1
|
Jayakody T, Budagoda DK, Mendis K, Dilshan WD, Bethmage D, Dissasekara R, Dawe GS. Biased agonism in peptide-GPCRs: A structural perspective. Pharmacol Ther 2025; 269:108806. [PMID: 39889970 DOI: 10.1016/j.pharmthera.2025.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/13/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
G protein-coupled receptors (GPCRs) are dynamic membrane receptors that transduce extracellular signals to the cell interior by forming a ligand-receptor-effector (ternary) complex that functions via allosterism. Peptides constitute an important class of ligands that interact with their cognate GPCRs (peptide-GPCRs) to form the ternary complex. "Biased agonism", a therapeutically relevant phenomenon exhibited by GPCRs owing to their allosteric nature, has also been observed in peptide-GPCRs, leading to the development of selective therapeutics with fewer side effects. In this review, we have focused on the structural basis of signalling bias at peptide-GPCRs of classes A and B, and reviewed the therapeutic relevance of bias at peptide-GPCRs, with the hope of contributing to the discovery of novel biased peptide drugs.
Collapse
Affiliation(s)
- Tharindunee Jayakody
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | | | - Krishan Mendis
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | | | - Duvindu Bethmage
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | - Rashmi Dissasekara
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka; The Graduate School, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
2
|
Watanabe K, Han CM, Altman-Singles AR, Liu J, Guo X, Ni A, Bahador M, Ebrahimian T, Kim J, Lee BS, Liu XS, Kim DG. Multiscale characterization of jawbone treated with osteoporosis therapeutic agents. J Mech Behav Biomed Mater 2025; 169:107036. [PMID: 40345077 DOI: 10.1016/j.jmbbm.2025.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
The objective of the current study was to determine whether treatments of bisphosphonate (alendronate (ALN)), parathyroid hormone (PTH), and their combination have an effect on the jawbone in estrogen deficient rats. Six female rats (4-month-old) were used for each sham surgery (SHAM). Twenty-four rats (4-month-old) were ovariectomized and randomly assigned to four equal groups: saline injection (VEH), PTH following saline injection (VEH/PTH), bisphosphonate (ALN), or a combination (ALN/PTH). A hemimandible was randomly dissected from each rat for multiscale (10-2 to 10-7 m) characterization including static and dynamic mechanical stability of teeth in the alveolar socket, tissue mineral density distribution (TMD), and nanoindentation properties of the jawbone matrix. Most jawbone characteristics in OVX and its treatment groups were not significantly different from those of the SHAM group. The surface of alveolar bone (AB) surrounding teeth showed a trend of more erosion and addition of new bone tissues in the OVX rat groups compared to the SHAM group. All TMD parameters rapidly increased up to 60 μm from the periodontal ligament surrounding teeth regardless of the treatment groups. Treatments using each therapeutic agent and its combination did not substantially change those characteristics of jawbones in OVX rats. These findings are different from those of lumbar vertebrae in the same rats that showed a significant bone alteration by OVX and treatments. Thus, the current multiscale characterization of jawbone provides comprehensive information that can help better understand jawbone-specific responses to bone-related complications, including postmenopausal osteoporosis and bisphosphonate-related osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Keiichiro Watanabe
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH,USA
| | - Cheol-Min Han
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH,USA
| | - Allison R Altman-Singles
- Kinesiology & Mechanical Engineering, Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Jie Liu
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH,USA
| | - Xiaohan Guo
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Ai Ni
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Mason Bahador
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH,USA
| | - Tala Ebrahimian
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH,USA
| | - Jayoung Kim
- Departments of Surgery and BioMedical Sciences, Cedars-Sinai Medical Center, University of California, Los Angeles, CA, USA
| | - Beth S Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH,USA.
| |
Collapse
|
3
|
Jin H, Jin H, Suk KS, Lee BH, Park SY, Kim HS, Moon SH, Park SR, Kim N, Shin JW, Kwon JW. Anti-osteoporosis medication in patients with posterior spine fusion: a systematic review and meta-analysis. Spine J 2025:S1529-9430(25)00204-9. [PMID: 40280495 DOI: 10.1016/j.spinee.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/06/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND CONTEXT Osteoporosis and osteopenia are common among patients undergoing posterior spine fusion surgery, presenting challenges such as pseudarthrosis, screw loosening, and poor patient outcomes. While pharmacological interventions are available, no consensus exists regarding the optimal perioperative treatment for these patients. Furthermore, the effectiveness of various treatment options in improving fusion rates and minimizing complications remains uncertain. PURPOSE To compare the effects of teriparatide, bisphosphonates, denosumab, and romosozumab in patients with posterior spine fusion with low bone mineral density (BMD). STUDY DESIGN Systematic review and meta-analysis PATIENT SAMPLE: Adult patients with low BMD receiving osteoporosis medications and undergoing posterior spine fusion surgery OUTCOME MEASURES: Fusion rate, subsequent vertebral fracture (VF), screw loosening, cage subsidence, proximal junctional kyphosis(PJK), and patient-reported outcomes (PROs), particularly the Visual Analogue Scale (VAS) and Oswestry Disability Index (ODI). METHODS A systematic search was conducted using PubMed, EMBASE, and Cochrane Library. Two reviewers independently selected and assessed relevant studies. Four groups were analyzed to evaluate the comparative effectiveness of antiosteoporosis medication on the outcome measures: Bisphosphonate versus Control; Teriparatide versus Control; Teriparatide versus Bisphosphonate; and Denosumab versus Control. RESULTS Bisphosphonate showed reduced subsequent VFs (odds ratio [OR]=0.27, 95% confidence interval [CI]=0.09-0.81) and cage subsidence (OR=0.29, 95% CI=0.11-0.75) and improved ODI scores at 12 months (standardized mean difference [SMD] [95% CI]=-0.75 [-1.42, -0.08]) compared to the control. Teriparatide showed a higher fusion rate (OR=3.52, 95% CI=1.84-6.75), lower screw loosening (OR=0.23, 95% CI=0.09-0.60), and improved ODI scores at 24 months (SMD [95% CI]=-0.57 [-0.99, -0.15]) compared to the control. Moreover, teriparatide showed a higher fusion rate (OR=2.28, 95% CI=1.67-3.11), lower subsequent VF (OR=0.22, 95% CI=0.09-0.51), and improved VAS score for back pain (VASB) (mean difference [MD] [95% CI]=-0.30 [-0.54, -0.07]) and ODI (SMD [95% CI]=-0.38[-0.64, -0.12]) scores at 12 months compared to bisphosphonate. Denosumab showed no significant difference in fusion rate or other complications compared to control. CONCLUSION Our results indicated that teriparatide should be used as the first-line perioperative treatment for patients with poor bone quality scheduled for posterior spine fusion. Teriparatide exhibited better fusion rates and reduced complications than controls and bisphosphonates, resulting in improved PROs. Moreover, bisphosphonates can be utilized in patients with contraindications to teriparatide since the former prevents osteoporosis-related complications compared to controls, resulting in improved PROs. Further studies are warranted to evaluate the potential effects of denosumab and romosozumab.
Collapse
Affiliation(s)
- HyungSub Jin
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - HyungJu Jin
- Department of Medicine, Yonsei University College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyung-Soo Suk
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Byung Ho Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Si Young Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hak-Sun Kim
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seong-Hwan Moon
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sub-Ri Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Namhoo Kim
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae Won Shin
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Won Kwon
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
Shi D, Li Y, Tian M, Xue M, Wang J, An H. Nanomaterials-Based Drug Delivery Systems for Therapeutic Applications in Osteoporosis. Adv Biol (Weinh) 2025:e2400721. [PMID: 40195930 DOI: 10.1002/adbi.202400721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/04/2025] [Indexed: 04/09/2025]
Abstract
The etiology of osteoporosis is rooted in the disruption of the intricate equilibrium between bone formation and bone resorption processes. Nevertheless, the conventional anti-osteoporotic medications and hormonal therapeutic regimens currently employed in clinical practice are associated with a multitude of adverse effects, thereby constraining their overall therapeutic efficacy and potential. Recently, nanomaterials have emerged as a promising alternative due to their minimal side effects, efficient drug delivery, and ability to enhance bone formation, aiding in restoring bone balance. This review delves into the fundamental principles of bone remodeling and the bone microenvironment, as well as current clinical treatment approaches for osteoporosis. It subsequently explores the research status of nanomaterial-based drug delivery systems for osteoporosis treatment, encompassing inorganic nanomaterials, organic nanomaterials, cell-mimicking carriers and exosomes mimics and emerging therapies targeting the osteoporosis microenvironment. Finally, the review discusses the potential of nanomedicine in treating osteoporosis and outlines the future trajectory of this burgeoning field. The aim is to provide a comprehensive reference for the application of nanomaterial-based drug delivery strategies in osteoporosis therapy, thereby fostering further advancements and innovations in this critical area of medical research.
Collapse
Affiliation(s)
- Donghong Shi
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yuling Li
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Meng Tian
- Hebei Tourism College, Hebei, Chengde, 067000, P. R. China
| | - Mengge Xue
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Hailong An
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| |
Collapse
|
5
|
Kattah AG, Titan SM, Wermers RA. The Challenge of Fractures in Patients With Chronic Kidney Disease. Endocr Pract 2025; 31:511-520. [PMID: 39733945 DOI: 10.1016/j.eprac.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/31/2024]
Abstract
OBJECTIVE People with chronic kidney disease (CKD) are at increased risk of fractures in comparison to the non-CKD population, and fractures are associated with high mortality and worsening quality of life. However, the approach for evaluation of bone disease and fracture risk in CKD is different from the approach in the general population. METHODS The authors conducted a literature review of PubMed to include studies on pathophysiology of CKD mineral bone disorder, fracture risk assessment, and therapeutic options in the setting of CKD. RESULTS The higher risk observed in the CKD population is related to the complex interplay of changes in bone turnover (T), mineralization (M), and volume (V), along with other risk factors accumulated as glomerular filtration rate declines. The diagnosis of the type of renal osteodystrophy is not based only on assessment of bone density and traditional risk factors for osteoporosis. There are limitations of currently available fracture risk tools in the CKD population. Treatment choice should take into consideration the 3 components of the TMV classification along with the stage of kidney disease and comorbidities, but the assessment of these components has not been well established. CONCLUSIONS Current data are limited on efficacy and safety of treatments for fracture prevention in CKD. As new medications for the treatment of osteoporosis become available, there is an urgency to establish more clear guidelines for the diagnosis, fracture risk stratification, and treatment of bone disease in CKD.
Collapse
Affiliation(s)
- Andrea G Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.
| | - Silvia M Titan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Robert A Wermers
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Noh M, Che X, Jin X, Lee DK, Kim HJ, Park DR, Lee SY, Lee H, Gardella TJ, Choi JY, Lee S. Dimeric R25CPTH(1-34) activates the parathyroid hormone-1 receptor in vitro and stimulates bone formation in osteoporotic female mice. eLife 2025; 13:RP97579. [PMID: 40153305 PMCID: PMC11952747 DOI: 10.7554/elife.97579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025] Open
Abstract
Osteoporosis, characterized by reduced bone density and strength, increases fracture risk, pain, and limits mobility. Established therapies of parathyroid hormone (PTH) analogs effectively promote bone formation and reduce fractures in severe osteoporosis, but their use is limited by potential adverse effects. In the pursuit of safer osteoporosis treatments, we investigated R25CPTH, a PTH variant wherein the native arginine at position 25 is substituted by cysteine. These studies were prompted by our finding of high bone mineral density in a hypoparathyroidism patient with the R25C homozygous mutation, and we explored its effects on PTH type-1 receptor (PTH1R) signaling in cells and bone metabolism in mice. Our findings indicate that R25CPTH(1-84) forms dimers both intracellularly and extracellularly, and the synthetic dimeric peptide, R25CPTH(1-34), exhibits altered activity in PTH1R-mediated cyclic AMP (cAMP) response. Upon a single injection in mice, dimeric R25CPTH(1-34) induced acute calcemic and phosphaturic responses comparable to PTH(1-34). Furthermore, repeated daily injections increased calvarial bone thickness in intact mice and improved trabecular and cortical bone parameters in ovariectomized (OVX) mice, akin to PTH(1-34). The overall results reveal a capacity of a dimeric PTH peptide ligand to activate the PTH1R in vitro and in vivo as PTH, suggesting a potential path of therapeutic PTH analog development.
Collapse
Affiliation(s)
- Minsoo Noh
- Department of Internal Medicine and Laboratory of Genomics and Translational Medicine, Gachon University College of MedicineIncheonRepublic of Korea
- Department of Life Sciences, Korea UniversitySeoulRepublic of Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Xian Jin
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Dong-Kyo Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Hyun-Ju Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Doo Ri Park
- Department of Life Sciences, Multitasking Macrophage Research Center, Ewha Womans UniversitySeoulRepublic of Korea
| | - Soo Young Lee
- Department of Life Sciences, Multitasking Macrophage Research Center, Ewha Womans UniversitySeoulRepublic of Korea
| | - Hunsang Lee
- Department of Life Sciences, Korea UniversitySeoulRepublic of Korea
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Sihoon Lee
- Department of Internal Medicine and Laboratory of Genomics and Translational Medicine, Gachon University College of MedicineIncheonRepublic of Korea
| |
Collapse
|
7
|
Danz JC, Degen M. Selective modulation of the bone remodeling regulatory system through orthodontic tooth movement-a review. FRONTIERS IN ORAL HEALTH 2025; 6:1472711. [PMID: 40115506 PMCID: PMC11924204 DOI: 10.3389/froh.2025.1472711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025] Open
Abstract
Little is known about how tissues mediate the ability to selectively form or resorb bone, as required during orthodontic tooth movement (OTM), facial growth, continued tooth eruption and for healing after fractures, maxillofacial surgical repositioning or implant dentistry. OTM has the unique ability to selectively cause apposition, resorption or a combination of both at the alveolar periosteal surface and therefore, provides an optimal process to study the regulation of bone physiology at a tissue level. Our aim was to elucidate the mechanisms and signaling pathways of the bone remodeling regulatory system (BRRS) as well as to investigate its clinical applications in osteoporosis treatment, orthopedic surgery, fracture management and orthodontic treatment. OTM is restricted to a specific range in which the BRRS permits remodeling; however, surpassing this limit may lead to bone dehiscence. Low-intensity pulsed ultrasound, vibration or photobiomodulation with low-level laser therapy have the potential to modify BRRS with the aim of reducing bone dehiscence and apical root resorption or accelerating OTM. Unloading of bone and periodontal compression promotes resorption via receptor activator of nuclear factor κB-ligand, monocyte chemotactic protein-1, parathyroid hormone-related protein (PTHrP), and suppression of anti-resorptive mediators. Furthermore, proinflammatory cytokines, such as interleukin-1 (IL-1), IL-6, IL-8, tumor necrosis factor-α, and prostaglandins exert a synergistic effect on bone resorption. While proinflammatory cytokines are associated with periodontal sequelae such as bone dehiscence and gingival recessions, they are not essential for OTM. Integrins mediate mechanotransduction by converting extracellular biomechanical signals into cellular responses leading to bone apposition. Active Wnt signaling allows β-catenin to translocate into the nucleus and to stimulate bone formation, consequently converging with integrin-mediated mechanotransductive signals. During OTM, periodontal fibroblasts secrete PTHrP, which inhibits sclerostin secretion in neighboring osteocytes via the PTH/PTHrP type 1 receptor interaction. The ensuing sclerostin-depleted region may enhance stem cell differentiation into osteoblasts and subperiosteal osteoid formation. OTM-mediated BRRS modulation suggests that administering sclerostin-inhibiting antibodies in combination with PTHrP may have a synergistic bone-inductive effect. This approach holds promise for enhancing osseous wound healing, treating osteoporosis, bone grafting and addressing orthodontic treatments that are linked to periodontal complications.
Collapse
Affiliation(s)
- Jan Christian Danz
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine ZMK, University of Bern, Bern, Switzerland
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Sardar A, Rai D, Tripathi AK, Chutani K, Sinha S, Dhaniya G, Trivedi R. FDA-approved polypeptide PTH 1-34 impedes palmitic acid-mediated osteoblasts dysfunction by promoting its differentiation and thereby improving skeletal health. Mol Cell Endocrinol 2025; 597:112445. [PMID: 39719245 DOI: 10.1016/j.mce.2024.112445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
Excessive consumption of saturated fatty acids creates a debilitating cellular environment that hinders the normal function and survival of osteoblasts, contributing to bone metabolic disorders such as osteoporosis. The FDA-approved polypeptide PTH 1-34 is a well-established therapy for post-menopausal osteoporosis, yet its protective effects in a palmitic acid (PA)-rich hyperlipidemic environment are not well understood. This study investigates the impact of PTH 1-34 on PA-induced cellular responses in osteoblasts. Experiments were conducted on mouse and human-derived osteoblasts as well as C57BL/6J male mice. PA was found to suppress osteoblast differentiation, increase apoptosis, and disrupt autophagy, and thereby impair cellular health. Conversely, PTH 1-34 enhanced cellular health by counteracting these effects. At the molecular level, PTH 1-34 exerted its bioactivity by modulating PTH signaling components such as cAMP and CREB. Impaired osteogenic differentiation was restored by modulating bone-anabolic genes. PTH 1-34 also improved mitochondrial health by preserving mitochondrial membrane potential and maintaining the Bax/Bcl2 ratio, thereby improving cellular viability. Additionally, PTH 1-34 regulated autophagic processes, as evidenced by balanced p62 and LC3 levels, further validated using the autophagy inhibitor Bafilomycin A1. In vivo studies in C57BL/6J male mice corroborated these findings. PTH 1-34 reversed the PA action by maintaining osteoblast number and function. This study establishes the protective role of PTH 1-34 in safeguarding osteoblasts from lipotoxicity caused by excessive PA accumulation, highlighting its potential repurposing for patients with lipid-induced skeletal dysfunctions. The new data underscores the therapeutic versatility of the FDA-approved polypeptide PTH 1-34 in managing lipid-related bone health issues.
Collapse
Affiliation(s)
- Anirban Sardar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Divya Rai
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - Kunal Chutani
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shradha Sinha
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Geeta Dhaniya
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Ritu Trivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Guo SH, Li C, Gao YJ, Zhang Z, Lu K. Teriparatide as a non-surgical salvage therapy for prolonged humerus fracture nonunion: A case report and literature review. World J Orthop 2025; 16:101656. [PMID: 39850036 PMCID: PMC11752478 DOI: 10.5312/wjo.v16.i1.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Fracture nonunion represents a challenging complication during fracture repair, often necessitating surgical intervention. Teriparatide, a recombinant human parathyroid hormone, has demonstrated promise in enhancing fracture healing, although its efficacy in treating established nonunion remains under investigation. CASE SUMMARY We report a case of a 27-year-old male who presented with a right humerus fracture following a traffic accident. Despite undergoing open reduction and internal fixation, the fracture resulted in a delayed union and subsequent nonunion. After 4 years of conservative management, teriparatide treatment was initiated due to persistent nonunion. Teriparatide injections were administered daily for 6 months, resulting in complete fracture healing and resolution of pain. CONCLUSION Our case demonstrates the successful use of teriparatide in treating a prolonged nonunion of a humerus fracture. Teriparatide may provide a valuable therapeutic option for established bone nonunion, even in cases that have not responded to conservative treatments.
Collapse
Affiliation(s)
- Shao-Han Guo
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, Jiangsu Province, China
| | - Chong Li
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, Jiangsu Province, China
| | - Yi-Jun Gao
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, Jiangsu Province, China
| | - Zhen Zhang
- Department of Radiology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, Jiangsu Province, China
| | - Ke Lu
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, Jiangsu Province, China
| |
Collapse
|
10
|
Liu Z, Mao Y, Yang K, Wang S, Zou F. A trend of osteocalcin in diabetes mellitus research: bibliometric and visualization analysis. Front Endocrinol (Lausanne) 2025; 15:1475214. [PMID: 39872315 PMCID: PMC11769813 DOI: 10.3389/fendo.2024.1475214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Background Osteocalcin has attracted attention for its potential role in diabetes management. However, there has been no bibliometric assessment of scientific progress in this field. Methods We analysed 1680 articles retrieved from the Web of Science Core Collection (WoSCC) between 1 January 1986 and 10 May 2024 using various online tools. Result These papers accumulated 42,714 citations,with an average of 25.43 citations per paper. Publication output increased sharply from 1991 onwards. The United States and China are at the forefront of this research area. Discussion The keywords were grouped into four clusters: 'Differential and functional osteocalcin genes', 'Differential expression of osteocalcin genes in relation to diabetes mellitus', 'Role of osteocalcin in the assessment of osteoporosis and diabetes mellitus', and 'Indirect involvement of osteocalcin in metabolic processes'. Analysis using the VoS viewer suggests a shift in research focus towards the correlation between osteocalcin levels and diabetic complications, the clinical efficacy of therapeutic agents or vitamins in the treatment of osteoporosis in diabetic patients, and the mechanisms by which osteocalcin modulates insulin action. The proposed focus areas are "osteocalcin genes", "insulin regulation and osteoporosis ", "different populations", "diabetes-related complications" and "type 2 diabetes mellitus","effect of osteocalcin expression on insulin sensitivity as well as secretion","osteocalcin expression in different populations of diabetic patients and treatment-related studies".
Collapse
Affiliation(s)
- Zixu Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Yuchen Mao
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Shukai Wang
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Shin JO, Lee JB, Lee S, Kim JW. Enhancing bone regeneration and osseointegration using rhPTH(1-34) and dimeric R25CPTH(1-34) in an osteoporotic beagle model. eLife 2024; 13:RP93830. [PMID: 39625374 PMCID: PMC11614385 DOI: 10.7554/elife.93830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
This study investigates the effects of two parathyroid hormone (PTH) analogs, rhPTH(1-34) and dimeric R25CPTH(1-34), on bone regeneration and osseointegration in a postmenopausal osteoporosis model using beagle dogs. Twelve osteoporotic female beagles were subjected to implant surgeries and assigned to one of three groups: control, rhPTH(1-34), or dimeric R25CPTH(1-34). Bone regeneration and osseointegration were evaluated after 10 weeks using micro-computed tomographic (micro-CT), histological analyses, and serum biochemical assays. Results showed that the rhPTH(1-34) group demonstrated superior improvements in bone mineral density, trabecular architecture, and osseointegration compared to controls, while the dimeric R25CPTH(1-34) group exhibited similar, though slightly less pronounced, anabolic effects. Histological and TRAP assays indicated both PTH analogs significantly enhanced bone regeneration, especially in artificially created bone defects. The findings suggest that both rhPTH(1-34) and dimeric R25CPTH(1-34) hold potential as therapeutic agents for promoting bone regeneration and improving osseointegration around implants in osteoporotic conditions, with implications for their use in bone-related pathologies and reconstructive surgeries.
Collapse
Affiliation(s)
- Jeong-Oh Shin
- Department of Anatomy, Soonchunhyang University College of MedicineCheonanRepublic of Korea
| | - Jong-Bin Lee
- Department of Periodontology and Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National UniversityGangneungRepublic of Korea
| | - Sihoon Lee
- Department of Internal Medicine and Laboratory of Genomics and Translational Medicine, Gachon University College of MedicineIncheonRepublic of Korea
| | - Jin-Woo Kim
- Department of Oral and Maxillofacial Surgery, Research Institute for Intractable Osteonecrosis of the Jaw, College of Medicine, Ewha Womans UniversitySeoulRepublic of Korea
| |
Collapse
|
12
|
Mizoguchi T. In vivo dynamics of hard tissue-forming cell origins: Insights from Cre/loxP-based cell lineage tracing studies. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:109-119. [PMID: 38406212 PMCID: PMC10885318 DOI: 10.1016/j.jdsr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Bone tissue provides structural support for our bodies, with the inner bone marrow (BM) acting as a hematopoietic organ. Within the BM tissue, two types of stem cells play crucial roles: mesenchymal stem cells (MSCs) (or skeletal stem cells) and hematopoietic stem cells (HSCs). These stem cells are intricately connected, where BM-MSCs give rise to bone-forming osteoblasts and serve as essential components in the BM microenvironment for sustaining HSCs. Despite the mid-20th century proposal of BM-MSCs, their in vivo identification remained elusive owing to a lack of tools for analyzing stemness, specifically self-renewal and multipotency. To address this challenge, Cre/loxP-based cell lineage tracing analyses are being employed. This technology facilitated the in vivo labeling of specific cells, enabling the tracking of their lineage, determining their stemness, and providing a deeper understanding of the in vivo dynamics governing stem cell populations responsible for maintaining hard tissues. This review delves into cell lineage tracing studies conducted using commonly employed genetically modified mice expressing Cre under the influence of LepR, Gli1, and Axin2 genes. These studies focus on research fields spanning long bones and oral/maxillofacial hard tissues, offering insights into the in vivo dynamics of stem cell populations crucial for hard tissue homeostasis.
Collapse
|
13
|
Baroudi M, Daher M, Maheshwari K, Singh M, Nassar JE, McDonald CL, Diebo BG, Daniels AH. Surgical Management of Adult Spinal Deformity Patients with Osteoporosis. J Clin Med 2024; 13:7173. [PMID: 39685632 DOI: 10.3390/jcm13237173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Adult spinal deformity (ASD) commonly affects older adults, with up to 68% prevalence in those over 60, and is often complicated by osteoporosis, which reduces bone mineral density (BMD) and increases surgical risks. Osteoporotic patients undergoing ASD surgery face higher risks of complications like hardware failure, pseudoarthrosis, and proximal junctional kyphosis (PJK). Medical management with antiresorptive medications (e.g., bisphosphonates, SERMs, and denosumab) and anabolic agents (e.g., teriparatide, abaloparatide, and romosozumab) can improve BMD and reduce complications. While bisphosphonates reduce fracture risk, teriparatide and newer agents like romosozumab show promise in increasing bone density and improving fusion rates. Surgical adaptations such as consideration of age-adjusted alignment, fusion level selection, cement augmentation, and the use of expandable screws or tethers enhance surgical outcomes in osteoporotic patients. Specifically, expandable screws and cement augmentation have been shown to improve fixation stability. However, further research is needed to evaluate the effectiveness of these treatments, specifically in osteoporotic ASD patients.
Collapse
Affiliation(s)
- Makeen Baroudi
- Department of Orthopedic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Mohammad Daher
- Department of Orthopedic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Krish Maheshwari
- Department of Orthopedic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Manjot Singh
- Department of Orthopedic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Joseph E Nassar
- Department of Orthopedic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Christopher L McDonald
- Department of Orthopedic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Bassel G Diebo
- Department of Orthopedic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Alan H Daniels
- Department of Orthopedic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
14
|
El-Nablaway M, Rashed F, Taher ES, Abdeen A, Taymour N, Soliman MM, Shalaby HK, Fericean L, Ioan BD, El-Sherbiny M, Ebrahim E, Abdelkader A, Abdo M, Alexandru CC, Atia GA. Prospective and challenges of locally applied repurposed pharmaceuticals for periodontal tissue regeneration. Front Bioeng Biotechnol 2024; 12:1400472. [PMID: 39605747 PMCID: PMC11600316 DOI: 10.3389/fbioe.2024.1400472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Periodontitis is a persistent inflammatory condition that causes periodontal ligament degradation, periodontal pocket development, and alveolar bone destruction, all of which lead to the breakdown of the teeth's supporting system. Periodontitis is triggered by the accumulation of various microflora (especially anaerobes) in the pockets, which release toxic substances and digestive enzymes and stimulate the immune system. Periodontitis can be efficiently treated using a variety of techniques, both regional and systemic. Effective therapy is dependent on lowering microbial biofilm, minimizing or eradicating pockets. Nowadays, using local drug delivery systems (LDDSs) as an adjuvant therapy to phase I periodontal therapy is an attractive option since it controls drug release, resulting in improved efficacy and lesser adverse reactions. Choosing the right bioactive agent and mode of delivery is the foundation of an efficient periodontal disease management approach. The objective of this paper is to shed light on the issue of successful periodontal regeneration, the drawbacks of currently implemented interventions, and describe the potential of locally delivered repurposed drugs in periodontal tissue regeneration. Because of the multiple etiology of periodontitis, patients must get customized treatment with the primary goal of infection control. Yet, it is not always successful to replace the lost tissues, and it becomes more challenging as the defect gets worse. Pharmaceutical repurposing offers a viable, economical, and safe alternative for non-invasive, and predictable periodontal regeneration. This article clears the way in front of researchers, decision-makers, and pharmaceutical companies to explore the potential, effectiveness, and efficiency of the repurposed pharmaceuticals to generate more economical, effective, and safe topical pharmaceutical preparations for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Magdalen M. Soliman
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Badr University, Badr City, Egypt
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Bănățean-Dunea Ioan
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, Saudi Arabia
| | - Elturabi Ebrahim
- Department of Medical Surgical Nursing, Nursing College, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Cucui-Cozma Alexandru
- Second Department of Surgery Victor Babeș, University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
15
|
Marino S, Bellido T. PTH receptor signalling, osteocytes and bone disease induced by diabetes mellitus. Nat Rev Endocrinol 2024; 20:661-672. [PMID: 39020007 DOI: 10.1038/s41574-024-01014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
Basic, translational and clinical research over the past few decades has provided new understanding on the mechanisms by which activation of the receptor of parathyroid hormone (parathyroid hormone 1 receptor (PTH1R)) regulates bone physiology and pathophysiology. A fundamental change in the field emerged upon the recognition that osteocytes, which are permanent residents of bone and the most abundant cells in bone, are targets of the actions of natural and synthetic ligands of PTH1R (parathyroid hormone and abaloparatide, respectively), and that these cells drive essential actions related to bone remodelling. Among the numerous genes regulated by PTH1R in osteocytes, SOST (which encodes sclerostin, the WNT signalling antagonist and inhibitor of bone formation) has a critical role in bone homeostasis and changes in its expression are associated with several bone pathologies. The bone fragility syndrome induced by diabetes mellitus is accompanied by increased osteocyte apoptosis and changes in the expression of osteocytic genes, including SOST. This Review will discuss advances in our knowledge of the role of osteocytes in PTH1R signalling and the new opportunities to restore bone health in diabetes mellitus by targeting the osteocytic PTH1R-sclerostin axis.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
16
|
Iwanowska M, Kochman M, Szatko A, Zgliczyński W, Glinicki P. Bone Disease in Primary Hyperparathyroidism-Changes Occurring in Bone Metabolism and New Potential Treatment Strategies. Int J Mol Sci 2024; 25:11639. [PMID: 39519190 PMCID: PMC11546563 DOI: 10.3390/ijms252111639] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Primary hyperparathyroidism (PHPT) is a common endocrinopathy, predominantly caused by a single parathyroid adenoma that is responsible for the excessive secretion of parathyroid hormone (PTH)-the hallmark of disease. Excess of this hormone causes remarkable changes in bone metabolism, including an increased level of bone remodeling with a predominance of bone resorption. Those changes lead to deterioration of bone structure and density, especially in cortical bone. The main treatment for PHPT is surgical removal of the adenoma, which normalizes PTH levels and terminates the progression of bone disease and leads to its regeneration. However, because not all the patients are suitable candidates for surgery, alternative therapies are needed. Current non-surgical treatments targeting bone disease secondary to PHPT include bisphosphonates and denosumab. Those antiresorptives prevent further bone loss, but they lack the ability to regenerate already degraded bone. There is ongoing research to find targeted drugs capable of halting resorption alongside stimulating bone formation. This review presents the advancements in understanding the molecular mechanisms responsible for bone disease in PHPT and assesses the efficacy of new potential therapeutic approaches (e.g., allosteric inhibitors of the PTH receptor, V-ATPase, or cathepsin inhibitors) aimed at mitigating bone loss and enhancing bone regeneration in affected patients.
Collapse
Affiliation(s)
- Mirella Iwanowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Magdalena Kochman
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Alicja Szatko
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
- EndoLab Laboratory, Centre of Postgraduate Medical Education, 01-809 Warsaw, Poland
| | - Wojciech Zgliczyński
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Piotr Glinicki
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
- EndoLab Laboratory, Centre of Postgraduate Medical Education, 01-809 Warsaw, Poland
| |
Collapse
|
17
|
Arthur Vithran DT, Essien AE, Rahmati M, Opoku M, Keon Yon D, López Sánchez GF, Koyanagi A, Smith L, Il Shin J, Xiao W, Liu S, Li Y. Teriparatide in postmenopausal osteoporosis: uncovering novel insights into efficacy and safety compared to other treatments - a systematic review and meta-analysis. EFORT Open Rev 2024; 9:845-861. [PMID: 39222329 PMCID: PMC11457814 DOI: 10.1530/eor-23-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Objective The aim of the study was to evaluate the efficacy and safety of teriparatide compared to other treatments for postmenopausal osteoporosis. Methods A review of studies from 2000 to January 2023 analyzed randomized controlled trials on postmenopausal women treated with teriparatide (PTH 1-34), comparing it to placebo or other osteoporosis treatments. The analysis focused on bone mineral density (BMD), bone turnover markers, and clinical outcomes, employing Review Manager 5.4.1 and the RoB 2 tool for bias assessment. Results Our analysis of 23 randomized controlled trials (RCTs) found that PTH (134) treatment significantly increased lumbar spine BMD (mean difference (MD) = 0.02, 95% CI: 0.01-0.03) and femoral neck BMD (MD = 0.01, 95% CI: 0.00-0.01). However, there were no significant changes in total hip and radial bone BMD among the 3536 and 2046 participants, respectively. We also found that PTH (1-34) increased P1NP in a larger cohort (n = 1415) when compared to osteocalcin (n = 206). Although the risk of adverse events increased (relative risk (RR) = 1.65, 95% CI: 1.32-2.07), the incidence of fractures decreased significantly (RR = 0.57, 95% CI: 0.45-0.072), with no significant difference observed in mortality rates between treatment and control groups. Conclusion Teriparatide improves lumbar spine and femoral neck BMD in postmenopausal women. Particularly notable is the novel finding regarding its effect on radius BMD, an area less explored in previous research. Despite an uptick in adverse events, the marked decrease in fracture incidence confirms its clinical utility for high-risk osteoporosis patients, highlighting the necessity for ongoing investigations into its full skeletal effects.
Collapse
Affiliation(s)
- Djandan Tadum Arthur Vithran
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Anko Elijah Essien
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Masoud Rahmati
- Research Centre on Health Services and Quality of Life, Aix Marseille University, Marseille, France
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Michael Opoku
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Guillermo F López Sánchez
- Division of Preventive Medicine and Public Health, Department of Public Health Sciences, School of Medicine, University of Murcia, Murcia, Spain
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Deu, Barcelona, Spain
| | - Lee Smith
- Centre for Health, Performance, and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuguang Liu
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Crane J, Zhang W, Otte A, Barik S, Wan M, Cao X. Slit3 by PTH-Induced Osteoblast Secretion Repels Sensory Innervation in Spine Porous Endplates to Relieve Low Back Pain. RESEARCH SQUARE 2024:rs.3.rs-4823095. [PMID: 39257984 PMCID: PMC11384799 DOI: 10.21203/rs.3.rs-4823095/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
During aging, the spine undergoes degenerative changes, particularly with vertebral endplate bone expansion and sclerosis, that is associated with nonspecific low back pain (LBP). We reported that parathyroid hormone (PTH) treatment could reduce vertebral endplate sclerosis and improve pain behaviors in aging, SM/J and young lumbar spine instability (LSI) mice. Aberrant innervation noted in the vertebral body and endplate during spinal degeneration was reduced with PTH treatment in aging and LSI mice as quantified by PGP9.5+ and CGRP+ nerve fibers, as well as CGRP expression in dorsal root ganglia (DRG). The neuronal repulsion factor Slit3 significantly increased in response to PTH treatment mediated by transcriptional factor FoxA2. PTH type1 receptor (PPR) and Slit3 deletion in osteoblasts prevented PTH-reduction of endplate porosity and improvement in behavior tests, whereas PPR deletion in chondrocytes continued to respond to PTH. Altogether, PTH stimulates Slit3 to repel sensory nerve innervation and provides symptomatic relief of LBP associated with spinal degeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Xu Cao
- Johns Hopkins University School of Medicine
| |
Collapse
|
19
|
Umur E, Bulut SB, Yiğit P, Bayrak E, Arkan Y, Arslan F, Baysoy E, Kaleli-Can G, Ayan B. Exploring the Role of Hormones and Cytokines in Osteoporosis Development. Biomedicines 2024; 12:1830. [PMID: 39200293 PMCID: PMC11351445 DOI: 10.3390/biomedicines12081830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The disease of osteoporosis is characterized by impaired bone structure and an increased risk of fractures. There is a significant impact of cytokines and hormones on bone homeostasis and the diagnosis of osteoporosis. As defined by the World Health Organization (WHO), osteoporosis is defined as having a bone mineral density (BMD) that is 2.5 standard deviations (SD) or more below the average for young and healthy women (T score < -2.5 SD). Cytokines and hormones, particularly in the remodeling of bone between osteoclasts and osteoblasts, control the differentiation and activation of bone cells through cytokine networks and signaling pathways like the nuclear factor kappa-B ligand (RANKL)/the receptor of RANKL (RANK)/osteoprotegerin (OPG) axis, while estrogen, parathyroid hormones, testosterone, and calcitonin influence bone density and play significant roles in the treatment of osteoporosis. This review aims to examine the roles of cytokines and hormones in the pathophysiology of osteoporosis, evaluating current diagnostic methods, and highlighting new technologies that could help for early detection and treatment of osteoporosis.
Collapse
Affiliation(s)
- Egemen Umur
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Safiye Betül Bulut
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Pelin Yiğit
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Emirhan Bayrak
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Yaren Arkan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Fahriye Arslan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Engin Baysoy
- Department of Biomedical Engineering, Bahçeşehir University, İstanbul 34353, Türkiye
| | - Gizem Kaleli-Can
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Vrščaj LA, Marc J, Ostanek B. Towards an enhanced understanding of osteoanabolic effects of PTH-induced microRNAs on osteoblasts using a bioinformatic approach. Front Endocrinol (Lausanne) 2024; 15:1380013. [PMID: 39086902 PMCID: PMC11289717 DOI: 10.3389/fendo.2024.1380013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 08/02/2024] Open
Abstract
In this study, we used a bioinformatic approach to construct a miRNA-target gene interaction network potentially involved in the anabolic effect of parathyroid hormone analogue teriparatide [PTH (1-34)] on osteoblasts. We extracted a dataset of 26 microRNAs (miRNAs) from previously published studies and predicted miRNA target interactions (MTIs) using four software tools: DIANA, miRWalk, miRDB, and TargetScan. By constructing an interactome of PTH-regulated miRNAs and their predicted target genes, we elucidated signaling pathways regulating pluripotency of stem cells, the Hippo signaling pathway, and the TGF-beta signaling pathway as the most significant pathways in the effects of PTH on osteoblasts. Furthermore, we constructed intersection of MTI networks for these three pathways and added validated interactions. There are 8 genes present in all three selected pathways and a set of 18 miRNAs are predicted to target these genes, according to literature data. The most important genes in all three pathways were BMPR1A, BMPR2 and SMAD2 having the most interactions with miRNAs. Among these miRNAs, only miR-146a-5p and miR-346 have validated interactions in these pathways and were shown to be important regulators of these pathways. In addition, we also propose miR-551b-5p and miR-338-5p for further experimental validation, as they have been predicted to target important genes in these pathways but none of their target interactions have yet been verified. Our wet-lab experiment on miRNAs differentially expressed between PTH (1-34) treated and untreated mesenchymal stem cells supports miR-186-5p from the literature obtained data as another prominent miRNA. The meticulous selection of miRNAs outlined will significantly support and guide future research aimed at discovering and understanding the crucial pathways of osteoanabolic PTH-epigenetic effects on osteoblasts. Additionally, they hold potential for the discovery of new PTH target genes, innovative biomarkers for the effectiveness and safety of osteoporosis-affected treatment, as well as novel therapeutic targets.
Collapse
Affiliation(s)
- Lucija Ana Vrščaj
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute of Clinical Chemistry and Biochemistry, University Clinical Centre Ljubljana, Ljubljana, Slovenia
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
21
|
Anastasilakis AD, Yavropoulou MP, Palermo A, Makras P, Paccou J, Tabacco G, Naciu AM, Tsourdi E. Romosozumab versus parathyroid hormone receptor agonists: which osteoanabolic to choose and when? Eur J Endocrinol 2024; 191:R9-R21. [PMID: 38938063 DOI: 10.1093/ejendo/lvae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Osteoanabolic agents are used as a first line treatment in patients at high fracture risk. The PTH receptor 1 (PTH1R) agonists teriparatide (TPTD) and abaloparatide (ABL) increase bone formation, bone mineral density (BMD), and bone strength by activating PTH receptors on osteoblasts. Romosozumab (ROMO), a humanized monoclonal antibody against sclerostin, dramatically but transiently stimulates bone formation and persistently reduces bone resorption. Osteoanabolic agents increase BMD and bone strength while being more effective than antiresorptives in reducing fracture risk in postmenopausal women. However, direct comparisons of the antifracture benefits of osteoanabolic therapies are limited. In a direct comparison of TPTD and ABL, the latter resulted in greater BMD increases at the hip. While no differences in vertebral or non-vertebral fracture risk were observed between the two drugs, ABL led to a greater reduction of major osteoporotic fractures. Adverse event profiles were similar between the two agents except for hypercalcemia, which occurred more often with TPTD. No direct comparisons of fracture risk reduction between ROMO and the PTH1R agonists exist. Individual studies have shown greater increases in BMD and bone strength with ROMO compared with TPTD in treatment-naive women and in women previously treated with bisphosphonates. Some safety aspects, such as a history of tumor precluding the use of PTH1R agonists, and a history of major cardiovascular events precluding the use of ROMO, should also be considered when choosing between these agents. Finally, convenience of administration, reimbursement by national health systems and length of clinical experience may influence patient choice.
Collapse
Affiliation(s)
| | - Maria P Yavropoulou
- Endocrinology Unit, 1st Department of Propaedeutic and Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Laikon University Hospital of Athens, Athens 115 27, Greece
| | - Andrea Palermo
- Unit of Metabolic Bone and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Rome 00128, Italy
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome 00128, Italy
| | - Polyzois Makras
- Department of Medical Research, 251 Hellenic Air Force & VA General Hospital, Athens 115 25, Greece
| | - Julien Paccou
- Department of Rheumatology, CHU Lille, Lille 59000, France
| | - Gaia Tabacco
- Unit of Metabolic Bone and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Rome 00128, Italy
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome 00128, Italy
| | - Anda Mihaela Naciu
- Unit of Metabolic Bone and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Rome 00128, Italy
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome 00128, Italy
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden, Dresden 01307, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| |
Collapse
|
22
|
Deans C, Zitsch B, Kildow BJ, Garvin KL. Cementless Total Knee Arthroplasty: Is it Safe in Demineralized Bone? Orthop Clin North Am 2024; 55:333-343. [PMID: 38782505 DOI: 10.1016/j.ocl.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
There is concern for cementless total knee arthroplasty (TKA) in patients with decreased bone mineral density (BMD) due to the potential increase in complications, namely failed in-growth or future aseptic loosening. Some data suggest that advances in cementless prostheses mitigate these risks; however this is not yet born out in long-term registry data. It is crucial to expand our understanding of the prevalence and etiology of osteoporosis in TKA patients, survivorship of cementless implants in decreased BMD, role of bone-modifying agents, indications and technical considerations for cementless TKA in patients with decreased BMD. The purpose of this study is to review current literature and expert opinion on such topics.
Collapse
Affiliation(s)
- Christopher Deans
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, 985640 Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Bradford Zitsch
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, 985640 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Beau J Kildow
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, 985640 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kevin L Garvin
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, 985640 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
23
|
Li HZ, Zhang JL, Yuan DL, Xie WQ, Ladel CH, Mobasheri A, Li YS. Role of signaling pathways in age-related orthopedic diseases: focus on the fibroblast growth factor family. Mil Med Res 2024; 11:40. [PMID: 38902808 PMCID: PMC11191355 DOI: 10.1186/s40779-024-00544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Fibroblast growth factor (FGF) signaling encompasses a multitude of functions, including regulation of cell proliferation, differentiation, morphogenesis, and patterning. FGFs and their receptors (FGFR) are crucial for adult tissue repair processes. Aberrant FGF signal transduction is associated with various pathological conditions such as cartilage damage, bone loss, muscle reduction, and other core pathological changes observed in orthopedic degenerative diseases like osteoarthritis (OA), intervertebral disc degeneration (IVDD), osteoporosis (OP), and sarcopenia. In OA and IVDD pathologies specifically, FGF1, FGF2, FGF8, FGF9, FGF18, FGF21, and FGF23 regulate the synthesis, catabolism, and ossification of cartilage tissue. Additionally, the dysregulation of FGFR expression (FGFR1 and FGFR3) promotes the pathological process of cartilage degradation. In OP and sarcopenia, endocrine-derived FGFs (FGF19, FGF21, and FGF23) modulate bone mineral synthesis and decomposition as well as muscle tissues. FGF2 and other FGFs also exert regulatory roles. A growing body of research has focused on understanding the implications of FGF signaling in orthopedic degeneration. Moreover, an increasing number of potential targets within the FGF signaling have been identified, such as FGF9, FGF18, and FGF23. However, it should be noted that most of these discoveries are still in the experimental stage, and further studies are needed before clinical application can be considered. Presently, this review aims to document the association between the FGF signaling pathway and the development and progression of orthopedic diseases. Besides, current therapeutic strategies targeting the FGF signaling pathway to prevent and treat orthopedic degeneration will be evaluated.
Collapse
Affiliation(s)
- Heng-Zhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jing-Lve Zhang
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine Central, South University, Changsha, 410083, China
| | - Dong-Liang Yuan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine Central, South University, Changsha, 410083, China
| | - Wen-Qing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | | | - Ali Mobasheri
- Faculty of Medicine, Research Unit of Health Sciences and Technology, University of Oulu, 90014, Oulu, Finland.
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406, Vilnius, Lithuania.
- Department of Rheumatology and Clinical Immunology, Universitair Medisch Centrum Utrecht, Utrecht, 3508, GA, the Netherlands.
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, B-4000, Liège, Belgium.
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
24
|
Zhao T, Li Y, Tian J, Kang Y, Xu J, Shao H, Zhou J, Xia C, Wang Y, Zhang J. Unraveling the relationship between serum parathyroid hormone levels and trabecular bone score: a cross-sectional study. Sci Rep 2024; 14:13065. [PMID: 38844829 PMCID: PMC11156926 DOI: 10.1038/s41598-024-63979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
The TBS is a new method for clinicians to assess the bone quality. It is directly related to the mechanical strength of bone and helps predict fracture risk. The present analysis aimed to investigate the associations between serum PTH levels and TBS by analyzing data from the National Health and Nutrition Examination Survey (NHANES). A total of 3516 participants from the NHANES 2005-2006 were included in this cross-sectional study. The independent variable was serum PTH, and the outcome variable was TBS. The associations of serum PTH levels with TBS were examined using multivariable linear regression models. After adjusting for covariates, there was a negative association between serum PTH level and TBS (β = - 0.0034; 95% confidence interval, - 0.0050 to - 0.0017). However, in the subgroup analysis stratified by gender, race, and age, this association became negative only in Non-Hispanic White (β = - 0.0047, 95% CI: - 0.0071 to - 0.0048) and young people (age < 60) (β = - 0.0036, 95% CI: - 0.0057, - 0.0016), regardless of gender. In addition, the association of serum PTH with TBS was an U-shaped curve, with a point of inflection at 6.71 pmol/L. This study showed that serum PTH level was negatively associated with TBS. Maintaining PTH levels in a lower reasonable clinical range may be beneficial to bone health, especially for young non-Hispanic white.
Collapse
Affiliation(s)
- Tingxiao Zhao
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yanlei Li
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Jinlong Tian
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yao Kang
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Jiongnan Xu
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Haiyu Shao
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Jinlei Zhou
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Chen Xia
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yongguang Wang
- Department of Orthopedics, Linping Hospital of Integrated Traditional Chinese and Western Medicine, Linping District, No.60, Baojian Road, Hangzhou, 311199, Zhejiang, China.
| | - Jun Zhang
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
- Department of Orthopedics, Zhejiang Provincial People's Hospital Bijie Hospital, Guanghui Road 112#, Bijie, Guizhou, 551700, China.
| |
Collapse
|
25
|
Liu L, Luo P, Wen P, Xu P. The role of magnesium in the pathogenesis of osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1406248. [PMID: 38904051 PMCID: PMC11186994 DOI: 10.3389/fendo.2024.1406248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Magnesium (Mg), a nutritional element which is essential for bone development and mineralization, has a role in the progression of osteoporosis. Osteoporosis is a multifactorial disease characterized by significant deterioration of bone microstructure and bone loss. Mg deficiency can affect bone structure in an indirect way through the two main regulators of calcium homeostasis (parathyroid hormone and vitamin D). In human osteoblasts (OBs), parathyroid hormone regulates the expression of receptor activator of nuclear factor-κ B ligand (RANKL) and osteoprotegerin (OPG) to affect osteoclast (OC) formation. In addition, Mg may also affect the vitamin D3 -mediated bone remodeling activity. vitamin D3 usually coordinates the activation of the OB and OC. The unbalanced activation OC leads to bone resorption. The RANK/RANKL/OPG axis is considered to be a key factor in the molecular mechanism of osteoporosis. Mg participates in the pathogenesis of osteoporosis by affecting the regulation of parathyroid hormone and vitamin D levels to affect the RANK/RANKL/OPG axis. Different factors affecting the axis and enhancing OC function led to bone loss and bone tissue microstructure damage, which leads to the occurrence of osteoporosis. Clinical research has shown that Mg supplementation can alleviate the symptoms of osteoporosis to some extent.
Collapse
Affiliation(s)
- Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Pan Luo
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Wen
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
26
|
Lung H, Wentworth KL, Moody T, Zamarioli A, Ram A, Ganesh G, Kang M, Ho S, Hsiao EC. Wnt pathway inhibition with the porcupine inhibitor LGK974 decreases trabecular bone but not fibrosis in a murine model with fibrotic bone. JBMR Plus 2024; 8:ziae011. [PMID: 38577521 PMCID: PMC10994528 DOI: 10.1093/jbmrpl/ziae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 04/06/2024] Open
Abstract
G protein-coupled receptors (GPCRs) mediate a wide spectrum of physiological functions, including the development, remodeling, and repair of the skeleton. Fibrous dysplasia (FD) of the bone is characterized by fibrotic, expansile bone lesions caused by activating mutations in GNAS. There are no effective therapies for FD. We previously showed that ColI(2.3)+/Rs1+ mice, in which Gs-GPCR signaling was hyper-activated in osteoblastic cell lineages using an engineered receptor strategy, developed a fibrotic bone phenotype with trabecularization that could be reversed by normalizing Gs-GPCR signaling, suggesting that targeting the Gs-GPCR or components of the downstream signaling pathway could serve as a promising therapeutic strategy for FD. The Wnt signaling pathway has been implicated in the pathogenesis of FD-like bone, but the specific Wnts and which cells produce them remain largely unknown. Single-cell RNA sequencing on long-bone stromal cells of 9-wk-old male ColI(2.3)+/Rs1+ mice and littermate controls showed that fibroblastic stromal cells in ColI(2.3)+/Rs1+ mice were expanded. Multiple Wnt ligands were up- or downregulated in different cellular populations, including in non-osteoblastic cells. Treatment with the porcupine inhibitor LGK974, which blocks Wnt signaling broadly, induced partial resorption of the trabecular bone in the femurs of ColI(2.3)+/Rs1+ mice, but no significant changes in the craniofacial skeleton. Bone fibrosis remained evident after treatment. Notably, LGK974 caused significant bone loss in control mice. These results provide new insights into the role of Wnt and Gs-signaling in fibrosis and bone formation in a mouse model of Gs-GPCR pathway overactivation.
Collapse
Affiliation(s)
- Hsuan Lung
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
- Department of Dentistry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- School of Dentistry, Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Kelly L Wentworth
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, Zuckerberg San Francisco General Hospital, San Francisco, CA 94143, United States
| | - Tania Moody
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
| | - Ariane Zamarioli
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Department of Orthopaedics and Anesthesiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo (SP) 14049-900, Brazil
| | - Apsara Ram
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
| | - Gauri Ganesh
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
| | - Misun Kang
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
| | - Sunita Ho
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
| | - Edward C Hsiao
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
| |
Collapse
|
27
|
Cui B, Bai T, Wu Q, Hu Y, Liu Y. Pre-implantation teriparatide administration improves initial implant stability and accelerates the osseointegration process in osteoporotic rats. Int J Implant Dent 2024; 10:18. [PMID: 38625587 PMCID: PMC11021383 DOI: 10.1186/s40729-024-00536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
PURPOSE Osteoporotic individuals who have dental implants usually require a prolonged healing time for osseointegration due to the shortage of bone mass and the lack of initial stability. Although studies have shown that intermittent teriparatide administration can promote osseointegration, there is little data to support the idea that pre-implantation administration is necessary and beneficial. METHODS Sixty-four titanium implants were placed in the bilateral proximal tibial metaphysis in 32 female SD rats. Bilateral ovariectomy (OVX) was used to induce osteoporosis. Four major groups (n = 8) were created: PRE (OVX + pre-implantation teriparatide administration), POST (OVX + post-implantation administration), OP (OVX + normal saline (NS)) and SHAM (sham rats + NS). Half of rats (n = 4) in each group were euthanized respectively at 4 weeks or 8 weeks after implantation surgery, and four major groups were divided into eight subgroups (PRE4 to SHAM8). Tibiae were collected for micro-CT morphometry, biomechanical test and undecalcified sections analysis. RESULTS Compared to OP group, rats in PRE and SHAM groups had a higher value of insertion torque (p < 0.05). The micro-CT analysis, biomechanical test, and histological data showed that peri-implant trabecular growth, implants fixation and bone-implant contact (BIC) were increased after 4 or 8 weeks of teriparatide treatment (p < 0.05). There was no statistically difference in those parameters between PRE4 and POST8 subgroups (p > 0.05). CONCLUSIONS In osteoporotic rats, post-implantation administration of teriparatide enhanced peri-implant bone formation and this effect was stronger as the medicine was taken longer. Pre-implantation teriparatide treatment improved primary implant stability and accelerated the osseointegration process.
Collapse
Affiliation(s)
- Boyu Cui
- Department of General Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Tianyi Bai
- Department of General Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Qiyou Wu
- Department of General Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yibo Hu
- Department of General Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yihong Liu
- Department of General Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
| |
Collapse
|
28
|
Yang P, Shen F, You C, Lou F, Shi Y. Gli1 + Progenitors Mediate Glucocorticoid-Induced Osteoporosis In Vivo. Int J Mol Sci 2024; 25:4371. [PMID: 38673956 PMCID: PMC11050080 DOI: 10.3390/ijms25084371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
For a wide range of chronic autoimmune and inflammatory diseases in both adults and children, synthetic glucocorticoids (GCs) are one of the most effective treatments. However, besides other adverse effects, GCs inhibit bone mass at multiple levels, and at different ages, especially in puberty. Although extensive studies have investigated the mechanism of GC-induced osteoporosis, their target cell populations still be obscure. Here, our data show that the osteoblast subpopulation among Gli1+ metaphyseal mesenchymal progenitors (MMPs) is responsive to GCs as indicated by lineage tracing and single-cell RNA sequencing experiments. Furthermore, the proliferation and differentiation of Gli1+ MMPs are both decreased, which may be because GCs impair the oxidative phosphorylation(OXPHOS) and aerobic glycolysis of Gli1+ MMPs. Teriparatide, as one of the potential treatments for GCs in bone mass, is sought to increase bone volume by increasing the proliferation and differentiation of Gli1+ MMPs in vivo. Notably, our data demonstrate teriparatide ameliorates GC-caused bone defects by targeting Gli1+ MMPs. Thus, Gli1+ MMPs will be the potential mesenchymal progenitors in response to diverse pharmaceutical administrations in regulating bone formation.
Collapse
Affiliation(s)
- Puying Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (P.Y.); (F.S.); (C.Y.); (F.L.)
| | - Fangyuan Shen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (P.Y.); (F.S.); (C.Y.); (F.L.)
| | - Chengjia You
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (P.Y.); (F.S.); (C.Y.); (F.L.)
| | - Feng Lou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (P.Y.); (F.S.); (C.Y.); (F.L.)
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (P.Y.); (F.S.); (C.Y.); (F.L.)
| |
Collapse
|
29
|
Han D, Wang W, Gong J, Ma Y, Li Y. Microbiota metabolites in bone: Shaping health and Confronting disease. Heliyon 2024; 10:e28435. [PMID: 38560225 PMCID: PMC10979239 DOI: 10.1016/j.heliyon.2024.e28435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
The intricate interplay between the gut microbiota and bone health has become increasingly recognized as a fundamental determinant of skeletal well-being. Microbiota-derived metabolites play a crucial role in dynamic interaction, specifically in bone homeostasis. In this sense, short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, indirectly promote bone formation by regulating insulin-like growth factor-1 (IGF-1). Trimethylamine N-oxide (TMAO) has been found to increase the expression of osteoblast genes, such as Runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein-2 (BMP2), thus enhancing osteogenic differentiation and bone quality through BMP/SMADs and Wnt signaling pathways. Remarkably, in the context of bone infections, the role of microbiota metabolites in immune modulation and host defense mechanisms potentially affects susceptibility to infections such as osteomyelitis. Furthermore, ongoing research elucidates the precise mechanisms through which microbiota-derived metabolites influence bone cells, such as osteoblasts and osteoclasts. Understanding the multifaceted influence of microbiota metabolites on bone, from regulating homeostasis to modulating susceptibility to infections, has the potential to revolutionize our approach to bone health and disease management. This review offers a comprehensive exploration of this evolving field, providing a holistic perspective on the impact of microbiota metabolites on bone health and diseases.
Collapse
Affiliation(s)
- Dong Han
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai 264000, China
| | - Jinpeng Gong
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yupeng Ma
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yu Li
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| |
Collapse
|
30
|
Fernández-Carneado J, Vallès-Miret M, Arrastia-Casado S, Almazán-Moga A, Macias MJ, Martin-Malpartida P, Vilaseca M, Díaz-Lobo M, Vazquez M, Sanahuja RM, Gambús G, Ponsati B. First Generic Teriparatide: Structural and Biological Sameness to Its Reference Medicinal Product. Pharmaceutics 2024; 16:537. [PMID: 38675198 PMCID: PMC11054030 DOI: 10.3390/pharmaceutics16040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Teriparatide is an anabolic peptide drug indicated for the treatment of osteoporosis. Recombinant teriparatide was first approved in 2002 and has since been followed by patent-free alternatives under biosimilar or hybrid regulatory application. The aim of this study is to demonstrate the essential similarity between synthetic teriparatide BGW and the reference medicinal product (RMP), and thus to ensure the development of the first generic teriparatide drug. Hence, an extensive side-by-side comparative exercise, focusing on structural and biological activity, was performed using a wide range of state-of-the-art orthogonal methods. Nuclear magnetic resonance (NMR), ion mobility-mass spectrometry (IM-MS), UV, circular dichroism (CD) and Fourier transform infrared (FTIR) demonstrated the structural similarity between teriparatide BGW and the RMP. Comparative cell-based bioassays showed that the synthetic and recombinant peptides have identical behaviors. Teriparatide BGW, as a generic drug, provides an available treatment option for patients with osteoporosis and offers clinical benefits identical to those provided by the RMP.
Collapse
Affiliation(s)
| | - Mariona Vallès-Miret
- BCN Peptides SA, 08777 Barcelona, Spain; (M.V.-M.); (S.A.-C.); (A.A.-M.); (B.P.)
| | | | - Ana Almazán-Moga
- BCN Peptides SA, 08777 Barcelona, Spain; (M.V.-M.); (S.A.-C.); (A.A.-M.); (B.P.)
| | - Maria J. Macias
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain;
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (P.M.-M.); (M.V.); (M.D.-L.)
| | - Pau Martin-Malpartida
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (P.M.-M.); (M.V.); (M.D.-L.)
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (P.M.-M.); (M.V.); (M.D.-L.)
| | - Mireia Díaz-Lobo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (P.M.-M.); (M.V.); (M.D.-L.)
| | - Mayte Vazquez
- GP-Pharm SA, 08777 Barcelona, Spain; (M.V.); (R.M.S.); (G.G.)
| | | | - Gemma Gambús
- GP-Pharm SA, 08777 Barcelona, Spain; (M.V.); (R.M.S.); (G.G.)
| | - Berta Ponsati
- BCN Peptides SA, 08777 Barcelona, Spain; (M.V.-M.); (S.A.-C.); (A.A.-M.); (B.P.)
| |
Collapse
|
31
|
Borer KT. How to Suppress Mineral Loss and Stimulate Anabolism in Postmenopausal Bones with Appropriate Timing of Exercise and Nutrients. Nutrients 2024; 16:759. [PMID: 38542671 PMCID: PMC10975776 DOI: 10.3390/nu16060759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 04/01/2024] Open
Abstract
Background. Bone Health and Osteoporosis Foundation (BHOF) reports that as of 2023, approximately 10 million of older Americans have osteoporosis and another 44 million have low bone density. Osteoporosis is a serious handicap for the elderly and, in particular, for estrogen-deficient postmenopausal women, as it increases the risk of debilitating bone weakness and fractures. The BHOF recommendations for prevention of osteopenia, osteoporosis and bone fractures are to perform weight-bearing and muscle-strengthening exercises and to take recommended amounts of daily calcium and vitamin D. Methods. The purpose of this review is to describe and discuss recent evidence-based research on how to effectively utilize timing of exercise and calorie intake for stimulation of postmenopausal bone anabolism, and to provide this new information in the form of specific and actionable recommendations. Results. The five evidence-based recommendations are as follows: 1. Select an appropriate circadian time of day for exercise; 2. Increase walking speed to raise the movement momentum; 3. Eat a weight-maintenance meal one or two hours before the exercise bout; 4. Sustain the duration of walking activity (impulse) for 40 to 45 min; and 5. Repeat effective exercise stimulus 7 to 8 h after the first one to double the anabolic effect. Osteogenesis can also be increased with subthreshold mechanical loading, where needed, under several special circumstances. Conclusions. This review should provide pragmatic actionable pointers on how to utilize the idiosyncratic bone responsiveness to timing of movement and meals to prevent osteoporosis and encourage research toward a better understanding of how bone detects adequacy of a mechanical stimulus and determines duration of necessary rest to recover its sensitivity to mechanical stimulation and nutrients.
Collapse
Affiliation(s)
- Katarina T Borer
- School of Kinesiology, The University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
32
|
Nakanishi-Kimura A, Takakura A, Hoshi-Numahata M, Watanabe H, Nishiura M, Sato Y, Takao-Kawabata R, Iimura T. Dynamic morphometric changes in the mandibular osteocytic lacunae of ovariectomized rats in response to teriparatide, as revealed by three-dimensional fluorescence analyses: Possible involvement of osteocytic perilacunar remodeling. J Oral Biosci 2024; 66:49-60. [PMID: 38048848 DOI: 10.1016/j.job.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVES Teriparatide [TPTD; human parathyroid hormone (hPTH1-34)] is an anti-osteoporotic drug with bone anabolic effects. Clinical and preclinical studies have indicated that TPTD has value in oral and maxillofacial bone therapies, including jawbone regeneration, periodontal tissue repair, and the treatment of medication-related osteonecrosis of the jaw. However, it is unclear whether the craniofacial bones respond to TPTD similarly to the axial and appendicular bones. Recent studies showed that TPTD acts on both osteocytes and osteoblasts. This study aimed to characterize distinct craniofacial bone sites, with a focus on morphometric changes in osteocytic lacunae in ovariectomized rats receiving TPTD. METHODS Conventional bone histomorphometric analyses of mandibular and parietal bone sections were conducted. High-resolution confocal imaging-based three-dimensional fluorescence morphometric analyses of osteocytic lacunae in distinct mandibular and parietal bone sites were conducted. RESULTS We observed dynamic changes in the morphometric characteristics of osteocytic lacunae specifically in alveolar and other mandibular bone sites upon TPTD administration. CONCLUSIONS These findings suggest that osteocytes in mandibular bone (specifically, alveolar bone) have unique functional characteristics of osteocytic perilacunar remodeling.
Collapse
Affiliation(s)
- Atsuko Nakanishi-Kimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan; Department of Orthodontics, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan
| | - Aya Takakura
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni-shi, Shizuoka 410-2321, Japan.
| | - Marie Hoshi-Numahata
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan; Department of Orthodontics, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan
| | - Haruhisa Watanabe
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan; Department of Oral Medicine and Diagnostics, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan
| | - Mai Nishiura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan; Department of Dentistry for Children and Disabled Persons, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan
| | - Yoshiaki Sato
- Department of Orthodontics, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan
| | - Ryoko Takao-Kawabata
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni-shi, Shizuoka 410-2321, Japan.
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan.
| |
Collapse
|
33
|
Al-Omari FA, Kuroshima S, Uto Y, Uchida Y, Sawase T. Effect of intraoral administration of parathyroid hormone on osseous and soft tissue healing around implants in ovariectomized rat maxillae. Clin Oral Implants Res 2024; 35:305-320. [PMID: 38124678 DOI: 10.1111/clr.14227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/11/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVES Intermittent administration of parathyroid hormone (PTH) increases systemic bone mass. However, the effect of PTH on osseous and soft tissue healing around implants in osteoporosis patients remains unclear. This study aimed to investigate the effects of PTH on tissue healing around implants in ovariectomized rats and to compare systemic and intraoral administration routes. MATERIAL AND METHODS Implants were placed at the healed sites of ovariectomized rats 3 weeks after maxillary first molar extraction. Rats were randomly divided into two groups that received either daily systemic subcutaneous or local intraoral PTH administration. Maxillae were dissected to examine bone architectures with micro-computed tomography images. Histomorphometric and immunohistochemical analyses were performed to evaluate osseous and soft tissue healing around the implants. RESULTS Regardless of the administration route, PTH significantly increased bone area and the numbers of osteoblasts, osteoclasts, and osteocytes in the first and second inside and outside areas of implant threads, in addition to decreasing the number of sclerostin+ osteocytes. However, the intraoral PTH administration route was superior to the systemic route by significantly improving bone quality and promoting collagen production in the connective tissue around implants. CONCLUSIONS Parathyroid hormone administration promoted both osseous and soft tissue healing around implants, irrespective of administration route. Interestingly, intraoral administration improved the evaluated parameters more than systemic administration. Thus, the intraoral route could become a useful treatment strategy for implant treatment in osteoporosis patients.
Collapse
Affiliation(s)
- Farah A Al-Omari
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shinichiro Kuroshima
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yusuke Uto
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yusuke Uchida
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
34
|
Cui Y, Lv B, Li Z, Ma C, Gui Z, Geng Y, Liu G, Sang L, Xu C, Min Q, Kong L, Zhang Z, Liu Y, Qi X, Fu D. Bone-Targeted Biomimetic Nanogels Re-Establish Osteoblast/Osteoclast Balance to Treat Postmenopausal Osteoporosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303494. [PMID: 37794621 DOI: 10.1002/smll.202303494] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/22/2023] [Indexed: 10/06/2023]
Abstract
Insufficient bone formation and excessive bone resorption caused by estrogen deficiency are the major factors resulting in the incidence of postmenopausal osteoporosis (PMOP). The existing drugs usually fail to re-establish the osteoblast/osteoclast balance from both sides and generate side-effects owing to the lack of bone-targeting ability. Here, engineered cell-membrane-coated nanogels PNG@mR&C capable of scavenging receptor activator of nuclear factor-κB ligand (RANKL) and responsively releasing therapeutic PTH 1-34 in the bone microenvironment are prepared from RANK and CXCR4 overexpressed bone mesenchymal stem cell (BMSC) membrane-coated chitosan biopolymers. The CXCR4 on the coated-membranes confer bone-targeting ability, and abundant RANK effectively absorb RANKL to inhibit osteoclastogenesis. Meanwhile, the release of PTH 1-34 triggered by osteoclast-mediated acid microenvironment promote osteogenesis. In addition, the dose and frequency are greatly reduced due to the smart release property, prolonged circulation time, and bone-specific accumulation. Thus, PNG@mR&C exhibits satisfactory therapeutic effects in the ovariectomized (OVX) mouse model. This study provides a new paradigm re-establishing the bone metabolic homeostasis from multitargets and shows great promise for the treatment of PMOP.
Collapse
Affiliation(s)
- Yongzhi Cui
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Bin Lv
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Zhongying Li
- Department of Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Chunming Ma
- Department of Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Zhengwei Gui
- Department of Thyroid and Breast, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Yongtao Geng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Guohui Liu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Linchao Sang
- Department of Orthopaedics, The Third Hospital, Hebei Medical University, Shijiazhuang, Hebei, 050051, P. R. China
| | - Chen Xu
- Department of Spine Surgery, Changzheng hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Qi Min
- Department of Spine Surgery, Changzheng hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Yang Liu
- Department of Spine Surgery, Changzheng hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Xiangbei Qi
- Department of Orthopaedics, The Third Hospital, Hebei Medical University, Shijiazhuang, Hebei, 050051, P. R. China
| | - Dehao Fu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| |
Collapse
|
35
|
Carletti A, Gavaia PJ, Cancela ML, Laizé V. Metabolic bone disorders and the promise of marine osteoactive compounds. Cell Mol Life Sci 2023; 81:11. [PMID: 38117357 PMCID: PMC10733242 DOI: 10.1007/s00018-023-05033-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/12/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023]
Abstract
Metabolic bone disorders and associated fragility fractures are major causes of disability and mortality worldwide and place an important financial burden on the global health systems. These disorders result from an unbalance between bone anabolic and resorptive processes and are characterized by different pathophysiological mechanisms. Drugs are available to treat bone metabolic pathologies, but they are either poorly effective or associated with undesired side effects that limit their use. The molecular mechanism underlying the most common metabolic bone disorders, and the availability, efficacy, and limitations of therapeutic options currently available are discussed here. A source for the unmet need of novel drugs to treat metabolic bone disorders is marine organisms, which produce natural osteoactive compounds of high pharmaceutical potential. In this review, we have inventoried the marine osteoactive compounds (MOCs) currently identified and spotted the groups of marine organisms with potential for MOC production. Finally, we briefly examine the availability of in vivo screening and validation tools for the study of MOCs.
Collapse
Affiliation(s)
- Alessio Carletti
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Paulo Jorge Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Associação Oceano Verde (GreenCoLab), Faro, Portugal
| | - Maria Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
- Collaborative Laboratory for Sustainable and Smart Aquaculture (S2AQUAcoLAB), Olhão, Portugal.
| |
Collapse
|
36
|
Nair VV, Kundnani V, Shetty A, Anand M, Jain M, Dewnany N. Is Teriparatide Superior in Treating Osteoporotic Vertebral Compression Fractures in Comparison to Bisphosphonates Treatment Alone: A 2-Year Retrospective Analysis. Asian Spine J 2023; 17:1098-1107. [PMID: 38050359 PMCID: PMC10764133 DOI: 10.31616/asj.2023.0109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 12/06/2023] Open
Abstract
STUDY DESIGN Retrospective cohort study. PURPOSE This study aimed to compare the efficacy of bisphosphonates and teriparatide in the management of osteoporotic vertebral compression fractures with regard to pain management, prevention of nonunion, and radiological as well as clinical outcomes. OVERVIEW OF LITERATURE Osteoporosis refers to a skeletal disorder characterized by decreased bone strength caused by poor bone density and quality causing fragility, resulting in long periods of pain-related immobilization. METHODS In a 24-month follow-up retrospective study, 191 patients with osteoporotic vertebral compression fractures were randomly assigned to the bisphosphonate group (n=104) or the teriparatide group (n=87), with patients opting for their treatment between January 2016 and October 2020. Demographic data and patient-reported outcomes scores, including the Visual Analog Scale (VAS), Oswestry Disability Index (ODI), union rates, and kyphosis progression, were assessed at baseline, 6 months, 1 year, and 2 years after treatment. RESULTS Both groups had a significant decrease in VAS, from 8.38±0.74 to 3.15±1.40 in the bisphosphonate group and from 8.49±0.73 to 1.11±0.31 in the teriparatide group. The ODI scores reduced significantly at 2-year follow-ups, recording 25.02±13.94 and 15.11±2.17 in the bisphosphonate and teriparatide groups, respectively. Risks of nonunion development were slightly higher at 11.53% in the bisphosphonate group and 8.63% in the teriparatide group required operative intervention. The kyphosis progression angles were also significantly lower in the teriparatide group (4.97°±0.78°) than in the bisphosphonate group (8.09°±1.25°). CONCLUSIONS Over time, numerous studies have demonstrated the efficacy of bisphosphonates and teriparatide in ameliorating pain. In this study, the efficacy of teriparatide surpassed that of bisphosphonates in certain aspects, such as the initial 6-month union rates and reduction in the progression of segmental kyphosis. However, bisphosphonates and teriparatide yield similar and favorable union rates at 1 year and final follow-up.
Collapse
Affiliation(s)
| | - Vishal Kundnani
- Department of Orthopaedics, Bombay Hospital and Research Centre, Mumbai,
India
| | - Abhijith Shetty
- Department of Orthopaedics, Bombay Hospital and Research Centre, Mumbai,
India
| | - Manikant Anand
- Department of Orthopaedics, Bombay Hospital and Research Centre, Mumbai,
India
| | - Mukul Jain
- Department of Orthopaedics, Bombay Hospital and Research Centre, Mumbai,
India
| | | |
Collapse
|
37
|
Martin TJ, Seeman E. Bone Remodeling and Modeling: Cellular Targets for Antiresorptive and Anabolic Treatments, Including Approaches Through the Parathyroid Hormone (PTH)/PTH-Related Protein Pathway. Neurospine 2023; 20:1097-1109. [PMID: 38171279 PMCID: PMC10762382 DOI: 10.14245/ns.2346966.483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bone is continuously in a state of building and renewal, though the process of remodeling that takes place at many sites asynchronously throughout the skeleton, with bone formation and resorption equal at these sites (bone multicellular units). Remodeling takes place on bone surfaces, both on trabeculae and in the cortex, and serves the purposes of replacing old bone or that damaged by microfractures throughout the skeleton. The bone loss and consequent osteoporotic fractures that result from excess resorption over formation have mainly been prevented or treated by antiresorptive drugs that inhibit osteoclast formation and/or activity. Virtually all of the evidence leading to acceptance of antiresorptive drugs as treatment has depended upon their prevention of vertebral fractures. In recent decades, new prospects came of anabolic treatments that partly restore bone volume and microstructure restore bone that has been lost. The first of these was parathyroid hormone (PTH), shown by daily injection to increase markers of bone formation and prevent fractures. This field of interest enlarged with the discovery of PTH-related protein (PTHrP), so closely related in structure and action to PTH. The structural relationship between PTH and PTHrP is important in assessing their physiological and pharmacological roles, with the N-terminal domains of the 2 having virtually equal actions on target cells. Abaloparatide, a peptide analogue based on the structures of PTHrP and PTH, has been approved in some countries as a therapy for osteoporosis. Treatment through the PTH receptor activation pathway, and probably with any anabolic therapy, needs to be followed by antiresorptive treatment in order to maintain bone that has been restored. No matter how effective anabolic therapies for the skeleton become, it seems highly likely that there will be a continuing need for antiresorptive drugs.
Collapse
Affiliation(s)
- Thomas John Martin
- Department of Medicine and St. Vincent’s Institute of Medical Research, University of Melbourne, Melbourne, Australia
| | - Ego Seeman
- Department of Endocrinology and Medicine, Austin Health, University of Melbourne, Melbourne, Australia
- Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
38
|
Chen R, Dong H, Raval D, Maridas D, Baroi S, Chen K, Hu D, Berry SR, Baron R, Greenblatt MB, Gori F. Sfrp4 is required to maintain Ctsk-lineage periosteal stem cell niche function. Proc Natl Acad Sci U S A 2023; 120:e2312677120. [PMID: 37931101 PMCID: PMC10655581 DOI: 10.1073/pnas.2312677120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
We have previously reported that the cortical bone thinning seen in mice lacking the Wnt signaling antagonist Sfrp4 is due in part to impaired periosteal apposition. The periosteum contains cells which function as a reservoir of stem cells and contribute to cortical bone expansion, homeostasis, and repair. However, the local or paracrine factors that govern stem cells within the periosteal niche remain elusive. Cathepsin K (Ctsk), together with additional stem cell surface markers, marks a subset of periosteal stem cells (PSCs) which possess self-renewal ability and inducible multipotency. Sfrp4 is expressed in periosteal Ctsk-lineage cells, and Sfrp4 global deletion decreases the pool of PSCs, impairs their clonal multipotency for differentiation into osteoblasts and chondrocytes and formation of bone organoids. Bulk RNA sequencing analysis of Ctsk-lineage PSCs demonstrated that Sfrp4 deletion down-regulates signaling pathways associated with skeletal development, positive regulation of bone mineralization, and wound healing. Supporting these findings, Sfrp4 deletion hampers the periosteal response to bone injury and impairs Ctsk-lineage periosteal cell recruitment. Ctsk-lineage PSCs express the PTH receptor and PTH treatment increases the % of PSCs, a response not seen in the absence of Sfrp4. Importantly, in the absence of Sfrp4, PTH-dependent increase in cortical thickness and periosteal bone formation is markedly impaired. Thus, this study provides insights into the regulation of a specific population of periosteal cells by a secreted local factor, and shows a central role for Sfrp4 in the regulation of Ctsk-lineage periosteal stem cell differentiation and function.
Collapse
Affiliation(s)
- Ruiying Chen
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Han Dong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard University Medical School, Boston, MA02115
| | - Dhairya Raval
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - David Maridas
- Department of Developmental Biology, Harvard Medical School and Harvard School of Dental Medicine, Boston, MA02115
| | - Sudipta Baroi
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Kun Chen
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Dorothy Hu
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Shawn R. Berry
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
- Harvard Medical School, Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Boston, MA02114
| | - Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
- Research Division, Hospital for Special Surgery, New York, NY10021
| | - Francesca Gori
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| |
Collapse
|
39
|
Xia W, Zhang A, Qiu B, Chen Y, Kong M. Femoral neck fracture after femoral head necrosis: a case report and review of the literature. BMC Musculoskelet Disord 2023; 24:853. [PMID: 37907913 PMCID: PMC10617074 DOI: 10.1186/s12891-023-06992-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
INTRODUCTION Pathological fractures of the femoral neck caused by necrosis of the femoral head are extremely rare. Here, we report a rare case of bilateral femoral head osteonecrosis extending to the femoral neck, with bilateral pathological fractures of the femoral neck occurring within a short period of time. CASE REPORT A 65-year-old male with a 25-year history of daily consumption of 750 ml of liquor, presented with right hip pain after labor for 1 month. He subsequently sustained a right femoral neck fracture without trauma and underwent a right total hip arthroplasty. Two months later, he suffered a non-traumatic left femoral neck fracture and underwent a left total hip arthroplasty. Histopathological examination revealed osteonecrosis of the femoral head and neck, along with the presence of osteoclasts and granulomatous inflammation. Bone mineral density testing also showed osteoporosis. The bilateral femoral neck fractures were ruled out to be caused by any other pathological factors. DISCUSSION This is the first report of pathological fractures of the bilateral femoral neck caused by femoral head necrosis. During the literature review process, we found that this case conforms to the histological characteristics of rapidly destructive hip disease and analyzed the etiology of femoral head necrosis and the pathogenesis of femoral neck fractures.
Collapse
Affiliation(s)
- Wenjie Xia
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou, Zhejiang, China
| | - Aiqi Zhang
- The second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Binsong Qiu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuan Chen
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Mingxiang Kong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
40
|
Hughes JM, Guerriere KI, Popp KL, Castellani CM, Pasiakos SM. Exercise for optimizing bone health after hormone-induced increases in bone stiffness. Front Endocrinol (Lausanne) 2023; 14:1219454. [PMID: 37790607 PMCID: PMC10544579 DOI: 10.3389/fendo.2023.1219454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023] Open
Abstract
Hormones and mechanical loading co-regulate bone throughout the lifespan. In this review, we posit that times of increased hormonal influence on bone provide opportunities for exercise to optimize bone strength and prevent fragility. Examples include endogenous secretion of growth hormones and sex steroids that modulate adolescent growth and exogenous administration of osteoanabolic drugs like teriparatide, which increase bone stiffness, or its resistance to external forces. We review evidence that after bone stiffness is increased due to hormonal stimuli, mechanoadaptive processes follow. Specifically, exercise provides the mechanical stimulus necessary to offset adaptive bone resorption or promote adaptive bone formation. The collective effects of both decreased bone resorption and increased bone formation optimize bone strength during youth and preserve it later in life. These theoretical constructs provide physiologic foundations for promoting exercise throughout life.
Collapse
Affiliation(s)
- Julie M. Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Katelyn I. Guerriere
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Kristin L. Popp
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | - Colleen M. Castellani
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | - Stefan M. Pasiakos
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| |
Collapse
|
41
|
Wells KV, Krackeler ML, Jathal MK, Parikh M, Ghosh PM, Leach JK, Genetos DC. Prostate cancer and bone: clinical presentation and molecular mechanisms. Endocr Relat Cancer 2023; 30:e220360. [PMID: 37226936 PMCID: PMC10696925 DOI: 10.1530/erc-22-0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
Prostate cancer (PCa) is an increasingly prevalent health problem in the developed world. Effective treatment options exist for localized PCa, but metastatic PCa has fewer treatment options and shorter patient survival. PCa and bone health are strongly entwined, as PCa commonly metastasizes to the skeleton. Since androgen receptor signaling drives PCa growth, androgen-deprivation therapy whose sequelae reduce bone strength constitutes the foundation of advanced PCa treatment. The homeostatic process of bone remodeling - produced by concerted actions of bone-building osteoblasts, bone-resorbing osteoclasts, and regulatory osteocytes - may also be subverted by PCa to promote metastatic growth. Mechanisms driving skeletal development and homeostasis, such as regional hypoxia or matrix-embedded growth factors, may be subjugated by bone metastatic PCa. In this way, the biology that sustains bone is integrated into adaptive mechanisms for the growth and survival of PCa in bone. Skeletally metastatic PCa is difficult to investigate due to the entwined nature of bone biology and cancer biology. Herein, we survey PCa from origin, presentation, and clinical treatment to bone composition and structure and molecular mediators of PCa metastasis to bone. Our intent is to quickly yet effectively reduce barriers to team science across multiple disciplines that focuses on PCa and metastatic bone disease. We also introduce concepts of tissue engineering as a novel perspective to model, capture, and study complex cancer-microenvironment interactions.
Collapse
Affiliation(s)
- Kristina V Wells
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Margaret L Krackeler
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, USA
| | - Maitreyee K Jathal
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, USA
- Veterans Affairs-Northern California Health System, Mather, California, USA
| | - Mamta Parikh
- Division of Hematology and Oncology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Paramita M Ghosh
- Veterans Affairs-Northern California Health System, Mather, California, USA
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, California, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, School of Medicine, University of California Davis, Sacramento, California, USA
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| |
Collapse
|
42
|
Lyu Z, Hu Y, Guo Y, Liu D. Modulation of bone remodeling by the gut microbiota: a new therapy for osteoporosis. Bone Res 2023; 11:31. [PMID: 37296111 PMCID: PMC10256815 DOI: 10.1038/s41413-023-00264-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 06/12/2023] Open
Abstract
The gut microbiota (GM) plays a crucial role in maintaining the overall health and well-being of the host. Recent studies have demonstrated that the GM may significantly influence bone metabolism and degenerative skeletal diseases, such as osteoporosis (OP). Interventions targeting GM modification, including probiotics or antibiotics, have been found to affect bone remodeling. This review provides a comprehensive summary of recent research on the role of GM in regulating bone remodeling and seeks to elucidate the regulatory mechanism from various perspectives, such as the interaction with the immune system, interplay with estrogen or parathyroid hormone (PTH), the impact of GM metabolites, and the effect of extracellular vesicles (EVs). Moreover, this review explores the potential of probiotics as a therapeutic approach for OP. The insights presented may contribute to the development of innovative GM-targeted therapies for OP.
Collapse
Affiliation(s)
- Zhengtian Lyu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
43
|
Tunheim EG, Skallevold HE, Rokaya D. Role of hormones in bone remodeling in the craniofacial complex: A review. J Oral Biol Craniofac Res 2023; 13:210-217. [PMID: 36718389 PMCID: PMC9883279 DOI: 10.1016/j.jobcr.2023.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/04/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Background Diseases such as periodontitis and osteoporosis are expected to rise tremendously by 2050. Bone formation and remodeling are complex processes that are disturbed in a variety of diseases influenced by various hormones. Objective This study aimed to review and present the roles of various hormones that regulate bone remodeling of the craniofacial complex. Methods A literature search was conducted on PubMed and Google Scholar for studies related to hormones and jawbone. Search strategies included the combinations ("name of hormone" + "dental term") of the following terms: "hormones", "oxytocin", "estrogen", "adiponectin", "parathyroid hormone", "testosterone", "insulin", "angiotensin", "cortisol", and "erythropoietin", combined with a dental term "jaw bone", "alveolar bone", "dental implant", "jaw + bone regeneration, healing or repair", "dentistry", "periodontitis", "dry socket", "osteoporosis" or "alveolitis". The papers were screened according to the inclusion criteria from January 1, 2000 to March 31, 2021 in English. Publications included reviews, book chapters, and original research papers; in vitro studies, in vivo animal, or human studies, including clinical studies, and meta-analyses. Results Bone formation and remodeling is a complex continuous process involving many hormones. Bone volume reduction following tooth extractions and bone diseases, such as periodontitis and osteoporosis, cause serious problems and require a great understanding of the process. Conclusion Hormones are with us all the time, shape our development and regulate homeostasis. Newly discovered effects of hormones influencing bone healing open the possibilities of using hormones as therapeutics to combat bone-related diseases.
Collapse
Key Words
- ACE, Angiotensin-converting enzyme
- ACE2/Ang-(1-7)/MasR, ACE 2/angiotensin-(1-7)/mas receptor
- AD, Androgens
- AGEs, Advanced glycation end-products
- AN, Adiponectin
- Bone formation
- Bone homeostasis
- Bone regeneration
- Bone resportion
- DHT, Dihydrotestosterone
- DIZE, Diminazene aceturate
- DM, Diabetes mellitus
- EPO, Erythropoietin
- ER, Estrogen receptors
- ERα, ER alpha
- ERβ, ER beta
- ES, Estrogen
- GPER1, G-protein coupled estrogen receptor 1
- HIF-PHIs, Hypoxia inducible factor-prolyl hydroxylase inhibitors
- Hormones
- IGF-1, Insulin-like growth factor-1
- Jawbone
- MAPK, Mitogen-activated protein kinase
- OT, Oxytocin
- PTH, Parathyroid hormone
- RAGEs, Receptor advanced glycation end-products
- RANKL, Receptor activator of NF-κB ligand
- RAS, Renin-angiotensin system
- VEGF, Vascular endothelial growth factor
Collapse
Affiliation(s)
- Erin Grinde Tunheim
- Department of Clinical Dentistry, Faculty of Health Sciences, UIT the Arctic University of Norway, 9037, Tromsö, Norway
| | - Hans Erling Skallevold
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Dinesh Rokaya
- Department of Clinical Dentistry, Walailak University International College of Dentistry, Walailak University, Bangkok 10400, Thailand
| |
Collapse
|
44
|
Le Henaff C, Finnie B, Pacheco M, He Z, Johnson J, Partridge NC. Abaloparatide Has the Same Catabolic Effects on Bones of Mice When Infused as PTH (1-34). JBMR Plus 2023; 7:e10710. [PMID: 36751417 PMCID: PMC9893269 DOI: 10.1002/jbm4.10710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Abaloparatide is a peptide analog of parathyroid hormone-related protein (PTHrP 1-34) and was approved in 2017 as the second osteoanabolic peptide for treating osteoporosis. We previously showed that intermittent abaloparatide is equally as effective as PTH (1-34). This study was designed to compare the catabolic effects of PTH (1-34) and abaloparatide on bone in young female wild-type mice. Two-month-old C57Bl/6J female mice were continuously infused with human PTH (1-34) or abaloparatide at 80 μg/kg BW/day or vehicle for 2 weeks. At euthanasia, DEXA-PIXImus was performed to assess bone mineral density (BMD) in the whole body, femurs, tibiae, and vertebrae. Bone turnover marker levels were measured in sera, femurs were harvested for micro-computer tomography (μCT) analyses and histomorphometry, and tibiae were separated into cortical and trabecular fractions for gene expression analyses. Our results demonstrated that the infusion of abaloparatide resulted in a similar decrease in BMD as infused PTH (1-34) at all sites. μCT and histomorphometry analyses showed similar decreases in cortical bone thickness and BMD associated with an increase in bone turnover from the increased bone formation rate found by in vivo double labeling and serum P1NP and increased bone resorption as shown by osteoclast numbers and serum cross-linked C-telopeptide. Trabecular bone did not show major changes with either treatment. Osteoblastic gene expression analyses of trabecular and cortical bone revealed that infusion of PTH (1-34) or abaloparatide led to similar and different actions in genes of osteoblast differentiation and activity. As with intermittent and in vitro treatment, both infused PTH (1-34) and abaloparatide similarly regulated downstream genes of the PTHR1/SIK/HDAC4 pathway such as Sost and Mmp13 but differed for those of the PTHR1/SIK/CRTC pathway. Taken together, at the same dose, infused abaloparatide causes the same high bone turnover as infused PTH (1-34) with a net resorption in female wild-type mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carole Le Henaff
- Department of Molecular Pathobiology New York University College of Dentistry New York New York USA
| | - Brandon Finnie
- Department of Molecular Pathobiology New York University College of Dentistry New York New York USA
| | - Maria Pacheco
- Department of Molecular Pathobiology New York University College of Dentistry New York New York USA
| | - Zhiming He
- Department of Molecular Pathobiology New York University College of Dentistry New York New York USA
| | - Joshua Johnson
- Department of Molecular Pathobiology New York University College of Dentistry New York New York USA
| | - Nicola C Partridge
- Department of Molecular Pathobiology New York University College of Dentistry New York New York USA
| |
Collapse
|
45
|
Wang X, Liang X, Wang T, Zhan Y, Liu H, Li C, Li X, Ma H, Hu Z, Wang X, Xiao S, Ban L, He J, Li Y, Fang Y. Biosimilarity Assessment of the Biosimilar Teriparatide Candidate and the Reference Drug in Healthy Subjects. Clin Pharmacol Drug Dev 2023; 12:518-524. [PMID: 36710466 DOI: 10.1002/cpdd.1221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/23/2022] [Indexed: 01/31/2023]
Abstract
SAL001, a recombinant form of parathyroid hormone, is a biosimilar drug to teriparatide and is planned to be used in osteoporosis treatment. A single-dose, randomized, open-label, 2-way crossover trial was conducted in healthy subjects to compare the pharmacokinetics (PK) and safety between SAL001 and the reference drug. Sixty-four subjects were enrolled in the study, and 61 subjects completed the study. In each period, 20 μg of the test or reference formulation was administered subcutaneously. SAL001 was administered by autoinjector pen, whereas the reference drug was administered by a self-matched injection pen. Serial blood samples were obtained for the analyses of PK and serum calcium concentration. Geometric mean ratios with 90%CIs for the maximum plasma concentration (Cmax ) and area under the plasma concentration-time curve (AUC) were estimated. The safety of these 2 formulations was also evaluated. Overall, the 90%CIs for the geometric mean ratios of Cmax , AUC from time 0 to the last quantifiable time point, and AUC from time 0 extrapolated to infinity of the test or reference product were within 80.0%-125.0% of biosimilarity criteria. Other PK parameters, serum calcium concentration, and safety profiles had no significant differences between the 2 formulations. SAL001 demonstrated PK similarity to the reference drug, and the serum calcium concentration and safety profiles of SAL001 were also considered comparable to the reference drug.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Phase I Clinical Trial Unit, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Xintong Liang
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Tenghua Wang
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Yaoxuan Zhan
- Department of Phase I Clinical Trial Unit, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Haiyan Liu
- Department of Phase I Clinical Trial Unit, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Chen Li
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Xianbo Li
- Department of Phase I Clinical Trial Unit, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Hui Ma
- Shenzhen Salubris Pharmaceuticals Co. Ltd., Shenzhen, China
| | - Zhiqin Hu
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Xiaole Wang
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Shuangshuang Xiao
- Department of Phase I Clinical Trial Unit, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Li Ban
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Jin He
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Yongmei Li
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Yi Fang
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China.,Department of Pharmacy, Peking University People's Hospital, Beijing, China.,Key Laboratory of Molecular Target and Clinical Pharmacology, The Fifth Affiliated Hospital & School Pharmaceutical Sciences, Guangzhou Medical University, Guangdong, China
| |
Collapse
|
46
|
Gao J, Liu X, Wu X, Li X, Liu J, Li M. A brief review and clinical evidences of teriparatide therapy for atypical femoral fractures associated with long-term bisphosphonate treatment. Front Surg 2023; 9:1063170. [PMID: 36684309 PMCID: PMC9852062 DOI: 10.3389/fsurg.2022.1063170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/07/2022] [Indexed: 01/07/2023] Open
Abstract
The risk of bisphosphonate (BP)-associated atypical femur fracture (AFF) has markedly increased over recent decades due to suppression of bone turnover, accumulation of structural micro-damage and reduction of bone remodeling consequent to long-term BP treatment. These medications further delay bone union and result in challenging clinical management. Teriparatide (TPTD), a synthetic human parathyroid hormone, exhibits unique anabolic effects and can increase bone remodeling and improve bone microarchitecture, further promoting fracture healing and reducing the rate of bone non-union. In this study, we briefly define AFF as well as the effects of BPs on AFFs, detailed the role of TPTD in AFF management and the latest clinical therapeutic findings. We have confirmed that TPTD positively promotes the healing of AFFs by reducing the time to bone union and likelihood of non-union. Thus, teriparatide therapy could be considered as an alternative treatment for AFFs, however, further research is required for the establishment of effective clinical guidelines of TPTD use in the management of AFF.
Collapse
Affiliation(s)
- Jianpeng Gao
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiao Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiaoyong Wu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Xiaoya Li
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Jianheng Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China,Correspondence: Ming Li Jianheng Liu
| | - Ming Li
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China,Correspondence: Ming Li Jianheng Liu
| |
Collapse
|
47
|
Yagi H, Tomono T, Handa Y, Saito N, Ukawa M, Miyata K, Shigeno K, Sakuma S. Performance of Cell-Penetrating Peptides Anchored to Polysaccharide Platforms Applied via Various Mucosal Routes as an Absorption Enhancer. Mol Pharm 2023; 20:303-313. [PMID: 36484773 DOI: 10.1021/acs.molpharmaceut.2c00657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have been investigating the potential of cell-penetrating peptides anchored to polymeric platforms as a novel absorption enhancer which delivers biologics into systemic circulation via mucosal routes. Our previous mouse experiments demonstrated that hyaluronic acid modified with l-octaarginine, a typical cell-penetrating peptide, via a tetraglycine spacer significantly enhanced the mucosal absorption of protein drugs applied into the nasal cavities, irrespective of the molecular weights (Mw) of the drugs. The present study evaluated the performance of tetraglycine-l-octaarginine-linked hyaluronic acid applied via various mucosal routes. Somatropin (Mw: ca. 22.1 kDa) was moderately absorbed from the lung mucosa, and the mean absolute bioavailability (BA) reached 19% under enhancer-free conditions; nevertheless, its BA under intranasal administration was approximately 1% or less. Its BA significantly elevated to 46% on average through intrapulmonary coadministration with tetraglycine-l-octaarginine-linked hyaluronic acid. When the administration site was replaced with the oral cavities, an extreme reduction in somatropin absorption was observed with a mean BA of 0.056% under enhancer-free conditions. Intraoral coadministration with tetraglycine-l-octaarginine-linked hyaluronic acid resulted in a 6.3-fold elevation of somatropin absorption with statistical significance. A similar enhancement was observed under intrarectal administration with a further reduction in BA. On the other hand, the hyaluronic acid derivative did not exhibit the absorption-enhancing ability under intragastric administration, probably due to the lack of stabilization effects against enzyme-susceptible biologics. The results indicated that the intrapulmonary route was suitable for maximizing the mucosal absorption of biologics, and that there was a likelihood of the intraoral route with user convenience. When somatropin was substituted with fluorescein isothiocyanate-conjugated dextran with an average Mw range of 4-70 kDa, similar phenomena were observed under intrapulmonary and intranasal administration. BA decreased with an increase in the Mw of dextran; however, the ratio of BA under enhancer-present conditions to that under enhancer-free conditions was consistently around 3, indicating that the performance of the hyaluronic acid derivative was Mw-independent, irrespective of the administration route.
Collapse
Affiliation(s)
- Haruya Yagi
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Takumi Tomono
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Yuma Handa
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Natsuki Saito
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Masami Ukawa
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Kohei Miyata
- Life Science Materials Laboratory, ADEKA Co., 7-2-34, Higashiogu, Arakawa-ku, Tokyo 116-8553, Japan
| | - Koichi Shigeno
- Life Science Materials Laboratory, ADEKA Co., 7-2-34, Higashiogu, Arakawa-ku, Tokyo 116-8553, Japan
| | - Shinji Sakuma
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
48
|
Hirayama J, Hattori A, Takahashi A, Furusawa Y, Tabuchi Y, Shibata M, Nagamatsu A, Yano S, Maruyama Y, Matsubara H, Sekiguchi T, Suzuki N. Physiological consequences of space flight, including abnormal bone metabolism, space radiation injury, and circadian clock dysregulation: Implications of melatonin use and regulation as a countermeasure. J Pineal Res 2023; 74:e12834. [PMID: 36203395 DOI: 10.1111/jpi.12834] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022]
Abstract
Exposure to the space environment induces a number of pathophysiological outcomes in astronauts, including bone demineralization, sleep disorders, circadian clock dysregulation, cardiovascular and metabolic dysfunction, and reduced immune system function. A recent report describing experiments aboard the Space Shuttle mission, STS-132, showed that the level of melatonin, a hormone that provides the biochemical signal of darkness, was decreased during microgravity in an in vitro culture model. Additionally, abnormal lighting conditions in outer space, such as low light intensity in orbital spacecraft and the altered 24-h light-dark cycles, may result in the dysregulation of melatonin rhythms and the misalignment of the circadian clock from sleep and work schedules in astronauts. Studies on Earth have demonstrated that melatonin regulates various physiological functions including bone metabolism. These data suggest that the abnormal regulation of melatonin in outer space may contribute to pathophysiological conditions of astronauts. In addition, experiments with high-linear energy transfer radiation, a ground-based model of space radiation, showed that melatonin may serve as a protectant against space radiation. Gene expression profiling using an in vitro culture model exposed to space flight during the STS-132 mission, showed that space radiation alters the expression of DNA repair and oxidative stress response genes, indicating that melatonin counteracts the expression of these genes responsive to space radiation to promote cell survival. These findings implicate the use of exogenous melatonin and the regulation of endogenous melatonin as countermeasures for the physiological consequences of space flight.
Collapse
Affiliation(s)
- Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences & Division of Health Sciences, Graduate School of Sustainable Systems Science, Komatsu University, Komatsu, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | | | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Masahiro Shibata
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | | | - Sachiko Yano
- Japan Aerospace Exploration Agency, Tsukuba, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University, Noto-cho, Ishikawa, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Japan
| |
Collapse
|
49
|
Medical optimization of osteoporosis for adult spinal deformity surgery: a state-of-the-art evidence-based review of current pharmacotherapy. Spine Deform 2022; 11:579-596. [PMID: 36454531 DOI: 10.1007/s43390-022-00621-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE Osteoporosis is a common, but challenging phenomenon to overcome in adult spinal deformity (ASD) surgery. Several pharmacological agents are at the surgeon's disposal to optimize the osteoporotic patient prior to undergoing extensive reconstruction. Familiarity with these medications will allow the surgeon to make informed decisions on selecting the most appropriate adjuncts for each individual patient. METHODS A comprehensive literature review was conducted in PubMed from September 2021 to April 2022. Studies were selected that contained combinations of various terms including osteoporosis, specific medications, spine surgery, fusion, cage subsidence, screw loosening, pull-out, junctional kyphosis/failure. RESULTS Bisphosphonates, denosumab, selective estrogen receptor modulators, teriparatide, abaloparatide and romosozumab are all pharmacological agents currently available for adjunctive use. While these medications have been shown to have beneficial effects on improving bone mineral density in the osteoporotic patient, varying evidence is available on their specific effects in the context of extensive spine surgery. There is still a lack of human studies with use of the newer agents. CONCLUSION Bisphosphonates are first-line agents due to their low cost and robust evidence behind their utility. However, in the absence of contraindications, optimizing bone quality with anabolic medications should be strongly considered in preparation for spinal deformity surgeries due to their beneficial and favorable effects on fusion and hardware compared to the anti-resorptive medications.
Collapse
|
50
|
Ebrahim IC, Hoang TD, Vietor NO, Schacht JP, Shakir MKM. Dilemmas in the diagnosis and management of osteoporosis in a patient with alkaptonuria: Successful treatment with teriparatide. Clin Case Rep 2022; 10:e6729. [PMID: 36583204 PMCID: PMC9794677 DOI: 10.1002/ccr3.6729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
Management of osteoporosis in patients with alkaptonuria can be challenging. This is the first case report confirming the effectiveness of teriparatide following zoledronic acid therapy in treating osteoporosis and preventing fragility fractures in a patient with alkaptonuria.
Collapse
Affiliation(s)
- Ismail C. Ebrahim
- Division of Endocrinology, Department of MedicineWalter Reed National Military Medical CenterBethesdaMarylandUSA
| | - Thanh D. Hoang
- Division of Endocrinology, Department of MedicineWalter Reed National Military Medical CenterBethesdaMarylandUSA
- Division of Endocrinology, Department of MedicineUniformed Service University of the Health SciencesBethesdaMarylandUSA
| | - Nicole O. Vietor
- Division of Endocrinology, Department of MedicineWalter Reed National Military Medical CenterBethesdaMarylandUSA
- Division of Endocrinology, Department of MedicineUniformed Service University of the Health SciencesBethesdaMarylandUSA
| | - John P. Schacht
- Department of GeneticsWalter Reed National Military Medical CenterBethesdaMarylandUSA
| | - Mohamed K. M. Shakir
- Division of Endocrinology, Department of MedicineWalter Reed National Military Medical CenterBethesdaMarylandUSA
- Division of Endocrinology, Department of MedicineUniformed Service University of the Health SciencesBethesdaMarylandUSA
| |
Collapse
|