIRAP/Mal as one of the factors that enhances the activity of wear particles and further support the hypothesis that bacterial PAMPs likely contribute to aseptic loosening in a subset of patients.
Collapse
Affiliation(s)
- Christopher P Bechtel
- Departments of Orthopaedics (C.P.B., J.J.G., J.M.T., and E.M.G.) and Pathology (E.M.G.), University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Jeremy J Gebhart
- Departments of Orthopaedics (C.P.B., J.J.G., J.M.T., and E.M.G.) and Pathology (E.M.G.), University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Joscelyn M Tatro
- Departments of Orthopaedics (C.P.B., J.J.G., J.M.T., and E.M.G.) and Pathology (E.M.G.), University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Endre Kiss-Toth
- Departments of Cardiovascular Science (E.K.-T.) and Human Metabolism (J.M.W.), University of Sheffield, Sheffield, United Kingdom
| | - J Mark Wilkinson
- Departments of Cardiovascular Science (E.K.-T.) and Human Metabolism (J.M.W.), University of Sheffield, Sheffield, United Kingdom
| | - Edward M Greenfield
- Departments of Orthopaedics (C.P.B., J.J.G., J.M.T., and E.M.G.) and Pathology (E.M.G.), University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
11
|
Thouverey C, Caverzasio J. Ablation of p38α MAPK Signaling in Osteoblast Lineage Cells Protects Mice From Bone Loss Induced by Estrogen Deficiency. Endocrinology 2015; 156:4377-87. [PMID: 26441240 DOI: 10.1210/en.2015-1669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Estrogen deficiency causes bone loss by increasing the number of bone-resorbing osteoclasts. Selective p38α MAPK inhibitors prevent bone-wasting effects of estrogen withdrawal but implicated mechanisms remain to be identified. Here, we show that inactivation of the p38α-encoding gene in osteoblast lineage cells with the use of an osteocalcin-cre transgene protects mice from ovariectomy-induced bone loss (a murine model of postmenopausal osteoporosis). Ovariectomy fails to induce bone loss, increase bone resorption, and stimulate receptor activator of nuclear factor κB ligand and IL-6 expression in mice lacking p38α in osteoblasts and osteocytes. Finally, TNFα or IL-1, which are osteoclastogenic cytokines overproduced in the bone marrow under estrogen deficiency, can activate p38α signaling in osteoblasts, but those cytokines cannot enhance Rankl and Il6 expressions or increase osteoclast formation in p38a-deficient osteoblast cultures. These findings demonstrate that p38α MAPK signaling in osteoblast lineage cells mediates ovariectomy-induced bone loss by up-regulating receptor activator of nuclear factor κB ligand and IL-6 production.
Collapse
Affiliation(s)
- Cyril Thouverey
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Joseph Caverzasio
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
12
|
Pulskens WP, Verkaik M, Sheedfar F, van Loon EP, van de Sluis B, Vervloet MG, Hoenderop JG, Bindels RJ, NIGRAM Consortium. Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure. PLoS One 2015; 10:e0142510. [PMID: 26566277 PMCID: PMC4643984 DOI: 10.1371/journal.pone.0142510] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/22/2015] [Indexed: 12/17/2022] Open
Abstract
Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD), yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce kidney failure and to investigate the subsequent impact on systemic and local renal factors involved in Ca(2+) and Pi regulation. Our results demonstrated that both experimental models induce features of CKD, as reflected by uremia, and elevated renal neutrophil gelatinase-associated lipocalin (NGAL) expression. In our model kidney failure was associated with polyuria, hypercalcemia and elevated urinary Ca(2+) excretion. In accordance, CKD augmented systemic PTH and affected the FGF23-αklotho-vitamin-D axis by elevating circulatory FGF23 levels and reducing renal αklotho expression. Interestingly, renal FGF23 expression was also induced by inflammatory stimuli directly. Renal expression of Cyp27b1, but not Cyp24a1, and blood levels of 1,25-dihydroxy vitamin D3 were significantly elevated in both models. Furthermore, kidney failure was characterized by enhanced renal expression of the transient receptor potential cation channel subfamily V member 5 (TRPV5), calbindin-D28k, and sodium-dependent Pi transporter type 2b (NaPi2b), whereas the renal expression of sodium-dependent Pi transporter type 2a (NaPi2a) and type 3 (PIT2) were reduced. Together, our data indicates two different models of experimental kidney failure comparably associate with disturbed FGF23-αklotho-vitamin-D signalling and a deregulated electrolyte homeostasis. Moreover, this study identifies local tubular, possibly inflammation- or PTH- and/or FGF23-associated, adaptive mechanisms, impacting on Ca(2+)/Pi homeostasis, hence enabling new opportunities to target electrolyte disturbances that emerge as a consequence of CKD development.
Collapse
Affiliation(s)
- Wilco P. Pulskens
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Dept. of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Melissa Verkaik
- Dept. of Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Fareeba Sheedfar
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ellen P. van Loon
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart van de Sluis
- Dept. of Pediatrics, Molecular Genetics Section, University Medical Center Groningen, Groningen, The Netherlands
| | - Mark G. Vervloet
- Dept. of Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Joost G. Hoenderop
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J. Bindels
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
13
|
Abstract
BACKGROUND Innate defense regulator peptide-1018 (IDR-1018) is a 12-amino acid, synthetic, immunomodulatory host defense peptide that can reduce soft tissue infections and is less likely to induce bacterial resistance than conventional antibiotics. However, IDRs have not been tested on orthopaedic infections and the immunomodulatory effects of IDR-1018 have only been characterized in response to lipopolysacharide, which is exclusively produced by Gram-negative bacteria. QUESTIONS/PURPOSES We sought (1) to more fully characterize the immunomodulatory effects of IDR-1018, especially in response to Staphylococcus aureus; and (2) to determine whether IDR-1018 decreases S aureus infection of orthopaedic implants in mice and thereby protects the implants from failure to osseointegrate. METHODS In vitro effects of IDR-1018 on S aureus were assessed by determining minimum inhibitory concentrations in bacterial broth without and with supplementation of physiologic ion levels. In vitro effects of IDR-1018 on macrophages were determined by measuring production of monocyte chemoattractant protein-1 (MCP-1) and proinflammatory cytokines by enzyme-linked immunosorbent assay. In vivo effects of IDR-1018 were determined in a murine model of S aureus implant infection by quantitating bacterial burden, macrophage recruitment, MCP-1, proinflammatory cytokines, and osseointegration in nine mice per group on Day 1 postimplantation and 20 mice per group on Day 15 postimplantation. RESULTS IDR-1018 demonstrated antimicrobial activity by directly killing S aureus even in the presence of physiologic ion levels, increasing recruitment of macrophages to the site of infections by 40% (p = 0.036) and accelerating S aureus clearance in vivo (p = 0.008) with a 2.6-fold decrease in bacterial bioburden on Day 7 postimplantation. In vitro immunomodulatory activity of IDR-1018 included inducing production of MCP-1 in the absence of other inflammatory stimuli and to potently blunt excess production of proinflammatory cytokines and MCP-1 induced by lipopolysaccharide. Higher concentrations of IDR-1018 were required to blunt production of proinflammatory cytokines and MCP-1 in the presence S aureus. The largest in vivo immunomodulatory effect of IDR-1018 was to reduce tumor necrosis factor-α levels induced by S aureus by 60% (p = 0.006). Most importantly, IDR-1018 reduced S aureus-induced failures of osseointegration by threefold (p = 0.022) and increased osseointegration as measured by ultimate force (5.4-fold, p = 0.033) and average stiffness (4.3-fold, p = 0.049). CONCLUSIONS IDR-1018 is potentially useful to reduce orthopaedic infections by directly killing bacteria and by recruiting macrophages to the infection site. CLINICAL RELEVANCE These findings make IDR-1018 an attractive candidate to explore in larger animal models to ascertain whether its effects in our in vitro and mouse experiments can be replicated in more clinically relevant settings.
Collapse
|
14
|
|
15
|
Domingo P, Lamarca MK, Gallego-Escuredo JM, Torres F, Domingo JC, Villarroya J, Gutierrez MDM, Mateo MG, Vidal F, Villarroya F, Giralt M. Circulating fibroblast growth factor 23 (FGF23) levels are associated with metabolic disturbances and fat distribution but not cardiovascular risk in HIV-infected patients. J Antimicrob Chemother 2015; 70:1825-32. [PMID: 25700720 DOI: 10.1093/jac/dkv027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/25/2015] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Dyslipidaemia, insulin resistance, metabolic syndrome and HIV/HAART-associated lipodystrophy syndrome (HALS) are common comorbidities in HIV-1-infected patients, which may increase cardiovascular risk. Fibroblast growth factor 23 (FGF23) is a bone-derived hormone with effects on metabolism and phosphate homeostasis. The aim of this study was to determine the relationship between FGF23 levels, metabolic alterations, fat distribution and cardiovascular risk. METHODS This was a cross-sectional study. Serum FGF23 levels were analysed in 152 patients and 34 healthy control individuals. Patients belonged to three groups: HIV-1-infected, antiretroviral-treated patients who have developed HALS (n = 60); HIV-1-infected, antiretroviral-treated patients without HALS (n = 43); and untreated (naive) HIV-1-infected patients (n = 49). Serum FGF23 levels were compared with lipid and glucose homeostasis parameters, fat distribution and cardiovascular risk. RESULTS Serum FGF23 levels were increased in HIV-1-infected patients, but the increase was most marked in those with HALS. FGF23 levels showed a strong positive correlation with age, indicators of dyslipidaemia (LDL cholesterol, polyunsaturated fatty acids and monounsaturated fatty acids), HALS parameters (trunk/appendicular fat ratio), insulin resistance (fasting insulin and homeostasis model assessment of insulin resistance) and C-reactive protein. FGF23 levels correlated with cardiovascular risk but correlation was lost after age adjustment. CONCLUSIONS FGF23 levels are increased in HIV-1-infected patients, especially in those with HALS, and this increase is associated with dyslipidaemia, insulin resistance, metabolic syndrome, fat distribution and parameters of inflammation. FGF23 is not associated with cardiovascular risk when age is taken into account.
Collapse
Affiliation(s)
- Pere Domingo
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Karuna Lamarca
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José M Gallego-Escuredo
- Departament de Bioquimica i Biologia Molecular and Institut de Biomedicina de la Universitat de Barcelona (IBUB), CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Ferran Torres
- Biostatistics and Data Management Core Facility, IDIBAPS, Hospital Clinic Barcelona, Barcelona, Spain Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan C Domingo
- Departament de Bioquimica i Biologia Molecular and Institut de Biomedicina de la Universitat de Barcelona (IBUB), CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Joan Villarroya
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain Departament de Bioquimica i Biologia Molecular and Institut de Biomedicina de la Universitat de Barcelona (IBUB), CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - M Del Mar Gutierrez
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Gracia Mateo
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Vidal
- Infectious Diseases Unit, Department of Internal Medicine, Hospital Universitari Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Francesc Villarroya
- Departament de Bioquimica i Biologia Molecular and Institut de Biomedicina de la Universitat de Barcelona (IBUB), CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Marta Giralt
- Departament de Bioquimica i Biologia Molecular and Institut de Biomedicina de la Universitat de Barcelona (IBUB), CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| |
Collapse
|
16
|
Chen X, Hausman BS, Luo G, Zhou G, Murakami S, Rubin J, Greenfield EM. Protein kinase inhibitor γ reciprocally regulates osteoblast and adipocyte differentiation by downregulating leukemia inhibitory factor. Stem Cells 2015; 31:2789-99. [PMID: 23963683 DOI: 10.1002/stem.1524] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 12/26/2022]
Abstract
The protein kinase inhibitor (Pki) gene family inactivates nuclear protein kinase A (PKA) and terminates PKA-induced gene expression. We previously showed that Pkig is the primary family member expressed in osteoblasts and that Pkig knockdown increases the effects of parathyroid hormone and isoproterenol on PKA activation, gene expression, and inhibition of apoptosis. Here, we determined whether endogenous levels of Pkig regulate osteoblast differentiation. Pkig is the primary family member in murine embryonic fibroblasts (MEFs), murine marrow-derived mesenchymal stem cells, and human mesenchymal stem cells. Pkig deletion increased forskolin-dependent nuclear PKA activation and gene expression and Pkig deletion or knockdown increased osteoblast differentiation. PKA signaling is known to stimulate adipogenesis; however, adipogenesis and osteogenesis are often reciprocally regulated. We found that the reciprocal regulation predominates over the direct effects of PKA since adipogenesis was decreased by Pkig deletion or knockdown. Pkig deletion or knockdown also simultaneously increased osteogenesis and decreased adipogenesis in mixed osteogenic/adipogenic medium. Pkig deletion increased PKA-induced expression of leukemia inhibitory factor (Lif) mRNA and LIF protein. LIF neutralizing antibodies inhibited the effects on osteogenesis and adipogenesis of either Pkig deletion in MEFs or PKIγ knockdown in both murine and human mesenchymal stem cells. Collectively, our results show that endogenous levels of Pkig reciprocally regulate osteoblast and adipocyte differentiation and that this reciprocal regulation is mediated in part by LIF. Stem Cells 2013;31:2789-2799.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopaedics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Standal T, Johnson RW, McGregor NE, Poulton IJ, Ho PWM, Martin TJ, Sims NA. gp130 in late osteoblasts and osteocytes is required for PTH-induced osteoblast differentiation. J Endocrinol 2014; 223:181-90. [PMID: 25228504 DOI: 10.1530/joe-14-0424] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Parathyroid hormone (PTH) treatment stimulates osteoblast differentiation and bone formation, and is the only currently approved anabolic therapy for osteoporosis. In cells of the osteoblast lineage, PTH also stimulates the expression of members of the interleukin 6 (IL-6) cytokine superfamily. Although the similarity of gene targets regulated by these cytokines and PTH suggest cooperative action, the dependence of PTH anabolic action on IL-6 cytokine signaling is unknown. To determine whether cytokine signaling in the osteocyte through glycoprotein 130 (gp130), the common IL-6 superfamily receptor subunit, is required for PTH anabolic action, male mice with conditional gp130 deletion in osteocytes (Dmp1Cre.gp130(f/f)) and littermate controls (Dmp1Cre.gp130(w/w)) were treated with hPTH(1-34) (30 μg/kg 5× per week for 5 weeks). PTH dramatically increased bone formation in Dmp1Cre.gp130(w/w) mice, as indicated by elevated osteoblast number, osteoid surface, mineralizing surface, and increased serum N-terminal propeptide of type 1 collagen (P1NP). However, in mice with Dmp1Cre-directed deletion of gp130, PTH treatment changed none of these parameters. Impaired PTH anabolic action was associated with a 50% reduction in Pth1r mRNA levels in Dmp1Cre.gp130(f/f) femora compared with Dmp1Cre.gp130(w/w). Furthermore, lentiviral-Cre infection of gp130(f/f) primary osteoblasts also lowered Pth1r mRNA levels to 16% of that observed in infected C57/BL6 cells. In conclusion, osteocytic gp130 is required to maintain PTH1R expression in the osteoblast lineage, and for the stimulation of osteoblast differentiation that occurs in response to PTH.
Collapse
Affiliation(s)
- Therese Standal
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rachelle W Johnson
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Narelle E McGregor
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid J Poulton
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Patricia W M Ho
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - T John Martin
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Natalie A Sims
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
18
|
Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature 2014; 505:327-34. [PMID: 24429631 DOI: 10.1038/nature12984] [Citation(s) in RCA: 1732] [Impact Index Per Article: 157.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023]
Abstract
Niches are local tissue microenvironments that maintain and regulate stem cells. Haematopoiesis provides a model for understanding mammalian stem cells and their niches, but the haematopoietic stem cell (HSC) niche remains incompletely defined and beset by competing models. Recent progress has been made in elucidating the location and cellular components of the HSC niche in the bone marrow. The niche is perivascular, created partly by mesenchymal stromal cells and endothelial cells and often, but not always, located near trabecular bone. Outstanding questions concern the cellular complexity of the niche, the role of the endosteum and functional heterogeneity among perivascular microenvironments.
Collapse
Affiliation(s)
- Sean J Morrison
- Howard Hughes Medical Institute, Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Stem Cell Institute and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
19
|
Honma M, Ikebuchi Y, Kariya Y, Hayashi M, Hayashi N, Aoki S, Suzuki H. RANKL subcellular trafficking and regulatory mechanisms in osteocytes. J Bone Miner Res 2013; 28:1936-49. [PMID: 23529793 DOI: 10.1002/jbmr.1941] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 03/13/2013] [Accepted: 03/20/2013] [Indexed: 11/07/2022]
Abstract
The receptor activator of the NF-κB ligand (RANKL) is the central player in the regulation of osteoclastogenesis, and the quantity of RANKL presented to osteoclast precursors is an important factor determining the magnitude of osteoclast formation. Because osteoblastic cells are thought to be a major source of RANKL, the regulatory mechanisms of RANKL subcellular trafficking have been studied in osteoblastic cells. However, recent reports showed that osteocytes are a major source of RANKL presentation to osteoclast precursors, prompting a need to reinvestigate RANKL subcellular trafficking in osteocytes. Investigation of molecular mechanisms in detail needs well-designed in vitro experimental systems. Thus, we developed a novel co-culture system of osteoclast precursors and osteocytes embedded in collagen gel. Experiments using this model revealed that osteocytic RANKL is provided as a membrane-bound form to osteoclast precursors through osteocyte dendritic processes and that the contribution of soluble RANKL to the osteoclastogenesis supported by osteocytes is minor. Moreover, the regulation of RANKL subcellular trafficking, such as OPG-mediated transport of newly synthesized RANKL molecules to lysosomal storage compartments, and the release of RANKL to the cell surface upon stimulation with RANK are confirmed to be functional in osteocytes. These results provide a novel understanding of the regulation of osteoclastogenesis.
Collapse
Affiliation(s)
- Masashi Honma
- Department of Pharmacy, University of Tokyo Hospital, Faculty of Medicine, University of Tokyo, Tokyo, Japan. mhonma‐
| | | | | | | | | | | | | |
Collapse
|
20
|
Clarke MS, Sundaresan A, Vanderburg CR, Banigan MG, Pellis NR. A three-dimensional tissue culture model of bone formation utilizing rotational co-culture of human adult osteoblasts and osteoclasts. Acta Biomater 2013; 9:7908-16. [PMID: 23664885 DOI: 10.1016/j.actbio.2013.04.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/28/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
Living bone is a complex, three-dimensional composite material consisting of numerous cell types spatially organized within a mineralized extracellular matrix. To date, mechanistic investigation of the complex cellular level cross-talk between the major bone-forming cells involved in the response of bone to mechanical and biochemical stimuli has been hindered by the lack of a suitable in vitro model that captures the "coupled" nature of this response. Using a novel rotational co-culture approach, we have generated large (>4mm diameter), three-dimensional mineralized tissue constructs from a mixture of normal human primary osteoblast and osteoclast precursor cells without the need for any exogenous osteoconductive scaffolding material that might interfere with such cell-cell interactions. Mature, differentiated bone constructs consist of an outer region inhabited by osteoclasts and osteoblasts and a central region containing osteocytes encased in a self-assembled, porous mineralized extracellular matrix. Bone constructs exhibit morphological, mineral and biochemical features similar to remodeling human trabecular bone, including the expression of mRNA for SOST, BGLAP, ACP5, BMP-2, BMP-4 and BMP-7 within the construct and the secretion of BMP-2 protein into the medium. This "coupled" model of bone formation will allow the future investigation of various stimuli on the process of normal bone formation/remodeling as it relates to the cellular function of osteoblasts, osteoclasts and osteocytes in the generation of human mineralized tissue.
Collapse
|
21
|
Bonsignore LA, Anderson JR, Lee Z, Goldberg VM, Greenfield EM. Adherent lipopolysaccharide inhibits the osseointegration of orthopedic implants by impairing osteoblast differentiation. Bone 2013; 52:93-101. [PMID: 22995462 PMCID: PMC3513552 DOI: 10.1016/j.bone.2012.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/07/2012] [Accepted: 09/08/2012] [Indexed: 10/27/2022]
Abstract
Osseointegration is the process by which an orthopedic implant makes direct bone-to-implant contact and is crucial for the long-term function of the implant. Surface contaminants, such as bacterial debris and manufacturing residues, may remain on orthopedic implants after sterilization and impair osseointegration. For example, specific lots of implants that were associated with impaired osseointegration and high failure rates were discovered to have contaminants including bacterial debris. Therefore, the goals of this study were to determine if bacterial debris exists on sterile orthopedic implants and if adherent bacterial debris inhibits the osseointegration of orthopedic implants. We found that debris containing lipopolysaccharide (LPS) from Gram-negative bacteria exists on both sterile craniofacial implants and wrist implants. Levels of bacterial debris vary not only between different lots of implants but within an individual lot. Using our murine model of osseointegration, we found that ultrapure LPS adherent to the implants inhibited bone-to-implant contact and biomechanical pullout measures. Analysis of osseointegration in knock-out mice demonstrated that adherent LPS inhibited osseointegration by signaling through its primary receptor, Toll-like receptor 4, and not by signaling through Toll-like receptor 2. Ultrapure LPS adherent to titanium alloy discs had no detectable effect on early stages of MC3T3-E1 osteogenesis in vitro such as attachment, spreading or growth. However, later stages of osteogenic differentiation and mineralization were inhibited by adherent LPS. Thus, LPS may inhibit osseointegration in part through cell autonomous effects on osteoblasts. These results highlight bacterial debris as a type of surface contaminant that can impair the osseointegration of orthopedic implants.
Collapse
Affiliation(s)
- Lindsay A Bonsignore
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
22
|
Multiple receptor tyrosine kinases promote the in vitro phenotype of metastatic human osteosarcoma cell lines. Oncogenesis 2012; 1:e34. [PMID: 23552467 PMCID: PMC3511679 DOI: 10.1038/oncsis.2012.34] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The survival rate for osteosarcoma patients with localized disease is 70% and only 25% for patients with metastases. Therefore, novel therapeutic and prognostic tools are needed. In this study, extensive screening and validation strategies identified Axl, EphB2, FGFR2, IGF-1R and Ret as specific receptor tyrosine kinases (RTKs) that are activated and promote the in vitro phenotype of two genetically different metastatic osteosarcoma cell lines. Initial phosphoproteomic screening identified twelve RTKs that were phosphorylated in 143B and/or LM7 metastatic human osteosarcoma cells. A small interfering RNA (siRNA) screen demonstrated that siRNA pools targeting ten of the twelve RTKS inhibited the in vitro phenotype of one or both cell lines. To validate the results, we individually tested the four siRNA duplexes that comprised each of the effective siRNA pools from the initial screen. The pattern of phenotype inhibition replicated the pattern of mRNA knockdown by the individual duplexes for seven of the ten RTKs, indicating the effects are consistent with on-target silencing. Five of those seven RTKs were further validated using independent approaches including neutralizing antibodies (IGF-1R), antisense-mediated knockdown (EphB2, FGFR2, and Ret) or small molecule inhibitors (Axl), indicating that those specific RTKs promote the in vitro behavior of metastatic osteosarcoma cell lines and are potential therapeutic targets for osteosarcoma. Immunohistochemistry demonstrated that Axl is frequently activated in osteosarcoma patient biopsy samples, further supporting our screening and validation methods to identify RTKs that may be valuable targets for novel therapies for osteosarcoma patients.
Collapse
|
23
|
Abstract
Remodeling, a continuous physiological process maintains the strength of the bones, which maintains a delicate balance between bone formation and resorption process. This review gives an insight to the complex interaction and correlation between the bone remodeling and the corresponding changes in host immunological environment and also summarises the most recent developments occuring in the understanding of this complex field. T cells, both directly and indirectly increase the expression of receptor activator of nuclear factor kB ligand (RANKL); a vital step in the activation of osteoclasts, thus positively regulates the osteoclastogenesis. Though various cytokines, chemikines, transcription factors and co-stimulatory molecules are shared by both skeletal and immune systems, but researches are being conducted to establish and analyse their role and / or control on this complex but vital process. The understanding of this part of research may open new horizons in the management of inflammatory and autoimmune diseases, resulting into bone loss and that of osteoporosis also.
Collapse
Affiliation(s)
- Ajai Singh
- Department of Orthopaedics, Co Trauma Center I/C, C S M Medical University, Lucknow, India
| | | | | | | |
Collapse
|
24
|
Osteosarcoma Phenotype Is Inhibited by 3,4-Methylenedioxy-β-nitrostyrene. Sarcoma 2012; 2012:479712. [PMID: 22701331 PMCID: PMC3371351 DOI: 10.1155/2012/479712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 02/20/2012] [Indexed: 11/18/2022] Open
Abstract
β-nitrostyrene compounds, such as 3,4-methylenedioxy-β-nitrostyrene (MNS), inhibit growth and induce apoptosis in tumor cells, but no reports have investigated their role in osteosarcoma. In this study, human osteosarcoma cell families with cell lines of varying tumorigenic and metastatic potential were utilized. Scrape motility assays, colony formation assays, and colony survival assays were performed with osteosarcoma cell lines, both in the presence and absence of MNS. Effects of MNS on human osteoblasts and airway epithelial cells were assessed in monolayer cultures. MNS decreased metastatic cell line motility by 72–76% and colony formation by 95–100%. MNS consistently disrupted preformed colonies in a time-dependent and dose-dependent manner. MNS had similar effects on human osteoblasts but little effect on airway epithelial cells. An inactive analog of MNS had no detectable effects, demonstrating specificity. MNS decreases motility and colony formation of osteosarcoma cells and disrupts preformed cell colonies, while producing little effect on pulmonary epithelial cells.
Collapse
|
25
|
Munoz Mendoza J, Isakova T, Ricardo AC, Xie H, Navaneethan SD, Anderson AH, Bazzano LA, Xie D, Kretzler M, Nessel L, Hamm LL, Negrea L, Leonard MB, Raj D, Wolf M. Fibroblast growth factor 23 and Inflammation in CKD. Clin J Am Soc Nephrol 2012; 7:1155-62. [PMID: 22554719 DOI: 10.2215/cjn.13281211] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVES Levels of fibroblast growth factor 23 (FGF23) and inflammatory markers are commonly elevated in CKD, and each is associated with adverse clinical outcomes. This study tested the hypothesis that FGF23 is independently associated with inflammation in CKD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS The association between levels of FGF23 and the inflammatory markers IL-6, C-reactive protein (CRP), TNF-α, and fibrinogen was assessed in a cross-sectional analysis of 3879 participants enrolled in the Chronic Renal Insufficiency Cohort (CRIC) study between June 2003 and September 2008. RESULTS FGF23 correlated directly with IL-6 (r=0.4), CRP (r=0.2), TNF-α (r=0.4), and fibrinogen (r=0.3; P<0.001 for each). In univariate and multivariable-adjusted linear regression analyses, natural log (ln) transformed FGF23 was significantly associated with lnIL-6, lnCRP, lnTNF-α, and fibrinogen (P<0.001 for each). Each unit higher lnFGF23 was associated with severe inflammation, defined as levels of all inflammatory markers in the highest 25th percentile, in univariate (odds ratio [OR], 2.4 [95% confidence interval (CI), 2.0-2.9]) and multivariable-adjusted (OR, 2.0 [95% CI, 1.6-2.5]) logistic regression analyses. Ascending FGF23 quartiles were independently associated with severe inflammation (OR, 5.6 for the highest versus lowest FGF23 quartile [95% CI, 2.3-13.9]; P for trend < 0.001). CONCLUSIONS Higher FGF23 levels are independently associated with higher levels of inflammatory markers in patients with CKD and with significantly greater odds of severe inflammation. Future studies should evaluate whether inflammation modifies the association between FGF23 and adverse outcomes in CKD.
Collapse
Affiliation(s)
- Jair Munoz Mendoza
- Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Papanicolaou P, Chrysomali E, Stylogianni E, Donta C, Vlachodimitropoulos D. Increased TNF-α, IL-6 and decreased IL-1β immunohistochemical expression by the stromal spindle-shaped cells in the central giant cell granuloma of the jaws. Med Oral Patol Oral Cir Bucal 2012; 17:e56-62. [PMID: 22157665 PMCID: PMC3448195 DOI: 10.4317/medoral.17205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 05/14/2011] [Indexed: 11/07/2022] Open
Abstract
Objectives: the exp ress ion of the osteoclastogenic cytokines TNF-α, IL-6 and IL-1β were immunohistochemically evaluated in periph eral (PGCG) and central (CGCG) giant cell granulomas of the jaws in order to determine diff erences between these two lesions and between the two distinct tumor cell populations (multinucleated giant cells, MGCs and stromal sp indle-sh aped cells).
Study Design: Paraffin-embedd ed tiss ue sections from 40 PGCG and 40 CGCG were immunohistochemically
stained using antibodies against TNF-α, IL-6 and IL-1β. The percentage of positively stained cells and the staining intensity were ass ess ed to provide a combined immunoreactivity score value.
Results: TNF-α, IL-6 and IL-1β were exp ress ed in all lesions. The CGCG compared to the PGCG sh owed significantly increased exp ress ion of TNF-α and IL-6 and decreased exp ress ion of IL-1β by the sp indle-sh aped cells and increased exp ress ion of IL-1β by the MGCs. The MGCs demonstrated in comparison to the stromal sp indlesh aped cells significantly increased exp ress ion of all three cytokines in both PGCG and CGCG.
Conclusions: The proinflammatory cytokines TNF-α, IL-6 and IL-1β seem to be involved in the growth process
of PGCG and CGCG of the jaws. A poss ible alteration in the sy nthesis or/and activity of these cytokines by the
stromal sp indle cells in the CGCGs may enhance osteolys is through the stimulation of osteoclast progenitor cells, given the fact that the intraoss eous lesions cause bone resorption.
Key words:
Giant cell granuloma, giant cell tumor, multinucleated giant cells, jaw, TNF-alpha, IL-6, IL-1beta,
immunohistochemistry.
Collapse
Affiliation(s)
- Panagiota Papanicolaou
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Athens, Athens, Greece.
| | | | | | | | | |
Collapse
|
27
|
Blakytny R, Spraul M, Jude EB. Review: The diabetic bone: a cellular and molecular perspective. INT J LOW EXTR WOUND 2011; 10:16-32. [PMID: 21444607 DOI: 10.1177/1534734611400256] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With the increasing worldwide prevalence of diabetes the resulting complications, their consequences and treatment will lead to a greater social and financial burden on society. One of the many organs to be affected is bone. Loss of bone is observed in type 1 diabetes, in extreme cases mirroring osteoporosis, thus a greater risk of fracture. In the case of type 2 diabetes, both a loss and an increase of bone has been observed, although in both cases the quality of the bone overall was poorer, again leading to a greater risk of fracture. Once a fracture has occurred, healing is delayed in diabetes, including nonunion. The reasons leading to such changes in the state of the bone and fracture healing in diabetes is under investigation, including at the cellular and the molecular levels. In comparison with our knowledge of events in normal bone homeostasis and fracture healing, that for diabetes is much more limited, particularly in patients. However, progress is being made, especially with the use of animal models for both diabetes types. Identifying the molecular and cellular changes in the bone in diabetes and understanding how they arise will allow for targeted intervention to improve diabetic bone, thus helping to counter conditions such as Charcot foot as well as preventing fracture and accelerating healing when a fracture does occur.
Collapse
|
28
|
Barkhordarian A, Ajaj R, Ramchandani MH, Demerjian G, Cayabyab R, Danaie S, Ghodousi N, Iyer N, Mahanian N, Phi L, Giroux A, Manfrini E, Neagos N, Siddiqui M, Cajulis OS, Brant XMC, Shapshak P, Chiappelli F. Osteoimmunopathology in HIV/AIDS: A Translational Evidence-Based Perspective. PATHOLOGY RESEARCH INTERNATIONAL 2011; 2011:359242. [PMID: 21660263 PMCID: PMC3108376 DOI: 10.4061/2011/359242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 01/21/2023]
Abstract
Infection with the human immunodeficiency virus-1 (HIV) and the resulting acquired immune deficiency syndrome (AIDS) alter not only cellular immune regulation but also the bone metabolism. Since cellular immunity and bone metabolism are intimately intertwined in the osteoimmune network, it is to be expected that bone metabolism is also affected in patients with HIV/AIDS. The concerted evidence points convincingly toward impaired activity of osteoblasts and increased activity of osteoclasts in patients with HIV/AIDS, leading to a significant increase in the prevalence of osteoporosis. Research attributes these outcomes in part at least to the ART, PI, and HAART therapies endured by these patients. We review and discuss these lines of evidence from the perspective of translational clinically relevant complex systematic reviews for comparative effectiveness analysis and evidence-based intervention on a global scale.
Collapse
Affiliation(s)
- André Barkhordarian
- Section of Oral Biology, Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kariya Y, Honma M, Hanamura A, Aoki S, Ninomiya T, Nakamichi Y, Udagawa N, Suzuki H. Rab27a and Rab27b are involved in stimulation-dependent RANKL release from secretory lysosomes in osteoblastic cells. J Bone Miner Res 2011; 26:689-703. [PMID: 20939018 DOI: 10.1002/jbmr.268] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The quantity of the receptor activator of NF-κB ligand (RANKL) expressed at the cell surface of osteoblastic cells is an important factor regulating osteoclast activation. Previously, RANKL was found to be localized to secretory lysosomes in osteoblastic cells and to translocate to the cell surface in response to stimulation with RANK-Fc-conjugated beads. However, the in vivo significance of stimulation-dependent RANKL release has not been elucidated. In this study we show that small GTPases Rab27a and Rab27b are involved in the stimulation-dependent RANKL release pathway in osteoblastic cells. Suppression of either Rab27a or Rab27b resulted in a marked reduction in RANKL release after stimulation. Slp4-a, Slp5, and Munc13-4 acted as effector molecules that coordinated Rab27a/b activity in this pathway. Suppression of Rab27a/b or these effector molecules did not inhibit accumulation of RANKL in lysosomal vesicles around the stimulated sites but did inhibit the fusion of these vesicles to the plasma membrane. In osteoblastic cells, suppression of the effector molecules resulted in reduced osteoclastogenic ability. Furthermore, Jinx mice, which lack a functional Munc13-4 gene, exhibited a phenotype characterized by increased bone volume near the tibial metaphysis caused by low bone resorptive activity. In conclusion, stimulation-dependent RANKL release is mediated by Rab27a/b and their effector molecules, and this mechanism may be important for osteoclast activation in vivo.
Collapse
Affiliation(s)
- Yoshiaki Kariya
- Department of Pharmacy, University of Tokyo Hospital, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Guo L, Wang M, Zhang ZY, Hao L, Lou BY, Li XY, Loo WT, Jin L, Cheung MN. Angiotensin II induces interleukin-6 synthesis in osteoblasts through ERK1/2 pathway via AT1 receptor. Arch Oral Biol 2011; 56:205-11. [DOI: 10.1016/j.archoralbio.2010.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/06/2010] [Accepted: 09/19/2010] [Indexed: 12/25/2022]
|
31
|
Greenfield EM, Beidelschies MA, Tatro JM, Goldberg VM, Hise AG. Bacterial pathogen-associated molecular patterns stimulate biological activity of orthopaedic wear particles by activating cognate Toll-like receptors. J Biol Chem 2010; 285:32378-84. [PMID: 20729214 PMCID: PMC2952239 DOI: 10.1074/jbc.m110.136895] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/16/2010] [Indexed: 01/05/2023] Open
Abstract
Aseptic loosening of orthopaedic implants is induced by wear particles generated from the polymeric and metallic components of the implants. Substantial evidence suggests that activation of Toll-like receptors (TLRs) may contribute to the biological activity of the wear particles. Although pathogen-associated molecular patterns (PAMPs) produced by Gram-positive bacteria are likely to be more common in patients with aseptic loosening, prior studies have focused on LPS, a TLR4-specific PAMP produced by Gram-negative bacteria. Here we show that both TLR2 and TLR4 contribute to the biological activity of titanium particles with adherent bacterial debris. In addition, lipoteichoic acid, a PAMP produced by Gram-positive bacteria that activates TLR2, can, like LPS, adhere to the particles and increase their biological activity, and the increased biological activity requires the presence of the cognate TLR. Moreover, three lines of evidence support the conclusion that TLR activation requires bacterially derived PAMPs and that endogenously produced alarmins are not sufficient. First, neither TLR2 nor TLR4 contribute to the activity of "endotoxin-free" particles as would be expected if alarmins are sufficient to activate the TLRs. Second, noncognate TLRs do not contribute to the activity of particles with adherent LPS or lipoteichoic acid as would be expected if alarmins are sufficient to activate the TLRs. Third, polymyxin B, which inactivates LPS, blocks the activity of particles with adherent LPS. These results support the hypothesis that PAMPs produced by low levels of bacterial colonization may contribute to aseptic loosening of orthopaedic implants.
Collapse
Affiliation(s)
- Edward M Greenfield
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
32
|
Chang E, Donkin SS, Teegarden D. Parathyroid hormone suppresses insulin signaling in adipocytes. Mol Cell Endocrinol 2009; 307:77-82. [PMID: 19524129 PMCID: PMC2714196 DOI: 10.1016/j.mce.2009.03.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 10/20/2022]
Abstract
Previous reports suggest that parathyroid hormone (PTH) is associated with insulin resistance. This research investigated the effects of PTH on insulin signaling in differentiated 3T3-L1 adipocytes. PTH (10 nM, 24 h) treatment induced a reduction in insulin-stimulated glucose uptake, AKT activity (phosphorylated AKT/total AKT protein expression) and a decrease in GLUT4 and IRS-1 protein expression compared to vehicle treated controls in differentiated adipocytes. PTH treatment also induced increased phosphorylation of IRS-1 on serine 307, which suppresses insulin signaling. In addition, treatment of cells with adenyl cyclase inhibitor SQ52236 ameliorated the effects of PTH on insulin-stimulated glucose uptake, whereas inhibition of phospholipase C alpha (U73122) did not significantly alter the effects of PTH. Thus, PTH treatment of differentiated 3T3-L1 adipocytes suppresses insulin-stimulated glucose uptake and insulin signaling via cAMP pathway, potentially through the phosphorylation of IRS-1 at serine 307.
Collapse
Affiliation(s)
- Eugene Chang
- Interdepartmental Nutrition Program, Purdue University, West Lafayette IN
| | - Shawn S. Donkin
- Interdepartmental Nutrition Program, Purdue University, West Lafayette IN
| | - Dorothy Teegarden
- Interdepartmental Nutrition Program, Purdue University, West Lafayette IN
| |
Collapse
|
33
|
Wang Z, Sarje A, Che PL, Yarema KJ. Moderate strength (0.23-0.28 T) static magnetic fields (SMF) modulate signaling and differentiation in human embryonic cells. BMC Genomics 2009; 10:356. [PMID: 19653909 PMCID: PMC2907690 DOI: 10.1186/1471-2164-10-356] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 08/04/2009] [Indexed: 12/18/2022] Open
Abstract
Background Compelling evidence exists that magnetic fields modulate living systems. To date, however, rigorous studies have focused on identifying the molecular-level biosensor (e.g., radical ion pairs or membranes) or on the behavior of whole animals leaving a gap in understanding how molecular effects are translated into tissue-wide and organism-level responses. This study begins to bridge this gulf by investigating static magnetic fields (SMF) through global mRNA profiling in human embryonic cells coupled with software analysis to identify the affected signaling pathways. Results Software analysis of gene expression in cells exposed to 0.23–0.28 T SMF showed that nine signaling networks responded to SMF; of these, detailed biochemical validation was performed for the network linked to the inflammatory cytokine IL-6. We found the short-term (<24 h) activation of IL-6 involved the coordinate up-regulation of toll-like receptor-4 (TLR4) with complementary changes to NEU3 and ST3GAL5 that reduced ganglioside GM3 in a manner that augmented the activation of TLR4 and IL-6. Loss of GM3 also provided a plausible mechanism for the attenuation of cellular responses to SMF that occurred over longer exposure periods. Finally, SMF-mediated responses were manifest at the cellular level as morphological changes and biochemical markers indicative of pre-oligodendrocyte differentiation. Conclusion This study provides a framework describing how magnetic exposure is transduced from a plausible molecular biosensor (lipid membranes) to cell-level responses that include differentiation toward neural lineages. In addition, SMF provided a stimulus that uncovered new relationships – that exist even in the absence of magnetic fields – between gangliosides, the time-dependent regulation of IL-6 signaling by these glycosphingolipids, and the fate of embryonic cells.
Collapse
Affiliation(s)
- Zhiyun Wang
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
34
|
Beidelschies MA, Huang H, McMullen MR, Smith MV, Islam AS, Goldberg VM, Chen X, Nagy LE, Greenfield EM. Stimulation of macrophage TNFalpha production by orthopaedic wear particles requires activation of the ERK1/2/Egr-1 and NF-kappaB pathways but is independent of p38 and JNK. J Cell Physiol 2008; 217:652-66. [PMID: 18651635 PMCID: PMC2597272 DOI: 10.1002/jcp.21539] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bone loss that causes aseptic loosening of orthopedic implants is initiated by pro-inflammatory cytokines produced by macrophages in response to implant-derived wear particles. MAPK and NF-kappaB signaling pathways are activated by the particles; however, it is not clear which of the signaling pathways are important for the initial response to the wear particles and which are only involved at later steps in the process, such as osteoclast differentiation. Here, we show that the ERK1/2, p38, JNK, and NF-kappaB pathways are rapidly activated by the wear particles but that only the ERK1/2 and NF-kappaB pathways are required for the initial response to the wear particles, which include increases in TNFalpha promoter activity, TNFalpha mRNA expression, and secretion of TNFalpha protein. Moreover, ERK1/2 activation by wear particles is also required for increased expression of the transcription factor Egr-1 as well as Egr-1's ability to bind to and activate the TNFalpha promoter. These results, together with our previous studies of the PI3K/Akt pathway, demonstrate that wear particles coordinately activate multiple signaling pathways and multiple transcription factors to stimulate production of pro-inflammatory cytokines, such as TNFalpha. The current study also demonstrates that the signaling pathways are activated to a much greater extent by wear particles with adherent endotoxin than by "endotoxin-free" wear particles. These results, together with those demonstrating the requirement for ERK1/2/Egr-1 and NF-kappaB, show that activation of these signaling pathways is responsible for the ability of adherent endotoxin to potentiate cytokine production, osteoclast differentiation, and bone loss induced by wear particles.
Collapse
Affiliation(s)
- Michelle A Beidelschies
- Department of Physiology and Biophysics, Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Serum 1-84 and 7-84 parathyroid hormone concentrations and bone in patients with primary hyperparathyroidism. Langenbecks Arch Surg 2008; 393:709-13. [DOI: 10.1007/s00423-008-0385-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
|
36
|
Chen X, Song IH, Dennis JE, Greenfield EM. Endogenous PKI gamma limits the duration of the anti-apoptotic effects of PTH and beta-adrenergic agonists in osteoblasts. J Bone Miner Res 2007; 22:656-64. [PMID: 17266398 DOI: 10.1359/jbmr.070122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED PKI gamma knockdown substantially extended the anti-apoptotic effects of PTH and beta-adrenergic agonists, whereas PKI gamma overexpression decreased these effects. Therefore, inhibition of PKI gamma activity may provide a useful co-therapy in combination with intermittent PTH or beta-adrenergic agonists for bone loss in conditions such as osteoporosis. INTRODUCTION PTH has both catabolic and anabolic effects on bone, which are primarily caused by cAMP/protein kinase A (PKA) signaling and regulation of gene expression. We previously showed that protein kinase inhibitor-gamma (PKI gamma) is required for efficient termination of cAMP/PKA signaling and gene expression after stimulation with PTH or beta-adrenergic agonists. Inhibition of osteoblast apoptosis is thought to be an important, but transient, mechanism partly responsible for the anabolic effects of intermittent PTH. Therefore, we hypothesized that endogenous PKI gamma also terminates the anti-apoptotic effect of PTH. MATERIALS AND METHODS PKI gamma knockdown by antisense transfection or siRNA was used to examine the ability of endogenous PKI gamma to modulate the anti-apoptotic effects of PTH and beta-adrenergic agonists in ROS 17/2.8 cells. RESULTS Knockdown of PKI gamma substantially extended the anti-apoptotic effects of PTH, whether apoptosis was induced by etoposide or dexamethasone. In contrast, overexpression of PKI gamma decreased the anti-apoptotic effect of PTH pretreatment. This study is also the first demonstration that beta-adrenergic agonists mimic the anti-apoptotic effects of PTH in osteoblasts. Moreover, PKI gamma knockdown also substantially extended this anti-apoptotic effect of beta-adrenergic agonists. Taken together, these results show that endogenous PKI gamma limits the duration of the anti-apoptotic effects of cAMP/PKA signaling in osteoblasts. CONCLUSIONS Because significant individual variability exists in the anabolic responses to PTH therapy in current clinical treatment of osteoporosis, inhibition of PKI gamma activity may provide a useful co-therapy in combination with intermittent PTH or beta-adrenergic agonists for bone loss in conditions such as osteoporosis. However, the potential use of such a co-therapy would depend on it not adversely affecting bone formation or other organ systems.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopaedics, Case Western Reserve University and Case Medical Center, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
37
|
Kirkwood KL, Li F, Rogers JE, Otremba J, Coatney DD, Kreider JM, D'Silva NJ, Chakravarty S, Dugar S, Higgins LS, Protter AA, Medicherla S. A p38alpha selective mitogen-activated protein kinase inhibitor prevents periodontal bone loss. J Pharmacol Exp Ther 2007; 320:56-63. [PMID: 17041006 DOI: 10.1124/jpet.106.112466] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In the oral microbial environment, Gram-negative bacterial derived lipopolysaccharide (LPS) can initiate inflammatory bone loss as seen in periodontal diseases. p38 Mitogen-activated protein kinase (MAPK) signaling is critical to inflammatory cytokine and LPS-induced cytokine expression, which may contribute toward periodontal bone loss. The purpose of this proof-of-principle study was to evaluate the ability of an orally active p38alpha MAPK inhibitor (SD-282) to reduce periopathogenic LPS-induced alveolar bone loss in an experimental rat model. Five groups of Sprague-Dawley rats received one of the following treatments: LPS injected to the palatal gingiva adjacent to the maxillary molars three times per week for 8 weeks, LPS plus two doses of SD-282 (15 or 45 mg/kg) twice daily by oral gavage, or control groups given drug vehicle (1% polyethylene glycol) or SD-282 (45 mg/kg) only. Baseline and 8-week alveolar bone loss was assessed by microcomputed tomography (microCT) and histological examination. LPS induced severe bone loss over this time period, whereas control groups were unchanged from baseline measurements. Both doses of SD-282 showed significant protection from LPS-induced bone loss. Bone area and volumetric analysis of maxillas by microCT indicated significant loss of bone volume with LPS treatment, which was blocked with the p38 inhibitor. Histological examination indicated significantly fewer tartate-resistant acid phosphatase-positive osteoclasts and a significant decrease in interleukin (IL)-6, IL-1beta, and tumor necrosis factor alpha expression in p38 inhibitor-treated groups compared with LPS groups by immunostaining. Results from this in vivo study suggest that orally active p38 MAPK inhibitors can reduce LPS-induced inflammatory cytokine production and osteoclast formation and protect against LPS-stimulated alveolar bone loss.
Collapse
Affiliation(s)
- Keith L Kirkwood
- Department of Periodontics and Oral Medicine, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yang J, Shah R, Robling AG, Templeton E, Yang H, Tracey KJ, Bidwell JP. HMGB1 is a bone-active cytokine. J Cell Physiol 2007; 214:730-9. [PMID: 17786958 DOI: 10.1002/jcp.21268] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
High mobility group box 1 (HMGB1) is a chromatin protein that acts as an immunomodulatory cytokine upon active release from myeloid cells. HMGB1 is also an alarmin, an endogenous molecule released by dying cells that acts to initiate tissue repair. We have previously reported that osteoclasts and osteoblasts release HMGB1 and release by the latter is regulated by parathyroid hormone (PTH), an agent of bone remodeling. A recent study suggests that HMGB1 acts as a chemotactic agent to osteoclasts and osteoblasts during endochondral ossification. To explore the potential impact of HMGB1 in the bone microenvironment and its mechanism of release by osseous cells, we characterized the effects of recombinant protein (rHMGB1) on multiple murine bone cell preparations that together exhibit the various cell phenotypes present in bone. We also inquired whether apoptotic bone cells release HMGB1. rHMGB1 enhanced the RANKL/OPG steady state mRNA ratio and dramatically augmented the release of tumor necrosis factor-alpha (TNFalpha) and interleukin-6 (IL6) in osteoblastogenic bone marrow stromal cell (BMSC) cultures but not in the calvarial-derived MC3T3-E1 cells. Interestingly, rHMGB1 promoted GSK-3beta phosphorylation in MC3T3-E1 cells but not in BMSCs. Apoptotic bone cells released HMGB1, including MLO-Y4 osteocyte-like cells. MLO-Y4 release of HMGB1 was coincident with caspase-3 cleavage. Furthermore, the anti-apoptotic action of PTH on MC3T3-E1 cells correlated with the observed decrease in HMGB1 release. Our data suggest that apoptotic bone cells release HMGB1, that within the marrow HMGB1 is a bone resorption signal, and that intramembraneous and endochondral osteoblasts exhibit differential responses to this cytokine.
Collapse
Affiliation(s)
- Jieping Yang
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Osteoimmunology is an interdisciplinary research field combining the exciting fields of osteology and immunology. An observation that contributed enormously to the emergence of osteoimmunology was the accelerated bone loss caused by inflammatory diseases such as rheumatoid arthritis. Receptor activator of nuclear factor kappaB ligand (RANKL), which is the main regulator of osteoclastogenesis, was found to be the primary culprit responsible for the enhanced activation of osteoclasts: activated T cells directly and indirectly increased the expression of RANKL, and thereby promoted osteoclastic activity. Excessive bone loss is not only present in inflammatory diseases but also in autoimmune diseases and cancer. Furthermore, there is accumulating evidence that the very prevalent skeletal disorder osteoporosis is associated with alterations in the immune system. Meanwhile, numerous connections have been discovered in osteoimmunology beyond merely the actions of RANKL. These include the importance of osteoblasts in the maintenance of the hematopoietic stem cell niche and in lymphocyte development as well as the functions of immune cells participating in osteoblast and osteoclast development. Furthermore, research is being done investigating cytokines, chemokines, transcription factors and co-stimulatory molecules which are shared by both systems. Research in osteoimmunology promises the discovery of new strategies and the development of innovative therapeutics to cure or alleviate bone loss in inflammatory and autoimmune diseases as well as in osteoporosis. This review gives an introduction to bone remodeling and the cells governing that process and summarizes the most recent discoveries in the interdisciplinary field of osteoimmunology. Furthermore, an alternative large animal model will be discussed and the pathophysiological alterations of the immune system in osteoporosis will be highlighted.
Collapse
Affiliation(s)
- Martina Rauner
- Ludwig Boltzmann Institute of Aging Research, Vienna, Austria
| | | | | |
Collapse
|
40
|
Rossa C, Ehmann K, Liu M, Patil C, Kirkwood KL. MKK3/6-p38 MAPK signaling is required for IL-1beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells. J Interferon Cytokine Res 2006; 26:719-29. [PMID: 17032166 DOI: 10.1089/jir.2006.26.719] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Coupled bone turnover is directed by the expression of receptor-activated NF-kappaB ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG). Proinflammatory cytokines, such as interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) induce RANKL expression in bone marrow stromal cells. Here, we report that IL-1beta and TNF-alpha-induced RANKL requires p38 mitogen-activating protein kinase (MAPK) pathway activation for maximal expression. Real-time PCR was used to assess the p38 contribution toward IL-1beta and TNF-alpha-induced RANKL mRNA expression. Steady-state RANKL RNA levels were increased approximately 17-fold by IL-1beta treatment and subsequently reduced approximately 70%-90% when p38 MAPK was inhibited with SB203580. RANKL mRNA stability data indicated that p38 MAPK did not alter the rate of mRNA decay in IL-1beta-induced cells. Using a RANKL-luciferase cell line receptor containing a 120-kB segment of the 5' flanking region of the RANKL gene, reporter expression was stimulated 4-5-fold by IL-1beta or TNF-alpha treatment. IL-1beta-induced RANKL reporter expression was completely blocked with specific p38 inhibitors as well as dominant negative mutant constructs of MAPK kinase-3 and -6. In addition, blocking p38 signaling in bone marrow stromal cells partially inhibited IL-1beta and TNF-alpha-induced osteoclastogenesis in vitro. Results from these studies indicate that p38 MAPK is a major signaling pathway involved in IL-1beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells.
Collapse
Affiliation(s)
- Carlos Rossa
- Department of Diagnosis and Surgery, State University of Sao Paulo (UNESP), Araraquara, SP, Brazil
| | | | | | | | | |
Collapse
|
41
|
Hughes FJ, Turner W, Belibasakis G, Martuscelli G. Effects of growth factors and cytokines on osteoblast differentiation. Periodontol 2000 2006; 41:48-72. [PMID: 16686926 DOI: 10.1111/j.1600-0757.2006.00161.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francis J Hughes
- Centre for Adult Oral Health, Barts and The London, Queen Mary's School of Medicine and Dentistry, London, UK
| | | | | | | |
Collapse
|