1
|
Delcroix GJR, Hackett A, Schiller PC, Temple HT. Characterization of three washing/decellularization procedures for the production of bioactive human micronized neural tissue (hMINT). Cell Tissue Bank 2023; 24:693-703. [PMID: 36854877 DOI: 10.1007/s10561-023-10075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/29/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND We developed a novel, injectable and decellularized human peripheral nerve-based scaffold, named Micronized Human Neural Tissue (hMINT), designed to be used as a supportive matrix for stem cell transplantation in the context of spinal cord injury (SCI). MATERIALS AND METHODS Human donated sciatic nerves were micronized at liquid nitrogen temperature prior to decellularization using 3 different procedures of various harshness. hMINT were characterized in terms of particle size, DNA, sulfated glycosaminoglycans (sGAG) and growth factors content. To test the biocompatibility and bioactivity of the various preparations, we used a type of mesenchymal stromal cells (MSCs), termed MIAMI cells, which were placed in contact with hMINT to monitor cell attachment by confocal microscopy and gene expression by RT-qPCR in vitro. RESULTS The content of DNA, sGAG and growth factors left in the product after processing was highly dependent on the decellularization procedure used. We demonstrated that hMINT are biocompatible and promoted the attachment and long-term survival of MIAMI cells in vitro. Finally, combination with hMINT increased MIAMI cells mRNA expression of pro-survival and anti-inflammatory factors. Importantly, the strongest bioactivity on MIAMI cells was observed with the hMINT decellularized using the mildest decellularization procedure, therefore emphasizing the importance of achieving an adequate decellularization without losing the hMINT's bioactivity. PERSPECTIVES AND CLINICAL SIGNIFICANCE The capacity of hMINT/stem cells to facilitate protection of injured neural tissue, promote axon re-growth and improve functional recovery will be tested in an animal model of SCI and other neurodegenerative disorders in the future.
Collapse
Affiliation(s)
- Gaëtan J-R Delcroix
- College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.
| | - Amber Hackett
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paul C Schiller
- Geriatric Research Education and Clinical Center, Miami VA Healthcare System, Miami, FL, USA
| | | |
Collapse
|
2
|
Szydlak R. Mesenchymal stem cells in ischemic tissue regeneration. World J Stem Cells 2023; 15:16-30. [PMID: 36909782 PMCID: PMC9993139 DOI: 10.4252/wjsc.v15.i2.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 02/21/2023] Open
Abstract
Diseases caused by ischemia are one of the leading causes of death in the world. Current therapies for treating acute myocardial infarction, ischemic stroke, and critical limb ischemia do not complete recovery. Regenerative therapies opens new therapeutic strategy in the treatment of ischemic disorders. Mesenchymal stem cells (MSCs) are the most promising option in the field of cell-based therapies, due to their secretory and immunomodulatory abilities, that contribute to ease inflammation and promote the regeneration of damaged tissues. This review presents the current knowledge of the mechanisms of action of MSCs and their therapeutic effects in the treatment of ischemic diseases, described on the basis of data from in vitro experiments and preclinical animal studies, and also summarize the effects of using these cells in clinical trial settings. Since the obtained therapeutic benefits are not always satisfactory, approaches aimed at enhancing the effect of MSCs in regenerative therapies are presented at the end.
Collapse
Affiliation(s)
- Renata Szydlak
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-034, Poland
| |
Collapse
|
3
|
Ababneh NA, Al-Kurdi B, Jamali F, Awidi A. A comparative study of the capability of MSCs isolated from different human tissue sources to differentiate into neuronal stem cells and dopaminergic-like cells. PeerJ 2022; 10:e13003. [PMID: 35341051 PMCID: PMC8944334 DOI: 10.7717/peerj.13003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/03/2022] [Indexed: 01/11/2023] Open
Abstract
Background Neurodegenerative diseases are characterized by progressive neuronal loss and degeneration. The regeneration of neurons is minimal and neurogenesis is limited only to specific parts of the brain. Several clinical trials have been conducted using Mesenchymal Stem Cells (MSCs) from different sources to establish their safety and efficacy for the treatment of several neurological disorders such as Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis. Aim The aim of this study was to provide a comparative view of the capabilities of MSCs, isolated from different human tissue sources to differentiate into neuronal stem cell-like cells (NSCs) and possibly into dopaminergic neural- like cells. Methods Mesenchymal stem cells were isolated from human bone marrow, adipose, and Wharton's jelly (WJ) tissue samples. Cells were characterized by flow cytometry for their ability to express the most common MSC markers. The differentiation potential was also assessed by differentiating them into osteogenic and adipogenic cell lineages. To evaluate the capacity of these cells to differentiate towards the neural stem cell-like lineage, cells were cultured in media containing small molecules. Cells were utilized for gene expression and immunofluorescence analysis at different time points. Results Our results indicate that we have successfully isolated MSCs from bone marrow, adipose tissue, and Wharton's jelly. WJ-MSCs showed a slightly higher proliferation rate after 72 hours compared to BM and AT derived MSCs. Gene expression of early neural stem cell markers revealed that WJ-MSCs had higher expression of Nestin and PAX6 compared to BM and AT-MSCs, in addition to LMX expression as an early dopaminergic neural marker. Immunofluorescence analysis also revealed that these cells successfully expressed SOX1, SOX2, Nestin, TUJ1, FOXA2 and TH. Conclusion These results indicate that the protocol utilized has successfully differentiated BM, AT and WJ-MSCs into NSC-like cells. WJ-MSCs possess a higher potential to transdifferentiate into NSC and dopaminergic-like cells. Thus, it might indicate that this protocol can be used to induce MSC into neuronal lineage, which provides an additional or alternative source of cells to be used in the neurological cell-based therapies.
Collapse
Affiliation(s)
- Nidaa A. Ababneh
- Cell Therapy Center (CTC), the University of Jordan, Amman, Jordan
| | - Ban Al-Kurdi
- Cell Therapy Center (CTC), the University of Jordan, Amman, Jordan
| | - Fatima Jamali
- Cell Therapy Center (CTC), the University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center (CTC), the University of Jordan, Amman, Jordan,Hemostasis and Thrombosis Laboratory, School of Medicine, the University of Jordan, Amman, Jordan,Department of Hematology and Oncology, Jordan University Hospital, Amman, Jordan
| |
Collapse
|
4
|
Karacan I, Milthorpe B, Ben-Nissan B, Santos J. Stem Cells and Proteomics in Biomaterials and Biomedical Applications. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2022:125-157. [DOI: 10.1007/978-981-16-7435-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Rmaidi A, Zelzer M, Sindji L, Dima R, Boury F, Delorme N, Montero-Menei CN. Impact of the physico-chemical properties of polymeric microspheres functionalized with cell adhesion molecules on the behavior of mesenchymal stromal cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111852. [DOI: 10.1016/j.msec.2020.111852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
|
6
|
Fričová D, Korchak JA, Zubair AC. Challenges and translational considerations of mesenchymal stem/stromal cell therapy for Parkinson's disease. NPJ Regen Med 2020; 5:20. [PMID: 33298940 PMCID: PMC7641157 DOI: 10.1038/s41536-020-00106-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and the presence of Lewy bodies, which gives rise to motor and non-motor symptoms. Unfortunately, current therapeutic strategies for PD merely treat the symptoms of the disease, only temporarily improve the patients' quality of life, and are not sufficient for completely alleviating the symptoms. Therefore, cell-based therapies have emerged as a novel promising therapeutic approach in PD treatment. Mesenchymal stem/stromal cells (MSCs) have arisen as a leading contender for cell sources due to their regenerative and immunomodulatory capabilities, limited ethical concerns, and low risk of tumor formation. Although several studies have shown that MSCs have the potential to mitigate the neurodegenerative pathology of PD, variabilities in preclinical and clinical trials have resulted in inconsistent therapeutic outcomes. In this review, we strive to highlight the sources of variability in studies using MSCs in PD therapy, including MSC sources, the use of autologous or allogenic MSCs, dose, delivery methods, patient factors, and measures of clinical outcome. Available evidence indicates that while the use of MSCs in PD has largely been promising, conditions need to be standardized so that studies can be effectively compared with one another and experimental designs can be improved upon, such that this body of science can continue to move forward.
Collapse
Affiliation(s)
- Dominika Fričová
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jennifer A Korchak
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
7
|
Sigmarsdóttir Þ, McGarrity S, Rolfsson Ó, Yurkovich JT, Sigurjónsson ÓE. Current Status and Future Prospects of Genome-Scale Metabolic Modeling to Optimize the Use of Mesenchymal Stem Cells in Regenerative Medicine. Front Bioeng Biotechnol 2020; 8:239. [PMID: 32296688 PMCID: PMC7136564 DOI: 10.3389/fbioe.2020.00239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells are a promising source for externally grown tissue replacements and patient-specific immunomodulatory treatments. This promise has not yet been fulfilled in part due to production scaling issues and the need to maintain the correct phenotype after re-implantation. One aspect of extracorporeal growth that may be manipulated to optimize cell growth and differentiation is metabolism. The metabolism of MSCs changes during and in response to differentiation and immunomodulatory changes. MSC metabolism may be linked to functional differences but how this occurs and influences MSC function remains unclear. Understanding how MSC metabolism relates to cell function is however important as metabolite availability and environmental circumstances in the body may affect the success of implantation. Genome-scale constraint based metabolic modeling can be used as a tool to fill gaps in knowledge of MSC metabolism, acting as a framework to integrate and understand various data types (e.g., genomic, transcriptomic and metabolomic). These approaches have long been used to optimize the growth and productivity of bacterial production systems and are being increasingly used to provide insights into human health research. Production of tissue for implantation using MSCs requires both optimized production of cell mass and the understanding of the patient and phenotype specific metabolic situation. This review considers the current knowledge of MSC metabolism and how it may be optimized along with the current and future uses of genome scale constraint based metabolic modeling to further this aim.
Collapse
Affiliation(s)
- Þóra Sigmarsdóttir
- The Blood Bank, Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | - Sarah McGarrity
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Óttar Rolfsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Ólafur E. Sigurjónsson
- The Blood Bank, Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|
8
|
A Combinatorial Cell and Drug Delivery Strategy for Huntington's Disease Using Pharmacologically Active Microcarriers and RNAi Neuronally-Committed Mesenchymal Stromal Cells. Pharmaceutics 2019; 11:pharmaceutics11100526. [PMID: 31614758 PMCID: PMC6835496 DOI: 10.3390/pharmaceutics11100526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/15/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
For Huntington's disease (HD) cell-based therapy, the transplanted cells are required to be committed to a neuronal cell lineage, survive and maintain this phenotype to ensure their safe transplantation in the brain. We first investigated the role of RE-1 silencing transcription factor (REST) inhibition using siRNA in the GABAergic differentiation of marrow-isolated adult multilineage inducible (MIAMI) cells, a subpopulation of MSCs. We further combined these cells to laminin-coated poly(lactic-co-glycolic acid) PLGA pharmacologically active microcarriers (PAMs) delivering BDNF in a controlled fashion to stimulate the survival and maintain the differentiation of the cells. The PAMs/cells complexes were then transplanted in an ex vivo model of HD. Using Sonic Hedgehog (SHH) and siREST, we obtained GABAergic progenitors/neuronal-like cells, which were able to secrete HGF, SDF1 VEGFa and BDNF, of importance for HD. GABA-like progenitors adhered to PAMs increased their mRNA expression of NGF/VEGFa as well as their secretion of PIGF-1, which can enhance reparative angiogenesis. In our ex vivo model of HD, they were successfully transplanted while attached to PAMs and were able to survive and maintain this GABAergic neuronal phenotype. Together, our results may pave the way for future research that could improve the success of cell-based therapy for HDs.
Collapse
|
9
|
Urrutia DN, Caviedes P, Mardones R, Minguell JJ, Vega-Letter AM, Jofre CM. Comparative study of the neural differentiation capacity of mesenchymal stromal cells from different tissue sources: An approach for their use in neural regeneration therapies. PLoS One 2019; 14:e0213032. [PMID: 30856179 PMCID: PMC6437714 DOI: 10.1371/journal.pone.0213032] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can trans/differentiate to neural precursors and/or
mature neurons and promote neuroprotection and neurogenesis. The above could
greatly benefit neurodegenerative disorders as well as in the treatment of
post-traumatic and hereditary diseases of the central nervous system (CNS). In
order to attain an ideal source of adult MSCs for the treatment of CNS diseases,
adipose tissue, bone marrow, skin and umbilical cord derived MSCs were isolated
and studied to explore differences with regard to neural differentiation
capacity. In this study, we demonstrated that MSCs from several tissues can
differentiate into neuron-like cells and differentially express progenitors and
mature neural markers. Adipose tissue MSCs exhibited significantly higher
expression of neural markers and had a faster proliferation rate. Our results
suggest that adipose tissue MSCs are the best candidates for the use in
neurological diseases.
Collapse
Affiliation(s)
| | - Pablo Caviedes
- Program of Molecular & Clinical Pharmacology, ICBM, Faculty of
Medicine, Universidad de Chile, Santiago, Chile
- Centro de Biotecnología y Bioingeniería (CeBiB), Departamento de
Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y
Matemáticas, Universidad de Chile, Santiago, Chile
| | - Rodrigo Mardones
- Regenerative Cell Therapy Center, Clinica Las Condes, Santiago,
Chile
- Orthopedic Department, Clinica Las Condes, Santiago,
Chile
| | - José J. Minguell
- Regenerative Cell Therapy Center, Clinica Las Condes, Santiago,
Chile
| | - Ana Maria Vega-Letter
- Program of Traslational Immunology ICIM, Faculty of Medicine, Clinica
Alemana Universidad del Desarrollo, Santiago, Chile
| | - Claudio M. Jofre
- Regenerative Cell Therapy Center, Clinica Las Condes, Santiago,
Chile
- * E-mail:
| |
Collapse
|
10
|
Labusca L, Mashayekhi K. Human adult pluripotency: Facts and questions. World J Stem Cells 2019; 11:1-12. [PMID: 30705711 PMCID: PMC6354101 DOI: 10.4252/wjsc.v11.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/06/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Cellular reprogramming and induced pluripotent stem cell (IPSC) technology demonstrated the plasticity of adult cell fate, opening a new era of cellular modelling and introducing a versatile therapeutic tool for regenerative medicine. While IPSCs are already involved in clinical trials for various regenerative purposes, critical questions concerning their medium- and long-term genetic and epigenetic stability still need to be answered. Pluripotent stem cells have been described in the last decades in various mammalian and human tissues (such as bone marrow, blood and adipose tissue). We briefly describe the characteristics of human-derived adult stem cells displaying in vitro and/or in vivo pluripotency while highlighting that the common denominators of their isolation or occurrence within tissue are represented by extreme cellular stress. Spontaneous cellular reprogramming as a survival mechanism favoured by senescence and cellular scarcity could represent an adaptative mechanism. Reprogrammed cells could initiate tissue regeneration or tumour formation dependent on the microenvironment characteristics. Systems biology approaches and lineage tracing within living tissues can be used to clarify the origin of adult pluripotent stem cells and their significance for regeneration and disease.
Collapse
Affiliation(s)
- Luminita Labusca
- National Institute of Research and Development for Advanced Technical Physics Iasi, Iasi 700349, Romania.
| | - Kaveh Mashayekhi
- Systems Biomedical Informatics and Modeling, Frankfurt D-45367, Germany
| |
Collapse
|
11
|
Fitzsimmons REB, Mazurek MS, Soos A, Simmons CA. Mesenchymal Stromal/Stem Cells in Regenerative Medicine and Tissue Engineering. Stem Cells Int 2018; 2018:8031718. [PMID: 30210552 PMCID: PMC6120267 DOI: 10.1155/2018/8031718] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/31/2018] [Accepted: 07/17/2018] [Indexed: 02/08/2023] Open
Abstract
As a result of over five decades of investigation, mesenchymal stromal/stem cells (MSCs) have emerged as a versatile and frequently utilized cell source in the fields of regenerative medicine and tissue engineering. In this review, we summarize the history of MSC research from the initial discovery of their multipotency to the more recent recognition of their perivascular identity in vivo and their extraordinary capacity for immunomodulation and angiogenic signaling. As well, we discuss long-standing questions regarding their developmental origins and their capacity for differentiation toward a range of cell lineages. We also highlight important considerations and potential risks involved with their isolation, ex vivo expansion, and clinical use. Overall, this review aims to serve as an overview of the breadth of research that has demonstrated the utility of MSCs in a wide range of clinical contexts and continues to unravel the mechanisms by which these cells exert their therapeutic effects.
Collapse
Affiliation(s)
- Ross E. B. Fitzsimmons
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave, Toronto, ON, Canada M5G 1M1
| | - Matthew S. Mazurek
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Calgary, AB, Canada T2N 4Z6
| | - Agnes Soos
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave, Toronto, ON, Canada M5G 1M1
| | - Craig A. Simmons
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave, Toronto, ON, Canada M5G 1M1
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada M5S 3G8
| |
Collapse
|
12
|
Grau-Monge C, Delcroix GJR, Bonnin-Marquez A, Valdes M, Awadallah ELM, Quevedo DF, Armour MR, Montero RB, Schiller PC, Andreopoulos FM, D'Ippolito G. Marrow-isolated adult multilineage inducible cells embedded within a biologically-inspired construct promote recovery in a mouse model of peripheral vascular disease. ACTA ACUST UNITED AC 2017; 12:015024. [PMID: 28211362 DOI: 10.1088/1748-605x/aa5a74] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peripheral vascular disease is one of the major vascular complications in individuals suffering from diabetes and in the elderly that is associated with significant burden in terms of morbidity and mortality. Stem cell therapy is being tested as an attractive alternative to traditional surgery to prevent and treat this disorder. The goal of this study was to enhance the protective and reparative potential of marrow-isolated adult multilineage inducible (MIAMI) cells by incorporating them within a bio-inspired construct (BIC) made of two layers of gelatin B electrospun nanofibers. We hypothesized that the BIC would enhance MIAMI cell survival and engraftment, ultimately leading to a better functional recovery of the injured limb in our mouse model of critical limb ischemia compared to MIAMI cells used alone. Our study demonstrated that MIAMI cell-seeded BIC resulted in a wide range of positive outcomes with an almost full recovery of blood flow in the injured limb, thereby limiting the extent of ischemia and necrosis. Functional recovery was also the greatest when MIAMI cells were combined with BICs, compared to MIAMI cells alone or BICs in the absence of cells. Histology was performed 28 days after grafting the animals to explore the mechanisms at the source of these positive outcomes. We observed that our critical limb ischemia model induces an extensive loss of muscular fibers that are replaced by intermuscular adipose tissue (IMAT), together with a highly disorganized vascular structure. The use of MIAMI cells-seeded BIC prevented IMAT infiltration with some clear evidence of muscular fibers regeneration.
Collapse
Affiliation(s)
- Cristina Grau-Monge
- Department of Orthopaedics, University of Miami Miller School of Medicine, FL, United States of America. Geriatric Research, Education, and Clinical Center and Research Service, Bruce W. Carter VAMC, Miami, FL, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pharmacologically active microcarriers delivering BDNF within a hydrogel: Novel strategy for human bone marrow-derived stem cells neural/neuronal differentiation guidance and therapeutic secretome enhancement. Acta Biomater 2017; 49:167-180. [PMID: 27865962 DOI: 10.1016/j.actbio.2016.11.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/18/2016] [Accepted: 11/11/2016] [Indexed: 12/29/2022]
Abstract
Stem cells combined with biodegradable injectable scaffolds releasing growth factors hold great promises in regenerative medicine, particularly in the treatment of neurological disorders. We here integrated human marrow-isolated adult multilineage-inducible (MIAMI) stem cells and pharmacologically active microcarriers (PAMs) into an injectable non-toxic silanized-hydroxypropyl methylcellulose (Si-HPMC) hydrogel. The goal is to obtain an injectable non-toxic cell and growth factor delivery device. It should direct the survival and/or neuronal differentiation of the grafted cells, to safely transplant them in the central nervous system, and enhance their tissue repair properties. A model protein was used to optimize the nanoprecipitation conditions of the neuroprotective brain-derived neurotrophic factor (BDNF). BDNF nanoprecipitate was encapsulated in fibronectin-coated (FN) PAMs and the in vitro release profile evaluated. It showed a prolonged, bi-phasic, release of bioactive BDNF, without burst effect. We demonstrated that PAMs and the Si-HPMC hydrogel increased the expression of neural/neuronal differentiation markers of MIAMI cells after 1week. Moreover, the 3D environment (PAMs or hydrogel) increased MIAMI cells secretion of growth factors (b-NGF, SCF, HGF, LIF, PlGF-1, SDF-1α, VEGF-A & D) and chemokines (MIP-1α & β, RANTES, IL-8). These results show that PAMs delivering BDNF combined with Si-HPMC hydrogel represent a useful novel local delivery tool in the context of neurological disorders. It not only provides neuroprotective BDNF but also bone marrow-derived stem cells that benefit from that environment by displaying neural commitment and an improved neuroprotective/reparative secretome. It provides preliminary evidence of a promising pro-angiogenic, neuroprotective and axonal growth-promoting device for the nervous system. STATEMENT OF SIGNIFICANCE Combinatorial tissue engineering strategies for the central nervous system are scarce. We developed and characterized a novel injectable non-toxic stem cell and protein delivery system providing regenerative cues for central nervous system disorders. BDNF, a neurotrophic factor with a wide-range effect, was nanoprecipitated to maintain its structure and released in a sustained manner from novel polymeric microcarriers. The combinatorial 3D support, provided by fibronectin-microcarriers and the hydrogel, to the mesenchymal stem cells guided the cells towards a neuronal differentiation and enhanced their tissue repair properties by promoting growth factors and cytokine secretion. The long-term release of physiological doses of bioactive BDNF, combined to the enhanced secretion of tissue repair factors from the stem cells, constitute a promising therapeutic approach.
Collapse
|
14
|
Talwadekar M, Fernandes S, Kale V, Limaye L. Valproic acid enhances the neural differentiation of human placenta derived-mesenchymal stem cellsin vitro. J Tissue Eng Regen Med 2016; 11:3111-3123. [DOI: 10.1002/term.2219] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Manasi Talwadekar
- Stem Cell Laboratory, National Centre for Cell Science, NCCS Complex; University of Pune Campus; Ganeshkhind Pune India
| | - Sophia Fernandes
- Stem Cell Laboratory, National Centre for Cell Science, NCCS Complex; University of Pune Campus; Ganeshkhind Pune India
| | - Vaijayanti Kale
- Stem Cell Laboratory, National Centre for Cell Science, NCCS Complex; University of Pune Campus; Ganeshkhind Pune India
| | - Lalita Limaye
- Stem Cell Laboratory, National Centre for Cell Science, NCCS Complex; University of Pune Campus; Ganeshkhind Pune India
| |
Collapse
|
15
|
Xu H, Wang Y, He Z, Yang H, Gao WQ. Direct conversion of mouse fibroblasts to GABAergic neurons with combined medium without the introduction of transcription factors or miRNAs. Cell Cycle 2016; 14:2451-60. [PMID: 26114472 DOI: 10.1080/15384101.2015.1060382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Degeneration or loss of GABAergic neurons frequently may lead to many neuropsychiatric disorders such as epilepsy and autism spectrum disorders. So far no clinically effective therapies can slow and halt the progression of these diseases. Cell-replacement therapy is a promising strategy for treatment of these neuropsychiatric diseases. Although increasing evidence showed that mammalian somatic cells can be directly converted into functional neurons using specific transcription factors or miRNAs via virus delivery, the application of these induced neurons is potentially problematic, due to integration of vectors into the host genome, which results in the disruption or dysfunction of nearby genes. Here, we show that mouse fibroblasts could be efficiently reprogrammed into GABAergic neurons in a combined medium composed of conditioned medium from neurotrophin-3 modified Olfactory Ensheathing Cells (NT3-OECs) plus SB431542, GDNF and RA. Following 3 weeks of induction, these cells derived from fibroblasts acquired the morphological and phenotypical GABAerigic neuronal properties, as demonstrated by the expression of neuronal markers including Tuj1, NeuN, Neurofilament-L, GABA, GABA receptors and GABA transporter 1. More importantly, these converted cells acquired neuronal functional properties such as synapse formation and increasing intracellular free calcium influx when treated with BayK, a specific activator of L-type calcium channel. Therefore, our findings demonstrate for the first time that fibroblasts can be directly converted into GABAergic neurons without ectopic expression of specific transcription factors or miRNA. This study may provide a promising cell source for the application of cell replacement therapy in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Huiming Xu
- a State Key Laboratory of Oncogenes and Related Genes; Renji-MedX Clinical Stem Cell Research Center; Ren Ji Hospital; School of Medicine; Shanghai Jiao Tong University ; Shangha , China
| | | | | | | | | |
Collapse
|
16
|
Rios C, D'Ippolito G, Curtis KM, Delcroix GJR, Gomez LA, El Hokayem J, Rieger M, Parrondo R, de Las Pozas A, Perez-Stable C, Howard GA, Schiller PC. Low Oxygen Modulates Multiple Signaling Pathways, Increasing Self-Renewal, While Decreasing Differentiation, Senescence, and Apoptosis in Stromal MIAMI Cells. Stem Cells Dev 2016; 25:848-60. [PMID: 27059084 DOI: 10.1089/scd.2015.0362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Human bone marrow multipotent mesenchymal stromal cell (hMSC) number decreases with aging. Subpopulations of hMSCs can differentiate into cells found in bone, vasculature, cartilage, gut, and other tissues and participate in their repair. Maintaining throughout adult life such cell subpopulations should help prevent or delay the onset of age-related degenerative conditions. Low oxygen tension, the physiological environment in progenitor cell-rich regions of the bone marrow microarchitecture, stimulates the self-renewal of marrow-isolated adult multilineage inducible (MIAMI) cells and expression of Sox2, Nanog, Oct4a nuclear accumulation, Notch intracellular domain, notch target genes, neuronal transcriptional repressor element 1 (RE1)-silencing transcription factor (REST), and hypoxia-inducible factor-1 alpha (HIF-1α), and additionally, by decreasing the expression of (i) the proapoptotic proteins, apoptosis-inducing factor (AIF) and Bak, and (ii) senescence-associated p53 expression and β-galactosidase activity. Furthermore, low oxygen increases canonical Wnt pathway signaling coreceptor Lrp5 expression, and PI3K/Akt pathway activation. Lrp5 inhibition decreases self-renewal marker Sox2 mRNA, Oct4a nuclear accumulation, and cell numbers. Wortmannin-mediated PI3K/Akt pathway inhibition leads to increased osteoblastic differentiation at both low and high oxygen tension. We demonstrate that low oxygen stimulates a complex signaling network involving PI3K/Akt, Notch, and canonical Wnt pathways, which mediate the observed increase in nuclear Oct4a and REST, with simultaneous decrease in p53, AIF, and Bak. Collectively, these pathway activations contribute to increased self-renewal with concomitant decreased differentiation, cell cycle arrest, apoptosis, and/or senescence in MIAMI cells. Importantly, the PI3K/Akt pathway plays a central mechanistic role in the oxygen tension-regulated self-renewal versus osteoblastic differentiation of progenitor cells.
Collapse
Affiliation(s)
- Carmen Rios
- 1 Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, Florida.,2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida
| | - Gianluca D'Ippolito
- 2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida.,3 Department of Orthopaedics, University of Miami Miller School of Medicine , Miami, Florida.,4 Geriatrics Institute, University of Miami Miller School of Medicine , Miami, Florida.,5 Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine , Miami, Florida.,6 Department of Biomedical Engineering, University of Miami , Coral Gables, Florida
| | - Kevin M Curtis
- 1 Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, Florida.,2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida
| | - Gaëtan J-R Delcroix
- 2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida.,3 Department of Orthopaedics, University of Miami Miller School of Medicine , Miami, Florida.,5 Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine , Miami, Florida
| | - Lourdes A Gomez
- 2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida
| | - Jimmy El Hokayem
- 1 Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, Florida
| | - Megan Rieger
- 1 Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, Florida
| | - Ricardo Parrondo
- 2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida
| | - Alicia de Las Pozas
- 2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida
| | - Carlos Perez-Stable
- 2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida.,7 Department of Medicine, University of Miami Miller School of Medicine , Miami, Florida
| | - Guy A Howard
- 1 Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, Florida.,2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida.,7 Department of Medicine, University of Miami Miller School of Medicine , Miami, Florida
| | - Paul C Schiller
- 1 Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, Florida.,2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida.,3 Department of Orthopaedics, University of Miami Miller School of Medicine , Miami, Florida.,4 Geriatrics Institute, University of Miami Miller School of Medicine , Miami, Florida.,5 Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
17
|
Functionalized composite scaffolds improve the engraftment of transplanted dopaminergic progenitors in a mouse model of Parkinson's disease. Biomaterials 2016; 74:89-98. [DOI: 10.1016/j.biomaterials.2015.09.039] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 12/16/2022]
|
18
|
Tzeng HH, Hsu CH, Chung TH, Lee WC, Lin CH, Wang WC, Hsiao CY, Leu YW, Wang TH. Cell Signaling and Differential Protein Expression in Neuronal Differentiation of Bone Marrow Mesenchymal Stem Cells with Hypermethylated Salvador/Warts/Hippo (SWH) Pathway Genes. PLoS One 2015; 10:e0145542. [PMID: 26713735 PMCID: PMC4699852 DOI: 10.1371/journal.pone.0145542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/04/2015] [Indexed: 01/04/2023] Open
Abstract
Human mesenchymal stem cells (MSCs) modified by targeting DNA hypermethylation of genes in the Salvador/Warts/Hippo pathway were induced to differentiate into neuronal cells in vitro. The differentiated cells secreted a significant level of brain-derived neurotrophy factor (BDNF) and the expression of BDNF receptor tyrosine receptor kinase B (TrkB) correlated well with the secretion of BDNF. In the differentiating cells, CREB was active after the binding of growth factors to induce phosphorylation of ERK in the MAPK/ERK pathway. Downstream of phosphorylated CREB led to the functional maturation of differentiated cells and secretion of BDNF, which contributed to the sustained expression of pERK and pCREB. In summary, both PI3K/Akt and MAPK/ERK signaling pathways play important roles in the neuronal differentiation of MSCs. The main function of the PI3K/Akt pathway is to maintain cell survival during neural differentiation; whereas the role of the MAPK/ERK pathway is probably to promote the maturation of differentiated MSCs. Further, cellular levels of protein kinase C epsilon type (PKC-ε) and kinesin heavy chain (KIF5B) increased with time of induction, whereas the level of NME/NM23 nucleoside diphosphate kinase 1 (Nm23-H1) decreased during the time course of differentiation. The correlation between PKC-ε and TrkB suggested that there is cross-talk between PKC-ε and the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Hui-Hung Tzeng
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhsiung, Chiayi, 621 Taiwan
| | - Chi-Hung Hsu
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhsiung, Chiayi, 621 Taiwan
| | - Ting-Hao Chung
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhsiung, Chiayi, 621 Taiwan
| | - Wen-Chien Lee
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhsiung, Chiayi, 621 Taiwan
- * E-mail:
| | - Chi-Hsien Lin
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhsiung, Chiayi, 621 Taiwan
| | - Wan-Chen Wang
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhsiung, Chiayi, 621 Taiwan
| | - Chen-Yu Hsiao
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhsiung, Chiayi, 621 Taiwan
| | - Yu-Wei Leu
- Department of Life Science, National Chung Cheng University, Minhsiung, Chiayi, 621, Taiwan
| | - Tzu-Hsien Wang
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhsiung, Chiayi, 621 Taiwan
| |
Collapse
|
19
|
Daviaud N, Garbayo E, Sindji L, Martínez-Serrano A, Schiller PC, Montero-Menei CN. Survival, differentiation, and neuroprotective mechanisms of human stem cells complexed with neurotrophin-3-releasing pharmacologically active microcarriers in an ex vivo model of Parkinson's disease. Stem Cells Transl Med 2015; 4:670-84. [PMID: 25925835 DOI: 10.5966/sctm.2014-0139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 03/05/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson's disease (PD). We recently reported the repair and functional recovery after treatment with human marrow-isolated adult multilineage inducible (MIAMI) cells adhered to neurotrophin-3 (NT3) releasing pharmacologically active microcarriers (PAMs) in hemiparkinsonian rats. In order to comprehend this effect, the goal of the present work was to elucidate the survival, differentiation, and neuroprotective mechanisms of MIAMI cells and human neural stem cells (NSCs), both adhering to NT3-releasing PAMs in an ex vivo organotypic model of nigrostriatal degeneration made from brain sagittal slices. It was shown that PAMs led to a marked increase in MIAMI cell survival and neuronal differentiation when releasing NT3. A significant neuroprotective effect of MIAMI cells adhering to PAMs was also demonstrated. NSCs barely had a neuroprotective effect and differentiated mostly into dopaminergic neuronal cells when adhering to PAM-NT3. Moreover, those cells were able to release dopamine in a sufficient amount to induce a return to baseline levels. Reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay analyses identified vascular endothelial growth factor (VEGF) and stanniocalcin-1 as potential mediators of the neuroprotective effect of MIAMI cells and NSCs, respectively. It was also shown that VEGF locally stimulated tissue vascularization, which might improve graft survival, without excluding a direct neuroprotective effect of VEGF on dopaminergic neurons. These results indicate a prospective interest of human NSC/PAM and MIAMI cell/PAM complexes in tissue engineering for PD. SIGNIFICANCE Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson's disease (PD). The present work elucidates and compares the survival, differentiation, and neuroprotective mechanisms of marrow-isolated adult multilineage inducible cells and human neural stem cells both adhered to neurotrophin-3-releasing pharmacologically active microcarriers in an ex vivo organotypic model of PD made from brain sagittal slices.
Collapse
Affiliation(s)
- Nicolas Daviaud
- INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; L'université Nantes, Angers, Le Mans, Angers University, Angers, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa," Autonomous University of Madrid-Consejo Superior de Investigaciones Científicas, Campus Cantoblanco, Madrid, Spain; Miami Veterans Healthcare System, Department of Orthopedics, and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Elisa Garbayo
- INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; L'université Nantes, Angers, Le Mans, Angers University, Angers, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa," Autonomous University of Madrid-Consejo Superior de Investigaciones Científicas, Campus Cantoblanco, Madrid, Spain; Miami Veterans Healthcare System, Department of Orthopedics, and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Laurence Sindji
- INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; L'université Nantes, Angers, Le Mans, Angers University, Angers, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa," Autonomous University of Madrid-Consejo Superior de Investigaciones Científicas, Campus Cantoblanco, Madrid, Spain; Miami Veterans Healthcare System, Department of Orthopedics, and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alberto Martínez-Serrano
- INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; L'université Nantes, Angers, Le Mans, Angers University, Angers, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa," Autonomous University of Madrid-Consejo Superior de Investigaciones Científicas, Campus Cantoblanco, Madrid, Spain; Miami Veterans Healthcare System, Department of Orthopedics, and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Paul C Schiller
- INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; L'université Nantes, Angers, Le Mans, Angers University, Angers, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa," Autonomous University of Madrid-Consejo Superior de Investigaciones Científicas, Campus Cantoblanco, Madrid, Spain; Miami Veterans Healthcare System, Department of Orthopedics, and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Claudia N Montero-Menei
- INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; L'université Nantes, Angers, Le Mans, Angers University, Angers, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa," Autonomous University of Madrid-Consejo Superior de Investigaciones Científicas, Campus Cantoblanco, Madrid, Spain; Miami Veterans Healthcare System, Department of Orthopedics, and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
20
|
Taşlı PN, Doğan A, Demirci S, Şahin F. Myogenic and neurogenic differentiation of human tooth germ stem cells (hTGSCs) are regulated by pluronic block copolymers. Cytotechnology 2015; 68:319-29. [PMID: 25698158 DOI: 10.1007/s10616-014-9784-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 08/26/2014] [Indexed: 01/26/2023] Open
Abstract
Stem cells with high proliferation, self-renewal and differentiation capacities are promising for tissue engineering approaches. Among stem cells, human tooth germ stem cells (hTGSCs) having mesenchymal stem cell characteristics are highly proliferative and able to differentiate into several cell lineages. Researchers have recently focused on transplanting stem cells with bioconductive and/or bioinductive materials that can provide cell commitment to the desired cell lineages. In the present study, effects of pluronic block copolymers (F68, F127 and P85) on in vitro myo- and neurogenic differentiation of human tooth germ stem cells (hTGSCs) were investigated. As P85 was found to exert considerable toxicity to hTGSCs even at low concentrations, it was not evaluated for further differentiation experiments. Immunocytochemical analysis, gene and protein expression studies revealed that while F68 treatment increased lineage-specific gene expression in both myo- and neuro-genically differentiated cells, F127 did not result in any remarkable difference compared to cells treated with differentiation medium. Subsequent studies are required to explore the exact mechanisms of how F68 increases the myogenic and neurogenic differentiation of hTGSCs. The present work indicates that pluronic F68 might be used in functional skeletal and neural tissue engineering applications.
Collapse
Affiliation(s)
- P Neslihan Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Agustos Campus, Kayisdagi cad., Kayisdagi, 34755, Istanbul, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Agustos Campus, Kayisdagi cad., Kayisdagi, 34755, Istanbul, Turkey.
| | - Selami Demirci
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Agustos Campus, Kayisdagi cad., Kayisdagi, 34755, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Agustos Campus, Kayisdagi cad., Kayisdagi, 34755, Istanbul, Turkey.
| |
Collapse
|
21
|
Gervois P, Struys T, Hilkens P, Bronckaers A, Ratajczak J, Politis C, Brône B, Lambrichts I, Martens W. Neurogenic maturation of human dental pulp stem cells following neurosphere generation induces morphological and electrophysiological characteristics of functional neurons. Stem Cells Dev 2014; 24:296-311. [PMID: 25203005 DOI: 10.1089/scd.2014.0117] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cell-based therapies are emerging as an alternative treatment option to promote functional recovery in patients suffering from neurological disorders, which are the major cause of death and permanent disability. The present study aimed to differentiate human dental pulp stem cells (hDPSCs) toward functionally active neuronal cells in vitro. hDPSCs were subjected to a two-step protocol. First, neuronal induction was acquired through the formation of neurospheres, followed by neuronal maturation, based on cAMP and neurotrophin-3 (NT-3) signaling. At the ultrastructural level, it was shown that the intra-spheral microenvironment promoted intercellular communication. hDPSCs grew out of the neurospheres in vitro and established a neurogenic differentiated hDPSC culture (d-hDPSCs) upon cAMP and NT-3 signaling. d-hDPSCs were characterized by the increased expression of neuronal markers such as neuronal nuclei, microtubule-associated protein 2, neural cell adhesion molecule, growth-associated protein 43, synapsin I, and synaptophysin compared with nondifferentiated hDPSCs. Enzyme-linked immunosorbent assay demonstrated that the secretion of brain-derived neurotrophic factor, vascular endothelial growth factor, and nerve growth factor differed between d-hDPSCs and hDPSCs. d-hDPSCs acquired neuronal features, including multiple intercommunicating cytoplasmic extensions and increased vesicular transport, as shown by the electron microscopic observation. Patch clamp analysis demonstrated the functional activity of d-hDPSCs by the presence of tetrodotoxin- and tetraethyl ammonium-sensitive voltage-gated sodium and potassium channels, respectively. A subset of d-hDPSCs was able to fire a single action potential. The results reported in this study demonstrate that hDPSCs are capable of neuronal commitment following neurosphere formation, characterized by distinct morphological and electrophysiological properties of functional neuronal cells.
Collapse
Affiliation(s)
- Pascal Gervois
- 1 Group of Morphology, Biomedical Research Institute, Hasselt University , Diepenbeek, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
de Munter JP, Melamed E, Wolters EC. Stem cell grafting in parkinsonism – Why, how and when. Parkinsonism Relat Disord 2014; 20 Suppl 1:S150-3. [DOI: 10.1016/s1353-8020(13)70036-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Fan L, Hu K, Ji K, Sun Q, Xiong J, Yang L, Liu H. Directed differentiation of aged human bone marrow multipotent stem cells effectively generates dopamine neurons. In Vitro Cell Dev Biol Anim 2013; 50:304-12. [PMID: 24163158 DOI: 10.1007/s11626-013-9701-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/27/2013] [Indexed: 12/11/2022]
Abstract
This study aimed to isolate aged human bone marrow multipotent stem cells (hAMSCs) with the potential for multilineage differentiation and to directly induce the cells to generate dopamine neurons, which could be used for Parkinson's disease therapy. We compared different culture methods for stem cells from aged human bone marrow and identified hAMSCs that could proliferate in vitro for at least 60 doubling times. Using RT-PCR and IHC, we found that these hAMSCs expressed pluripotent genes, such as Oct4, Sox2, and Nanog. In vitro studies also proved that hAMSCs could differentiate into three germ layer-derived cell types, such as osteogenic, chondrogenic, adipogenic, and hepatocyte-liked cells. After induction for more than 20 d in vitro with retinoic acid, basic fibroblast growth factor, and sonic hedgehog using a two-step method and withdrawal of serum, hAMSCs could differentiate into dopamine neurons at the positive ratio of 70%, which showed DA secretion function upon depolarization. In conclusion, we suggest that hAMSCs can be used as cell sources to develop medical treatments to prevent the progression of Parkinson's disease, especially in aged persons.
Collapse
Affiliation(s)
- Lixing Fan
- Research Center of Developmental Biology, Second Military Medical University, XiangYin road 800, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Daviaud N, Garbayo E, Schiller PC, Perez-Pinzon M, Montero-Menei CN. Organotypic cultures as tools for optimizing central nervous system cell therapies. Exp Neurol 2013; 248:429-40. [DOI: 10.1016/j.expneurol.2013.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 01/01/2023]
|
25
|
Chung CY, Yang JT, Kuo YC. Polybutylcyanoacrylate nanoparticles for delivering hormone response element-conjugated neurotrophin-3 to the brain of intracerebral hemorrhagic rats. Biomaterials 2013; 34:9717-27. [PMID: 24034503 DOI: 10.1016/j.biomaterials.2013.08.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/27/2013] [Indexed: 01/09/2023]
Abstract
Hypertensive intracerebral hemorrhage (ICH) is a rapidly evolutional pathology, inducing necrotic cell death followed by apoptosis, and alters gene expression levels in surrounding tissue of an injured brain. For ICH therapy by controlled gene release, the development of intravenously administrable delivery vectors to promote the penetration across the blood-brain barrier (BBB) is a critical challenge. To enhance transfer efficiency of genetic materials under hypoxic conditions, polybutylcyanoacrylate (PBCA) nanoparticles (NPs) were used to mediate the intracellular transport of plasmid neurotrophin-3 (NT-3) containing hormone response element (HRE) with a cytomegalovirus (cmv) promoter and to differentiate induced pluripotent stem cells (iPSCs). The differentiation ability of iPSCs to neurons was justified by various immunological stains for protein fluorescence. The effect of PBCA NP/cmvNT-3-HRE complexes on treating ICH rats was studied by immunostaining, western blotting and Nissl staining. We found that the treatments with PBCA NP/cmvNT-3-HRE complexes increased the capability of differentiating iPSCs to express NT-3, TrkC and MAP-2. Moreover, PBCA NPs could protect cmvNT-3-HRE against degradation with EcoRI/PstI and DNase I in vitro and raise the delivery across the BBB in vivo. The administration of PBCA NP/cmvNT-3-HRE complexes increased the expression of NT-3, inhibited the expression of apoptosis-inducing factor, cleaved caspase-3 and DNA fragmentation, and reduced the cell death rate after ICH in vivo. PBCA NPs are demonstrated as an appropriate delivery system for carrying cmvNT-3-HRE to the brain for ICH therapy.
Collapse
Affiliation(s)
- Chiu-Yen Chung
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | | | | |
Collapse
|
26
|
Brázda V, Klusáková I, Hradilová Svíženská I, Dubový P. Dynamic response to peripheral nerve injury detected by in situ hybridization of IL-6 and its receptor mRNAs in the dorsal root ganglia is not strictly correlated with signs of neuropathic pain. Mol Pain 2013; 9:42. [PMID: 23953943 PMCID: PMC3844395 DOI: 10.1186/1744-8069-9-42] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/14/2013] [Indexed: 12/15/2022] Open
Abstract
Background IL-6 is a typical injury-induced mediator. Together with its receptors, IL-6 contributes to both induction and maintenance of neuropathic pain deriving from changes in activity of primary sensory neurons in dorsal root ganglia (DRG). We used in situ hybridization to provide evidence of IL-6 and IL-6 receptors (IL-6R and gp130) synthesis in DRG along the neuraxis after unilateral chronic constriction injury (CCI) of the sciatic nerve as an experimental model of neuropathic pain. Results All rats operated upon to create unilateral CCI displayed mechanical allodynia and thermal hyperalgesia in ipsilateral hind paws. Contralateral hind paws and forepaws of both sides exhibited only temporal and nonsignificant changes of sensitivity. Very low levels of IL-6 and IL-6R mRNAs were detected in naïve DRG. IL-6 mRNA was bilaterally increased not only in DRG neurons but also in satellite glial cells (SGC) activated by unilateral CCI. In addition to IL-6 mRNA, substantial increase of IL-6R mRNA expression occurred in DRG neurons and SGC following CCI, while the level of gp130 mRNA remained similar to that of DRG from naïve rats. Conclusions Here we evidence for the first time increased synthesis of IL-6 and IL-6R in remote cervical DRG nonassociated with the nerve injury. Our results suggest that unilateral CCI of the sciatic nerve induced not only bilateral elevation of IL-6 and IL-6R mRNAs in L4–L5 DRG but also their propagation along the neuraxis to remote cervical DRG as a general neuroinflammatory reaction of the nervous system to local nerve injury without correlation with signs of neuropathic pain. Possible functional involvement of IL-6 signaling is discussed.
Collapse
Affiliation(s)
- Václav Brázda
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| | | | | | | |
Collapse
|
27
|
Ghorbanian MT, Tiraihi T, Mesbah-Namin SA, Fathollahi Y. Selegiline is an efficient and potent inducer for bone marrow stromal cell differentiation into neuronal phenotype. Neurol Res 2013; 32:185-93. [PMID: 19422735 DOI: 10.1179/174313209x409016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mohammad Taghi Ghorbanian
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat, Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
28
|
Shen L, Zeng W, Wu YX, Hou CL, Chen W, Yang MC, Li L, Zhang YF, Zhu CH. Neurotrophin-3 Accelerates Wound Healing in Diabetic Mice by Promoting a Paracrine Response in Mesenchymal Stem Cells. Cell Transplant 2013; 22:1011-21. [DOI: 10.3727/096368912x657495] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Angiogenesis is a major obstacle for wound healing in patients with diabetic foot wounds. Mesenchymal stem cells (MSCs) have an important function in wound repair, and neurotrophin-3 (NT-3) can promote nerve regeneration and angiogenesis. We investigated the effect of NT-3 on accelerating wound healing in the diabetic foot by improving human bone marrow MSC (hMSC) activation. In vitro, NT-3 significantly promoted VEGF, NGF, and BDNF secretion in hMSCs. NT-3 improved activation of the hMSC conditioned medium, promoted human umbilical vein endothelial cell (HUVEC) proliferation and migration, and significantly improved the closure rate of HUVEC scratches. In addition, we produced nanofiber mesh biological tissue materials through the electrospinning technique using polylactic acid, mixed silk, and collagen. The hMSCs stimulated by NT-3 were implanted into the material. Compared with the control group, the NT-3-stimulated hMSCs in the biological tissue material significantly promoted angiogenesis in the feet of diabetic C57BL/6J mice and accelerated diabetic foot wound healing. These results suggest that NT-3 significantly promotes hMSC secretion of VEGF, NGF, and other vasoactive factors and that it accelerates wound healing by inducing angiogenesis through improved activation of vascular endothelial cells. The hMSCs stimulated by NT-3 can produce materials that accelerate wound healing in the diabetic foot and other ischemic ulcers.
Collapse
Affiliation(s)
- Lei Shen
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Wen Zeng
- Department of Anatomy, Key Lab for Biomechanics of Chongqing, Third Military Medical University, Chongqing, China
| | - Yang-Xiao Wu
- Department of Anatomy, Key Lab for Biomechanics of Chongqing, Third Military Medical University, Chongqing, China
| | - Chun-Li Hou
- Department of Anatomy, Key Lab for Biomechanics of Chongqing, Third Military Medical University, Chongqing, China
| | - Wen Chen
- Department of Anatomy, Key Lab for Biomechanics of Chongqing, Third Military Medical University, Chongqing, China
| | - Ming-Can Yang
- Department of Anatomy, Key Lab for Biomechanics of Chongqing, Third Military Medical University, Chongqing, China
| | - Li Li
- Department of Anatomy, Key Lab for Biomechanics of Chongqing, Third Military Medical University, Chongqing, China
| | - Ya-Fang Zhang
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Chu-Hong Zhu
- Department of Anatomy, Key Lab for Biomechanics of Chongqing, Third Military Medical University, Chongqing, China
| |
Collapse
|
29
|
Neirinckx V, Marquet A, Coste C, Rogister B, Wislet-Gendebien S. Adult bone marrow neural crest stem cells and mesenchymal stem cells are not able to replace lost neurons in acute MPTP-lesioned mice. PLoS One 2013; 8:e64723. [PMID: 23741377 DOI: 10.1371/journal.pone.0064723] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/18/2013] [Indexed: 12/13/2022] Open
Abstract
Adult bone marrow stroma contains multipotent stem cells (BMSC) that are a mixed population of mesenchymal and neural-crest derived stem cells. Both cells are endowed with in vitro multi-lineage differentiation abilities, then constituting an attractive and easy-available source of material for cell therapy in neurological disorders. Whereas the in vivo integration and differentiation of BMSC in neurons into the central nervous system is currently matter of debate, we report here that once injected into the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, pure populations of either bone marrow neural crest stem cells (NCSC) or mesenchymal stem cells (MSC) survived only transiently into the lesioned brain. Moreover, they do not migrate through the brain tissue, neither modify their initial phenotype, while no recovery of the dopaminergic system integrity was observed. Consequently, we tend to conclude that MSC/NCSC are not able to replace lost neurons in acute MPTP-lesioned dopaminergic system through a suitable integration and/or differentiation process. Altogether with recent data, it appears that neuroprotective, neurotrophic and anti-inflammatory features characterizing BMSC are of greater interest as regards CNS lesions management.
Collapse
Affiliation(s)
- Virginie Neirinckx
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Unit of Neurosciences, University of Liege, Liège, Belgium
| | | | | | | | | |
Collapse
|
30
|
Chung CY, Yang JT, Kuo YC. Polybutylcyanoacrylate nanoparticle-mediated neurotrophin-3 gene delivery for differentiating iPS cells into neurons. Biomaterials 2013; 34:5562-70. [PMID: 23623427 DOI: 10.1016/j.biomaterials.2013.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/03/2013] [Indexed: 12/12/2022]
Abstract
Guided neuronal differentiation of induced pluripotent stem cells (iPSCs) with genetic regulation is an important issue in biomedical research and in clinical practice for nervous regeneration and repair. To enhance the intracellular delivery of plasmid DNA (pDNA), polybutylcyanoacrylate (PBCA) nanoparticles (NPs) were employed to mediate the transport of neurotrophin-3 (NT-3) into iPSCs. The ability of iPSCs to differentiate into neuronal lineages was shown by immunofluorescent staining, western blotting, and flow cytometry. By transmission electron microscopy, we found that PBCA NPs could efficiently grasp pDNA, thereby increasing the particle size and conferring a negative surface charge. In addition, the treatments with PBCA NP/NT-3 complexes enhanced the expression of NT-3, TrkC, NH-H, NSE, and PSD95 by differentiating iPSCs. Neurons produced from iPSCs were incapable of returning to pluripotency, demonstrating with a series of differentiation scheme for adipogenesis and osteogenesis. The pretreatment with PBCA NP/NT-3 complexes can be one of critical biotechnologies and effective delivery systems in gene transfection to accelerate the differentiation of iPSCs into neurons.
Collapse
Affiliation(s)
- Chiu-Yen Chung
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | | | | |
Collapse
|
31
|
Neirinckx V, Coste C, Rogister B, Wislet-Gendebien S. Concise review: adult mesenchymal stem cells, adult neural crest stem cells, and therapy of neurological pathologies: a state of play. Stem Cells Transl Med 2013; 2:284-96. [PMID: 23486833 PMCID: PMC3659839 DOI: 10.5966/sctm.2012-0147] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/16/2013] [Indexed: 12/14/2022] Open
Abstract
Adult stem cells are endowed with in vitro multilineage differentiation abilities and constitute an attractive autologous source of material for cell therapy in neurological disorders. With regard to lately published results, the ability of adult mesenchymal stem cells (MSCs) and neural crest stem cells (NCSCs) to integrate and differentiate into neurons once inside the central nervous system (CNS) is currently questioned. For this review, we collected exhaustive data on MSC/NCSC neural differentiation in vitro. We then analyzed preclinical cell therapy experiments in different models for neurological diseases and concluded that neural differentiation is probably not the leading property of adult MSCs and NCSCs concerning neurological pathology management. A fine analysis of the molecules that are secreted by MSCs and NCSCs would definitely be of significant interest regarding their important contribution to the clinical and pathological recovery after CNS lesions.
Collapse
Affiliation(s)
| | | | - Bernard Rogister
- Neurosciences Unit and
- Development, Stem Cells and Regenerative Medicine Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée, University of Liège, Liège, Belgium
- Neurology Department, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | | |
Collapse
|
32
|
Benoit JP. [Conception and studies of micro and nanomedicines for brain applications]. Biol Aujourdhui 2013; 206:263-71. [PMID: 23419253 DOI: 10.1051/jbio/2012026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Indexed: 11/14/2022]
Abstract
As far as micromedicines are concerned, we are interested in the microencapsulation of recombinant proteins, to generate microcarriers upon which living cells can be adsorbed, a highly challenging technology. The whole system forms a Pharmacologically Active Microcarrier (PAM) to be used in cell therapy in the context of neurodegenerative diseases. More precisely, the PAMs are used for tissue engineering, they will increase cell survival time as well as the differentiation and integration of grafted cells following transplants in animals, these micromedicines can also activate the regenerative potential of adult stem cells such as the MIAMI cells. Within the domain of nanomedicines, we are pursuing the development of lipid nanocapsules that act as biomimetic nanovectors resembling lipoproteins. We are studying systematically the biodistribution profiles of these nanomedicines depending on their route of administration, local or systemic. In particular, we are trying to define the essential physicochemical parameters of these nanovectors that, after administration, control the targeting of tumours. In the same way, we are trying to understand how these nanomedicines cross biological barriers and how they interact with cells. In terms of preclinical applications, we are focusing on glioblastomas. The route of administration can be systemic or local. The most promising results in terms of survival of tumour-bearing animals were obtained by infusing radioactive nanocapsules intratumourally, in order to achieve an in-situ radiotherapy approach.
Collapse
Affiliation(s)
- Jean-Pierre Benoit
- Laboratoire Micro et Nanomédecines biomimétiques, INSERM U 1066, IBS-CHU, 4 rue Larrey, 49933 Angers Cedex 9, France.
| |
Collapse
|
33
|
Dopaminergic cells, derived from a high efficiency differentiation protocol from umbilical cord derived mesenchymal stem cells, alleviate symptoms in a Parkinson's disease rodent model. Cell Biol Int 2013; 37:167-80. [DOI: 10.1002/cbin.10029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/06/2012] [Indexed: 12/25/2022]
|
34
|
Xie ST, Lu F, Zhang XJ, Shen Q, He Z, Gao WQ, Hu DH, Yang H. Retinoic acid and human olfactory ensheathing cells cooperate to promote neural induction from human bone marrow stromal stem cells. Neuromolecular Med 2013; 15:252-64. [PMID: 23288654 DOI: 10.1007/s12017-012-8215-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 12/13/2012] [Indexed: 12/25/2022]
Abstract
The generation of induced neuronal cells from human bone marrow stromal stem cells (hBMSCs) provides new avenues for basic research and potential transplantation therapies for nerve injury and neurological disorders. However, clinical application must seriously consider the risk of tumor formation by hBMSCs, neural differentiation efficiency and biofunctions resembling neurons. Here, we co-cultured hBMSCs exposed to retinoic acid (RA) with human olfactory ensheathing cells (hOECs) to stimulate its differentiation into neural cells, and found that hBMSCs following 1 and 2 weeks of stimulation promptly lost their immunophenotypical profiles, and gradually acquired neural cell characteristics, as shown by a remarkable up-regulation of expression of neural-specific markers (Tuj-1, GFAP and Galc) and down-regulation of typical hBMSCs markers (CD44 and CD90), as well as a rapid morphological change. Concomitantly, in addition to a drastic decrease in the number of BrdU incorporated cells, there was a more elevated synapse formation (a hallmark for functional neurons) in the differentiated hBMSCs. Compared with OECs alone, this specific combination of RA and hOECs was significantly potentiated neuronal differentiation of hBMSCs. The results suggest that RA can enhance and orchestrate hOECs to neural differentiation of hBMSCs. Therefore, these findings may provide an alternative strategy for the repair of traumatic nerve injury and neurological diseases with application of the optimal combination of RA and OECs for neuronal differentiation of hBMSCs.
Collapse
Affiliation(s)
- Song-Tao Xie
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang HT, Liu ZL, Yao XQ, Yang ZJ, Xu RX. Neural differentiation ability of mesenchymal stromal cells from bone marrow and adipose tissue: a comparative study. Cytotherapy 2012; 14:1203-14. [PMID: 22909277 DOI: 10.3109/14653249.2012.711470] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AIMS The characteristics, such as morphologic and phenotypic characteristics and neural transdifferentiation ability, of mesenchymal stromal cells (MSC) derived from different origins have yet to be reported for cases isolated from the same individual. METHODS The proliferation capacity, secretion ability of neurotrophins (NT) and neural differentiation ability in rat MSC isolated from bone marrow (BMSC) and adipose tissue (ADSC) were compared from the same animal. RESULTS The ADSC had a significantly higher proliferation capacity than BMSC according to cell cycle and cumulative population doubling analyses. The proportion of cells expressing neural markers was greater in differentiated ADSC than in differentiated BMSC. Furthermore, the single neurosphere derived from ADSC showed stronger expansion and differentiation abilities than that derived from BMSC. The findings from Western blot lent further support to the immunocytochemical data. The mRNA and protein levels of nerve growth factor (NGF) and brain-derived growth factor (BDNF) expressed in ADSC were significantly higher than those in BMSC at different stages before and following induction. CONCLUSIONS Our study suggests that the proliferation ability of ADSC is superior to that of BMSC. Furthermore, differentiated ADSC expressed higher percentages of neural markers. As one possible alternative source of BMSC, ADSC may have wide potential for treating central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Hong-Tian Zhang
- The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA, Beijing, China
| | | | | | | | | |
Collapse
|
36
|
Roger M, Clavreul A, Sindji L, Chassevent A, Schiller PC, Montero-Menei CN, Menei P. In vitro and in vivo interactions between glioma and marrow-isolated adult multilineage inducible (MIAMI) cells. Brain Res 2012; 1473:193-203. [PMID: 22819930 DOI: 10.1016/j.brainres.2012.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/04/2012] [Accepted: 07/16/2012] [Indexed: 12/14/2022]
Abstract
The prognosis of patients with malignant glioma remains extremely poor despite surgery and improvements in radio- and chemo-therapies. We recently showed that marrow-isolated adult mutilineage inducible (MIAMI) cells, a subpopulation of human mesenchymal stromal cells (MSCs), can serve as cellular carriers of drug-loaded nanoparticles to brain tumors. However, the safety of MIAMI cells as cellular treatment vectors in glioma therapy must be evaluated, in particular their effect on glioma growth and their fate in a tumor environment. In this study, we showed that MIAMI cells were able to specifically migrate toward the orthotopic U87MG tumor model and did not influence its growth. In this model, MIAMI cells did not give rise to cells resembling endothelial cells, pericytes, cancer-associated fibroblasts (CAFs), or astrocytes. Despite these encouraging results, the effects of MIAMI cells may be glioma-dependent. MIAMI cells did not migrate toward the orthotopic Lab1 GB and they can induce the proliferation of other glioma cell lines in vitro. Furthermore, a fraction of MIAMI cells was found to be in a state of proliferation in the U87MG tumor environment. These findings indicate that the use of MIAMI cells as cellular treatment vectors for malignant tumors must be controlled. These cells may be used as "suicide vectors": vectors for killing not only tumor cells but themselves.
Collapse
Affiliation(s)
- Mathilde Roger
- LUNAM Université, INSERM UMR-1066, Micro- et Nanomédecines Biomimétiques, 4 rue Larrey, 49933 ANGERS cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Roger M, Clavreul A, Huynh NT, Passirani C, Schiller P, Vessières A, Montero-Menei C, Menei P. Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy. Int J Pharm 2012; 423:63-8. [DOI: 10.1016/j.ijpharm.2011.04.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 01/01/2023]
|
38
|
Curtis KM, Gomez LA, Schiller PC. Rac1b regulates NT3-stimulated Mek-Erk signaling, directing marrow-isolated adult multilineage inducible (MIAMI) cells toward an early neuronal phenotype. Mol Cell Neurosci 2012; 49:138-48. [DOI: 10.1016/j.mcn.2011.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 12/25/2022] Open
|
39
|
Roche S, D'Ippolito G, Gomez LA, Bouckenooghe T, Lehmann S, Montero-Menei CN, Schiller PC. Comparative analysis of protein expression of three stem cell populations: models of cytokine delivery system in vivo. Int J Pharm 2012; 440:72-82. [PMID: 22285475 DOI: 10.1016/j.ijpharm.2011.12.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/14/2011] [Accepted: 12/22/2011] [Indexed: 01/14/2023]
Abstract
Several mechanisms mediate the regenerative and reparative capacity of stem cells, including cytokine secretion; therefore these cells can act as delivery systems of therapeutic molecules. Here we begin to address the molecular and cellular basis of their regenerative potential by characterizing the proteomic profile of human embryonic stem cells (hESCs), mesenchymal stem cells (hMSCs) and marrow isolated adult multilineage inducible (MIAMI) cells, followed by analysis of the secretory profile of the latter stem cell population. Proteomic analysis establishes the closer relationship between hMSCs and MIAMI cells, while hESCs are more divergent. However, MIAMI cells appear to have more proteins in common with hESCs than hMSCs. Proteins characteristic of hMSCs include transgelin-2, phosphatidylethanolamine-binding protein 1 (PEBP1), Heat-Shock 20 kDa protein (HSP20/HSPβ6), and programmed cell death 6-interacting protein (PDC6I) among others. MIAMI cells are characterized by the high level expression of ubiquitin carboxyl-terminal hydrolase isoenzyme L1 (UCHL1), 14-3-3 zeta, HSP27 (HSPβ1), and tropomyosin 4 and 3. For hESC, elongation factor Tu (EFTu), isocitrate dehydrogenase (IDH1) and the peroxiredoxins 1, 2, and 6 (PRDX1, PRDX2, and PRDX6) were the most characteristic. Secretome analysis indicates that MIAMI cells secrete higher levels of vascular endothelial growth factor (VEGF), Fractalkine, Interleukin-6, interlukin-8, and growth related oncogene (GRO), compared to hMSCs. These soluble mediators are known to play key roles in angiogenesis, arteriogenesis, atheroprotection, immunomodulation, neuroprotection, axonal growth, progenitor cell migration, and prevention of apoptosis. All these roles are consistent with a reparative pro-survival secretory phenotype. We further discuss the potential of these cells as therapeutic vehicles.
Collapse
Affiliation(s)
- Stephane Roche
- Inserm UMR_S 910, Faculte de Medecine de la Timone, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Tran VT, Karam JP, Garric X, Coudane J, Benoît JP, Montero-Menei CN, Venier-Julienne MC. Protein-loaded PLGA–PEG–PLGA microspheres: A tool for cell therapy. Eur J Pharm Sci 2012; 45:128-37. [DOI: 10.1016/j.ejps.2011.10.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/25/2011] [Accepted: 10/31/2011] [Indexed: 11/15/2022]
|
41
|
Roobrouck VD, Vanuytsel K, Verfaillie CM. Concise review: culture mediated changes in fate and/or potency of stem cells. Stem Cells 2011; 29:583-9. [PMID: 21305670 DOI: 10.1002/stem.603] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although Gurdon demonstrated already in 1958 that the nucleus of intestinal epithelial cells could be reprogrammed to give rise to adult frogs, the field of cellular reprogramming has only recently come of age with the description by Takahashi and Yamanaka in 2006, which defined transcription factors can reprogram fibroblasts to an embryonic stem cell-like fate. With the mounting interest in the use of human pluripotent stem cells and culture-expanded somatic stem/progenitor cells, such as mesenchymal stem cells, increasing attention has been given to the effect of changes in the in vitro microenvironment on the fate of stem cells. These studies have demonstrated that changes in culture conditions may change the potency of pluripotent stem cells or reprogram adult stem/progenitor cells to endow them with a broader differentiation potential. The mechanisms underlying these fate and potency changes by ex vivo culture should be further investigated and considered when designing clinical therapies with stem/progenitor cells.
Collapse
Affiliation(s)
- Valerie D Roobrouck
- Interdepartmental Stem Cell Institute Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | |
Collapse
|
42
|
Role of mesenchymal stem cells in neurogenesis and nervous system repair. Neurochem Int 2011; 59:347-56. [PMID: 21718735 DOI: 10.1016/j.neuint.2011.06.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/27/2011] [Accepted: 06/09/2011] [Indexed: 02/08/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are attractive candidates for use in regenerative medicine since they are easily accessible and can be readily expanded in vivo, and possess unique immunogenic properties. Moreover, these multipotent cells display intriguing environmental adaptability and secretory capacity. The ability of MSCs to migrate and engraft in a range of tissues has received significant attention. Evidence indicating that MSC transplantation results in functional improvement in animal models of neurological disorders has highlighted exciting potential for their use in neurological cell-based therapies. The manner in which MSCs elicit positive effects in the damaged nervous system remains unclear. Cell fusion and/or 'transdifferentiation' phenomena, by which MSCs have been proposed to adopt neural cell phenotypes, occur at very low frequency and are unlikely to fully account for observed neurological improvement. Alternatively, MSC-mediated neural recovery may result from the release of soluble molecules, with MSC-derived growth factors and extracellular matrix components influencing the activity of endogenous neural cells. This review discusses the potential of MSCs as candidates for use in therapies to treat neurological disorders and the molecular and cellular mechanisms by which they are understood to act.
Collapse
|
43
|
Roger M, Clavreul A, Venier-Julienne MC, Passirani C, Montero-Menei C, Menei P. The potential of combinations of drug-loaded nanoparticle systems and adult stem cells for glioma therapy. Biomaterials 2011; 32:2106-16. [DOI: 10.1016/j.biomaterials.2010.11.056] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 11/14/2010] [Indexed: 12/16/2022]
|
44
|
Prockop DJ, Kota DJ, Bazhanov N, Reger RL. Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med 2011; 14:2190-9. [PMID: 20716123 PMCID: PMC3489272 DOI: 10.1111/j.1582-4934.2010.01151.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this review, we focus on the adult stem/progenitor cells that were initially isolated from bone marrow and first referred to as colony forming units-fibroblastic, then as marrow stromal cells and subsequently as either mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs). The current interest in MSCs and similar cells from other tissues is reflected in over 10,000 citations in PubMed at the time of this writing with 5 to 10 new publications per day. It is also reflected in over 100 registered clinical trials with MSCs or related cells (http//www.clinicaltrials.gov). As a guide to the vast literature, this review will attempt to summarize many of the publications in terms of three paradigms that have directed much of the work: an initial paradigm that the primary role of the cells was to form niches for haematopoietic stem cells (paradigm I); a second paradigm that the cells repaired tissues by engraftment and differentiation to replace injured cells (paradigm II); and the more recent paradigm that MSCs engage in cross-talk with injured tissues and thereby generate microenvironments or ‘quasi-niches’ that enhance the repair tissues (paradigm III).
Collapse
Affiliation(s)
- Darwin J Prockop
- Texas A & M Health Science Center College of Medicine Institute for Regenerative Medicine at Scott & White, Temple, TX 76502, USA.
| | | | | | | |
Collapse
|
45
|
Prockop DJ, Kota DJ, Bazhanov N, Reger RL. Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med 2011. [PMID: 20716123 DOI: 10.1111/j.15824934.2010.01151.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this review, we focus on the adult stem/progenitor cells that were initially isolated from bone marrow and first referred to as colony forming units-fibroblastic, then as marrow stromal cells and subsequently as either mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs). The current interest in MSCs and similar cells from other tissues is reflected in over 10,000 citations in PubMed at the time of this writing with 5 to 10 new publications per day. It is also reflected in over 100 registered clinical trials with MSCs or related cells (http//www.clinicaltrials.gov). As a guide to the vast literature, this review will attempt to summarize many of the publications in terms of three paradigms that have directed much of the work: an initial paradigm that the primary role of the cells was to form niches for haematopoietic stem cells (paradigm I); a second paradigm that the cells repaired tissues by engraftment and differentiation to replace injured cells (paradigm II); and the more recent paradigm that MSCs engage in cross-talk with injured tissues and thereby generate microenvironments or 'quasi-niches' that enhance the repair tissues (paradigm III).
Collapse
Affiliation(s)
- Darwin J Prockop
- Texas A & M Health Science Center College of Medicine Institute for Regenerative Medicine at Scott & White, Temple, TX 76502, USA.
| | | | | | | |
Collapse
|
46
|
Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, Subramani K, Laurent S. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 2010; 111:253-80. [PMID: 21077606 DOI: 10.1021/cr1001832] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Zhang W, Yan Q, Zeng YS, Zhang XB, Xiong Y, Wang JM, Chen SJ, Li Y, Bruce IC, Wu W. Implantation of adult bone marrow-derived mesenchymal stem cells transfected with the neurotrophin-3 gene and pretreated with retinoic acid in completely transected spinal cord. Brain Res 2010; 1359:256-71. [PMID: 20816761 DOI: 10.1016/j.brainres.2010.08.072] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/18/2010] [Accepted: 08/22/2010] [Indexed: 12/22/2022]
Abstract
Implantation of marrow-derived mesenchymal stem cells (MSCs) is the most promising therapeutic strategy for the treatment of spinal cord injury (SCI), especially because of their potential for clinical application, such as the avoidance of immunologic rejection, their strong secretory properties, and their plasticity for developing into neural cells. However, the recovery from SCI after MSC implantation is minimal due to their limited capacity for the reduction of cystic cavitation, for the axonal regeneration and their uncertain neural plasticity in the spinal cord. We previously pretreated MSCs with all-trans retinoic acid (RA) in vitro. Then we genetically modified them to overexpress neurotrophin-3 (NT-3) via a recombinant adenoviral vector (Adv). This combined treatment not only permitted more neuronal differentiation of MSCs, but stimulated more NT-3 secretion prior to grafting, according to our previous and present results. When these cells were implanted into the transected spinal cord of rats, the animals had some improvement (both functionally and structurally), including the recovery of hindlimb locomotor function, shown by the highest Basso, Beattie, and Bresnahan (BBB) scores, as well as dramatically reduced cavity volume, clear axonal regeneration and more neuronal survival. In contrast, simple MSC implantation is not a very effective therapy for spinal transection. However, the neuronal differentiation of MSCs after treatment with a combination of Adv-mediated NT-3 gene transfer and RA was only mildly improved in vivo.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Delcroix GJR, Curtis KM, Schiller PC, Montero-Menei CN. EGF and bFGF pre-treatment enhances neural specification and the response to neuronal commitment of MIAMI cells. Differentiation 2010; 80:213-27. [PMID: 20813449 DOI: 10.1016/j.diff.2010.07.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/28/2010] [Accepted: 07/12/2010] [Indexed: 02/06/2023]
Abstract
AIMS Multipotent mesenchymal stromal cells raise great interest for regenerative medicine studies. Some MSC subpopulations have the potential to undergo neural differentiation, including marrow isolated adult multilineage inducible (MIAMI) cells, which differentiate into neuron-like cells in a multi-step neurotrophin 3-dependent manner. Epidermal and basic fibroblast growth factors are often used in neuronal differentiation protocols for MSCs, but with a limited understanding of their role. In this study, we thoroughly assessed for the first time the capacity of these factors to enhance the neuronal differentiation of MSCs. MATERIALS AND METHODS We have characterized MIAMI cell neuronal differentiation program in terms of stem cell molecule expression, cell cycle modifications, acquisition of a neuronal morphology and expression of neural and neuronal molecules in the absence and presence of an EGF-bFGF pre-treatment. RESULTS EGF-bFGF pre-treatment down-regulated the expression of stemness markers Oct4A, Notch1 and Hes5, whereas neural/neuronal molecules Nestin, Pax6, Ngn2 and the neurotrophin receptor tyrosine kinase 1 and 3 were up-regulated. During differentiation, a sustained Erk phosphorylation in response to NT3 was observed, cells began to exit from the cell cycle and exhibit increased neurite-like extensions. In addition, neuronal β3-tubulin and neurofilament expression was increased; an effect mediated via the Erk pathway. A slight pre-oligodendrocyte engagement was noted, and no default neurotransmitter phenotype was observed. Overall, mesodermal markers were unaffected or decreased, while neurogenic/adipogenic PPARγ2 was increased. CONCLUSION EGF and bFGF pre-treatment enhances neural specification and the response to neuronal commitment of MIAMI cells, further increasing their potential use in adult cell therapy of the nervous system.
Collapse
|
49
|
Curtis KM, Gomez LA, Rios C, Garbayo E, Raval AP, Perez-Pinzon MA, Schiller PC. EF1alpha and RPL13a represent normalization genes suitable for RT-qPCR analysis of bone marrow derived mesenchymal stem cells. BMC Mol Biol 2010; 11:61. [PMID: 20716364 PMCID: PMC2931506 DOI: 10.1186/1471-2199-11-61] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 08/17/2010] [Indexed: 12/14/2022] Open
Abstract
Background RT-qPCR analysis is a widely used method for the analysis of mRNA expression throughout the field of mesenchymal stromal cell (MSC) research. Comparison between MSC studies, both in vitro and in vivo, are challenging due to the varied methods of RT-qPCR data normalization and analysis. Therefore, this study focuses on putative housekeeping genes for the normalization of RT-qPCR data between heterogeneous commercially available human MSC, compared with more homogeneous populations of MSC such as MIAMI and RS-1 cells. Results Eight genes including; ACTB, B2M, EF1α, GAPDH, RPL13a, YWHAZ, UBC
and HPRT1
were tested as possible housekeeping genes based on their expression level and variability. EF1α and RPL13a were validated for RT-qPCR analysis of MIAMI cells during expansion in varied oxygen tensions, endothelial differentiation, neural precursor enrichment, and during the comparison with RS-1 cells and commercially available MSC. RPL13a and YWHAZ were validated as normalization genes for the cross-species analysis of MIAMI cells in an animal model of focal ischemia. GAPDH, which is one of the most common housekeeping genes used for the normalization of RT-qPCR data in the field of MSC research, was found to have the highest variability and deemed not suitable for normalization of RT-qPCR data. Conclusions In order to make comparisons between heterogeneous MSC populations, as well as adult stem cell like MSC which are used in different laboratories throughout the world, it is important to have a standardized, reproducible set of housekeeping genes for RT-qPCR analysis. In this study we demonstrate that EF1α, RPL13a and YWHAZ are suitable genes for the RT-qPCR analysis and comparison of several sources of human MSC during in vitro characterization and differentiation as well as in an ex vivo animal model of global cerebral ischemia. This will allow for the comparative RT-qPCR analysis of multiple MSC populations with the goal of future use in animal models of disease as well as tissue repair.
Collapse
Affiliation(s)
- Kevin M Curtis
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center and The Geriatrics Institute, 1201 NW 16th Street, Miami, Florida 33125 USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Roger M, Clavreul A, Venier-Julienne MC, Passirani C, Sindji L, Schiller P, Montero-Menei C, Menei P. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials 2010; 31:8393-401. [PMID: 20688391 DOI: 10.1016/j.biomaterials.2010.07.048] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 07/08/2010] [Indexed: 01/06/2023]
Abstract
The prognosis of patients with malignant glioma remains extremely poor, despite surgery and improvements in radio- and chemo-therapies. Nanotechnologies represent great promise in glioma therapy as they protect therapeutic agent and allow its sustained release. However, new paradigms allowing tumor specific targeting and extensive intratumoral distribution must be developed to efficiently deliver nanoparticles (NPs). Knowing the tropism of mesenchymal stem cells (MSCs) for brain tumors, the aim of this study was to obtain the proof of concept that these cells can be used as NP delivery vehicles. Two types of NPs loaded with coumarin-6 were investigated: poly-lactic acid NPs (PLA-NPs) and lipid nanocapsules (LNCs). The results show that these NPs can be efficiently internalized into MSCs while cell viability and differentiation are not affected. Furthermore, these NP-loaded cells were able to migrate toward an experimental human glioma model. These data suggest that MSCs can serve as cellular carriers for NPs in brain tumors.
Collapse
Affiliation(s)
- Mathilde Roger
- INSERM Unit 646, Ingénierie de la Vectorisation Particulaire, 10 rue André Bocquel, Université d'Angers, 49100 Angers, France
| | | | | | | | | | | | | | | |
Collapse
|