1
|
Mohanty S, Sahu A, Mukherjee T, Kispotta S, Mal P, Gupta M, Ghosh JK, Prabhakar PK. Molecular mechanisms and treatment strategies for estrogen deficiency-related and glucocorticoid-induced osteoporosis: a comprehensive review. Inflammopharmacology 2025:10.1007/s10787-025-01749-3. [PMID: 40293652 DOI: 10.1007/s10787-025-01749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
Osteoporosis, a debilitating condition characterized by reduced bone mass and increased fracture risk, is notably influenced by estrogen deficiency and glucocorticoid treatment. This comprehensive review elucidates the molecular mechanisms underpinning estrogen deficiency-related osteoporosis (EDOP) and glucocorticoid-induced osteoporosis (GIOP). The role of estrogen in bone metabolism is critically examined, highlighting its regulatory effects on bone turnover and formation through various signaling pathways. Conversely, this review explores how glucocorticoids disrupt bone homeostasis, focusing on their impact on osteoclast and osteoblast function and the subsequent alteration of bone remodeling processes. The pathogenesis of both conditions is intertwined, with estrogen receptor signaling pathways and the role of inflammatory cytokines being pivotal in driving bone loss. A detailed analysis of pathogenetic and risk factors associated with EDOP and GIOP is presented, including lifestyle and genetic factors contributing to disease progression. Modern therapeutic approaches emphasize pharmacologic, non-pharmacologic, and herbal treatments for managing EDOP and GIOP. In summary, current therapeutic strategies highlight the efficacy and the safety of various interventions. This review concludes with future directions for research, suggesting a need for novel treatment modalities and a deeper understanding of the underlying mechanisms of osteoporosis. By addressing the multifaceted nature of EDOP and GIOP, this work aims to provide insights into developing targeted therapeutic strategies and improving patient outcomes in osteoporosis management.
Collapse
Affiliation(s)
- Satyajit Mohanty
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| | - Anwesha Sahu
- Division of Pharmacology, Faculty of Medical Science and Research, Sai Nath University, Ranchi, 835219, Jharkhand, India
| | - Tuhin Mukherjee
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| | - Sneha Kispotta
- School of Pharmaceutical Sciences, Siksha O Anusandhan deemed to be University, Bhubaneswar, 751030, Odisha, India
| | - Payel Mal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Muskan Gupta
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Jeet Kumar Ghosh
- Department of Pharmacy, Usha Martin University, Ranchi, 835103, Jharkhand, India
| | | |
Collapse
|
2
|
Liao SS, Deng YL, Hsu CY, Lee HT, Li CR, Yang CC. Denosumab in the Management of Glucocorticoid-Induced Osteoporosis: Long-Term Efficacy and Secondary Fracture Outcomes. J Clin Med 2025; 14:1633. [PMID: 40095574 PMCID: PMC11900549 DOI: 10.3390/jcm14051633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Objectives: Osteoporosis is a common complication in patients undergoing long-term corticosteroid therapy, particularly those with rheumatological and immunological conditions. Denosumab has shown potential in enhancing bone density and reducing fracture risk in such patients. This study evaluates the effectiveness of denosumab in osteoporosis management among corticosteroid-treated individuals. Methods: Between 2013 and 2022, 390 osteoporosis patients who received denosumab (60 mg subcutaneously every 6 months) for ≤18 months were enrolled. Patients were categorized based on corticosteroid use, and age-matching was applied to ensure comparability. Bone mineral density (BMD) and trabecular bone score (TBS) at the lumbar spine and femoral neck were assessed, and secondary fractures during the follow-up period were recorded. Results: Over the 18-month follow-up, both groups showed improvements in lumbar spine T-scores. The corticosteroid group increased from -2.1 ± 1.2 to -2.0 ± 1.3 (p < 0.001), while the non-corticosteroid group improved from -2.6 ± 1.2 to -2.4 ± 1.2 (p = 0.003). However, logistic regression analysis revealed that corticosteroid use remained a significant risk factor for secondary fractures (odds ratio: 1.69; 95% confidence interval: 1.11-2.56, p = 0.014), despite denosumab treatment. Conclusions: This retrospective study observed stabilization and a modest increase in BMD and TBS among corticosteroid users. Although differences in secondary fractures persisted between groups, denosumab shows potential for managing corticosteroid-induced osteoporosis. The study's focus on Taiwanese patients limits its generalizability, and future research should include diverse populations to enhance applicability.
Collapse
Affiliation(s)
- Sian-Siang Liao
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sec. 4, Taichung 40705, Taiwan; (S.-S.L.); (H.-T.L.); (C.-R.L.)
| | - Ya-Lian Deng
- Department of Nursing, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Chiann-Yi Hsu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407405, Taiwan;
| | - Hsu-Tung Lee
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sec. 4, Taichung 40705, Taiwan; (S.-S.L.); (H.-T.L.); (C.-R.L.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chi-Ruei Li
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sec. 4, Taichung 40705, Taiwan; (S.-S.L.); (H.-T.L.); (C.-R.L.)
| | - Chi-Chan Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sec. 4, Taichung 40705, Taiwan; (S.-S.L.); (H.-T.L.); (C.-R.L.)
- Department of Neurosurgery, Taichung Veterans General Hospital Puli Branch, Nantou 545402, Taiwan
| |
Collapse
|
3
|
Sory DR, Heyraud ACM, Jones JR, Rankin SM. Ionic release from bioactive SiO 2-CaO CME/poly(tetrahydrofuran)/poly(caprolactone) hybrids drives human-bone marrow stromal cell osteogenic differentiation. BIOMATERIALS ADVANCES 2025; 166:214019. [PMID: 39326252 DOI: 10.1016/j.bioadv.2024.214019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
This study demonstrates that dissolution products of inorganic/organic SiO2-CaOCME/PTHF/PCL-diCOOH hybrid (70S30CCME-CL) drive human bone marrow stromal cells (h-BMSCs) down an osteogenic pathway with the production of mineralised matrix. We investigated osteogenesis through combined analyses of mRNA dynamics for key markers and targeted staining of mineralised matrix. We demonstrate that h-BMSCs undergo accelerated differentiation in vitro in response to the 70S30CCME-CL ionic milieu, as compared to incubation with osteogenic media. Extracts from 70S30CCME-CL promote osteogenesis by inducing changes in cellular metabolic activity, promoting changes in cell morphology consistent with the osteogenic lineage, and by enhancing mineralisation of hydroxyapatite in the extracellular matrix. Additionally, our results show that 70S30CCME-CL hybrids prove sustained functional resilience by maintaining osteostimulatory effects despite cumulated dissolution cycles. In co-differentiation medium, 70S30CCME-CL ionic release can modulate signalling pathways associated with non-osteogenic functions, further supporting their potential for bone regeneration applications. Overall, our study provides compelling experimental evidence that the 70S30CCME-CL hybrid is a promising biomaterial for bone tissue regeneration applications.
Collapse
Affiliation(s)
- David R Sory
- National Heart and Lung Institute, Imperial College London, London, UK.
| | | | - Julian R Jones
- Department of Materials, Imperial College London, London, UK
| | - Sara M Rankin
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
4
|
Hansen BB, Hass Rubin K, Vind Nielsen C, Frost Nielsen M, Hermann AP, Abrahamsen B. Biological Heterogeneity in Susceptibility to Glucocorticoid-Induced Bone Loss: Short- and Long-Term Hip BMD Trajectories. J Clin Endocrinol Metab 2024:dgae832. [PMID: 39671259 DOI: 10.1210/clinem/dgae832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Indexed: 12/15/2024]
Abstract
CONTEXT Glucocorticoids (GCs) are widely used for their anti-inflammatory and immunosuppressive properties. Their effect on bone health is predominantly negative by decreasing bone formation and increasing risk of fractures. OBJECTIVE This work aimed to quantify the short- and long-term changes in total hip bone mineral density (THBMD) after initiating systemic GC treatment in previously GC treatment-naive adults without bone protective agents. METHODS An observational study was conducted using THBMD data from dual-energy x-ray absorptiometry (DXA). Individuals were stratified by sex and tertiles of GC exposure. Individuals not GC-exposed served as a reference group. Routine-care DXA scans were obtained from the main public hospitals servicing the Island of Funen in Denmark. A total of 15 099 adults underwent routine DXA at Odense University Hospital between 2006 and 2021. Data were enriched with Danish national registers. Intervention included systemic GCs (observational data). The short-term outcome included annualized THBMD changes between first 2 DXA scans. The long-term outcome included greater than 5% annualized THBMD loss over a 10-year follow-up. RESULTS Strong associations between GC exposure and THBMD loss was found for both outcomes, with larger losses in the middle and upper tertiles of GC exposure. The risk of experiencing greater than 5% annualized THBMD loss was elevated, especially in the first 2 years of initiating GC treatment. There is significant heterogeneity in THBMD responses, with approximately 1 in 5 patients experiencing no nominal bone loss despite receiving upper tertile levels of GC exposure. CONCLUSION The findings confirm the association between initial GC exposure and significant bone loss. The heterogeneity in individual responses emphasizes the need for early monitoring and personalized approaches in managing bone health for patients undergoing GC treatment.
Collapse
Affiliation(s)
- Benjamin Bakke Hansen
- OPEN-Open Patient Data Explorative Network, Odense University Hospital, Odense 5230, Denmark
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense 5230, Denmark
| | - Katrine Hass Rubin
- OPEN-Open Patient Data Explorative Network, Odense University Hospital, Odense 5230, Denmark
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense 5230, Denmark
| | - Catharina Vind Nielsen
- Department of Endocrinology, Odense University Hospital, Odense 5230, Denmark
- Department of Diabetes and Endocrinology, Esbjerg Hospital, University Hospital of Southern Denmark, Esbjerg 6700, Denmark
| | - Morten Frost Nielsen
- Department of Endocrinology, Odense University Hospital, Odense 5230, Denmark
- Excellence Center for Improved Diagnostics and Use of Corticosteroids in Clinical Practice - Region of Southern Denmark, Odense C 5000, Denmark
| | - Anne Pernille Hermann
- Department of Endocrinology, Odense University Hospital, Odense 5230, Denmark
- Excellence Center for Improved Diagnostics and Use of Corticosteroids in Clinical Practice - Region of Southern Denmark, Odense C 5000, Denmark
| | - Bo Abrahamsen
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense 5230, Denmark
- Excellence Center for Improved Diagnostics and Use of Corticosteroids in Clinical Practice - Region of Southern Denmark, Odense C 5000, Denmark
- Department of Medicine 1, Holbæk Hospital, Holbæk 4300, Denmark
| |
Collapse
|
5
|
Dittmar MC, Tohidnezhad M, Fragoulis A, Bücker A, Stein M, Pufe T, Kubo Y. Pharmacological effects of methysticin and L-sulforaphane through the Nrf2/ARE signaling pathway in MLO-Y4 osteocytes: in vitro study. Ann Anat 2024; 254:152260. [PMID: 38521364 DOI: 10.1016/j.aanat.2024.152260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/04/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Oxidative stress plays a crucial role in the pathogenesis of many skeletal diseases by inducing osteocyte death. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of various antioxidant gene expressions through antioxidant response element (ARE) against cellular oxidative stress and can be induced by various stimulants, including the phytochemicals methysticin (MET) and L-sulforaphane (SFN). This study aimed to establish an osteocyte in vitro model to investigate the pharmacological effects of MET and SFN on the Nrf2/ARE pathway. METHODS MLO-Y4 murine osteocytes and the stably transduced MLO-Y4-SIN-lenti-ARE reporter gene cell line were used. MET and SFN were used as Nrf2 inducers. The cytotoxicity of MET, SFN, and hydrogen peroxide (H2O2) was evaluated using the CytoTox-Glo™ Assay. Time- and dose-dependent ARE induction was examined by Monoluciferase Assay. The mRNA and protein expressions of Nrf2 target markers, such as heme-oxygenase 1 (Ho-1), NADPH quinone dehydrogenase 1 (Nqo1), and thioredoxin reductase 1 (Txnrd1), were detected by RT-qPCR, Western Blot, and immunofluorescence staining, respectively. Osteogenesis markers, osteopontin, and osteocalcin were compared with and without treatment by immunofluorescence staining. RESULTS The experimental data showed that MET and SFN induced ARE activity in a time- and dose-dependent manner and increased the mRNA and protein expression of antioxidant markers compared to vehicle-treated controls. The protein expression of osteopontin and osteocalcin in the samples treated with SFN were significantly higher than without treatment, and the number of cell death treated with SFN was significantly lower than without treatment under H2O2-induced stress conditions. CONCLUSIONS Nrf2 inducers MET and SFN increased the mRNA expression of antioxidant genes through the Nrf2/ARE pathway in osteocytes. Notably, SFN increased the protein expression of osteocyte-associated osteogenic markers and suppressed cell death under H2O2-induced stress condition. Thus, Nrf2 stimulators can exert stress-relieving and osteogenic effects on osteocytes.
Collapse
Affiliation(s)
- Maja Charlotte Dittmar
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, Aachen 52074, Germany
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, Aachen 52074, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, Aachen 52074, Germany
| | - Annette Bücker
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, Aachen 52074, Germany
| | - Matthias Stein
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, Aachen 52074, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, Aachen 52074, Germany
| | - Yusuke Kubo
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, Aachen 52074, Germany; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
6
|
Anastasilaki E, Paccou J, Gkastaris K, Anastasilakis AD. Glucocorticoid-induced osteoporosis: an overview with focus on its prevention and management. Hormones (Athens) 2023; 22:611-622. [PMID: 37755658 DOI: 10.1007/s42000-023-00491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
The widespread use of glucocorticoids (GCs) contributes to the effective management of several diseases and conditions. However, it comes at a price in the case of the bones causing glucocorticoid-induced osteoporosis (GIOP), the most common cause of secondary osteoporosis and fractures. Several scientific societies have issued comprehensive guidelines on the optimal management of patients receiving GCs with the aim of providing answers to three fundamental questions, namely, whom to treat, when to treat, and how to treat. Both common ground and different approaches exist among them. General preventive measures should start along with GC initiation, and the duration of GC therapy should be limited to the minimal effective range. A pre-existing fracture, age, gender, menopausal status, dose, and duration of GC treatment are key factors in the decision to initiate antiosteoporotic medication. Oral bisphosphonates are typically regarded as the first-line treatment choice for GIOP partly due to their cost-effectiveness. Denosumab is another valid option, but an "exit strategy" should be considered before its initiation due to the risk of rebound-associated vertebral fractures upon its discontinuation. Since impaired bone formation represents the main mechanism by which GCs negatively affect skeletal health, osteoanabolic therapies appear to be pathophysiologically the more appropriate and appealing option, although cost considerations currently limit their use to selected severe cases. Regardless of the agent selected to mitigate the impact of GCs on the skeleton, what is most crucial is that the treating physician correctly stratifies the risk and intervenes at the right time.
Collapse
Affiliation(s)
| | - Julien Paccou
- Univ. Lille, CHU Lille, MABlab ULR 4490, Department of Rheumatology, 59000, Lille, France
| | | | - Athanasios D Anastasilakis
- Department of Endocrinology, 424 Military General Hospital, Ring Road, 564 29 N. Efkarpia, Thessaloniki, Greece.
| |
Collapse
|
7
|
Yilmaz M, Dokuyucu R. Effects of Thymoquinone on Urotensin-II and TGF-β1 Levels in Model of Osteonecrosis in Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1781. [PMID: 37893499 PMCID: PMC10608466 DOI: 10.3390/medicina59101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Objectives: We aimed to investigate the therapeutic effects of thymoquinone (TMQ) treatment in osteonecrotic rats by evaluating protein levels, osteonecrosis (ON) levels, fatty acid degeneration, oxidative status, and plasma levels of Urotensin-II (U-II) and transforming growth factor-beta (TGF-β1). Materials and Methods: 40 weight-matched adult male Wistar rats were grouped as control (n = 10), methylprednisolone acetate (MPA) (n = 10), thymoquinone (TMQ) (n = 10), and MPA + TMQ (n = 10). To induce ON, 15-week-old animals were subcutaneously injected with MPA at a dose of 15 mg/kg twice weekly for 2 weeks. TMQ was injected into 15-week-old rats via gastric gavage at a dose of 80 mg/kg per day for 4 weeks. The rats in the MPA + TMQ group were administered TMQ 2 weeks before the MPA injection. At the end of the treatments, cardiac blood samples and femur samples were collected for biochemical and histological evaluations. Results: In the control and TMQ groups, no ON pattern was observed. However, in tissues exposed to MPA, TMQ treatment resulted in significantly decreased ON levels compared to the MPA group. The number of cells that were positive for 8-OHdG and 4-HNE was significantly lower in the MPA + TMQ group than in the MPA group (p < 0.05). In terms of TGF-β1 and U-II levels, we observed that both TGF-β1 (367.40 ± 23.01 pg/mL vs. 248.9 ± 20.12 pg/mL) and U-II protein levels (259.5 ± 6.0 ng/mL vs. 168.20 ± 7.90 ng/mL) increased significantly in the MPA group compared to the control group (p < 0.001). Furthermore, TGF-β1 (293.50 ± 14.18 pg/mL) and U-II (174.80 ± 4.2 ng/mL) protein levels were significantly decreased in the MPA + TMQ group compared to the MPA group (p < 0.05 and p < 0.01, respectively). There was a statistically positive correlation (p < 0.05) between the TGF-β1 and U-II protein levels in all groups (p = 0.002, rcontrol = 0.890; p = 0.02, rTMQ = 0.861; p = 0.024, rMPA+TMQ = 0.868) except for the MPA group (p < 0.03, rMedrol = -0.870). Conclusions: As far as we know, this is the first study to demonstrate the curative functions of TMQ on ON by causing a correlated decrease in the expression of U-II and TGF-β1 in the femoral heads of rats.
Collapse
Affiliation(s)
- Mehmet Yilmaz
- Department of Orthopedic Surgery, 25 Aralik State Hospital, Gaziantep 27090, Turkey;
| | - Recep Dokuyucu
- Department of Physiology, Private Fizyoclinic Wellness Center, Gaziantep 27560, Turkey
| |
Collapse
|
8
|
Liu X, Gu Y, Kumar S, Amin S, Guo Q, Wang J, Fang CL, Cao X, Wan M. Oxylipin-PPARγ-initiated adipocyte senescence propagates secondary senescence in the bone marrow. Cell Metab 2023; 35:667-684.e6. [PMID: 37019080 PMCID: PMC10127143 DOI: 10.1016/j.cmet.2023.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023]
Abstract
The chronic use of glucocorticoids decreases bone mass and quality and increases bone-marrow adiposity, but the underlying mechanisms remain unclear. Here, we show that bone-marrow adipocyte (BMAd) lineage cells in adult mice undergo rapid cellular senescence upon glucocorticoid treatment. The senescent BMAds acquire a senescence-associated secretory phenotype, which spreads senescence in bone and bone marrow. Mechanistically, glucocorticoids increase the synthesis of oxylipins, such as 15d-PGJ2, for peroxisome proliferator-activated receptor gamma (PPARγ) activation. PPARγ stimulates the expression of key senescence genes and also promotes oxylipin synthesis in BMAds, forming a positive feedback loop. Transplanting senescent BMAds into the bone marrow of healthy mice is sufficient to induce the secondary spread of senescent cells and bone-loss phenotypes, whereas transplanting BMAds harboring a p16INK4a deletion did not show such effects. Thus, glucocorticoid treatment induces a lipid metabolic circuit that robustly triggers the senescence of BMAd lineage cells that, in turn, act as the mediators of glucocorticoid-induced bone deterioration.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yiru Gu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Surendra Kumar
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sahran Amin
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qiaoyue Guo
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiekang Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ching-Lien Fang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Wang JS, Tokavanich N, Wein MN. SP7: from Bone Development to Skeletal Disease. Curr Osteoporos Rep 2023; 21:241-252. [PMID: 36881265 PMCID: PMC10758296 DOI: 10.1007/s11914-023-00778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the different roles of the transcription factor SP7 in regulating bone formation and remodeling, discuss current studies in investigating the causal relationship between SP7 mutations and human skeletal disease, and highlight potential therapeutic treatments that targeting SP7 and the gene networks that it controls. RECENT FINDINGS Cell-type and stage-specific functions of SP7 have been identified during bone formation and remodeling. Normal bone development regulated by SP7 is strongly associated with human bone health. Dysfunction of SP7 results in common or rare skeletal diseases, including osteoporosis and osteogenesis imperfecta with different inheritance patterns. SP7-associated signaling pathways, SP7-dependent target genes, and epigenetic regulations of SP7 serve as new therapeutic targets in the treatment of skeletal disorders. This review addresses the importance of SP7-regulated bone development in studying bone health and skeletal disease. Recent advances in whole genome and exome sequencing, GWAS, multi-omics, and CRISPR-mediated activation and inhibition have provided the approaches to investigate the gene-regulatory networks controlled by SP7 in bone and the therapeutic targets to treat skeletal disease.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
10
|
Wang JS, Wein MN. Pathways Controlling Formation and Maintenance of the Osteocyte Dendrite Network. Curr Osteoporos Rep 2022; 20:493-504. [PMID: 36087214 PMCID: PMC9718876 DOI: 10.1007/s11914-022-00753-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the molecular mechanisms involved in osteocyte dendrite formation, summarize the similarities between osteocytic and neuronal projections, and highlight the importance of osteocyte dendrite maintenance in human skeletal disease. RECENT FINDINGS It is suggested that there is a causal relationship between the loss of osteocyte dendrites and the increased osteocyte apoptosis during conditions including aging, microdamage, and skeletal disease. A few mechanisms are proposed to control dendrite formation and outgrowth, such as via the regulation of actin polymerization dynamics. This review addresses the impact of osteocyte dendrites in bone health and disease. Recent advances in multi-omics, in vivo and in vitro models, and microscopy-based imaging have provided novel approaches to reveal the underlying mechanisms that regulate dendrite development. Future therapeutic approaches are needed to target the process of osteocyte dendrite formation.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
11
|
Poly(Glycerol Succinate) as Coating Material for 1393 Bioactive Glass Porous Scaffolds for Tissue Engineering Applications. Polymers (Basel) 2022; 14:polym14225028. [PMID: 36433155 PMCID: PMC9697483 DOI: 10.3390/polym14225028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Aliphatic polyesters are widely used for biomedical, pharmaceutical and environmental applications due to their high biodegradability and cost-effective production. Recently, star and hyperbranched polyesters based on glycerol and ω-carboxy fatty diacids have gained considerable interest. Succinic acid and bio-based diacids similar to glycerol are regarded as safe materials according to the US Food and Drug Administration (FDA). Bioactive glass scaffolds utilized in bone tissue engineering are relatively brittle materials. However, their mechanical properties can be improved by using polymer coatings that can further control their degradation rate, tailor their biocompatibility and enhance their performance. The purpose of this study is to explore a new biopolyester poly(glycerol succinate) (PGSuc) reinforced with mesoporous bioactive nanoparticles (MSNs) as a novel coating material to produce hybrid scaffolds for bone tissue engineering. METHODS Bioactive glass scaffolds were coated with neat PGSuc, PGSuc loaded with dexamethasone sodium phosphate (DexSP) and PGSuc loaded with DexSP-laden MSNs. The physicochemical, mechanical and biological properties of the scaffolds were also evaluated. RESULTS Preliminary data are provided showing that polymer coatings with and without MSNs improved the physicochemical properties of the 1393 bioactive glass scaffolds and increased the ALP activity and alizarin red staining, suggesting osteogenic differentiation potential when cultured with adipose-derived mesenchymal stem cells. CONCLUSIONS PGSuc with incorporated MSNs coated onto 1393 bioactive glass scaffolds could be promising candidates in bone tissue engineering applications.
Collapse
|
12
|
Migliorini F, Colarossi G, Eschweiler J, Oliva F, Driessen A, Maffulli N. Antiresorptive treatments for corticosteroid-induced osteoporosis: a Bayesian network meta-analysis. Br Med Bull 2022; 143:46-56. [PMID: 35641234 PMCID: PMC9494254 DOI: 10.1093/bmb/ldac017] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/01/2022] [Accepted: 05/08/2022] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Corticosteroid-induced osteoporosis (CIO) is the most common type of secondary osteoporosis, leading to fractures, and increased morbidity and mortality. SOURCE OF DATA Pubmed, EMBASE, Scopus and Google Scholar databases. AREAS OF AGREEMENT Prolonged glucocorticoids administration leads to secondary osteoporosis. AREAS OF CONTROVERSY The optimal management for CIO is controversial. GROWING POINTS The present study compared bone mineral density, fractures and adverse events in patients undergoing treatment with risedronate, alendronate, zoledronate, denosumab or etidronate for CIO. AREAS TIMELY FOR DEVELOPING RESEARCH For selected patients with CIO, alendronate performed better overall. These results must be interpreted within the limitations of the present study. LEVEL OF EVIDENCE I, Bayesian network meta-analysis of randomized clinical trials.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, Aachen 52074, Germany
| | - Giorgia Colarossi
- Department of Orthopaedic and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, Aachen 52074, Germany
| | - Jörg Eschweiler
- Department of Orthopaedic and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, Aachen 52074, Germany
| | - Francesco Oliva
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Arne Driessen
- Department of Orthopaedic and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, Aachen 52074, Germany
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent, UK
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London ST4 7JD, UK
| |
Collapse
|
13
|
Rai D, Tripathi AK, Sardar A, Pandey AR, Sinha S, Chutani K, Dhaniya G, Kothari P, Sashidhara KV, Trivedi R. A novel BMP2 secretagogue ameliorates glucocorticoid induced oxidative stress in osteoblasts by activating NRF2 dependent survival while promoting Wnt/β-catenin mediated osteogenesis. Free Radic Biol Med 2022; 190:124-147. [PMID: 35963563 DOI: 10.1016/j.freeradbiomed.2022.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 01/16/2023]
Abstract
In our previous study, a novel BMP2 secretagogue was synthesized belonging to a class of galloyl conjugates of flavanones, with remarkable osteogenic potential that promoted bone regeneration. We aimed to establish the protective effect of our compound against bone loss that co-exists with excess Glucocorticoid (GC) therapy. GC therapy induces osteoblast damage leading to apoptosis by increasing reactive oxygen species (ROS). Our results delineate that compound 5e (a BMP2 secretagogue) activates NRF2 signalling to counter the disturbed cellular redox homeostasis and escalate osteoblast survival as assessed by Western blot and immunocytochemistry. Depletion of NRF2 by siRNA blocked activation of the NRF2/HO-1 pathway, magnified oxidative stress, increased apoptosis and abrogated the protective effects of compound 5e. 5e, on the other hand, increased ALP, mineralization activity, and promoted osteoblast differentiation by activating WNT/β-catenin signalling in BMP2 dependent manner, validated by Western blot of WNT3A, SOST, GSK3-β and β-catenin nuclear translocation. Treatment of 5e in presence of BMP inhibitor noggin attenuated the osteogenic efficacy and minimized Wnt//β-catenin signalling in presence of dexamethasone. Our compound prevents GC challenged trabecular and cortical bone loss assessed by micro-CT and promotes bone formation and osteocyte survival determined by calcein labelling and TUNEL assay in GC treated animals. The osteogenic potential of the compound was authenticated by bone turnover markers. On a concluding note, compounds with BMP upregulation can be potential therapeutics for the prevention and treatment of glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
- Divya Rai
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Ashish Kumar Tripathi
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anirban Sardar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Alka Raj Pandey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Shradha Sinha
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Kunal Chutani
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Geeta Dhaniya
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Priyanka Kothari
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Ritu Trivedi
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
14
|
Henning P, Conaway HH, Lerner UH. Stimulation of osteoclast formation and bone resorption by glucocorticoids: Synergistic interactions with the calcium regulating hormones parathyroid hormone and 1,25(OH) 2-vitamin D3. VITAMINS AND HORMONES 2022; 120:231-270. [PMID: 35953112 DOI: 10.1016/bs.vh.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Osteoporosis is a significant health problem, with skeletal fractures increasing morbidity and mortality. Excess glucocorticoids (GC) represents the leading cause of secondary osteoporosis. The first phase of glucocorticoid-induced osteoporosis is increased bone resorption. In this Chapter, in vitro studies of the direct glucocorticoid receptor (GR) mediated cellular effects of GC on osteoclasts to affect bone resorption and indirect effects on osteoblast lineage cells to increase the RANKL/OPG ratio and stimulate osteoclastogenesis and bone resorption are reviewed in detail, together with detailed descriptions of in vivo effects of GC in different portions of the skeleton in research animals and humans. Brief sections are devoted to contrasting functions of GC in osteonecrosis, vitamin D formation, in vitro and in vivo bone resorptive actions dependent on vitamin D receptor and vitamin D toxicity, as well as the molecular basis of GR action. Included are also more detailed assessments of the interactions of GC with the major calcium regulating hormones, 1,25(OH)2-vitamin D3 and parathyroid hormone, describing the in vitro increases in RANKL/OPG ratios, osteoclastogenesis and synergistic bone resorption that occurs when GC is combined with either 1,25(OH)2-vitamin D3 or parathyroid hormone. Additionally, a molecular basic for the synergistic interaction of GC with 1,25(OH)2-vitamin D3 is provided along with a suggested molecular basic for the interaction between GC and parathyroid hormone.
Collapse
Affiliation(s)
- Petra Henning
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - H Herschel Conaway
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Ulf H Lerner
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
15
|
Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P, Milat F. Secondary Osteoporosis. Endocr Rev 2022; 43:240-313. [PMID: 34476488 DOI: 10.1210/endrev/bnab028] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a global public health problem, with fractures contributing to significant morbidity and mortality. Although postmenopausal osteoporosis is most common, up to 30% of postmenopausal women, > 50% of premenopausal women, and between 50% and 80% of men have secondary osteoporosis. Exclusion of secondary causes is important, as treatment of such patients often commences by treating the underlying condition. These are varied but often neglected, ranging from endocrine to chronic inflammatory and genetic conditions. General screening is recommended for all patients with osteoporosis, with advanced investigations reserved for premenopausal women and men aged < 50 years, for older patients in whom classical risk factors for osteoporosis are absent, and for all patients with the lowest bone mass (Z-score ≤ -2). The response of secondary osteoporosis to conventional anti-osteoporosis therapy may be inadequate if the underlying condition is unrecognized and untreated. Bone densitometry, using dual-energy x-ray absorptiometry, may underestimate fracture risk in some chronic diseases, including glucocorticoid-induced osteoporosis, type 2 diabetes, and obesity, and may overestimate fracture risk in others (eg, Turner syndrome). FRAX and trabecular bone score may provide additional information regarding fracture risk in secondary osteoporosis, but their use is limited to adults aged ≥ 40 years and ≥ 50 years, respectively. In addition, FRAX requires adjustment in some chronic conditions, such as glucocorticoid use, type 2 diabetes, and HIV. In most conditions, evidence for antiresorptive or anabolic therapy is limited to increases in bone mass. Current osteoporosis management guidelines also neglect secondary osteoporosis and these existing evidence gaps are discussed.
Collapse
Affiliation(s)
- Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia
| | - Hanh H Nguyen
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Department of Endocrinology and Diabetes, Western Health, Victoria 3011, Australia
| | - Jasna Aleksova
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Amanda J Vincent
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Monash Centre for Health Research and Implementation, School of Public Health and Preventative Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Phillip Wong
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Frances Milat
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| |
Collapse
|
16
|
Tian G, Liu C, Gong Q, Yu Z, Wang H, Zhang D, Cong H. Human Umbilical Cord Mesenchymal Stem Cells Improve the Necrosis and Osteocyte Apoptosis in Glucocorticoid-Induced Osteonecrosis of the Femoral Head Model through Reducing the Macrophage Polarization. Int J Stem Cells 2021; 15:195-202. [PMID: 34965999 PMCID: PMC9148830 DOI: 10.15283/ijsc21120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/01/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives Apoptosis is an outstanding determinant of glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH). Human umbilical cord mesenchymal stem cells (hUC-MSCs) have been demonstrated to be associated with apoptosis in diseases models. However, the role of hUC-MSCs in GC-induced ONFH via regulating apoptosis still needs further study. Methods and Results In the present study, a GC-induced ONFH model was built in vivo through a consecutive injection with lipopolysaccharide (LPS) and methylprednisolone. The necrosis and apoptosis of the femoral head was evaluated by histological and Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling (TUNEL) assay. The level of collagen and TRAP positive cells were determined by Masson and TRAP staining, respectively. M1 macrophage polarization was assessed using immunofluorescence assay. The level of proinflammatory cytokines including tumor necrosis factor (TNF)‐α, Interleukin (IL)‐1β and IL-6 of femoral head was determined by enzyme-linked immunosorbent assay (ELISA) kits. The protein expression of AKT, mTOR, p-AKT and p-mTOR was detected using western blot assay. The results showed that hUC-MSCs treatment prominently promoted the GC-induced the decrease of the collagen level and the increase of TRAP positive cells. Besides, hUC-MSCs treatment decreased necrosis and apoptosis, macrophage polarization, the level of TNF‐α, IL‐1β and IL-6, the protein expression of p-AKT and p-mTOR, and the radio of p-AKT to AKT and p-mTOR to mTOR of femoral head in vivo. Conclusions Therefore, the present study revealed that hUC-MSCs improved the necrosis and osteocyte apoptosis in GC-induced ONFH model through reducing the macrophage polarization, which was associated with the inhibition of AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Gang Tian
- Department of Orthopedics, Weihai Central Hospital Affiliated to Qingdao University & Qingdao University, Weihai, China
| | - Chuanjie Liu
- Xinxiang Medical University, Xinxiang, China.,Weihai Key Laboratory of Autoimmunity & Central Laboratory of Weihai Central Hospital, Weihai, China
| | - Qi Gong
- Weihai Key Laboratory of Autoimmunity & Central Laboratory of Weihai Central Hospital, Weihai, China
| | - Zhiping Yu
- Department of Sports Medicine, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Haitao Wang
- Department of Trauma Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Daoqiang Zhang
- Weihai Key Laboratory of Autoimmunity & Central Laboratory of Weihai Central Hospital, Weihai, China
| | - Haibo Cong
- Department of Orthopedics, Weihai Central Hospital Affiliated to Qingdao University & Weihai Key Laboratory of Autoimmunity, Weihai, China
| |
Collapse
|
17
|
Zheng Y, Zheng Z, Zhang K, Zhu P. Osteonecrosis in systemic lupus erythematosus: Systematic insight from the epidemiology, pathogenesis, diagnosis and management. Autoimmun Rev 2021; 21:102992. [PMID: 34793961 DOI: 10.1016/j.autrev.2021.102992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/14/2021] [Indexed: 02/08/2023]
Abstract
Osteonecrosis (ON) is one of the serious and well recognized complicationscausing severe pain and disability in patients with systemic lupus erythematosus (SLE), and its manifestation and pathogenesis are only partially understood. This review provide an update of the recent progress in etiology, pathogenesis, diagnosis, and treatment of systemic lupus erythematosus related osteonecrosis (SLE-ON). Despite the concomitant use of corticosteroids, alcohol and obesity, the dysregulated immune micro-environment and the complex pathogenesis of SLE synergistically play important roles in the development of ON. Osteonecrosis of femoral head (ONFH) is the most often involved joint in SLE. The current classification and staging system of ONFH is based on imaging techniques, particularly relating to MRI and CT, for the identification and quantification of necrotic lesions. For SLE-ONFH patients, both SLE specific clinical symptoms and ONFH imaging findings should be comprehensively evaluated. Even though advances concerning bone grafting and arthroplasty procedures have resulted in improved clinical outcomes, early pharmacological treatment at the pre-collapse stage may prevent joint collapse and reduce the joint arthroplasty rate, and this needs to be accounted. Although some progress has been made, considerably more research is needed before we fully understand SLE-ONFH. Future treatments of SLE-ONFH may involve genetic or cell-based therapies that target potential biomarkers, and this will lead to effective measures for saving thefunction of hip joint and preventing osteonecrosis.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, Shaanxi Province, PR China; National Translational Science Center for Molecular Medicine, Xi'an, Shaanxi Province, PR China
| | - Zhaohui Zheng
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, Shaanxi Province, PR China
| | - Kui Zhang
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, Shaanxi Province, PR China
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, Shaanxi Province, PR China; National Translational Science Center for Molecular Medicine, Xi'an, Shaanxi Province, PR China.
| |
Collapse
|
18
|
Peng CH, Lin WY, Yeh KT, Chen IH, Wu WT, Lin MD. The molecular etiology and treatment of glucocorticoid-induced osteoporosis. Tzu Chi Med J 2021; 33:212-223. [PMID: 34386357 PMCID: PMC8323641 DOI: 10.4103/tcmj.tcmj_233_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the most common form of secondary osteoporosis, accounting for 20% of osteoporosis diagnoses. Using glucocorticoids for >6 months leads to osteoporosis in 50% of patients, resulting in an increased risk of fracture and death. Osteoblasts, osteocytes, and osteoclasts work together to maintain bone homeostasis. When bone formation and resorption are out of balance, abnormalities in bone structure or function may occur. Excess glucocorticoids disrupt the bone homeostasis by promoting osteoclast formation and prolonging osteoclasts' lifespan, leading to an increase in bone resorption. On the other hand, glucocorticoids inhibit osteoblasts' formation and facilitate apoptosis of osteoblasts and osteocytes, resulting in a reduction of bone formation. Several signaling pathways, signaling modulators, endocrines, and cytokines are involved in the molecular etiology of GIOP. Clinically, adults ≥40 years of age using glucocorticoids chronically with a high fracture risk are considered to have medical intervention. In addition to vitamin D and calcium tablet supplementations, the major therapeutic options approved for GIOP treatment include antiresorption drug bisphosphonates, parathyroid hormone N-terminal fragment teriparatide, and the monoclonal antibody denosumab. The selective estrogen receptor modulator can only be used under specific condition for postmenopausal women who have GIOP but fail to the regular GIOP treatment or have specific therapeutic contraindications. In this review, we focus on the molecular etiology of GIOP and the molecular pharmacology of the therapeutic drugs used for GIOP treatment.
Collapse
Affiliation(s)
- Cheng-Huan Peng
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Ying Lin
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kuang-Ting Yeh
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ing-Ho Chen
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Tien Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ming-Der Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
19
|
Lai W, Mo Y, Wang D, Zhong Y, Lu L, Wang J, Cui L, Liu Y, Yang Y. Tanshinol Alleviates Microcirculation Disturbance and Impaired Bone Formation by Attenuating TXNIP Signaling in GIO Rats. Front Pharmacol 2021; 12:722175. [PMID: 34335280 PMCID: PMC8316650 DOI: 10.3389/fphar.2021.722175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/30/2021] [Indexed: 12/25/2022] Open
Abstract
Impaired bone formation is the main characteristics of glucocorticoid (GC)-induced osteoporosis (GIO), which can be ameliorated by tanshinol, an aqueous polyphenol isolated from Salvia miltiorrhiza Bunge. However, the underlying mechanism is still not entirely clear. In the present study, we determined the parameters related to microstructure and function of bone tissue, bone microcirculation, and TXNIP signaling to investigate the beneficial effects of tanshinol on skeleton and its molecular mechanism in GIO rats. Male Sprague-Dawley rats aged 4 months were administrated orally with distilled water (Con), tanshinol (Tan, 25 mg kg-1 d-1), prednisone (GC, 5 mg kg-1 d-1) and GC plus tanshinol (GC + Tan) for 14 weeks. The results demonstrated that tanshinol played a significant preventive role in bone loss, impaired microstructure, dysfunction of bone metabolism and poor bone quality, based on analysis of correlative parameters acquired from the measurement by using Micro-CT, histomorphometry, ELISA and biomechanical assay. Tanshinol also showed a significant protective effect in bone microcirculation according to the evidence of microvascular perfusion imaging of cancellous bone in GIO rats, as well as the migration ability of human endothelial cells (EA.hy926, EA cells). Moreover, tanshinol also attenuated GC-elicited the activation of TXNIP signaling pathway, and simultaneously reversed the down-regulation of Wnt and VEGF pathway as manifested by using Western-blot method in GIO rats, EA cells, and human osteoblast-like MG63 cells (MG cells). Collectively, our data highlighted that tanshinol ameliorated poor bone health mediated by activation of TXNIP signaling via inhibiting microcirculation disturbance and the following impaired bone formation in GIO rats.
Collapse
Affiliation(s)
- Wenxiu Lai
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Department of Phamacy, Yuebei People’s Hospital, Shaoguan, China
| | - Yulin Mo
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Department of Orthopedics and Traumatology, Nanning Hospital of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Department of the Ministry of Science and Technology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Ying Zhong
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Lujiao Lu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Jiajia Wang
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Marine Medical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yanzhi Liu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Marine Medical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Marine Medical Research Institute, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
20
|
Kobza AO, Herman D, Papaioannou A, Lau AN, Adachi JD. Understanding and Managing Corticosteroid-Induced Osteoporosis. Open Access Rheumatol 2021; 13:177-190. [PMID: 34239333 PMCID: PMC8259736 DOI: 10.2147/oarrr.s282606] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022] Open
Abstract
Glucocorticoids are effective immunosuppressants used in a wide variety of diseases. Their use results in secondary osteoporosis in about 30–50% of chronic glucocorticoid users. Glucocorticoids cause a rapid decline in bone strength within the first 3–6 months mostly due to increased bone resorption by osteoclasts. This is followed by a more gradual loss of bone partly due to decreased osteoblastogenesis and osteoblast and osteocyte apoptosis. The loss of bone strength induced by glucocorticoids is not fully captured by bone mineral density measurements. Other tools such as the trabecular bone score and advanced imaging techniques give insight into bone quality; however, these are not used widely in clinical practice. Glucocorticoid-induced osteoporosis should be seen as a widely preventable disease. Currently, only about 15% of chronic glucocorticoid users are receiving optimal care. Glucocorticoids should be prescribed at the lowest dose and shortest duration. All patients should be counselled on lifestyle measures to maintain bone strength including nutrition and weight-bearing exercise. Pharmacological therapy should be considered for all patients at moderate to high risk of fracture as there is evidence for the prevention of bone loss and fractures with a favourable safety profile. Oral bisphosphonates are the current mainstay of therapy, whereas osteoanabolic agents may be considered for those at highest risk of fracture.
Collapse
Affiliation(s)
- Alexandra O Kobza
- Division of Rheumatology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Deena Herman
- Division of Rheumatology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alexandra Papaioannou
- Division of Geriatric Medicine, Department of Medicine, McMaster University, Hamilton, ON, Canada.,Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada
| | - Arthur N Lau
- Division of Rheumatology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jonathan D Adachi
- Division of Rheumatology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
21
|
Chen Y, Zhong Z, Chen W, Lv X, Luo SY. Glucocorticoid-induced dose-related and site-specific bone remodelling, microstructure, and mechanical changes in cancellous and cortical bones. Clin Exp Pharmacol Physiol 2021; 48:1421-1429. [PMID: 34214197 DOI: 10.1111/1440-1681.13548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022]
Abstract
The study investigated the effects of long-term glucocorticoid (GC) administration on bone remodelling, microstructure, and biomechanical strength in cortical and cancellous (trabecular) bones. Thirty-one female Sprague-Dawley rats were randomly divided into three dexamethasone (Dex) dosage groups, 1.0, 2.5, and 5.0 mg/kg twice a week for 8 weeks, and one control group treated with saline. At the end of the experiment, the tibia of one side and the fourth lumbar vertebrae were processed into sections for a histomorphometric analysis, while the femur of the same side and the fifth vertebrae were isolated for a biomechanical test. A dose-dependent decline in bone formation was observed in both trabecular and cortical (periosteal and endosteal) bones. In contrast, bone resorption was inhibited only in cancellous bone in the two higher dose groups and not dose-related. The ratio of Node/Termini increased, while marrow star volume (MSV) decreased in all Dex groups in metaphyseal trabecular bones, both of which were dose-dependent. Subendosteal cortex porosity increased in parallel with non-uniform trabecular distribution, but cortical thickness remained unchanged. Interestingly, there were no significant changes in microstructure or mechanical strength in lumbar trabecular bone. The cortical elastic load was dose-independently reduced in all three Dex groups when compared with the control group. In summary, bone remodelling was dose-dependently inhibited in cancellous bones but enhanced in intracortical bones. The non-uniform distribution of trabecular bone and increased porosity in the inner edge of cortical bone were both in parallel with GC dosage, and the porosity increase was more likely to occur, leading to reduced cortical mechanical strength.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Key Laboratory for R&D of Natural Drug, Department of Pharmacology, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zhiguo Zhong
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenshuang Chen
- Guangdong Key Laboratory for R&D of Natural Drug, Department of Pharmacology, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiaohua Lv
- Guangdong Key Laboratory for R&D of Natural Drug, Department of Pharmacology, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Shi-Ying Luo
- Guangdong Key Laboratory for R&D of Natural Drug, Department of Pharmacology, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
22
|
Jiang M, Liu L, Xiang X, Liang R, Qin X, Zhao J, Wei Q. An MSC bone-homing compound, Rab001, increases bone mass and reduces the incidence of osteonecrosis in a glucocorticoid-induced osteonecrosis mouse model. Clin Exp Pharmacol Physiol 2021; 48:770-781. [PMID: 33319413 DOI: 10.1111/1440-1681.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022]
Abstract
Currently, there are no effective medications to either prevent or slow the progression of atraumatic osteonecrosis (ON). The objective of this study is to determine the effects of bone-targeted delivery of mesenchymal stem cells on the prevalence of ON in a glucocorticoid (GC)-induced mouse model. Eight-week-old male BALB/c mice were randomized into groups that received placebo (PL), prednisolone (GC), or concurrent treatments with GC + mesenchymal stromal cells (MSCs), Rab001 or GC + Rab001 + MSCs. Human parathyroid hormone (hPTH) was used as a positive control for bone anabolism. Mice were killed after 30 days, and quantitative measurements of bone mass, bone strength, prevalent ON at the distal femoral epiphysis (DFE) were performed. Angiogenesis was accessed by RNA-Seq, the circulating angiogenic markers, as well as by immunohistochemical staining. We have showed that a novel agent, Rab001 that can noncovalently bind to mesenchymal stem cells (MSC) and direct them to the bone, prevents the incidence of glucocorticoid-induced osteonecrosis in the mouse. In contrast, PTH, a bone anabolic treatment, preserves bone mass but sustains higher ON incidence than Rab001+/- MSC-treated mice. The results of these experiments reveal that glucocorticoids increase the prevalence of ON, and agents that prevent loss of bone vascularity appear to prevent the development of ON. This intervention might be useful in patients with early stages of atraumatic ON.
Collapse
Affiliation(s)
- Min Jiang
- Guangxi Laide Kangshun Bio-pharmaceutical Technology Co., Ltd., Nanning, China
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lixian Liu
- Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Xuexiang Xiang
- Guangxi Laide Kangshun Bio-pharmaceutical Technology Co., Ltd., Nanning, China
| | - Runmin Liang
- Guangxi Laide Kangshun Bio-pharmaceutical Technology Co., Ltd., Nanning, China
| | - Xuelian Qin
- Guangxi Laide Kangshun Bio-pharmaceutical Technology Co., Ltd., Nanning, China
| | - Jinmin Zhao
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Qingjun Wei
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| |
Collapse
|
23
|
Della Bella E, Buetti-Dinh A, Licandro G, Ahmad P, Basoli V, Alini M, Stoddart MJ. Dexamethasone Induces Changes in Osteogenic Differentiation of Human Mesenchymal Stromal Cells via SOX9 and PPARG, but Not RUNX2. Int J Mol Sci 2021; 22:4785. [PMID: 33946412 PMCID: PMC8124248 DOI: 10.3390/ijms22094785] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 01/10/2023] Open
Abstract
Despite the huge body of research on osteogenic differentiation and bone tissue engineering, the translation potential of in vitro results still does not match the effort employed. One reason might be that the protocols used for in vitro research have inherent pitfalls. The synthetic glucocorticoid dexamethasone is commonly used in protocols for trilineage differentiation of human bone marrow mesenchymal stromal cells (hBMSCs). However, in the case of osteogenic commitment, dexamethasone has the main pitfall of inhibiting terminal osteoblast differentiation, and its pro-adipogenic effect is well known. In this work, we aimed to clarify the role of dexamethasone in the osteogenesis of hBMSCs, with a particular focus on off-target differentiation. The results showed that dexamethasone does induce osteogenic differentiation by inhibiting SOX9 expression, but not directly through RUNX2 upregulation as it is commonly thought. Rather, PPARG is concomitantly and strongly upregulated, leading to the formation of adipocyte-like cells within osteogenic cultures. Limiting the exposure to dexamethasone to the first week of differentiation did not affect the mineralization potential. Gene expression levels of RUNX2, SOX9, and PPARG were simulated using approximate Bayesian computation based on a simplified theoretical model, which was able to reproduce the observed experimental trends but with a different range of responses, indicating that other factors should be integrated to fully understand how dexamethasone influences cell fate. In summary, this work provides evidence that current in vitro differentiation protocols based on dexamethasone do not represent a good model, and further research is warranted in this field.
Collapse
Affiliation(s)
- Elena Della Bella
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (E.D.B.); (P.A.); (V.B.); (M.A.)
| | - Antoine Buetti-Dinh
- Laboratory of applied microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), 6500 Bellinzona, Switzerland;
- Swiss Institute of Bioinformatics, Quartier Sorge—Batiment Genopode, 1015 Lausanne, Switzerland
| | - Ginevra Licandro
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), 6928 Manno, Switzerland;
- University of Applied Science and Art of Southern Switzerland (SUPSI), 6928 Manno, Switzerland
| | - Paras Ahmad
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (E.D.B.); (P.A.); (V.B.); (M.A.)
| | - Valentina Basoli
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (E.D.B.); (P.A.); (V.B.); (M.A.)
| | - Mauro Alini
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (E.D.B.); (P.A.); (V.B.); (M.A.)
| | - Martin J. Stoddart
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (E.D.B.); (P.A.); (V.B.); (M.A.)
- Department of Orthopedics and Trauma Surgery, Medical Center—Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
24
|
Jiang C, Zhou Z, Lin Y, Shan H, Xia W, Yin F, Wang N, Zhou L, Gao Y, Yu X. Astragaloside IV ameliorates steroid-induced osteonecrosis of the femoral head by repolarizing the phenotype of pro-inflammatory macrophages. Int Immunopharmacol 2021; 93:107345. [PMID: 33563553 DOI: 10.1016/j.intimp.2020.107345] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022]
Abstract
Osteonecrosis of the femoral head (ON-FH) is a common complication of steroid use. Pro-inflammatory macrophages play a crucial role in the apoptosis of osteocytes. The objective of the study was to evaluate a plant extract astragaloside IV (AS-IV) in treating ON-FN. Bone-marrow-derived macrophages (BMDMs) were treated with lipopolysaccharides (LPS), IFN-γ or IL-4 to induce M1 and M2-like phenotypes. Quantitative real-time PCR and Western blot were used to examine M1 and M2 phenotypic markers. Flow cytometry was used to analyze MHC II, CD206, F4/80, and CD11b levels and cell apoptosis. Glucocorticoid was used to induce ON-FN in mice. TNF-α and IL-1β levels in femoral head were determined using enzyme-linked immunosorbent assay. AS-IV repolarized macrophages from M1 to M2 phenotypes. Culture medium from AS-IV treated M1 macrophages induced less cell apoptosis osteocytes compared to that from untreated M1 macrophages. In ON-FH mice, the ratio of M1 macrophages was decreased in the femoral head by AS-IV, concomitant with a decrease in TNF-α and IL-1β levels. AS-IV is effective in alleviating ON-FH through its effects in repolarizing macrophages from M1-like phenotype to M2-like phenotype, promoting survival of osteocytes, reducing arthritic symptoms, and decreasing inflammatory cytokines.
Collapse
Affiliation(s)
- Chaolai Jiang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yiwei Lin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wenyang Xia
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Fuli Yin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Nan Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lihui Zhou
- Department of Orthopaedic Surgery, Xiangshan First People's Hospital, Ningbo 315700, Zhejiang, China
| | - Youshui Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
25
|
Liu X, Chai Y, Liu G, Su W, Guo Q, Lv X, Gao P, Yu B, Ferbeyre G, Cao X, Wan M. Osteoclasts protect bone blood vessels against senescence through the angiogenin/plexin-B2 axis. Nat Commun 2021; 12:1832. [PMID: 33758201 PMCID: PMC7987975 DOI: 10.1038/s41467-021-22131-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/27/2021] [Indexed: 01/31/2023] Open
Abstract
Synthetic glucocorticoids (GCs), one of the most effective treatments for chronic inflammatory and autoimmune conditions in children, have adverse effects on the growing skeleton. GCs inhibit angiogenesis in growing bone, but the underlying mechanisms remain unclear. Here, we show that GC treatment in young mice induces vascular endothelial cell senescence in metaphysis of long bone, and that inhibition of endothelial cell senescence improves GC-impaired bone angiogenesis with coupled osteogenesis. We identify angiogenin (ANG), a ribonuclease with pro-angiogenic activity, secreted by osteoclasts as a key factor for protecting the neighboring vascular cells against senescence. ANG maintains the proliferative activity of endothelial cells through plexin-B2 (PLXNB2)-mediated transcription of ribosomal RNA (rRNA). GC treatment inhibits ANG production by suppressing osteoclast formation in metaphysis, resulting in impaired endothelial cell rRNA transcription and subsequent cellular senescence. These findings reveal the role of metaphyseal blood vessel senescence in mediating the action of GCs on growing skeleton and establish the ANG/PLXNB2 axis as a molecular basis for the osteoclast-vascular interplay in skeletal angiogenesis.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Bone Development/drug effects
- Cell Proliferation/drug effects
- Cellular Senescence/drug effects
- Cellular Senescence/genetics
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Glucocorticoids/pharmacology
- Human Umbilical Vein Endothelial Cells
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Methylprednisolone/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neovascularization, Pathologic
- Neovascularization, Physiologic/drug effects
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Osteoclasts/drug effects
- Osteoclasts/enzymology
- Osteoclasts/metabolism
- Osteogenesis/drug effects
- RNA, Ribosomal/biosynthesis
- RNA, Small Interfering
- Recombinant Proteins
- Ribonuclease, Pancreatic/genetics
- Ribonuclease, Pancreatic/metabolism
- Ribonuclease, Pancreatic/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Tomography Scanners, X-Ray Computed
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Chai
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guanqiao Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiping Su
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qiaoyue Guo
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiao Lv
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peisong Gao
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Xu Cao
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Chen M, Li Y, Huang X, Gu Y, Li S, Yin P, Zhang L, Tang P. Skeleton-vasculature chain reaction: a novel insight into the mystery of homeostasis. Bone Res 2021; 9:21. [PMID: 33753717 PMCID: PMC7985324 DOI: 10.1038/s41413-021-00138-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis and osteogenesis are coupled. However, the cellular and molecular regulation of these processes remains to be further investigated. Both tissues have recently been recognized as endocrine organs, which has stimulated research interest in the screening and functional identification of novel paracrine factors from both tissues. This review aims to elaborate on the novelty and significance of endocrine regulatory loops between bone and the vasculature. In addition, research progress related to the bone vasculature, vessel-related skeletal diseases, pathological conditions, and angiogenesis-targeted therapeutic strategies are also summarized. With respect to future perspectives, new techniques such as single-cell sequencing, which can be used to show the cellular diversity and plasticity of both tissues, are facilitating progress in this field. Moreover, extracellular vesicle-mediated nuclear acid communication deserves further investigation. In conclusion, a deeper understanding of the cellular and molecular regulation of angiogenesis and osteogenesis coupling may offer an opportunity to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yi Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiang Huang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ya Gu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Shang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| |
Collapse
|
27
|
Peng J, Yu XJ, Yu LL, Tian FW, Zhao JX, Zhang H, Chen W, Zhai QX. The influence of gut microbiome on bone health and related dietary strategies against bone dysfunctions. Food Res Int 2021; 144:110331. [PMID: 34053534 DOI: 10.1016/j.foodres.2021.110331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
The link between the gut microbiome and bone health has begun to attract widespread interest in recent years. The gut microbiome are vital in many diseases involving bone loss. Probiotics, prebiotics, and dietary supplements have been suggested to protect bone health by altering the composition of the gut microbiota. Notably, studying the relationship between the gut microbiome and bone health can provide a basis for the prevention and treatment of bone diseases. This review focuses on the link between the gut microbiome and bone diseases, exploring current knowledge of the mechanisms by which gut bacteria affect bone health. In addition, the influences of dietary supplements on the interactions between the gut microbiome and bone health are discussed. This knowledge will promote new ideas for gut microbiota-mediated dietary interventions in patients with bone diseases.
Collapse
Affiliation(s)
- Jiang Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xin-Jie Yu
- Hwa Chong Institution (College), 661 Bukit Timah Road, Singapore
| | - Lei-Lei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Feng-Wei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian-Xin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Qi-Xiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
28
|
Looi C, Arumugam M, Liew SK, Firdati MS. Preparations with catastrophic side effects: A case of neck of femur fracture due to secondary osteoporosis with underlying hip osteonecrosis resulting from chronic jamu consumption. JOURNAL OF ORTHOPAEDICS, TRAUMA AND REHABILITATION 2021. [DOI: 10.1177/2210491721992526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Jamu is commonly used to treat a variety of health conditions in South East Asia due to its efficacy, affordability and ease of access. Despite its effectiveness, little is known regarding its contents and adverse effects. Recent studies have found evidence of steroids within jamu preparations. Chronic jamu consumption may inadvertently manifest with adverse effects associated with long-term steroid intake. We describe a case of neck of femur fracture due to secondary osteoporosis with underlying hip osteonecrosis resulting from chronic jamu consumption hoping to increase awareness regarding the devastating effects of these preparations.
Collapse
Affiliation(s)
- C Looi
- Department of Orthopaedic Surgery, Faculty of Medicine & Health Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - M Arumugam
- Department of Orthopaedic Surgery, Faculty of Medicine & Health Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - SK Liew
- Department of Orthopaedic Surgery, Faculty of Medicine & Health Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - MS Firdati
- Department of Orthopaedic Surgery, Faculty of Medicine & Health Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
29
|
Abstract
Glucocorticoids are widely prescribed to treat various allergic and autoimmune diseases; however, long-term use results in glucocorticoid-induced osteoporosis, characterized by consistent changes in bone remodeling with decreased bone formation as well as increased bone resorption. Not only bone mass but also bone quality decrease, resulting in an increased incidence of fractures. The primary role of autophagy is to clear up damaged cellular components such as long-lived proteins and organelles, thus participating in the conservation of different cells. Apoptosis is the physiological death of cells, and plays a crucial role in the stability of the environment inside a tissue. Available basic and clinical studies indicate that autophagy and apoptosis induced by glucocorticoids can regulate bone metabolism through complex mechanisms. In this review, we summarize the relationship between apoptosis, autophagy and bone metabolism related to glucocorticoids, providing a theoretical basis for therapeutic targets to rescue bone mass and bone quality in glucocorticoid-induced osteoporosis.
Collapse
|
30
|
Chai Y, Su J, Hong W, Zhu R, Cheng C, Wang L, Zhang X, Yu B. Antenatal Corticosteroid Therapy Attenuates Angiogenesis Through Inhibiting Osteoclastogenesis in Young Mice. Front Cell Dev Biol 2020; 8:601188. [PMID: 33384997 PMCID: PMC7769874 DOI: 10.3389/fcell.2020.601188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Antenatal corticosteroid therapy (ACT) has been shown to reduce morbidity and mortality rates in preterm delivery, but the fetus is more likely to face the risk of low bone mineralization and low fetal linear growth. However, the mechanism of ACT inducing low bone mineralization remains largely unknown. Pre-osteoclasts, which play an important role in angiogenesis and osteogenesis, are specifically regulating type H vessels (CD31hiEmcnhi) and vessel formation by secreting platelet-derived growth factor-BB (PDGF-BB). We find that the number of pre-osteoclasts and POC-secreted PDGF-BB is dramatically decreased in ACT mice, contributing to the reduction in type H vessels and bone mineralization during the mouse offspring. Quantitative analyses of micro-computed tomography show that the ACT mice have a significant reduction in the mass of trabecular bone relative to the control group. Mononuclear pre-osteoclasts in trabecular bone decreased in ACT mice, which leads to the amount of PDGF-BB reduced and attenuates type H vessel formation. After sorting the Rank+ osteoclast precursors using flow cytometry, we show that the enhancer of zeste homolog 2 (Ezh2) expression is decreased in Rank+ osteoclast precursors in ACT mice. Consistent with the flow data, by using small molecule Ezh2 inhibitor GSK126, we prove that Ezh2 is required for osteoclast differentiation. Downregulating the expression of Ezh2 in osteoclast precursors would reduce PDGF-BB production. Conditioned medium from osteoclast precursor cultures treated with GSK126 inhibited endothelial tube formation, whereas conditioned medium from vehicle group stimulated endothelial tube formation. These results indicate Ezh2 expression of osteoclast precursors is suppressed after ACT, which reduced the pre-osteoclast number and PDGF-BB secretion, thus inhibiting type H vessel formation and ACT-associated low bone mineralization.
Collapse
Affiliation(s)
- Yu Chai
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianwen Su
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weisheng Hong
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Runjiu Zhu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Caiyu Cheng
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianrong Zhang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Hendriks M, Ramasamy SK. Blood Vessels and Vascular Niches in Bone Development and Physiological Remodeling. Front Cell Dev Biol 2020; 8:602278. [PMID: 33330496 PMCID: PMC7729063 DOI: 10.3389/fcell.2020.602278] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Recent advances in our understanding of blood vessels and vascular niches in bone convey their critical importance in regulating bone development and physiology. The contribution of blood vessels in bone functions and remodeling has recently gained enormous interest because of their therapeutic potential. The mammalian skeletal system performs multiple functions in the body to regulate growth, homeostasis and metabolism. Blood vessels provide support to various cell types in bone and maintain functional niches in the bone marrow microenvironment. Heterogeneity within blood vessels and niches indicate the importance of specialized vascular niches in regulating skeletal functions. In this review, we discuss physiology of bone vasculature and their specialized niches for hematopoietic stem cells and mesenchymal progenitor cells. We provide clinical and experimental information available on blood vessels during physiological bone remodeling.
Collapse
Affiliation(s)
- Michelle Hendriks
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Saravana K. Ramasamy
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
32
|
Chen J, Hendriks M, Chatzis A, Ramasamy SK, Kusumbe AP. Bone Vasculature and Bone Marrow Vascular Niches in Health and Disease. J Bone Miner Res 2020; 35:2103-2120. [PMID: 32845550 DOI: 10.1002/jbmr.4171] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Bone vasculature and bone marrow vascular niches supply oxygen, nutrients, and secrete angiocrine factors required for the survival, maintenance, and self-renewal of stem and progenitor cells. In the skeletal system, vasculature creates nurturing niches for bone and blood-forming stem cells. Blood vessels regulate hematopoiesis and drive bone formation during development, repair, and regeneration. Dysfunctional vascular niches induce skeletal aging, bone diseases, and hematological disorders. Recent cellular and molecular characterization of the bone marrow microenvironment has provided unprecedented insights into the complexity, heterogeneity, and functions of the bone vasculature and vascular niches. The bone vasculature is composed of distinct vessel subtypes that differentially regulate osteogenesis, hematopoiesis, and disease conditions in bones. Further, bone marrow vascular niches supporting stem cells are often complex microenvironments involving multiple different cell populations and vessel subtypes. This review provides an overview of the emerging vascular cell heterogeneity in bone and the new roles of the bone vasculature and associated vascular niches in health and disease. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Junyu Chen
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Michelle Hendriks
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Alexandros Chatzis
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Saravana K Ramasamy
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Jin S, Meng C, He Y, Wang X, Zhang Q, Wang Z, Huang W, Wang H. Curcumin prevents osteocyte apoptosis by inhibiting M1-type macrophage polarization in mice model of glucocorticoid-associated osteonecrosis of the femoral head. J Orthop Res 2020; 38:2020-2030. [PMID: 32009245 PMCID: PMC7496963 DOI: 10.1002/jor.24619] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/21/2020] [Indexed: 02/04/2023]
Abstract
Inflammation is a contributing factor in osteocyte apoptosis, which is strongly associated with the development of glucocorticoid-associated osteonecrosis of the femoral head (GA-ONFH). Curcumin is a naturally derived drug that regulates immunity and inhibits inflammation. This study aimed to examine the capacity of curcumin to prevent osteocyte apoptosis and GA-ONFH, while elucidating possible mechanisms of action. C57/BL6 female mice were divided into control, GA-ONFH, and curcumin-treated GA-ONFH groups. We determined the effect of curcumin on the polarization of RAW264.7 and the apoptosis of MLO-Y4 cells. We found that curcumin reduced the infiltration of M1-type macrophages in the femoral heads and alleviated systemic inflammation in GA-ONFH models. Additionally, curcumin decreased the apoptosis of osteocytes in the femoral heads and the ratio of GA-ONFH in mice. Further, in vitro curcumin intervention inhibited M1-type polarization via the Janus kinase1/2-signal transducer and activator of transcription protein1 (JAK1/2-STAT1) pathway. Taken together, this study demonstrates that curcumin is effective in preventing osteocyte apoptosis and the development of GA-ONFH in a mouse model. Curcumin prevents inflammatory-mediated apoptosis of osteocytes in part through inhibition of M1 polarization through the JAK1/2-STAT1 pathway. These findings provide novel insights as well as a potential preventive agent for GA-ONFH. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shengyang Jin
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Chunqing Meng
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yu He
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiaohong Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Qimin Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Ze Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Wei Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Hong Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
34
|
Xi L, Song Y, Wu W, Qu Z, Wen J, Liao B, Tao R, Ge J, Fang D. Investigation of bone matrix composition, architecture and mechanical properties reflect structure-function relationship of cortical bone in glucocorticoid induced osteoporosis. Bone 2020; 136:115334. [PMID: 32224161 DOI: 10.1016/j.bone.2020.115334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
Glucocorticoid induced osteoporosis (GIOP) is the most common negative consequence of long-term glucocorticoid treatment, leading to increased fracture risk followed by loss of mobility and high mortality risk. These biologically induced changes in bone quality at molecular level lead to changes both in bone matrix architecture and bone matrix composition. However, the quantitative details of changes in bone quality - and especially their link to reduced macroscale mechanical properties are still largely missing. In this study, a mouse model for glucocorticoid-induced osteoporosis (GIOP) was used to investigate mechanical and material alterations in bone cortex (natural nanocomposite) at different scale. By combining quantitative backscattered electron (qBSE) imaging, nanoindentation and high brilliance synchrotron X-ray nanomechanical imaging on a genetically modified mouse model of GIOP, we were able to quantify the local indentation modulus, mineralization distribution and the alterations of nanoscale structures and deformation mechanisms in the mid-diaphysis of femur, and relate them to the macroscopic mechanical changes. Our results showed clear and significant changes in terms of material quality of bone at nanoscale and microscale, which manifests itself in development of spatial heterogeneities in mineralization and indentation moduli across the bone organ, with potential implications for increased fracture risk.
Collapse
Affiliation(s)
- Li Xi
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China; School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; Beamline I22, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Yu Song
- College of Textiles, North Carolina State University, NC, USA
| | - Wenwang Wu
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - Zhaoliang Qu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China
| | - Jiawei Wen
- Department of Mechanical Engineering, University of Moratuwa, Sri Lanka
| | - Binbin Liao
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China.
| | - Ran Tao
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China.
| | - Jingran Ge
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China.
| | - Daining Fang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China; State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
35
|
Cabrera D, Kruger M, Wolber FM, Roy NC, Fraser K. Effects of short- and long-term glucocorticoid-induced osteoporosis on plasma metabolome and lipidome of ovariectomized sheep. BMC Musculoskelet Disord 2020; 21:349. [PMID: 32503480 PMCID: PMC7275480 DOI: 10.1186/s12891-020-03362-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/25/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Understanding the metabolic and lipidomic changes that accompany bone loss in osteoporosis might provide insights about the mechanisms behind molecular changes and facilitate developing new drugs or nutritional strategies for osteoporosis prevention. This study aimed to examine the effects of short- or long-term glucocorticoid-induced osteoporosis on plasma metabolites and lipids of ovariectomized (OVX) sheep. METHODS Twenty-eight aged ewes were divided randomly into four groups: an OVX group, OVX in combination with glucocorticoids for two months (OVXG2), and OVX in combination with five doses of glucocorticoids (OVXG5) to induce bone loss, and a control group. Liquid chromatography-mass spectrometry untargeted metabolomic analysis was applied to monthly plasma samples to follow the progression of osteoporosis over five months. RESULTS The metabolite profiles revealed significant differences in the plasma metabolome of OVX sheep and OVXG when compared with the control group by univariate analysis. Nine metabolites were altered, namely 5-methoxytryptophan, valine, methionine, tryptophan, glutaric acid, 2-pyrrolidone-5-carboxylic acid, indole-3-carboxaldehyde, 5-hydroxylysine and malic acid. Similarly, fifteen lipids were perturbed from multiple lipid classes such as lysophoslipids, phospholipids and ceramides. CONCLUSION This study showed that OVX and glucocorticoid interventions altered the metabolite and lipid profiles of sheep, suggesting that amino acid and lipid metabolisms are potentially the main perturbed metabolic pathways regulating bone loss in OVX sheep.
Collapse
Affiliation(s)
- Diana Cabrera
- Food Nutrition & Health Team, AgResearch Grasslands, Tennent Drive, Palmerston North, 4442 New Zealand
| | - Marlena Kruger
- School of Health Sciences, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
- Riddet Institute, Massey University, Palmerston North, 4442 New Zealand
| | - Frances M. Wolber
- Riddet Institute, Massey University, Palmerston North, 4442 New Zealand
- School of Food Advanced technology, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
- Centre for Metabolic Health Research, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
| | - Nicole C. Roy
- Food Nutrition & Health Team, AgResearch Grasslands, Tennent Drive, Palmerston North, 4442 New Zealand
- Riddet Institute, Massey University, Palmerston North, 4442 New Zealand
- High-Value Nutrition National Science Challenge, Auckland, 1142 New Zealand
| | - Karl Fraser
- Food Nutrition & Health Team, AgResearch Grasslands, Tennent Drive, Palmerston North, 4442 New Zealand
- Riddet Institute, Massey University, Palmerston North, 4442 New Zealand
- High-Value Nutrition National Science Challenge, Auckland, 1142 New Zealand
| |
Collapse
|
36
|
Peng Y, Lv S, Li Y, Zhu J, Chen S, Zhen G, Cao X, Wu S, Crane JL. Glucocorticoids Disrupt Skeletal Angiogenesis Through Transrepression of NF-κB-Mediated Preosteoclast Pdgfb Transcription in Young Mice. J Bone Miner Res 2020; 35:1188-1202. [PMID: 32078184 PMCID: PMC8554682 DOI: 10.1002/jbmr.3987] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
In the growing skeleton, angiogenesis is intimately coupled with osteogenesis. Chronic, high doses of glucocorticoids (GCs) are associated with decreased bone vasculature and induce osteoporosis and growth failure. The mechanism of GC-suppression of angiogenesis and relationship to osteoporosis and growth retardation remains largely unknown. Type H vessels, which are regulated by preosteoclast (POC) platelet-derived growth factor-BB (PDGF-BB), are specifically coupled with bone formation and development. We determined the effect of GCs on POC synthesis of PDGF-BB in relation to type H vessel formation, bone mass, and bone growth in the distal femur of 2-week-old young mice receiving prednisolone or vehicle for 2, 4, or 6 weeks. After 2 weeks of prednisolone, the number of POCs were unchanged while POC synthesis of PDGF-BB was reduced. Longer treatment with prednisolone reduced POCs numbers and PDGF-BB. These changes were associated with a reduction in type H vessels, bone formation rate, bone mass, and bone length at each time point. In vitro, excessive concentrations of prednisolone (10-6 M) resulted in decreased PDGF-BB concentration and POC numbers. Conditioned medium from POC cultures treated with control concentration of prednisolone (10-7 M) or recombinant PDGF-BB stimulated endothelial tube formation, whereas conditioned medium from control concentration of prednisolone-treated POC cultures neutralized by PDGF-BB antibody or excessive prednisolone inhibited endothelial tube formation. Administration of excessive prednisolone attenuated the P65 subunit of nuclear factor kappa B (NF-κB) binding to the Pdgfb promoter, resulting in lower Pdgfb transcription. Co-treatment with excessive prednisolone and the glucocorticoid receptor (GR) antagonist (RU486), GR siRNA, or TNFα rescued NF-κB binding to the Pdgfb promoter and endothelial tube formation. These results indicate that PDGF-BB synthesis in POCs is suppressed by GCs through transrepression of GR/NF-κB, thus inhibiting type H vessel formation and associated osteoporosis and growth failure. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yi Peng
- Department of Orthopedic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shan Lv
- Department of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Geriatric Endocrinology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yusheng Li
- Department of Orthopedic Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Jianxi Zhu
- Department of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Geriatric Endocrinology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Shijie Chen
- Department of Orthopedic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gehua Zhen
- Department of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xu Cao
- Department of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Song Wu
- Department of Orthopedic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Janet L Crane
- Department of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Jing X, Du T, Yang X, Zhang W, Wang G, Liu X, Li T, Jiang Z. Desferoxamine protects against glucocorticoid-induced osteonecrosis of the femoral head via activating HIF-1α expression. J Cell Physiol 2020; 235:9864-9875. [PMID: 32437020 DOI: 10.1002/jcp.29799] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022]
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GIOFH) is one of the most common complications of glucocorticoid administration. By chelating Fe2+ , desferoxamine (DFO) was reported to be able to activate the HIF-1α/VEGF pathway and promote angiogenesis. In the present study, we examined whether DFO administration could promote angiogenesis and bone repair in GIOFH. GIOFH was induced in rats by methylprednisolone in combination with lipopolysaccharide. Bone repair was assessed by histologic analysis and microcomputed tomography (micro-CT). Vascularization was assessed by Microfil perfusion and micro-CT analysis. Immunohistochemical staining was performed to analyze the expression of HIF-1α, VEGF, and CD31. Our in vivo study revealed that DFO increased HIF-1α/VEGF expression and promoted angiogenesis and osteogenesis in GIOFH. Moreover, our in vitro study revealed that DFO restored dexamethone-induced HIF-1α downregulation and angiogenesis inhibition. Besides, our in vitro study also demonstrated that DFO could protect bone marrow-derived stem cells from dexamethone-induced apoptosis and mitochondrial dysfunction by promoting mitophagy and mitochondrial fission. In summary, our data provided useful information for the development of novel therapeutics for management of GIOFH.
Collapse
Affiliation(s)
- Xingzhi Jing
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ting Du
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xiaoxia Yang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Weimin Zhang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guodong Wang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoyang Liu
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tao Li
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhensong Jiang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
38
|
Wang T, Yu X, He C. Pro-inflammatory Cytokines: Cellular and Molecular Drug Targets for Glucocorticoid-induced-osteoporosis via Osteocyte. Curr Drug Targets 2020; 20:1-15. [PMID: 29618305 DOI: 10.2174/1389450119666180405094046] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/11/2018] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
Abstract
Glucocorticoids are widely used to treat varieties of allergic and autoimmune diseases, however, long-term application results in glucocorticoid-induced osteoporosis (GIOP). Inflammatory cytokines: tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) play important regulatory roles in bone metabolism, but their roles in GIOP remain largely unknown. Osteocytes can modulate the formation and function of both osteoblasts and osteoclasts, directly via gap junctions, or indirectly by transferring molecule signaling. Apoptotic osteocytes release RANKL, HMGB1 and pro-inflammatory cytokines to stimulate osteoclastogenesis. Moreover, osteocytes can secrete FGF23 to regulate bone metabolism. Exposure to high levels of GCs can drive osteocyte apoptosis and influence gap junctions, leading to bone loss. GCs treatment is regarded to produce more FGF23 to inhibit bone mineralization. GCs also disrupt the vascular to decrease osteocyte feasibility and mineral appositional rate, resulting in a decline in bone strength. Apoptotic bodies from osteocytes induced by GCs treatment can enhance production of TNF-α and IL-6. On the other hand, TNF-α and IL-6 show synergistic effects by altering osteocytes signaling towards osteoclasts and osteoblasts. In addition, TNF-α can induce osteocyte apoptosis and attribute to a worsened bone quality in GCs. IL-6 and osteocytes may interact with each other. Therefore, we hypothesize that GCs regulate osteocyteogenesis through TNF-α and IL-6, which are highly expressed around osteocyte undergoing apoptosis. In the present review, we summarized the roles of osteocytes in regulating osteoblasts and osteoclasts. Furthermore, the mechanism of GCs altered relationship between osteocytes and osteoblasts/osteoclasts. In addition, we discussed the roles of TNF-α and IL-6 in GIOP by modulating osteocytes. Lastly, we discussed the possibility of using pro-inflammatory signaling pathway as therapeutic targets to develop drugs for GIOP.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
39
|
Dundar S, Bozoglan A, Bulmus O, Tekin S, Yildirim TT, Kirtay M, Toy VE, Gul M, Bozoglan MY. Effects of restraint stress and high-fat diet on osseointegration of titanium implants: an experimental study. Braz Oral Res 2020; 34:e008. [PMID: 32049109 DOI: 10.1590/1807-3107bor-2020.vol34.0008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate the effects of chronic restraint stress (RS) and a high-fat diet (HFD) on the osseointegration of titanium implants in a rat model. After the surgical insertion of titanium implants into the metaphysis of the tibial bone, the rats were randomly divided into four equal groups (n = 8 each): control (CNT), restraint stress (RS), high-fat diet (HFD), and restraint stress plus high fat diet (RS-HFD). CNT: Rats received no further treatment during the 92-day experimental period. RS: Stress was applied to the rats beginning from two days after the implant surgery for one hour per day for the first 30 days, two hours per day for the next 30 days, and three hours per day for the last 30 days. HFD: Rats were fed a HFD for the following 90 days starting two days after surgery. RS-HFD: Rats were fed a HFD and RS was applied to rats for the following 90 days, starting two days after surgery. At the end of the experimental period, the rats were euthanized, and the implants and surrounding bone tissues were removed for histological analysis. Statistical analysis was performed by one way ANOVA and Bonferrroni tests. There were no significant differences in the bone-implant connection levels between the groups (p > 0.05), but in the HFD and RS-HFD groups, the bone filling ratios were found to be lower compared with the controls (p < 0.05) The data analyzed in this study suggest that an HFD with or without chronic RS adversely affected bone tissue in the rats during the 90-day osseointegration period.
Collapse
Affiliation(s)
- Serkan Dundar
- Firat University, Faculty of Dentistry, Department of Periodontology, Elazig, Turkey
| | - Alihan Bozoglan
- Firat University, Faculty of Dentistry, Department of Periodontology, Elazig, Turkey
| | - Ozgur Bulmus
- Firat University, Faculty of Medicine, Department of Physiology, Elazig, Turkey
| | - Samet Tekin
- Firat University, Faculty of Dentistry, Department of Prosthodontics, Elazig, Turkey
| | - Tuba Talo Yildirim
- Firat University, Faculty of Dentistry, Department of Periodontology, Elazig, Turkey
| | | | - Vesile Elif Toy
- Inonu University, Faculty of Dentistry, Department of Periodontology, Malatya, Turkey
| | - Mehmet Gul
- Harran University, Faculty of Dentistry, Department of Periodontology, Sanliurfa, Turkey
| | - Merve Yilmaz Bozoglan
- Ministry of Health, Elazig Health Directorate, Department of Paharmacology, Elazig, Turkey
| |
Collapse
|
40
|
Chiodini I, Merlotti D, Falchetti A, Gennari L. Treatment options for glucocorticoid-induced osteoporosis. Expert Opin Pharmacother 2020; 21:721-732. [PMID: 32004105 DOI: 10.1080/14656566.2020.1721467] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Glucocorticoid (GC) induced osteoporosis (GIOP) is the most common form of secondary osteoporosis. It develops in a dose and time dependent manner, due to a rapid and transient increase in bone resorption, followed by the inhibition of bone formation. AREAS COVERED In this review, the authors summarize the pathophysiology of GIOP and give discussion to the clinical management of patients taking GCs, focusing on the currently available drugs that have antiresorptive or anabolic activity on bone. EXPERT OPINION Despite the widespread use of GCs and their well-established detrimental skeletal effects, GIOP remains an under-diagnosed and under-treated condition. Indeed, the clinical management of GIOP is still debated, so that the recent guidelines differ in their indications for pharmacological intervention. Either bone mineral density (BMD) or algorithms such as FRAX do not completely account for the remarkable and rapid increase in fracture risk of most GC-treated patients. Moreover, while oral bisphosphonates remain the most used and cost-effective option, the potential increased benefits of more potent antiresorptive agents (e.g. denosumab and zoledronate) or anabolic compounds (e.g. teriparatide) warrant further investigation. Despite the above limitations, the assessment of fracture risk is recommended for all individuals committed to receiving oral GCs for 3 months or longer.
Collapse
Affiliation(s)
- Iacopo Chiodini
- Istituto Auxologico Italiano, IRCCS, Unit for Bone Metabolism Diseases and Diabetes & Lab of Endocrine and Metabolic Research , Milan, Italy
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena , Italy
| | - Alberto Falchetti
- Istituto Auxologico Italiano, IRCCS, Unit for Bone Metabolism Diseases and Diabetes & Lab of Endocrine and Metabolic Research , Milan, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena , Italy
| |
Collapse
|
41
|
Peng Y, Wu S, Li Y, Crane JL. Type H blood vessels in bone modeling and remodeling. Theranostics 2020; 10:426-436. [PMID: 31903130 PMCID: PMC6929606 DOI: 10.7150/thno.34126] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/12/2019] [Indexed: 12/29/2022] Open
Abstract
In the mammalian skeletal system, osteogenesis and angiogenesis are intimately linked during bone growth and regeneration in bone modeling and during bone homeostasis in bone remodeling. Recent studies have expanded our knowledge about the molecular and cellular mechanisms responsible for coupling angiogenesis and bone formation. Type H vessels, termed such because of high expression of Endomucin (Emcn) and CD31, have recently been identified and have the ability to induce bone formation. Factors including platelet-derived growth factor type BB (PDGF-BB), slit guidance ligand 3 (SLIT3), hypoxia-inducible factor 1-alpha (HIF-1α), Notch, and vascular endothelial growth factor (VEGF) are involved in the coupling of angiogenesis and osteogenesis. This review summarizes the current understanding of signaling pathways that regulate type H vessels and how type H vessels modulate osteogenesis. Further studies dissecting the regulation and function of type H vessels will provide new insights into the role of bone vasculature in the metabolism of the skeleton. We also discuss considerations for therapeutic approaches targeting type H vessels to promote fracture healing, prevent pathological bone loss, osteonecrosis, osteoarthritis, and bone metastases.
Collapse
Affiliation(s)
- Yi Peng
- Department of Orthopedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Song Wu
- Department of Orthopedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Yusheng Li
- Department of Orthopedic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 41000, China
| | - Janet L. Crane
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Abstract
Cancer remains a common disease with approximately 40% of Americans diagnosed with cancer in their lifetime. Medical advances in the field of oncology have led to an increased life expectancy and a decreased mortality rate. Antineoplastic agents such as taxanes and targeted therapies are indicated in the treatment of many cancers, and their use can be associated with various musculoskeletal complaints and adverse effects. Orthopaedic Surgeons are trained to identify primary bone tumors and metastasis to bones. It is also important for them to have an understanding of the profile of musculoskeletal adverse effects associated with the treatment of the more common neoplasms. This article reviews the current literature on the commonly used chemotherapeutic agents and their associated musculoskeletal effects.
Collapse
|
43
|
Anti-osteoporotic effects of melatonin and misoprostol in glucocorticoid-induced osteoporosis: An experimental study. JOURNAL OF SURGERY AND MEDICINE 2019. [DOI: 10.28982/josam.595295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
44
|
Dundar S, Bozoglan A, Yaman F, Kirtay M, Bulmus O, Sahin Aydinyurt H, Solmaz MY, Yanen C. An experimental investigation of the effects of chronic stress on bone-to-implant contact. J Korean Assoc Oral Maxillofac Surg 2019; 45:91-96. [PMID: 31106137 PMCID: PMC6502755 DOI: 10.5125/jkaoms.2019.45.2.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 11/07/2022] Open
Abstract
Objectives This study aimed to investigate the effects of chronic restraint stress on the osseointegration of titanium implants. Materials and Methods Twenty adult male Wistar albino rats were used in the study. After surgical insertion of titanium implants into the metaphyseal part of the tibial bone, rats were randomly divided into two groups: a control group (CNT group) and an experimental restraint stress group (RS group). In the CNT group, titanium implants were inserted surgically, and rats received no further treatment during the 47-day experimental period. In the RS group, restraint stress was applied for 3 hours per day for 45 days, beginning 2 days after implant surgery. Weight of the rats was measured prior to surgery and at the end of the study to analyze the effects of stress. At the end of the experimental period, rats were euthanized, and implants and surrounding bone tissues were used for undecalcified histological analysis. Serum cortisol levels were assessed in cardiac blood samples from the rats following centrifugation. Results Average weight of rats in the RS group was lower than that of rats in the CNT group after the experimental protocol had been completed (P<0.05). Further, serum cortisol levels were higher in the RS group than in the CNT group (P<0.05). There were no significant differences in bone-implant connection levels between the two groups (P>0.05). Conclusion The data analyzed in this study suggest that chronic restraint stress did not adversely affect rats during a 45-day osseointegration period.
Collapse
Affiliation(s)
- Serkan Dundar
- Department of Periodontology, Faculty of Dentistry, Firat University, Elazig, Turkey
| | - Alihan Bozoglan
- Department of Periodontology, Faculty of Dentistry, Firat University, Elazig, Turkey
| | - Ferhan Yaman
- Private Practice, Oral and Maxillofacial Surgeon, Diyarbakir, Turkey
| | - Mustafa Kirtay
- Private Practice, Oral and Maxillofacial Surgeon, Toronto, Canada
| | - Ozgur Bulmus
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Hacer Sahin Aydinyurt
- Department of Periodontology, Faculty of Dentistry, Yüzüncü Yıl University, Van, Turkey
| | - Murat Yavuz Solmaz
- Department of Mechanical Engineering, Faculty of Engineering, Firat University, Elazig, Turkey
| | - Cenk Yanen
- Department of Mechanical Engineering, Faculty of Engineering, Firat University, Elazig, Turkey
| |
Collapse
|
45
|
Abstract
PURPOSE OF THIS REVIEW The goal of the review is to provide an updated understanding of the pathophysiology of glucocorticoid-induced osteoporosis and treatment recommendations. RECENT FINDINGS Glucocorticoids reduce osteoblast and osteocyte lifespan and activity and reduce the vascularity of the bone that together may explain the greater reductions in bone strength than those of bone mass. Treatments with parathyroid hormone fragments appear to reverse glucocorticoid-induced bone loss and fracture risk partially through maintaining bone vascularity and bone strength. This review identifies how glucocorticoid anti-osteogenic and vascular effects together may reduce bone strength. It also provides guidance to clinicians on rationale treatment for glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
- Nancy E Lane
- Center for Musculoskeletal Health, University of California at Davis Health System, 4625 Second Avenue, Suite 2006, Sacramento, CA, 95817, USA.
| |
Collapse
|
46
|
Lane NE, Mohan G, Yao W, Shidara K, Lay YAE, Junjing J, Dubrovsky A, Kimmel DB. Prevalence of glucocorticoid induced osteonecrosis in the mouse is not affected by treatments that maintain bone vascularity. Bone Rep 2018; 9:181-187. [PMID: 30510976 PMCID: PMC6260230 DOI: 10.1016/j.bonr.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/24/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023] Open
Abstract
Objective Determine if LLP2A-Ale or PTH (1–34) affects the prevalence of glucocorticoid-induced osteonecrosis (ON) in a mouse model. Methods Eight-week-old young adult male BALB/cJ mice were weight-randomized into Control (Con), glucocorticoid (GC)-only, or concurrent treatments with GC and LLP2A-Ale (250 μg/kg or 500 μg/kg, IV, Days 1, 14, 28) or parathyroid hormone hPTH (1–34) (40 μg/kg, 5×/week). Mice were necropsied after 45 days for qualitative evaluation of prevalent ON and quantitative evaluation of vascularity in the distal femoral epiphysis (DFE); and quantitative evaluation of bone mass, microarchitecture, and strength in the distal femoral metaphysis and lumbar vertebral body. Results The prevalence of ON was 14% in the Con group and 36% in the GC-only group (P = 0.07). The prevalence of ON did not differ among GC-only, GC + LLP2A-Ale, and GC + PTH groups. GC-only mice had significantly lower trabecular and cortical bone strength than Con, while GC + LLP2A-Ale (500 μg/kg) and GC + PTH (1–34) groups had significantly greater trabecular bone strength than the GC-only group. GC + LLP2A-Ale (250 μg/kg and 500 μg/kg) and GC + PTH had significantly higher trabecular bone volume than GC-only mice at the vertebrae, distal femoral epiphyses and distal femoral metaphyses. DFE vascularity was lower in GC-only mice than in all other groups. Conclusion Neither LLP2A-Ale nor hPTH (1–34) reduced the prevalence of GC-induced ON, compared to GC-only mice. However, GC-treated mice given LLP2A-Ale or hPTH (1–34) had better bone mass, microarchitecture, and strength in trabecular-rich regions, and higher levels of vascularity than GC-only mice.
Collapse
Affiliation(s)
- Nancy E Lane
- Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Geetha Mohan
- Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Wei Yao
- Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Kie Shidara
- Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Yu-An Evan Lay
- Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Jia Junjing
- Facility of Animal Science, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Alanna Dubrovsky
- Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Donald B Kimmel
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
47
|
Bei J, Zhang X, Wu J, Hu Z, Xu B, Lin S, Cui L, Wu T, Zou L. Ginsenoside Rb1 does not halt osteoporotic bone loss in ovariectomized rats. PLoS One 2018; 13:e0202885. [PMID: 30212470 PMCID: PMC6136715 DOI: 10.1371/journal.pone.0202885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 08/12/2018] [Indexed: 11/19/2022] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disorder, manifesting with a reduction in bone mass and deterioration of the microarchitecture. Mesenchymal stem cells (MSCs) have an innate ability to differentiate into several cell types, including osteoblasts (OB). Ginsenoside Rb1 (GRb1) is an ethanol extract from ginseng and contains a highly concentrated form of ginsenoside. GRb1 shows extensive beneficial health effects such as anti-oxidative and anti-inflammatory functions, modulating the immune system and inhibiting osteoclastogenesis. We hypothesized that GRb1 can promote MSC differentiation into OBs and inhibit bone loss. In the present study, we aimed to address two questions: (1) Will GRb1 have a positive effect on osteogenic differentiation of MSCs? and (2) Will GRb1 halt bone loss in ovariectomized (OVX) rats? We investigated the effects of GRb1 on viability and osteogenic differentiation of rat mesenchymal stem cells (rMSCs). Our results showed that GRb1 at concentrations of 10-8 M and 10-6 M can increase alkaline phosphatase activity, mineralization and the expression of osteogenic related proteins, such as osteopontin and osteoprotegerin, while incubating rMSCs with osteogenic induction medium and GRb1. Adding GRb1 into the medium can prevent rMSCs from Oxidative damage at the concentration of 25μM H2O2. Furthermore, 40 4-month-old rats were assigned to 5 groups(8 rats per group): the basal group, the sham group, the OVX group, the high dose of GRb1 group (6 mg/kg/day) and the low dose of GRb1 group (3 mg/kg/day). Rats recrived treatment 3days after surgery and last for 14 weeks. Examinations included serum analysis, mechanical testing, Masson-Goldner trichrome staining and bone histomorphometry analysis. The results showed that OVX can lead to dyslipidemia and excessive oxidative stress, whereas GRb1 cannot significantly halt dyslipidemia and excessive oxidative stress in OVX rats. In addition, the bone density of the lumbar vertebra and femur were decreased significantly in the OVX rats, and GRb1 could not inhibit bone loss. Bone histomorphometry analysis showed that the number and width of bone trabecula of the tibia were reduced in OVX rats, and GRb1 could not prevent their occurrence. A bone biomechanics assay showed that GRb1 cannot improve the ability of bone structure to resist fracture of the femur in OVX rats. The current study demonstrated that GRb1 has an obvious effect on osteogenic differentiation in rMSCs but no obvious effect on bone loss in OVX rats. These findings indicate GRb1 has a positive effect on rMSCs but does not have an effect on bone loss in OVX rats at the concentration we used.
Collapse
Affiliation(s)
- JiaXin Bei
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - XinLe Zhang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - JingKai Wu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - ZhuoQing Hu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - BiLian Xu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Sien Lin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Tie Wu
- Research Center of CoQ10, Guangdong Runhe Biochemical Technology Company, Dongguan, China
| | - LiYi Zou
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
48
|
Yang P, Lv S, Wang Y, Peng Y, Ye Z, Xia Z, Ding G, Cao X, Crane JL. Preservation of type H vessels and osteoblasts by enhanced preosteoclast platelet-derived growth factor type BB attenuates glucocorticoid-induced osteoporosis in growing mice. Bone 2018; 114:1-13. [PMID: 29800693 PMCID: PMC6309783 DOI: 10.1016/j.bone.2018.05.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
Abstract
Survival of chronic diseases in childhood is often achieved utilizing glucocorticoids, but comes with significant side effects, including glucocorticoid-induced osteoporosis (GIO). Knowledge of the mechanism of GIO is limited to the adult skeleton. We explored the effect of genetic loss and inhibition of cathepsin K (Ctsk) as a potential treatment target in a young GIO mouse model as genetic loss of cathepsin K results in a mild form of osteopetrosis secondary to impaired osteoclast bone resorption with maintenance of bone formation. We first characterized the temporal osteoclast and osteoblast progenitor populations in Ctsk-/- and wild type (WT) mice in the primary and secondary spongiosa, as sites representative of trabecular bone modeling and remodeling, respectively. In the primary spongiosa, Ctsk-/- mice had decreased numbers of osteoclasts at young ages (2 and 4 weeks) and increased osteoblast lineage cells at later age (8 weeks) relative to WT littermates. In the secondary spongiosa, Ctsk-/- mice had greater numbers of osteoclasts and osteoblast lineage cells relative to WT littermates. We next developed a young GIO mouse model with prednisolone 10 mg/m2/day injected intraperitoneally daily from 2 through 6 weeks of age. Overall, WT-prednisolone mice had lower bone volume per tissue volume, whereas Ctsk-/--prednisolone mice maintained a similar bone volume relative to Ctsk-/--vehicle controls. WT-prednisolone mice exhibited a decreased number of osteoclasts, tartrate-resistant acid phosphatase and platelet-derived growth factor type BB (PDGF-BB) co-positive cells, type H endothelial cells, and osteoblasts relative to WT-vehicle mice in both the primary and secondary spongiosa. Interestingly, Ctsk-/--prednisolone mice demonstrated a paradoxical response with increased numbers of all parameters in primary spongiosa and no change in secondary spongiosa. Finally, treatment with a cathepsin K inhibitor prevented WT-prednisolone decline in osteoclasts, osteoblasts, type H vessels, and bone volume. These data demonstrate that cells in the primary and secondary spongiosa respond differently to glucocorticoids and genetic manipulation. Inhibition of osteoclast resorption that preserves osteoclast coupling factors, such as through inhibition of cathepsin K, may be a potential preventive treatment strategy against GIO in the growing skeleton.
Collapse
Affiliation(s)
- Ping Yang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832008, China
| | - Shan Lv
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Geriatric Endocrinology, The First Hospital Affiliated to Nanjing Medical University, Jiangsu, China
| | - Yan Wang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Endocrinology Department of Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, China
| | - Yi Peng
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Orthopedic Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zixing Ye
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Peking Union Medical College, Beijing, China
| | - Zhuying Xia
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute of Endocrinology and Metabolism, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guoxian Ding
- Geriatric Endocrinology, The First Hospital Affiliated to Nanjing Medical University, Jiangsu, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janet L Crane
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
49
|
Abstract
Intestinal microbial flora, known as the second gene pool of the human body, play an important role in immune function, nutrient uptake, and various activities of host cells, as well as in human disease. Intestinal microorganisms are involved in a variety of mechanisms that affect bone health. Gut microbes are closely related to genetic variation, and gene regulation plays an important part in the development of bone-related diseases such as osteoporosis. Intestinal microorganisms can disrupt the balance between bone formation and resorption by indirectly stimulating or inhibiting osteoblasts and osteoclasts. In addition, intestinal microorganisms affect bone metabolism by regulating growth factors or altering bone immune status and can also alter the metabolism of serotonin, cortisol, and sex hormones, thereby affecting bone mass in mice. Moreover, probiotics, antibiotics, and diet can change the composition of the intestinal microbial flora, thus affecting bone health and also potentially helping to treat bone disease. Studying the relationship between intestinal flora and osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells may provide a basis for preventing and treating bone diseases. This paper reviews recent advances in the study of the relationship between intestinal microflora and bone disease.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Ji'nan-Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yanqin Lu
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Ji'nan-Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to:Dr. Jinxiang Han and Dr. Yanqin Lu, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan 250062, China. E-mail: (JH); (YL)
| | - Yanzhou Wang
- Department of Paediatric Surgery, Shandong Provincial Hospital, Ji'nan, China
| | - Xiuzhi Ren
- Department of Orthopaedic Surgery, The People’s Hospital of Wuqing District, Tianjin, China
| | - Jinxiang Han
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Ji'nan-Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to:Dr. Jinxiang Han and Dr. Yanqin Lu, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan 250062, China. E-mail: (JH); (YL)
| |
Collapse
|
50
|
Ciani A, Toumi H, Pallu S, Tsai EHR, Diaz A, Guizar-Sicairos M, Holler M, Lespessailles E, Kewish CM. Ptychographic X-ray CT characterization of the osteocyte lacuno-canalicular network in a male rat's glucocorticoid induced osteoporosis model. Bone Rep 2018; 9:122-131. [PMID: 30246062 PMCID: PMC6146379 DOI: 10.1016/j.bonr.2018.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/27/2018] [Indexed: 01/15/2023] Open
Abstract
Ptychographic X-ray computed tomography (PXCT) is a quantitative imaging modality that non-destructively maps the 3D electron density inside an object with tens of nanometers spatial resolution. This method provides unique access to the morphology and structure of the osteocyte lacuno-canalicular network (LCN) and nanoscale density of the tissue in the vicinity of an osteocyte lacuna. Herein, we applied PXCT to characterize the lacunae and LCN in a male Wistar rat model of glucocorticoid-induced osteoporosis (GIO). The ptychographic images revealed significant (p < 0.05) differences in the number of canaliculi originating from the lacuna per ellipsoidal surface unit, Ca.Nb (p = 0.0106), and the 3D morphology of the lacuna (p = 0.0064), between GIO and SHAM groups. Moreover, the mean canalicular diameter, Ca.Dm, was slightly statistically un-significantly smaller in GIO (152 ± 6.5) nm than in SHAM group (165 ± 8) nm (p = 0.053). Our findings indicate that PXCT can non-destructively provide detailed, nanoscale information on the 3D organization of the LCN in correlative studies of pathologies, such as osteoporosis, leading to improved diagnosis and therapy.
Collapse
Affiliation(s)
- Antonia Ciani
- Synchrotron Soleil, L'Orme des Merisiers, 91192 Gif-sur-Yvette, France.,EA4708, Imagerie Multimodale, Multiéchelles et Modélisation du Tissu Osseux et Articulaire (I3MTO), Université d'Orléans, 45000 Orléans, France
| | - Hechmi Toumi
- EA4708, Imagerie Multimodale, Multiéchelles et Modélisation du Tissu Osseux et Articulaire (I3MTO), Université d'Orléans, 45000 Orléans, France.,Département Rhumatologie, Centre Hospitalier Régional d'Orléans, 45067 Orléans, France
| | - Stéphane Pallu
- EA4708, Imagerie Multimodale, Multiéchelles et Modélisation du Tissu Osseux et Articulaire (I3MTO), Université d'Orléans, 45000 Orléans, France
| | | | - Ana Diaz
- Paul Scherrer Institut, 5232 Villigen, Switzerland
| | | | - Mirko Holler
- Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Eric Lespessailles
- EA4708, Imagerie Multimodale, Multiéchelles et Modélisation du Tissu Osseux et Articulaire (I3MTO), Université d'Orléans, 45000 Orléans, France.,Département Rhumatologie, Centre Hospitalier Régional d'Orléans, 45067 Orléans, France
| | - Cameron M Kewish
- Synchrotron Soleil, L'Orme des Merisiers, 91192 Gif-sur-Yvette, France
| |
Collapse
|