1
|
Wang J, Li S, Li Q, Yan Q, Wang Y, Zeng X, Yang F, Jiang S, Zhang M, Pi Y, Tahir R, Wei L. Alda-1 mediates cell senescence and counteracts bone loss in weightlessness through regulating mitophagy. Life Sci 2025; 366-367:123482. [PMID: 39983821 DOI: 10.1016/j.lfs.2025.123482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/17/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
AIMS Astronauts experience weightlessness-induced bone loss (WIBL) due to an imbalanced bone remodeling process involving bone mesenchymal stem cells (BMSCs), osteoblasts, and osteoclasts. Senescence is an important factor contributes to WIBL. In the current study, the effects of Alda-1 on senescence and WIBL were evaluated. MATERIALS AND METHODS We used the 2D-Rotating Wall Vessel bioreactor and hindlimb suspension rats, the classic cellular and animal models simulating microgravity (SMG). Aging, osteogenic differentiation, osteoclastic differentiation, and lipogenic differentiation were evaluated in the cell and animal models. Differentially expressed proteins in the femurs of rats were further analyzed using bioinformatics analysis. In addition, mitochondrial membrane potential, reactive oxygen species (ROS) production, and mitophagy markers were identified to estimate mitochondrial activity. KEY FINDINGS It was revealed that SMG accelerated senescence including osteoblasts, BMSCs, and inhibited senescence of RAW264.7 cells. SMG suppressed osteogenesis while promoting osteoclastogenesis and adipogenesis during cell senescence and bone loss. Aldehyde dehydrogenase-2 (ALDH2) was negatively related to WIBL. It was mainly enriched in mitochondria and involved in oxidative stress pathways. Finally, it was proved that Alda-1 significantly promoted ALDH2 levels. Alda-1 exhibited a robust protective response against senescence and WIBL by eliminating ROS accumulation, restoring mitophagy, and protecting cells and bone from apoptosis. SIGNIFICANCE Our study indicate that Alda-1 exerts a protective effect against SMG-induced skeletal aging and bone loss through mitophagy. It provides a theoretical basis for advancing therapeutic options against WIBL in space.
Collapse
Affiliation(s)
- Jinpeng Wang
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Sen Li
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Qiao Li
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Qiuxin Yan
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Yunhao Wang
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Xiangyin Zeng
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Fan Yang
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Siyu Jiang
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China
| | - Manrui Zhang
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Yaning Pi
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Raza Tahir
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Lijun Wei
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China.
| |
Collapse
|
2
|
Huang F, Gao J, Li A, Mizokami A, Matsuda M, Aoki K, Katagiri T, Kawakubo-Yasukochi T, Jimi E. Activation of NF-κB signaling regulates ovariectomy-induced bone loss and weight gain. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167320. [PMID: 38936515 DOI: 10.1016/j.bbadis.2024.167320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Postmenopausal women experience bone loss and weight gain. To date, crosstalk between estrogen receptor signals and nuclear factor-κB (NF-κB) has been reported, and estrogen depletion enhances bone resorption by osteoclasts via NF-κB activation. However, it is unclear when and in which tissues NF-κB is activated after menopause, and how NF-κB acts as a common signaling molecule for postmenopausal weight gain and bone loss. Therefore, we examined the role of NF-κB in bone and energy metabolism following menopause. NF-κB reporter mice, which can be used to measure NF-κB activation in vivo, were ovariectomized (OVX) and the luminescence intensity after OVX increased in the metaphyses of the long bones and perigonadal white adipose tissue, but not in the other tissues. OVX was performed on wild-type (WT) and p65 mutant knock-in (S534A) mice, whose mutation enhances the transcriptional activity of NF-κB. Weight gain with worsening glucose tolerance was significant in S534A mice after OVX compared with those of WT mice. The bone density of the sham group in WT or S534A mice did not change, whereas in the S534A-OVX group it significantly decreased due to the suppression of bone formation and increase in bone marrow adipocytes. Disulfiram, an anti-alcoholic drug, suppressed OVX-induced activation of NF-κB in the metaphyses of long bones and white adipose tissue (WAT), as well as weight gain and bone loss. Overall, the activation of NF-κB in the metaphyses of long bones and WAT after OVX regulates post-OVX weight gain and bone loss.
Collapse
Affiliation(s)
- Fei Huang
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Aonan Li
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akiko Mizokami
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Takenobu Katagiri
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama 350-1241, Japan
| | - Tomoyo Kawakubo-Yasukochi
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
3
|
Bai T, Li X, Zhang H, Yang W, Lv C, Du X, Xu S, Zhao A, Xi Y. The association between brominated flame retardants exposure with bone mineral density in US adults: A cross-sectional study of the national health and nutrition examination survey (NHANES) 2005-2014. ENVIRONMENTAL RESEARCH 2024; 251:118580. [PMID: 38423496 DOI: 10.1016/j.envres.2024.118580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND AND AIMS Exposure to brominated flame retardants (BFRs) has been widely confirmed to impair the normal functioning of the human body system. However, there is a paucity of study on the effects of serum BFRs on bone mineral density (BMD). This study aims to investigate the relationship between exposure to BFRs and BMD in a nationally representative sample of U.S. adults. METHODS 3079 participants aged between 20 and 80 years with complete data were included in the study. Serum levels of BFRs were measured using automated liquid-liquid extraction and subsequent sample clean-up. The BMD of all participants were assessed by DXA examinations. Generalize linear model, Restricted cubic spline (RCS), subgroup, weighted quantile sum (WQS) and bayesian kernel machine regression (BKMR) were used to estimate the association between serum BFRs and BMD. RESULTS Multivariate linear regression analyses revealed that, after adjusting for covariates, PBB153 was significantly associated with TF-BMD (β = 0.0177, 95%CI: 0.0103-0.0252), FN-BMD (β = 0.009, 95%CI: 0.0036-0.0145), TS-BMD (β = 0.0081, 95%CI: 0.0013-0.015) and L1-BMD (β = 0.0144, 95%CI: 0.0075-0.0213). However, the associations lose their statistical significance after further adjustment for sex. BFRs exhibited S-shaped or line-plateau dose-response curves with BMD. In subgroup analyses, BFRs were significantly associated with BMD in participants who were younger than 55 years, female, overweight (BMI >25 kg/m2), and less alcohol consumption. In WQS and BKMR analyses, the effects of BFRs mixtures on BMD differed by sex, and PBDE153, PBDE209 and PBB153 had the highest weights in the WQS regression model. CONCLUSION This study showed that serum BFRs negatively predicted BMD in men, but not in women or the general population. PBDE153, PBDE209, and PBB153 were significant BMD factors, especially in younger, overweight, and less alcohol consumption individuals.
Collapse
Affiliation(s)
- Tianyu Bai
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiangjun Li
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Han Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Wenkang Yang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Changlin Lv
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaofan Du
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Shiqi Xu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Aiping Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yongming Xi
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Tokiya M, Kobayashi T, Kido MA, Matsumoto A. ALDH2 polymorphism rs671 and alcohol consumption: possible explanatory factors for race/ethnic differences in bone density. Osteoporos Int 2023; 34:2133-2135. [PMID: 37695337 DOI: 10.1007/s00198-023-06909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Mikiko Tokiya
- Department of Social and Environmental Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | - Takaomi Kobayashi
- Department of Preventive Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Mizuho A Kido
- Department of Anatomy and Physiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Akiko Matsumoto
- Department of Social and Environmental Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| |
Collapse
|
5
|
Pereira WR, Ferreira JCB, Artioli GG. Commentary: Aldehyde dehydrogenase, redox balance and exercise physiology: What is missing? Comp Biochem Physiol A Mol Integr Physiol 2023; 283:111470. [PMID: 37364662 DOI: 10.1016/j.cbpa.2023.111470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme involved in reactive aldehyde detoxification. Approximately 560 million people (about 8% of the world's population) carry a point mutation in the aldehyde dehydrogenase 2 gene (ALDH2), identified as ALDH2*2, which leads to decreased ALDH2 catalytic activity. ALDH2*2 variant is associated with an accumulation of toxic reactive aldehydes and consequent disruption of cellular metabolism, which contributes to the establishment and progression of several degenerative diseases. Consequences of aldehyde accumulation include impaired mitochondrial functional, hindered anabolic signaling in the skeletal muscle, impaired cardiovascular and pulmonary function, and reduced osteoblastogenesis. Considering that aldehydes are endogenously produced through redox processes, it is expected that conditions that have a high energy demand, such as exercise, might be affected by impaired aldehyde clearance in ALDH2*2 individuals. Despite the large body of evidence supporting the importance of ALDH2 to ethanol metabolism, redox homeostasis and overall health, specific research investigating the impact of ALDH2*2 on phenotypes relevant to exercise performance are notoriously scarce. In this commentary, we highlight the consolidated knowledge on the impact of ALDH2*2 on physiological processes that are relevant to exercise.
Collapse
Affiliation(s)
- Wagner Ribeiro Pereira
- Applied Physiology & Nutrition Research Group, University of Sao Paulo, Sao Paulo, Brazil; Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
6
|
Camilleri AE, Cung M, Hart FM, Pagovich OE, Crystal RG, Greenblatt MB, Stiles KM. Gene Therapy to Treat Osteopenia Associated With Chronic Ethanol Consumption and Aldehyde Dehydrogenase 2 Deficiency. JBMR Plus 2023; 7:e10723. [PMID: 37065630 PMCID: PMC10097638 DOI: 10.1002/jbm4.10723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/27/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) deficiency affects 35% to 45% of East Asians and 8% of the world population. ALDH2 is the second enzyme in the ethanol metabolism pathway. The common genetic variant ALDH2*2 allele has a glutamic acid-to-lysine substitution at position 487 (E487K) that reduces the enzyme activity, resulting in an accumulation of acetaldehyde after ethanol consumption. The ALDH2*2 allele is associated with increased risk of osteoporosis and hip fracture. Our prior study showed that administration of an adeno-associated virus (AAV) serotype rh.10 gene transfer vector expressing the human ALDH2 cDNA (AAVrh.10hALDH2) before initiation of ethanol consumption prevented bone loss in ALDH2-deficient homozygous knockin mice carrying the E487K mutation (Aldh2 E487K+/+). We hypothesized that AAVrh.10hALDH2 administration after establishment of osteopenia would be able to reverse bone loss due to ALDH2 deficiency and chronic ethanol consumption. To test this hypothesis, male and female Aldh2 E487K+/+ mice (n = 6) were given ethanol in the drinking water for 6 weeks to establish osteopenia and then administered AAVrh.10hALDH2 (1011 genome copies). Mice were evaluated for an additional 12 weeks. AAVrh.10hALDH2 administration after osteopenia was established corrected weight loss and locomotion phenotypes and, importantly, increased midshaft femur cortical bone thickness, the most important component of bone in the resistance to fractures, and showed a trend toward increased trabecular bone volume. AAVrh.10hALDH2 is a promising therapeutic for osteoporosis in ALDH2-deficient individuals. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anna E Camilleri
- Department of Genetic MedicineWeill Cornell Medical CollegeNew YorkNYUSA
| | - Michelle Cung
- Pathology and Laboratory MedicineWeill Cornell Medical CollegeNew YorkNYUSA
| | - Fiona M Hart
- Department of Genetic MedicineWeill Cornell Medical CollegeNew YorkNYUSA
| | - Odelya E Pagovich
- Department of Genetic MedicineWeill Cornell Medical CollegeNew YorkNYUSA
| | - Ronald G Crystal
- Department of Genetic MedicineWeill Cornell Medical CollegeNew YorkNYUSA
| | - Matthew B Greenblatt
- Pathology and Laboratory MedicineWeill Cornell Medical CollegeNew YorkNYUSA
- Research DivisionHospital for Special SurgeryNew YorkNYUSA
| | - Katie M Stiles
- Department of Genetic MedicineWeill Cornell Medical CollegeNew YorkNYUSA
| |
Collapse
|
7
|
Tanda N, Tada H, Washio J, Takahashi N, Ishida T, Koseki T. Influence of alcohol sensitivity on bone metastases and skeletal-related events in primary operable breast cancer: A retrospective cohort study. PLoS One 2022; 17:e0269335. [PMID: 35657923 PMCID: PMC9165843 DOI: 10.1371/journal.pone.0269335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/18/2022] [Indexed: 12/24/2022] Open
Abstract
Background Bone metastases in breast cancer patients are a common concern for medical doctors and dentists. Bone-modifying agents, which are necessary to prevent skeletal-related events (SREs), are associated with osteonecrosis of the jaw as an adverse side effect. Hypersensitivity to alcohol is an unfavorable response caused by deficiency of aldehyde dehydrogenase-2 (ALDH2) activity. Inactive ALDH2 is associated with osteoporosis, but its influence on bone metastases is unclear. The aim of our study was to evaluate the effects of alcohol sensitivity on bone metastases and SREs in primary operable breast cancer patients. Methods We retrospectively analyzed patients who were administered docetaxel, an anti-tumor agent, for histologically diagnosed breast cancer between April 2004 and September 2015. Alcohol sensitivity was assessed based on medical records of hypersensitivity to alcohol. The primary endpoint was time to bone metastases and the secondary endpoint was time to first SRE from the initial docetaxel administration. Data were stratified by alcohol sensitivity and tumor stages, and differences were estimated by the Kaplan-Meier method. Prognostic risk factors were analyzed by the multivariate Cox proportional hazards model. Results The median follow-up period of patients with high sensitivity to alcohol (n = 45) was 54 months and that for those with low sensitivity (n = 287) was 64 months. Stratification by alcohol sensitivity revealed that tumor stage exhibited significant correlations with the cumulative incidence of bone metastases in low-sensitivity patients; however, no differences were found in high-sensitivity patients. In multivariate analysis, alcohol sensitivity was a significant prognostic risk factor for bone metastases (HR 2.721, 95% CI 1.268–5.841, P = 0.010). Conclusion Alcohol sensitivity may be a prognostic risk factor for bone metastases. More detailed genetic investigations and metabolic analyses are needed.
Collapse
Affiliation(s)
- Naoko Tanda
- Division of Preventive Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
- * E-mail:
| | - Hiroshi Tada
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takeyoshi Koseki
- Division of Preventive Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
8
|
Zhu D, Fang H, Yu H, Liu P, Yang Q, Luo P, Zhang C, Gao Y, Chen YX. Alcohol-induced inhibition of bone formation and neovascularization contributes to the failure of fracture healing via the miR-19a-3p/FOXF2 axis. Bone Joint Res 2022; 11:386-397. [PMID: 35730670 PMCID: PMC9233406 DOI: 10.1302/2046-3758.116.bjr-2021-0596.r1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aims Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood. Methods MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in vitro using BMSCs and human umbilical vein endothelial cells (HUVECs). An in vivo alcohol-fed mouse model of femur fracture healing was also established, and radiological and histomorphometric analyses were used to evaluate the role of miR-19a-3p. The binding of miR-19a-3p to forkhead box F2 (FOXF2) was analyzed using a luciferase reporter assay. Results miR-19a-3p was identified as one of the key regulators in the osteogenic differentiation of BMSCs, and was found to be downregulated in the alcohol-fed mouse model of fracture healing. In vitro, miR-19a-3p expression was downregulated after ethanol administration in both BMSCs and HUVECs. Vascularization and osteogenic differentiation were independently suppressed by ethanol and reversed by miR-19a-3p. In addition, the luciferase reporter assay showed that FOXF2 is the direct binding target of miR-19a-3p. In vivo, miR-19a-3p agomir stimulated callus transformation and improved the alcohol-impaired fracture healing. Conclusion This study is the first to demonstrate that the miR-19a-3p/FOXF2 axis has a pivotal role in alcohol-impaired fracture healing, and may be a potential therapeutic target. Cite this article: Bone Joint Res 2022;11(6):386–397.
Collapse
Affiliation(s)
- Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haoyu Fang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongping Yu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Pei Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Pengbo Luo
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yi-Xuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
9
|
Choi CK, Kweon SS, Lee YH, Nam HS, Park KS, Ryu SY, Choi SW, Shin MH. Association between alcohol and bone mineral density in a Mendelian randomization study: the Dong-gu study. J Bone Miner Metab 2022; 40:167-173. [PMID: 34626249 DOI: 10.1007/s00774-021-01275-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Many previous studies have reported a positive relationship between alcohol and bone mineral density (BMD). However, the causality between alcohol and BMD has not been fully evaluated. MATERIALS AND METHODS This study enrolled 8892 participants from the Dong-gu study. Mendelian randomization (MR) using two-stage least-squared regression was used to evaluate the association between the genetically predicted amount of alcohol consumption per day and BMD. The aldehyde dehydrogenase 2 (ALDH2) rs671 polymorphism was used as instrumental variables for alcohol consumption. Age, smoking history, and BMI were adjusted in the multivariate model. RESULTS Self-reported alcohol consumption was positively related to total hip and lumbar spine BMD in both sexes. In multivariate Mendelian randomization analysis, the genetically predicted amount of alcohol consumption was positively associated with both total hip and lumbar spine BMD in men. Total hip BMD and lumbar spine BMD increased by 0.004 g/cm2 (95% confidence interval [CI] 0.002-0.007) and 0.007 g/cm2 (95% CI 0.004-0.011) with doubling of alcohol consumption. However, in women, genetically predicted alcohol consumption was not significantly associated with BMD. CONCLUSION In our MR study, genetically predicted alcohol consumption was positively associated with BMD in men. This result suggests that the association between alcohol consumption and BMD is causal.
Collapse
Affiliation(s)
- Chang Kyun Choi
- Department of Preventive Medicine, Chonnam National University Medical School, 264, Seoyang-ro, Hwasun, 58128, Republic of Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, 264, Seoyang-ro, Hwasun, 58128, Republic of Korea
| | - Young-Hoon Lee
- Department of Preventive Medicine & Institute of Wonkwang Medical Science, Wonkwang University College of Medicine, Iksan, Republic of Korea
| | - Hae-Sung Nam
- Department of Preventive Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Kyeong-Soo Park
- Cardiocerebrovascular Center, Mokpo Jung-Ang Hospital, Mokpo, Republic of Korea
| | - So-Yeon Ryu
- Department of Preventive Medicine, Chosun University Medical School, Gwangju, Republic of Korea
| | - Seong-Woo Choi
- Department of Preventive Medicine, Chosun University Medical School, Gwangju, Republic of Korea
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, 264, Seoyang-ro, Hwasun, 58128, Republic of Korea.
| |
Collapse
|
10
|
Okuyama C, Higashi T, Ishizu K, Takahashi M, Kusano K, Kagawa S, Saga T, Yamauchi H. Physiologically decreased F-18 fluorodeoxyglucose uptake in the lower vertebrae associated with daily drinking habit in Japanese men with alcohol flushing reaction. Alcohol 2021; 95:15-23. [PMID: 33711409 DOI: 10.1016/j.alcohol.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 11/24/2022]
Abstract
Alcohol flushing reaction (AFR) is known as one of the risks for esophageal squamous cell cancer, and scientists have been elucidating this issue. However, little attention has been given to relevant imaging features. This study aims to investigate whether physiological 18F-fluorodeoxyglucose (FDG) uptake patterns in vertebrae are associated with drinking habits or AFR. Japanese male patients who underwent FDG positron emission computed tomography for evaluation of their known or suspected malignancies or inflammatory diseases were asked about their drinking habits and AFR. Altogether, 192 patients, 139 every-day drinkers and 53 non-drinkers were evaluated. Comparing the FDG uptake between that in the thoracic region and that in the lumbar region, vertebral uptake was visually classified into four patterns: Ld, dominant in lumbar region; TL, almost equal in both regions; BL, slightly higher in thoracic region (borderline pattern); Td, dominant in thoracic region. The uptake patterns were evaluated according to drinking habit (every-day drinker or non-drinker), AFR (flusher or non-flusher), and the combination of these two factors (habit/reaction: every-day drinker/flusher, every-day drinker/non-flusher, non-drinker/flusher, or non-drinker/non-flusher). There were 95 flushers (51 every-day drinkers and 44 non-drinkers) and 97 non-flushers (88 every-day drinkers and 9 non-drinkers). Ld, TL, BL, and Td patterns were observed in 0, 109 (56.8%), 31 (16.1%), and 52 (27.1%) patients, respectively. Td and BL patterns were more frequently observed in every-day drinkers compared with non-drinkers (p = 0.0467). Though the uptake patterns did not differ between flushers and non-flushers (p = 0.116), the Td pattern was more frequently observed in every-day drinkers/flushers (51%) compared with every-day drinkers/non-flushers (20.5%), non-drinkers/flushers (13.6%), and non-drinkers/non-flushers (22.2%) (p = 0.0014). The Td pattern was observed in patients with various diseases, with higher frequency in esophageal cancer, head and neck cancer, and lung cancer compared with other diseases. In conclusion, drinking habits and AFR were related to the vertebral uptake pattern with decreased uptake in the lumbar region in Japanese male patients.
Collapse
|
11
|
Yu H, Wang K, Liu P, Luo P, Zhu D, Yin J, Yang Q, Huang Y, Gao J, Ai Z, Chen Y, Gao Y. miR-4286 functions in osteogenesis and angiogenesis via targeting histone deacetylase 3 and alleviates alcohol-induced bone loss in mice. Cell Prolif 2021; 54:e13054. [PMID: 33973278 PMCID: PMC8168416 DOI: 10.1111/cpr.13054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Alcohol consumption is one of the leading factors contributing to premature osteopenia. MicroRNA (miRNA) coordinates a cascade of anabolic and catabolic processes in bone homeostasis and dynamic vascularization. The aim was to investigate the protective role of miR-4286 in alcohol-induced bone loss and its mechanism. MATERIALS AND METHODS The effect of miR-4286 and alcohol on bone mesenchymal stem cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) was explored via multiple in vitro assays, including cell proliferation, QPCR, Western blot, osteogenesis, angiogenesis etc miR-4286 directly regulated HDAC3 was investigated by luciferase reporter assay, and the function of HDAC3 was also explored in vitro. Moreover, alcohol-induced bone loss in mice was established to reveal the preventive effect of miR-4286 by radiographical and histopathological assays. RESULTS In vitro, ethanol dramatically inhibited the proliferation and osteogenesis of BMSCs, and substantially impaired the proliferation and vasculogenesis of HUVECs. However, a forced overexpression of miR-4286 within BMSCs and HUVECs could largely abolish inhibitory effects by alcohol. Furthermore, alcohol-induced inhibition on osteogenic and vasculogenic functions was mediated by histone deacetylase 3 (HDAC3), and dual-luciferase reporter assay showed that HDAC3 was the direct binding target of miR-4286. In vivo, micro-CT scanning and histology assessment revealed that miR-4286 could prevent alcohol-induced bone loss. CONCLUSIONS We firstly demonstrated that miR-4286 might function via intimate osteogenesis-angiogenesis pathway to alleviate alcohol-induced osteopenia via targeting HDAC3.
Collapse
Affiliation(s)
- Hongping Yu
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
- The First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Kaiyang Wang
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
| | - Pei Liu
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
| | - Pengbo Luo
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
| | - Daoyu Zhu
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
| | - Junhui Yin
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Qianhao Yang
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
| | - Yigang Huang
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
| | - Junjie Gao
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
| | - Zisheng Ai
- Department of Medical StatisticsTongji University School of MedicineShanghaiChina
| | - Yixuan Chen
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
| | - Youshui Gao
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
| |
Collapse
|
12
|
Malkovskiy AV, Van Wassenhove LD, Goltsev Y, Osei-Sarfo K, Chen CH, Efron B, Gudas LJ, Mochly-Rosen D, Rajadas J. The Effect of Ethanol Consumption on Composition and Morphology of Femur Cortical Bone in Wild-Type and ALDH2*2-Homozygous Mice. Calcif Tissue Int 2021; 108:265-276. [PMID: 33068139 PMCID: PMC8092984 DOI: 10.1007/s00223-020-00769-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/05/2020] [Indexed: 11/28/2022]
Abstract
ALDH2 inactivating mutation (ALDH2*2) is the most abundant mutation leading to bone morphological aberration. Osteoporosis has long been associated with changes in bone biomaterial in elderly populations. Such changes can be exacerbated with elevated ethanol consumption and in subjects with impaired ethanol metabolism, such as carriers of aldehyde dehydrogenase 2 (ALDH2)-deficient gene, ALDH2*2. So far, little is known about bone compositional changes besides a decrease in mineralization. Raman spectroscopic imaging has been utilized to study the changes in overall composition of C57BL/6 female femur bone sections, as well as in compound spatial distribution. Raman maps of bone sections were analyzed using multilinear regression with these four isolated components, resulting in maps of their relative distribution. A 15-week treatment of both wild-type (WT) and ALDH2*2/*2 mice with 20% ethanol in the drinking water resulted in a significantly lower mineral content (p < 0.05) in the bones. There was no significant change in mineral and collagen content due to the mutation alone (p > 0.4). Highly localized islets of elongated adipose tissue were observed on most maps. Elevated fat content was found in ALDH2*2 knock-in mice consuming ethanol (p < 0.0001) and this effect appeared cumulative. This work conclusively demonstrates that that osteocytes in femurs of older female mice accumulate fat, as has been previously theorized, and that fat accumulation is likely modulated by levels of acetaldehyde, the ethanol metabolite.
Collapse
Affiliation(s)
- Andrey V Malkovskiy
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford Medical School, Stanford, CA, 94305, USA.
- Department of Chemical and Systems Biology, Stanford Medical School, Stanford, CA, 94305, USA.
| | - Lauren D Van Wassenhove
- Department of Chemical and Systems Biology, Stanford Medical School, Stanford, CA, 94305, USA
| | - Yury Goltsev
- Department of Microbiology and Immunology, Baxter Laboratory in Stem Cell Biology, Stanford Medical School, Stanford, CA, 94305, USA
| | - Kwame Osei-Sarfo
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford Medical School, Stanford, CA, 94305, USA
| | - Bradley Efron
- Department of Biomedical Data Science, Stanford Medical School, Stanford, CA, 94305, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford Medical School, Stanford, CA, 94305, USA
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford Medical School, Stanford, CA, 94305, USA.
| |
Collapse
|
13
|
A critical assessment of the potential of pharmacological modulation of aldehyde dehydrogenases to treat the diseases of bone loss. Eur J Pharmacol 2020; 886:173541. [PMID: 32896553 DOI: 10.1016/j.ejphar.2020.173541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022]
Abstract
Chronic alcoholism (CA) decreases bone mass and increases the risk of hip fracture. Alcohol and its main metabolite, acetaldehyde impairs osteoblastogenesis by increasing oxidative stress. Aldehyde dehydrogenase (ALDH) is the rate-limiting enzyme in clearing acetaldehyde from the body. The clinical relevance of ALDH in skeletal function has been established by the discovery of single nucleotide polymorphism, SNP (rs671) in the ALDH2 gene giving rise to an inactive form of the enzyme (ALDH2*2) that causes increased serum acetaldehyde and osteoporosis in the affected individuals. Subsequent mouse genetics studies have replicated human phenotype in mice and confirmed the non-redundant role of ALDH2 in bone homeostasis. The activity of ALDH2 is amenable to pharmacological modulation. ALDH2 inhibition by disulfiram (DSF) and activation by alda-1 cause reduction and induction of bone formation, respectively. DSF also inhibits peak bone mass accrual in growing rats. On the other hand, DSF showed an anti-osteoclastogenic effect and protected mice from alcohol-induced osteopenia by inhibiting ALDH1a1 in bone marrow monocytes. Besides DSF, there are several classes of ALDH inhibitors with disparate skeletal effects. Alda-1, the ALDH2 activator induced osteoblast differentiation by increasing bone morphogenic protein 2 (BMP2) expression via ALDH2 activation. Alda-1 also restored ovariectomy-induced bone loss. The scope of structure-activity based studies with ALDH2 and the alda-1-like molecule could lead to the discovery of novel osteoanabolic molecules. This review will critically discuss the molecular mechanism of the ethanol and its principal metabolite, acetaldehyde in the context of ALDH2 in bone cells, and skeletal homeostasis.
Collapse
|
14
|
Sutoh Y, Hachiya T, Suzuki Y, Komaki S, Ohmomo H, Kakisaka K, Wang T, Takikawa Y, Shimizu A. ALDH2 genotype modulates the association between alcohol consumption and AST/ALT ratio among middle-aged Japanese men: a genome-wide G × E interaction analysis. Sci Rep 2020; 10:16227. [PMID: 33004991 PMCID: PMC7530747 DOI: 10.1038/s41598-020-73263-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Liver tests (LT), especially to measure AST, ALT and GGT levels, are widely used to evaluate the risk of alcohol-related liver disease (ALD). In this study, we investigated the potential genetic factors that modulate the association between LTs and alcohol consumption. We conducted a genome-wide interaction meta-analysis in 7856 Japanese subjects from Tohoku Medical Megabank Community-Based Cohort (TMM CommCohort) study recruited in 2013, and identified 2 loci (12q24 and 2p16) with genome-wide significance (P > 5 × 10-8). The significant variants in the 12q24 included rs671, a variant associated with alcohol intolerance and located at a coding exon of ALDH2. We found that the amount of alcohol consumption was associated with increased level AST/ALT ratio among the subjects with the rs671 GA genotype. The elevated AST/ALT ratio among subjects with moderate-to-high levels of drinking behavior and the rs671 GA genotype was due to decreased levels of ALT, which was not accompanied with significant differences in AST levels. Although the interaction effect was significant in both men and women, the effect was much larger in men. Our results suggest that the impact of alcohol consumption on LT varies according to the ALDH2 genotype, providing an insight for the accurate screening of ALD in drinkers with the rs671 GA genotype.
Collapse
Affiliation(s)
- Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Tsuyoshi Hachiya
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Yuji Suzuki
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Shohei Komaki
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Hideki Ohmomo
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Keisuke Kakisaka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Ting Wang
- Division of Biomedical Research and Development, Institute of Biomedical Sciences, Iwate Medical University, Morioka, Iwate, Japan
| | - Yasuhiro Takikawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan.
- Division of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan.
| |
Collapse
|
15
|
Kosugi K, Tajima T, Menuki K, Okuma KF, Tokuda K, Fukuda H, Okada Y, Tsukamoto M, Yamanaka Y, Zenke Y, Sakai A. Disruption of the aldehyde dehydrogenase 2 gene increases the bone anabolic response to intermittent PTH treatment in an ovariectomized mouse model. Bone 2020; 136:115370. [PMID: 32325250 DOI: 10.1016/j.bone.2020.115370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is the enzyme that oxidizes the acetaldehyde produced by alcohol metabolism. This variant not only affects the response to alcohol but is also associated with several diseases, such as esophageal cancer, myocardial infarction, and particularly osteoporosis. In our previous study, we reported that compared to wild-type (WT) mice, Aldh2 knockout (KO) mice naturally have a strong bone formation ability, and high expression of parathyroid hormone receptor (PTHR1) in osteocytes. The effect of the Aldh2 gene on bone metabolism in response to intermittent PTH treatment is unknown. The purpose of this study was to clarify the effect of the Aldh2 gene on the bone anabolic response to intermittent PTH treatment in ovariectomized mice. Female KO and WT mice were ovariectomized at 8 weeks of age. At 14 weeks of age, the KO and WT mice were divided into vehicle-treated (Veh) and PTH-treated (PTH) groups (i.e., the WT-Veh, WT-PTH, KO-Veh and KO-PTH groups). PTH (1-34) and vehicle were subcutaneously administered to each group at a dose of 40 μg/kg body weight (BW) five times per week for 4 weeks. Micro-CT showed that the bone volume (BV), trabecular number (Tb.N), connectivity density (Conn.D), and cortical thickness (Ct.Th) values in the KO-PTH mice were significantly higher than those in the KO-Veh mice. Histomorphometric analysis showed that the BV, Tb.N, and mineral apposition rate (MAR) values in the KO-PTH group were significantly higher than those in the KO-Veh group. The mRNA expression level of PTHR1 in the KO-PTH group was significantly increased and that of p21 in the KO-PTH group was significantly decreased compared with the levels in the KO-Veh group. The expression of PTHR in osteocytes from the KO-PTH group was also significantly increased compared with that in osteocytes from the KO-Veh group. Furthermore, cell cultures revealed that the ALP+CFU-f/total CFU-f percentage was significantly higher in the KO-PTH group than in the KO-Veh group. We concluded that in ovariectomized Aldh2 KO mice, the bone anabolic response to intermittent PTH treatment was significantly enhanced compared to that in WT mice, which may be mediated by the high expression level of PTHR1.
Collapse
Affiliation(s)
- Kenji Kosugi
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Takafumi Tajima
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | - Kunitaka Menuki
- Department of Orthopaedic Surgery, Kitakyushu Municipal Yahata Hospital, 2-6-2 Ogura, Yahatahigashi-ku, Kitakyushu 805-8534, Japan
| | - Kayoko Furukawa Okuma
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kotaro Tokuda
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Hokuto Fukuda
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yasuaki Okada
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yukichi Zenke
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| |
Collapse
|
16
|
Astaxanthin improves osteopenia caused by aldehyde-stress resulting from Aldh2 mutation due to impaired osteoblastogenesis. Biochem Biophys Res Commun 2020; 527:270-275. [PMID: 32446379 DOI: 10.1016/j.bbrc.2020.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/07/2020] [Indexed: 11/22/2022]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) plays major roles in aldehyde detoxification and in the catalysis of amino acids. ALDH2∗2, a dominant-negative transgenic expressing aldehyde dehydrogenase 2 (ALDH2) protein, is produced by a single nucleotide polymorphism (rs671) and is involved in the development of osteoporosis and hip fracture with aging. In a previous study, transgenic mice expressing Aldh2∗2(Aldh2∗2 Tg) osteoblastic cells or acetaldehyde -treated MC3T3-E1 showed impaired osteoblastogenesis and caused osteoporosis [1]. In this study, we demonstrated the effects of astaxanthin for differentiation to osteoblasts of MC3T3-E1 by the addition of acetaldehyde and Aldh2∗2 Tg mesenchymal stem cells in bone marrow. Astaxanthin restores the inhibited osteoblastogenesis by acetaldehyde in MC 3T3-E1 and in bone marrow mesenchymal stem cells of Aldh2∗2 Tg mice. Additionally, astaxanthin administration improved femur bone density in Aldh2∗2 Tg mice. Furthermore, astaxanthin improved cell survival and mitochondrial function in acetaldehyde-treated MC 3T3-E1 cells. Our results suggested that astaxanthin had restorative effects on osteoblast formation and provide new insight into the regulation of osteoporosis and suggest a novel strategy to promote bone formation in osteopenic diseases caused by impaired acetaldehyde metabolism.
Collapse
|
17
|
Wakabayashi Y, Tamura Y, Kouzaki K, Kikuchi N, Hiranuma K, Menuki K, Tajima T, Yamanaka Y, Sakai A, Nakayama KI, Kawamoto T, Kitagawa K, Nakazato K. Acetaldehyde dehydrogenase 2 deficiency increases mitochondrial reactive oxygen species emission and induces mitochondrial protease Omi/HtrA2 in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2020; 318:R677-R690. [DOI: 10.1152/ajpregu.00089.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acetaldehyde dehydrogenase 2 (ALDH2) is an enzyme involved in redox homeostasis as well as the detoxification process in alcohol metabolism. Nearly 8% of the world’s population have an inactivating mutation in the ALDH2 gene. However, the expression patterns and specific functions of ALDH2 in skeletal muscles are still unclear. Herein, we report that ALDH2 is expressed in skeletal muscle and is localized to the mitochondrial fraction. Oxidative muscles had a higher amount of ALDH2 protein than glycolytic muscles. We next comprehensively investigated whether ALDH2 knockout in mice induces mitochondrial adaptations in gastrocnemius muscle (for example, content, enzymatic activity, respiratory function, supercomplex formation, and functional networking). We found that ALDH2 deficiency resulted in partial mitochondrial dysfunction in gastrocnemius muscle because it increased mitochondrial reactive oxygen species (ROS) emission (2′,7′-dichlorofluorescein and MitoSOX oxidation rate during respiration) and the frequency of regional mitochondrial depolarization. Moreover, we determined whether ALDH2 deficiency and the related mitochondrial dysfunction trigger mitochondrial stress and quality control responses in gastrocnemius muscle (for example, mitophagy markers, dynamics, and the unfolded protein response). We found that ALDH2 deficiency upregulated the mitochondrial serine protease Omi/HtrA2 (a marker of the activation of a branch of the mitochondrial unfolded protein response). In summary, ALDH2 deficiency leads to greater mitochondrial ROS production, but homeostasis can be maintained via an appropriate stress response.
Collapse
Affiliation(s)
- Yuka Wakabayashi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Yuki Tamura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Karina Kouzaki
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Naoki Kikuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Kenji Hiranuma
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Kunitaka Menuki
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Takafumi Tajima
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Akinori Sakai
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyusyu University, Fukuoka, Japan
| | - Toshihiro Kawamoto
- Department of Environmental Health, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Kyoko Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
18
|
Chen Y, Yu H, Zhu D, Liu P, Yin J, Liu D, Zheng M, Gao J, Zhang C, Gao Y. miR-136-3p targets PTEN to regulate vascularization and bone formation and ameliorates alcohol-induced osteopenia. FASEB J 2020; 34:5348-5362. [PMID: 32072664 DOI: 10.1096/fj.201902463rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Alcohol consumption is regarded as one of the leading risk factors for secondary osteopenia. Coupled angiogenesis and osteogenesis via distinct type-H vessels orchestrates subtle biological processes of bone homeostasis. The dysfunction of angiogenesis and osteogenesis contributes to decreased bone mass during the development of osteopenia. Herein, we identified microRNA-136-3p was remarkedly downregulated in the mouse model of alcohol-induced osteopenia. Following the alcohol administration, downregulated microRNA-136-3p significantly suppressed vascularization and osteogenic differentiation in human umbilical vein endothelial cells (HUVECs) and bone mesenchymal stem cells (BMSCs), respectively. Furthermore, microRNA-136-3p could target phosphatase and tensin homolog deleted on chromosome ten (PTEN) in both HUVECs and BMSCs, thus substantially modulating the capacity of vessel formation and osteogenic differentiation. In the mouse model, microRNA-136-3p Agomir ameliorated alcohol-induced osteopenia, with the concomitant restoration of bone mass and type-H vessel formation. For the first time, this study demonstrated the pivotal role of microRNA-136-3p/PTEN axis in regulations of vascularization and bone formation, which might become the potential therapeutic target of alcohol-induced bone loss.
Collapse
Affiliation(s)
- Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongping Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Pei Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junhui Yin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Delin Liu
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, WA, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| |
Collapse
|
19
|
Matsumura Y, Li N, Alwaseem H, Pagovich OE, Crystal RG, Greenblatt MB, Stiles KM. Systemic Adeno-Associated Virus-Mediated Gene Therapy Prevents the Multiorgan Disorders Associated with Aldehyde Dehydrogenase 2 Deficiency and Chronic Ethanol Ingestion. Hum Gene Ther 2020; 31:163-182. [PMID: 31801381 DOI: 10.1089/hum.2019.268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aldehyde dehydrogenase type 2 (ALDH2), a key enzyme in ethanol metabolism, processes toxic acetaldehyde to nontoxic acetate. ALDH2 deficiency affects 8% of the world population and 35-45% of East Asians. The ALDH2*2 allele common genetic variant has a glutamic acid-to-lysine substitution at position 487 (E487K) that reduces the oxidizing ability of the enzyme resulting in systemic accumulation of acetaldehyde with ethanol ingestion. With chronic ethanol ingestion, mutations in ALDH2 are associated with a variety of hematological, neurological, and dermatological abnormalities, and an increased risk for esophageal cancer and osteoporosis. Based on our prior studies demonstrating that a one-time administration of an adeno-associated virus (AAV) serotype rh.10 gene transfer vector expressing the human ALDH2 cDNA (AAVrh.10hALDH2) prevents the acute effects of ethanol administration (the "Asian flush syndrome"), we hypothesized that AAVrh.10hALDH2 would also prevent the chronic disorders associated with ALDH2 deficiency and chronic ethanol ingestion. To assess this hypothesis, AAVrh.10hALDH2 (1011 genome copies) was administered intravenously to two models of ALDH2 deficiency, Aldh2 knockout homozygous (Aldh2-/-) and knockin homozygous (Aldh2E487K+/+) mice (n = 10 per group). Four weeks after vector administration, mice were given drinking water with 10-15% ethanol for 12 weeks. Strikingly, compared with nonethanol drinking littermates, AAVrh.10hALDH2 administration prevented chronic ethanol-induced serum acetaldehyde accumulation and elevated liver malondialdehyde levels, loss of body weight, reduced hemoglobin levels, reduced performance in locomotor activity tests, accumulation of esophageal DNA damage and DNA adducts, and development of osteopenia. AAVrh.10hALDH2 should be considered as a preventative therapy for the increased risk of chronic disorders associated with ALDH2 deficiency and chronic alcohol exposure.
Collapse
Affiliation(s)
- Yuki Matsumura
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Na Li
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, New York
| | - Odelya E Pagovich
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Matthew B Greenblatt
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
- Research Division, Hospital for Special Surgery, New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
20
|
Le Daré B, Lagente V, Gicquel T. Ethanol and its metabolites: update on toxicity, benefits, and focus on immunomodulatory effects. Drug Metab Rev 2019; 51:545-561. [PMID: 31646907 DOI: 10.1080/03602532.2019.1679169] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article summarizes recent experimental and epidemiological data on the toxic and beneficial effects of ethanol and its metabolites (acetaldehyde), and focuses on their immunomodulatory effects. The section dealing with the toxic effects of alcohol focuses on its chronic toxicity (liver disorders, carcinogenic effects, cardiovascular disorders, neuropsychic disorders, addiction and withdrawal syndrome, hematologic disorders, reprotoxicity, osteoporosis) although acute toxicity is considered. The role of oxidative metabolism of ethanol by alcohol dehydrogenase, cytochrome P450 2E1, and aldehyde dehydrogenase, as well as the impact of genetic polymorphism in its physiopathology are also highlighted. The section dealing with the beneficial effects of low to moderate alcohol consumption (on cardiovascular system, diabetes, the nervous system and sensory organs, autoimmune diseases, and rheumatology) highlights the importance of anti-inflammatory and immunomodulatory effects in these observations. This knowledge, enriched by a focus on the immunomodulatory effects of ethanol and its metabolites, in particular on the NLRP3 inflammasome pathway, might facilitate the development of treatments that can reduce ethanol's harmful effects or accentuate its beneficial effects.
Collapse
Affiliation(s)
- Brendan Le Daré
- Univ Rennes, INSERM, INRA, Institut NuMeCan (Nutrition, Metabolisms and Cancer), Rennes, France.,Pharmacy Unit, Pontchaillou University Hospital, Rennes, France.,Forensic and Toxicology Laboratory, Pontchaillou University Hospital, Rennes, France
| | - Vincent Lagente
- Univ Rennes, INSERM, INRA, Institut NuMeCan (Nutrition, Metabolisms and Cancer), Rennes, France
| | - Thomas Gicquel
- Univ Rennes, INSERM, INRA, Institut NuMeCan (Nutrition, Metabolisms and Cancer), Rennes, France.,Forensic and Toxicology Laboratory, Pontchaillou University Hospital, Rennes, France
| |
Collapse
|
21
|
Marshall S, Chen Y, Singh S, Berrios-Carcamo P, Heit C, Apostolopoulos N, Golla JP, Thompson DC, Vasiliou V. Engineered Animal Models Designed for Investigating Ethanol Metabolism, Toxicity and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1032:203-221. [PMID: 30362100 PMCID: PMC6743736 DOI: 10.1007/978-3-319-98788-0_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Excessive consumption of alcohol is a leading cause of lifestyle-induced morbidity and mortality worldwide. Although long-term alcohol abuse has been shown to be detrimental to the liver, brain and many other organs, our understanding of the exact molecular mechanisms by which this occurs is still limited. In tissues, ethanol is metabolized to acetaldehyde (mainly by alcohol dehydrogenase and cytochrome p450 2E1) and subsequently to acetic acid by aldehyde dehydrogenases. Intracellular generation of free radicals and depletion of the antioxidant glutathione (GSH) are believed to be key steps involved in the cellular pathogenic events caused by ethanol. With continued excessive alcohol consumption, further tissue damage can result from the production of cellular protein and DNA adducts caused by accumulating ethanol-derived aldehydes. Much of our understanding about the pathophysiological consequences of ethanol metabolism comes from genetically-engineered mouse models of ethanol-induced tissue injury. In this review, we provide an update on the current understanding of important mouse models in which ethanol-metabolizing and GSH-synthesizing enzymes have been manipulated to investigate alcohol-induced disease.
Collapse
Affiliation(s)
- Stephanie Marshall
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Surendra Singh
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Pablo Berrios-Carcamo
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claire Heit
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, USA
| | - Nicholas Apostolopoulos
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA.
| |
Collapse
|
22
|
Tajima T, Menuki K, Okuma KF, Tsukamoto M, Fukuda H, Okada Y, Kosugi K, Yamanaka Y, Uchida S, Sakai A. Cortical bone loss due to skeletal unloading in aldehyde dehydrogenase 2 gene knockout mice is associated with decreased PTH receptor expression in osteocytes. Bone 2018; 110:254-266. [PMID: 29482068 DOI: 10.1016/j.bone.2018.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/09/2018] [Accepted: 02/21/2018] [Indexed: 01/22/2023]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is the enzyme that degrades and detoxifies the acetaldehyde produced by alcohol metabolism. In our previous study, we found that compared with wild-type mice (WT), climbing exercises did not increase trabecular bone mass in Aldh2 knockout mice (KO). The purpose of this study was to clarify the effect of the Aldh2 gene on cortical bone structure and on the dynamics of skeletal unloading. Eight-week-old male KO and WT were divided into ground control (GC) or tail suspension (TS) groups for one week (i.e., the KOGC, KOTS, WTGC and WTTS groups). We measured the bone mineral density (BMD) of the femur using dual-energy X-ray absorptiometry. We assessed the femoral morphometry using peripheral quantitative computed tomography (pQCT) and evaluated the femoral cortex histomorphometry, and cortical mRNA using quantitative RT-PCR and cortical bone immunohistostaining. No significant differences were found between the femoral BMD of WTGC and that of WTTS, but the BMD in KOTS was significantly lower than that of KOGC. The pQCT results revealed that the cortical BMD of the femoral diaphysis in KOTS was significantly lower than that of KOGC. Furthermore, the cortical bone area and cortical thickness were significantly lower in KOTS than in the other three groups. Cortical histomorphometric analysis revealed that the endosteal and periosteal bone formation parameters were significantly lower in KOTS than in KOGC. Bone formation signals such as parathyroid hormone receptor (PTHR) were significantly decreased in KOTS compared with the levels in KOGC. Cortical bone immunohistostaining revealed a significantly decreased expression of PTHR in the osteocytes of KOTS compared with the expression level in KOGC. Thus, we concluded that when the Aldh2 gene is disrupted, skeletal unloading suppresses bone formation to decrease cortical bone mass, which may be mediated by a decreased expression of PTH receptors in osteocytes.
Collapse
Affiliation(s)
- Takafumi Tajima
- Department of Orthpaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kunitaka Menuki
- Department of Orthpaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Kayoko Furukawa Okuma
- Department of Orthpaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Manabu Tsukamoto
- Department of Orthpaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Hokuto Fukuda
- Department of Orthpaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuaki Okada
- Department of Orthpaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kenji Kosugi
- Department of Orthpaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiaki Yamanaka
- Department of Orthpaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Soshi Uchida
- Department of Orthpaedic Surgery, Wakamatsu Hospital for the University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Akinori Sakai
- Department of Orthpaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| |
Collapse
|
23
|
Okuma KF, Menuki K, Tsukamoto M, Tajima T, Fukuda H, Okada Y, Mori T, Tsuchiya T, Kawamoto T, Yoshida Y, Uchida S, Sakai A. Disruption of the Aldehyde Dehydrogenase 2 Gene Results in No Increase in Trabecular Bone Mass Due to Skeletal Loading in Association with Impaired Cell Cycle Regulation Through p21 Expression in the Bone Marrow Cells of Mice. Calcif Tissue Int 2017; 101:328-340. [PMID: 28474171 PMCID: PMC5544803 DOI: 10.1007/s00223-017-0285-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/22/2017] [Indexed: 12/17/2022]
Abstract
Approximately 45% of people of East Asian descent have the inactive aldehyde dehydrogenase 2 (ALDH2) phenotype. The enzyme defect of ALDH2 has been found to adversely influence the risk of osteoporosis. The aim of this study was to clarify the effect of skeletal loading on trabecular bone structure and dynamics in Aldh2-disrupted mice in the absence of alcohol consumption. Four-week-old male Aldh2-/- (KO) and Aldh2+/+ (WT) mice were divided into a ground control (GC) group and a climbing exercise (CE) group in each genotype. The trabecular bone mineral density of the distal femur measured by peripheral quantitative computed tomography in the wild-type CE (WTCE) group was significantly higher than that in the wild-type GC (WTGC) group; however, there was no significant difference between the knockout CE (KOCE) and knockout GC (KOGC) groups. Bone histomorphometry revealed that osteogenic parameters were significantly increased in the WTCE group compared with the WTGC group, but not increased in the KOCE group compared with the KOGC group. Quantitative reverse transcriptase polymerase chain reaction and flow cytometry revealed that mRNA and protein expression levels of p21 were significantly decreased in the WTCE group compared with those in the WTGC group, while these differences were not observed between the KOGC and KOCE groups. This study provides the first in vivo evidence that p21 expression in the bone marrow is not decreased after skeletal loading and osteoblast differentiation is impaired in the absence of Aldh2 gene.
Collapse
Affiliation(s)
- Kayoko Furukawa Okuma
- 0000 0004 0374 5913grid.271052.3Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Kunitaka Menuki
- 0000 0004 0374 5913grid.271052.3Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Manabu Tsukamoto
- 0000 0004 0374 5913grid.271052.3Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Takafumi Tajima
- 0000 0004 0374 5913grid.271052.3Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Hokuto Fukuda
- 0000 0004 0374 5913grid.271052.3Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Yasuaki Okada
- 0000 0004 0374 5913grid.271052.3Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Toshiharu Mori
- 0000 0004 0374 5913grid.271052.3Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Takuto Tsuchiya
- 0000 0004 0374 5913grid.271052.3Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Toshihiro Kawamoto
- 0000 0004 0374 5913grid.271052.3Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuhiro Yoshida
- 0000 0004 0374 5913grid.271052.3Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Soshi Uchida
- 0000 0004 0374 5913grid.271052.3Department of Orthopaedic Surgery, Wakamatsu Hospital for the University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akinori Sakai
- 0000 0004 0374 5913grid.271052.3Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| |
Collapse
|
24
|
Ventura AS, Winter MR, Heeren TC, Sullivan MM, Walley AY, Holick MF, Patts GJ, Meli SM, Samet JH, Saitz R. Lifetime and recent alcohol use and bone mineral density in adults with HIV infection and substance dependence. Medicine (Baltimore) 2017; 96:e6759. [PMID: 28445303 PMCID: PMC5413268 DOI: 10.1097/md.0000000000006759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 11/26/2022] Open
Abstract
Low bone mineral density (BMD) is common in people living with HIV infection (PLWH), increasing fracture risk. Alcohol use is also common in PLWH and is a modifiable risk factor for both HIV disease progression and low BMD. In PLWH, alcohol's effect on BMD is not well understood.We studied adult PLWH with substance dependence. We measured lifetime alcohol use (kg) and recent (i.e., past 30-day) alcohol use (categorized as: abstinent, low risk, or high risk). In adjusted multivariable regression analyses, we tested associations between lifetime and recent alcohol use and (i) mean BMD (g/cm) at the femoral neck, total hip, and lumbar spine and (ii) low BMD diagnosis (i.e., osteopenia or osteoporosis). We also examined associations between 2 measures of past alcohol use (i.e., total consumption [kg] and drinking intensity [kg/year]) and BMD outcome measures during 3 periods of the HIV care continuum: (i) period before first positive HIV test, (ii) period from first positive HIV test to antiretroviral therapy (ART) initiation, and (iii) period following ART initiation.We found no significant associations between lifetime alcohol use and mean femoral neck (β -0.000, P = .62), total hip (β -0.000, P = .83) or lumbar spine (β 0.001, P = .65) BMD (g/cm), or low BMD diagnosis (adjusted odds ratio [aOR] = 0.98, 95% Confidence Interval [CI]: 0.95-1.01). There was no significant correlation between past 30-day alcohol use and mean BMD (g/cm). Past 30-day alcohol use was associated with low BMD diagnosis (P = .04); compared to abstainers, the aOR for high risk alcohol use was 1.94 (95% CI: 0.91-4.12), the aOR for low risk alcohol use was 4.32 (95% CI: 1.30-14.33). Drinking intensity (kg/year) between first positive HIV test and ART initiation was associated with lower mean BMD (g/cm) at the femoral neck (β -0.006, P = .04) and total hip (β -0.007, P = .02) and increased odds of low BMD (aOR = 1.18, 95% CI = 1.03-1.36).In this sample of PLWH, we detected no association between lifetime alcohol use and BMD. However, recent drinking was associated with low BMD diagnosis, as was drinking intensity between first positive HIV test and ART initiation. Longitudinal studies should confirm these associations.
Collapse
Affiliation(s)
- Alicia S. Ventura
- Clinical Addiction Research and Education Unit, General Internal Medicine, Boston University School of Medicine and Boston Medical Center
- Department of Community Health Sciences, Boston University School of Public Health
| | | | - Timothy C. Heeren
- Department of Biostatistics, Boston University School of Public Health
| | | | - Alexander Y. Walley
- Clinical Addiction Research and Education Unit, General Internal Medicine, Boston University School of Medicine and Boston Medical Center
| | - Michael F. Holick
- Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA
| | | | - Seville M. Meli
- Department of Community Health Sciences, Boston University School of Public Health
| | - Jeffrey H. Samet
- Clinical Addiction Research and Education Unit, General Internal Medicine, Boston University School of Medicine and Boston Medical Center
- Department of Community Health Sciences, Boston University School of Public Health
| | - Richard Saitz
- Clinical Addiction Research and Education Unit, General Internal Medicine, Boston University School of Medicine and Boston Medical Center
- Department of Community Health Sciences, Boston University School of Public Health
| |
Collapse
|
25
|
Takeshima K, Nishiwaki Y, Suda Y, Niki Y, Sato Y, Kobayashi T, Miyamoto K, Uchida H, Inokuchi W, Tsuji T, Funayama A, Nakamura M, Matsumoto M, Toyama Y, Miyamoto T. A missense single nucleotide polymorphism in the ALDH2 gene, rs671, is associated with hip fracture. Sci Rep 2017; 7:428. [PMID: 28348376 PMCID: PMC5428735 DOI: 10.1038/s41598-017-00503-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/02/2017] [Indexed: 12/31/2022] Open
Abstract
Hip fracture is the most severe bone fragility fracture among osteoporotic injuries. Family history is a known risk factor for fracture and now included among criteria for osteoporosis diagnosis and treatment; however, genetic factors underlying family history favoring fracture remain to be elucidated. Here we demonstrate that a missense SNP in the ALDH2 gene, rs671 (ALDH2*2), is significantly associated with hip fracture (odds ratio = 2.48, 95% confidence interval: 1.20–5.10, p = 0.021). The rs671 SNP was also significantly associated with osteoporosis development (odds ratio = 2.04, 95% confidence interval: 1.07–3.88, p = 0.040). For analysis we enrolled 92 hip fracture patients plus 48 control subjects without bone fragility fractures with higher than −2.5 SD bone mineral density. We also recruited 156 osteoporosis patients diagnosed as below −2.5 SD in terms of bone mineral density but without hip fracture. Association of rs671 with hip fracture and osteoporosis was significant even after adjustment for age and body mass index. Our results provide new insight into the pathogenesis of hip fracture.
Collapse
Affiliation(s)
- Kenichiro Takeshima
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Orthopedic Surgery, Eiju General Hospital, 2-23-16 Higashiueno, Taito-ku, Tokyo, 110-8645, Japan
| | - Yuji Nishiwaki
- Department of Environmental and Occupational Health, School of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Yasunori Suda
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Orthopedic Surgery, International University of Health and Welfare, Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo, 108-8329, Japan
| | - Yasuo Niki
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuiko Sato
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Advanced Therapy for Musculoskeletal Disorders, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tami Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kana Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hisaya Uchida
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Orthopedic Surgery, Hiratsuka City Hospital, 1-19-1 Minamihara, Hiratsuka city, Kanagawa, 254-0065, Japan
| | - Wataru Inokuchi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Orthopedic Surgery, Nerima Sogo Hospital, 1-24-1 Asahigaoka, Nerima-ku, Tokyo, 176-8530, Japan
| | - Takashi Tsuji
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Orthopedic Surgery, Fujita Health University, 1-98 Kutsukake-cho, Toyoake city, Aichi, 470-1192, Japan
| | - Atsushi Funayama
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshiaki Toyama
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Department of Environmental and Occupational Health, School of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| |
Collapse
|
26
|
Pharmacological activation of aldehyde dehydrogenase 2 promotes osteoblast differentiation via bone morphogenetic protein-2 and induces bone anabolic effect. Toxicol Appl Pharmacol 2017; 316:63-73. [DOI: 10.1016/j.taap.2016.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/10/2016] [Accepted: 12/19/2016] [Indexed: 02/08/2023]
|
27
|
Matsumoto A, Thompson DC, Chen Y, Kitagawa K, Vasiliou V. Roles of defective ALDH2 polymorphism on liver protection and cancer development. Environ Health Prev Med 2016; 21:395-402. [PMID: 27714678 DOI: 10.1007/s12199-016-0579-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/25/2016] [Indexed: 12/12/2022] Open
Abstract
Because serum transaminases elevate alcohol dose dependently as a consequence of liver injury, they serve as useful biological markers of excessive drinking. However, these markers are inadequate in individuals with a defective allele of the aldehyde dehydrogenase 2 gene, ALDH2*2, because they show a different correlation with the amount of ethanol. For example, the serum alanine aminotransferase (ALT) level could become even lower than the baseline after alcohol intake in ALDH2*2 carriers. In fact, multiple studies suggest that ALDH2*2 is a hepato-protective factor in healthy individuals. Importantly, excessive drinking is particularly dangerous in carriers of ALDH2*2 because the risk of alcohol-related cancer is much higher than that for ALDH2*1/*1 carriers. Without recognizing the genotype interaction on serum transaminase, the opportunity to warn people about potential cancer risks is missed owing to incorrect interpretation. This is particularly important in East Asian countries where approximately half of the population carries the ALDH2*2 allele. To date, the mechanism of liver protection from ethanol load in individuals with ALDH2*2 has not been fully elucidated. However, some reasonable mechanisms have been suggested by experimental studies, including remodelling of detoxifying systems. Further studies to uncover the whole mechanism are anticipated.
Collapse
Affiliation(s)
- Akiko Matsumoto
- Department of Social Medicine, Saga University School of Medicine, Saga, 849-8501, Japan.
| | - David C Thompson
- Department of Clinical Pharmacy, University of Colorado School of Pharmacy, 12850 E. Aurora, Denver, CO, 80045, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06520-8034, USA
| | - Kyoko Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, 431-3125, Japan
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06520-8034, USA
| |
Collapse
|
28
|
Heit C, Dong H, Chen Y, Shah YM, Thompson DC, Vasiliou V. Transgenic mouse models for alcohol metabolism, toxicity, and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 815:375-87. [PMID: 25427919 PMCID: PMC4323349 DOI: 10.1007/978-3-319-09614-8_22] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alcohol abuse leads to tissue damage including a variety of cancers; however, the molecular mechanisms by which this damage occurs remain to be fully understood. The primary enzymes involved in ethanol metabolism include alcohol dehydrogenase (ADH), cytochrome P450 isoform 2E1, (CYP2E1), catalase (CAT), and aldehyde dehydrogenases (ALDH). Genetic polymorphisms in human genes encoding these enzymes are associated with increased risks of alcohol-related tissue damage, as well as differences in alcohol consumption and dependence. Oxidative stress resulting from ethanol oxidation is one established pathogenic event in alcohol-induced toxicity. Ethanol metabolism generates free radicals, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), and has been associated with diminished glutathione (GSH) levels as well as changes in other antioxidant mechanisms. In addition, the formation of protein and DNA adducts associated with the accumulation of ethanol-derived aldehydes can adversely affect critical biological functions and thereby promote cellular and tissue pathology. Animal models have proven to be valuable tools for investigating mechanisms underlying pathogenesis caused by alcohol. In this review, we provide a brief discussion on several animal models with genetic defects in alcohol-metabolizing enzymes and GSH-synthesizing enzymes and their relevance to alcohol research.
Collapse
Affiliation(s)
- Claire Heit
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045, USA
| | | | | | | | | | | |
Collapse
|
29
|
Titanji K, Vunnava A, Sheth AN, Delille C, Lennox JL, Sanford SE, Foster A, Knezevic A, Easley KA, Weitzmann MN, Ofotokun I. Dysregulated B cell expression of RANKL and OPG correlates with loss of bone mineral density in HIV infection. PLoS Pathog 2014; 10:e1004497. [PMID: 25393853 PMCID: PMC4231117 DOI: 10.1371/journal.ppat.1004497] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/01/2014] [Indexed: 11/18/2022] Open
Abstract
HIV infection is associated with high rates of osteopenia and osteoporosis, but the mechanisms involved are unclear. We recently reported that bone loss in the HIV transgenic rat model was associated with upregulation of B cell expression of the key osteoclastogenic cytokine receptor-activator of NF-κB ligand (RANKL), compounded by a simultaneous decline in expression of its physiological moderator, osteoprotegerin (OPG). To clinically translate these findings we performed cross-sectional immuno-skeletal profiling of HIV-uninfected and antiretroviral therapy-naïve HIV-infected individuals. Bone resorption and osteopenia were significantly higher in HIV-infected individuals. B cell expression of RANKL was significantly increased, while B cell expression of OPG was significantly diminished, conditions favoring osteoclastic bone resorption. The B cell RANKL/OPG ratio correlated significantly with total hip and femoral neck bone mineral density (BMD), T- and/or Z-scores in HIV infected subjects, but revealed no association at the lumbar spine. B cell subset analyses revealed significant HIV-related increases in RANKL-expressing naïve, resting memory and exhausted tissue-like memory B cells. By contrast, the net B cell OPG decrease in HIV-infected individuals resulted from a significant decline in resting memory B cells, a population containing a high frequency of OPG-expressing cells, concurrent with a significant increase in exhausted tissue-like memory B cells, a population with a lower frequency of OPG-expressing cells. These data validate our pre-clinical findings of an immuno-centric mechanism for accelerated HIV-induced bone loss, aligned with B cell dysfunction. HIV infection causes significant bone loss and skeletal deterioration, leading to fractures that are often devastating and incur significant financial burden on patients and their families. HIV-infected individuals have up to a five-fold higher risk of bone fractures, and the increasing average age of people living with HIV/AIDS has triggered fears of an impending epidemic of bone fractures in this population. Antiretroviral therapy, used to manage HIV infection, fails to prevent, but rather paradoxically accelerates skeletal decline. The underlying mechanisms of HIV-induced bone loss are poorly understood. The aim of this study was to clarify the mechanisms of bone loss in HIV-infected patients, in an effort to better understand how bone loss and fractures occur, and consequently how it can be prevented in this population. The cytokine RANKL (Receptor Activator of Nuclear Factor kappa-B Ligand) helps induce bone loss. We show that RANKL expression was increased in immune cells in HIV-infected individuals. Another cytokine, osteoprotegerin (OPG), counteracts the activity of RANKL, and therefor helps prevent bone loss. OPG expression by the same immune cells was decreased in HIV-infected individuals. We conclude that disrupted immune cell expression of RANKL and OPG in HIV-infected patients contributes to bone loss.
Collapse
Affiliation(s)
- Kehmia Titanji
- Division of Endocrinology, Metabolism and Lipids, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Aswani Vunnava
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Anandi N. Sheth
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Cecile Delille
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jeffrey L. Lennox
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sara E. Sanford
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Antonina Foster
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Andrea Knezevic
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Kirk A. Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - M. Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Atlanta VA Medical Center, Decatur, Georgia, United States of America
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (MNW); (IO)
| | - Ighovwerha Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (MNW); (IO)
| |
Collapse
|
30
|
Matsumoto A, Vasiliou V, Kawamoto T, Tanaka K, Ichiba M. Ethanol reduces lifespan, body weight, and serum alanine aminotransferase level of aldehyde dehydrogenase 2 knockout mouse. Alcohol Clin Exp Res 2014; 38:1883-93. [PMID: 24930774 DOI: 10.1111/acer.12462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/02/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND The aldehyde dehydrogenase 2 (Aldh2) knockout mouse is an animal model of a polymorphism at the human ALDH2 locus (ALDH2*2). To detect differences in the basic phenotype of this animal model, lifespan, body weight (BW), and serum alanine aminotransferase (ALT) level were evaluated. METHODS Aldh2(+/+) , Aldh2(+/-) , and Aldh2(-/-) mice were maintained, from 10 weeks of age, on standard solid food, with liquid supplied as ethanol (EtOH) solution at a concentration of 0 to 20% (forced EtOH consumption). RESULTS For animals provided with water (without EtOH), mice of the distinct genotypes exhibited no difference in lifespan, with the mean values ranging from 90 to 96 weeks for female mice and 97 to 105 weeks for male mice. For animals provided with EtOH, there was a dose-dependent reduction of lifespan in Aldh2(-/-) mice with p for trend <0.001. For example, the mean lifespans of the Aldh2(-/-) females in the 0, 3, 10, and 20% groups were 95, 85, 70, and 29 weeks, respectively. No influence on lifespan was found for Aldh2(+/+) and Aldh2(+/-) mice. BW and ALT level of Aldh2(-/-) mice were significantly lower than those of Aldh2(+/+) mice when the mice were treated with EtOH. While multiple regression analysis suggested that the BW and ALT level in Aldh2(-/-) mice correlated with lifespan, adjustment for EtOH concentration revealed that this correlation was not significant (i.e., reflected EtOH dependence). CONCLUSIONS Aldh2(-/-) mice were unchanged in terms of their basic phenotype under standard laboratory conditions. However, chronic EtOH administration (forced consumption) in these mice resulted in dose-dependent reductions in lifespan, BW, and serum ALT level.
Collapse
|
31
|
Chen CH, Ferreira JCB, Gross ER, Mochly-Rosen D. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol Rev 2014; 94:1-34. [PMID: 24382882 DOI: 10.1152/physrev.00017.2013] [Citation(s) in RCA: 453] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A family of detoxifying enzymes called aldehyde dehydrogenases (ALDHs) has been a subject of recent interest, as its role in detoxifying aldehydes that accumulate through metabolism and to which we are exposed from the environment has been elucidated. Although the human genome has 19 ALDH genes, one ALDH emerges as a particularly important enzyme in a variety of human pathologies. This ALDH, ALDH2, is located in the mitochondrial matrix with much known about its role in ethanol metabolism. Less known is a new body of research to be discussed in this review, suggesting that ALDH2 dysfunction may contribute to a variety of human diseases including cardiovascular diseases, diabetes, neurodegenerative diseases, stroke, and cancer. Recent studies suggest that ALDH2 dysfunction is also associated with Fanconi anemia, pain, osteoporosis, and the process of aging. Furthermore, an ALDH2 inactivating mutation (termed ALDH2*2) is the most common single point mutation in humans, and epidemiological studies suggest a correlation between this inactivating mutation and increased propensity for common human pathologies. These data together with studies in animal models and the use of new pharmacological tools that activate ALDH2 depict a new picture related to ALDH2 as a critical health-promoting enzyme.
Collapse
|
32
|
Mittal M, Khan K, Pal S, Porwal K, China SP, Barbhuyan TK, Baghel KS, Rawat T, Sanyal S, Bhadauria S, Sharma VL, Chattopadhyay N. The thiocarbamate disulphide drug, disulfiram induces osteopenia in rats by inhibition of osteoblast function due to suppression of acetaldehyde dehydrogenase activity. Toxicol Sci 2014; 139:257-70. [PMID: 24496638 DOI: 10.1093/toxsci/kfu020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dithiocarbamates (DTC), a sulfhydryl group containing compounds, are extensively used by humans that include metam and thiram due to their pesticide properties, and disulfiram (DSF) as an alcohol deterrent. We screened these DTC in an osteoblast viability assay. DSF exhibited the highest cytotoxicity (IC50 488nM). Loss in osteoblast viability and proliferation was due to induction of apoptosis via G1 arrest. DSF treatment to osteoblasts reduced glutathione (GSH) levels and exogenous addition of GSH prevented DSF-induced reactive oxygen species generation and osteoblast apoptosis. DSF also inhibited osteoblast differentiation in vitro and in vivo, and the effect was associated with inhibition of aldehyde dehydrogenase (ALDH) activity. Out of various ALDH isozymes, osteoblasts expressed only ALDH2 and DSF downregulated its transcript as well as activity. Alda-1, a specific activator of ALDH2, stimulated osteoblast differentiation. Subcutaneous injection of DSF over the calvarium of new born rats reduced the differentiation phenotype of calvarial osteoblasts but increased the mRNA levels of Runx-2 and osteocalcin. DSF treatment at a human-equivalent dose of 30 mg/kg p.o. to adult Sprague Dawley rats caused trabecular osteopenia and suppressed the formation of mineralized nodule by bone marrow stromal cells. Moreover, DSF diminished bone regeneration at the fracture site. In growing rats, DSF diminished growth plate height, primary and secondary spongiosa, mineralized osteoid and trabecular strength. Substantial decreased bone formation was also observed in the cortical site of these rats. We conclude that DSF has a strong osteopenia inducing effect by impairing osteoblast survival and differentiation due to the inhibition of ALDH2 function.
Collapse
Affiliation(s)
- Monika Mittal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226021, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Alcohol is widely consumed across the world in different cultural and social settings. Types of alcohol consumption differ between (a) light, only occasional consumption, (b) heavy chronic alcohol consumption, and (c) binge drinking as seen as a new pattern of alcohol consumption among teenagers and young adults. Heavy alcohol consumption is detrimental to many organs and tissues, including bones. Osteoporosis is regularly mentioned as a secondary consequence of alcoholism, and chronic alcohol abuse is established as an independent risk factor for osteoporosis. The review will present the different mechanisms and effects of alcohol intake on bone mass, bone metabolism, and bone strength, including alcoholism-related "life-style factors" such as malnutrition, lack of exercise, and hormonal changes as additional causative factors, which also contribute to the development of osteoporosis due to alcohol abuse.
Collapse
|
34
|
Abstract
The etiology of skeletal disease is driven by genetic and environmental factors. Genome-wide association studies (GWAS) of osteoporotic phenotypes have identified novel candidate genes, but have only uncovered a small proportion of the trait variance explained. This "missing heritability" is caused by several factors, including the failure to consider gene-by-environmental (G*E) interactions. Some G*E interactions have been investigated, but new approaches to integrate environmental data into genomic studies are needed. Advances in genotyping and meta-analysis techniques now allow combining genotype data from multiple studies, but the measurement of key environmental factors in large human cohorts still lags behind, as do the statistical tools needed to incorporate these measures in genome-wide association meta-studies. This review focuses on discussing ways to enhance G*E interaction studies in humans and how the use of rodent models can inform genetic studies. Understanding G*E interactions will provide opportunities to effectively target intervention strategies for individualized therapy.
Collapse
|
35
|
Banu J. Causes, consequences, and treatment of osteoporosis in men. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:849-60. [PMID: 24009413 PMCID: PMC3758213 DOI: 10.2147/dddt.s46101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Men undergo gradual bone loss with aging, resulting in fragile bones. It is estimated that one in five men will suffer an osteoporotic fracture during their lifetime. The prognosis for men after a hip fracture is very grim. A major cause is reduction of free testosterone. Many other factors result in secondary osteoporosis, including treatment for other diseases such as cancer and diabetes. Patients should be screened not only for bone density but also assessed for their nutritional status, physical activity, and drug intake. Therapy should be chosen based on the type of osteoporosis. Available therapies include testosterone replacement, bisphosphonates, and nutritional supplementation with calcium, vitamin D, fatty acids, and isoflavones, as well as certain specific antibodies, like denosumab and odanacatib, and inhibitors of certain proteins.
Collapse
Affiliation(s)
- Jameela Banu
- Coordinated Program in Dietetics, College of Health Sciences and Human Services and Department of Biology, College of Science and Mathematics, University of Texas-Pan American, Edinburg, TX 78539, USA.
| |
Collapse
|
36
|
Tsuchiya T, Sakai A, Menuki K, Mori T, Takeuchi Y, Kanoh S, Utsunomiya H, Murai T, Isse T, Kawamoto T, Nakamura T. Disruption of aldehyde dehydrogenase 2 gene results in altered cortical bone structure and increased cortical bone mineral density in the femoral diaphysis of mice. Bone 2013; 53:358-68. [PMID: 23313283 DOI: 10.1016/j.bone.2012.12.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/18/2012] [Accepted: 12/28/2012] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Aldehyde dehydrogenase 2 (ALDH2) degrades acetaldehyde produced by the metabolism of alcohol. The inactive ALDH2 phenotype is prevalent in East Asians, and an association between this ALDH2 polymorphism and osteoporosis has been reported. In our previous study, we found that alcohol consumption results in decreased trabecular bone volume in aldh2 knockout (aldh2(-/-)) mice compared with the volume in wild-type (aldh2(+/+)) mice. However, the effect of aldh2 gene on the skeletal phenotype in the absence of alcohol consumption remains unknown. The aim of this study was to clarify the effect of aldh2 disruption on femoral bone structure and dynamics in aldh2-disrupted mice in the absence of alcohol consumption. MATERIALS AND METHODS We examined aldh2(-/-) and aldh2(+/+) mice at the ages of 4, 8 and 12weeks. The femoral bone length and bone mineral density (BMD) were measured using peripheral quantitative computed tomography. The mechanical strength was assessed by the three-point bending test at 12weeks, and cortical bone histomorphometry at the femur diaphysis was performed at all three time points. Osteogenic activities in aldh2(-/-) and aldh2(+/+) mice were assessed by osteoblast culture from calvariae of the neonatal mice. Bilateral femoral and tibial bones containing no bone marrow cells of 8-week-old mice were used for analysis of mRNA expression. In addition, mRNA expression in aldh2(-/-) and aldh2(+/+) mice after tail suspension or climbing exercise for 7days from 8weeks was analyzed to clarify the response to mechanical loading. RESULTS At 12weeks, there were no significant differences in femoral bone length, trabecular BMD in the distal metaphyses of the femurs, or mechanical strength between aldh2(-/-) and aldh2(+/)(+) mice, whereas cortical BMD and cortical thickness were significantly increased and cross-sectional area and bone marrow area were significantly decreased in the femoral diaphysis of aldh2(-/-) mice relative to the corresponding values in aldh2(+/+) mice. At 8weeks, bone formation rate and mineral apposition rate on the periosteal and endocortical surfaces were significantly increased in aldh2(-/-) mice relative to the rates in aldh(+/+) mice. Calvarial osteoblast culture study revealed that the percentage of alkaline phosphatase stained cells was significantly higher in aldh2(-/-) mice compared to that in aldh(+/+) mice. Quantitative real-time RT-PCR revealed a significant increase in the expressions of bmp2, osterix, runx2, and col1a1 mRNA in aldh2(-/-) mice, along with an increase in the expression of wnt5a mRNA and the lrp5/sost mRNA ratio. The mRNA expressions of bmp2, osterix, runx2 and pthr in aldh2(-/-) mice were significantly decreased after climbing exercise compared to those in the control, although the mRNA expressions of bmp2, osterix, runx2 were not significantly decreased and pthr mRNA expression was increased in aldh(+/+) mice after climbing exercise. CONCLUSION Our results show that disruption of aldh2 gene resulted in altered cortical bone structure and dynamics in mice. Cross-sectional area was decreased. Cortical BMD was increased owing to the promotion of cortical bone formation on the periosteal and endocortical surfaces of the femoral diaphysis. The possible mechanisms underlying altered cortical bone structure in aldh2(-/-) mice were gene-related higher osteogenic activity of osteoblasts and weakened osteogenice response to mechanical loading in growth period.
Collapse
Affiliation(s)
- Takuto Tsuchiya
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Utsunomiya H, Uchida S, Sekiya I, Sakai A, Moridera K, Nakamura T. Isolation and characterization of human mesenchymal stem cells derived from shoulder tissues involved in rotator cuff tears. Am J Sports Med 2013; 41:657-68. [PMID: 23371475 DOI: 10.1177/0363546512473269] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Recent studies report a relatively high failure rate for tendon-bone healing after rotator cuff repair. Several studies have investigated biologically augmented rotator cuff repair; however, none has shown the application of synovial mesenchymal stem cells for such repair. PURPOSE To demonstrate whether cells derived from shoulder tissues have mesenchymal stem cell properties and to identify which tissue is the best source of the mesenchymal stem cells. STUDY DESIGN Controlled laboratory study. METHODS Forty-two patients with a diagnosed rotator cuff tear preoperatively were enrolled in this study. Human mesenchymal tissues were obtained during arthroscopic surgery for rotator cuff tears from 19 donors who met the inclusion criteria and had investigable amounts of tissue. Colony-forming units, yield obtained, expandability, differentiation potential, epitope profile, and gene expression were compared among the cells from 4 shoulder tissues: synovium of the glenohumeral joint, subacromial bursa, margin of the ruptured supraspinatus tendon, and residual tendon stump on the greater tuberosity (enthesis). RESULTS The number of live passage 0 cells from whole tissue was significantly higher in cells derived from the subacromial bursa (P < .05). Subacromial bursa-derived cells retained their expandability even at passage 10. In adipogenesis experiments, the frequency of Oil Red O-positive colonies was significantly higher for synovium- and subacromial bursa-derived cells than for tendon- and enthesis-derived cells (P < .0001). In studies of osteogenesis, the rate of von Kossa- and alkaline phosphatase-positive colonies was highest in subacromial bursa-derived cells (P < .0001). The chondrogenic potential was highest in cells derived from the enthesis. For epitope profiling, 11 surface antigens were measured, and most had similar epitope profiles, irrespective of cell source. CONCLUSION The findings indicate that the subacromial bursa is a good candidate for the source of mesenchymal stem cells in rotator cuff tears. CLINICAL RELEVANCE Synovial cells from the subacromial bursa in patients with rotator cuff tears are a superior cell source in vitro, suggesting that mesenchymal stem cells from this tissue could be good candidates for biological augmentation of rotator cuff repair.
Collapse
Affiliation(s)
- Hajime Utsunomiya
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Excessive ethanol consumption under exposure to lead intensifies disorders in bone metabolism: a study in a rat model. Chem Biol Interact 2013; 203:486-501. [PMID: 23376407 DOI: 10.1016/j.cbi.2013.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/13/2012] [Accepted: 01/08/2013] [Indexed: 01/22/2023]
Abstract
It was investigated whether ethanol (Et) modifies the damaging impact of lead (Pb) on bone metabolism in a rat model reflecting excessive alcohol consumption by humans exposed to relatively high levels of this metal. For this purpose, markers of bone formation (osteocalcin, procollagen I, osteoprotegerin, alkaline phosphatase) and resorption (telopeptides of collagen I, soluble receptor activator of nuclear factor-κB ligand), calciotropic hormones (parathormone, calcitonin, 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D) in the serum, and the femur content of mineral (including calcium - Ca and inorganic phosphorus - P(i)) and organic components were estimated in the rats exposed to 500 mg Pb/l (in drinking water) or/and Et (5 g/kg b.wt./24 h, by oral gavage) for 12 weeks. Moreover, Ca and P(i) in the serum and urine, alkaline phosphatase in the bone tissue and Pb in the blood and femur were determined. The exposure to Pb or/and Et decreased bone formation and increased its resorption resulting in the bone demineralization. These effects were accompanied by destroying the hormonal regulation of mineral metabolism, and Ca and P(i) imbalance. The co-exposure to Pb and Et-induced disorders in bone metabolism were more advanced than those caused by Pb alone. Et co-administration increased Pb concentration in the blood and decreased its accumulation in the bone. This paper is the first report providing evidence that consumption of Et under exposure to Pb intensifies disorders in bone metabolism and that destroying of the receptor activator nuclear factor-κB (RANK)/RANK ligand/osteoprotegerin system is involved in the mechanisms of interactive action of these xenobiotics on the skeleton. The modifying impact of Et may be an effect of its independent osteotropic action and interaction with Pb. Based on the results it can be concluded that alcohol abuse by subjects excessively exposed to Pb considerably increases the risk of bone damage.
Collapse
|
39
|
Herrera A, Lobo-Escolar A, Mateo J, Gil J, Ibarz E, Gracia L. Male osteoporosis: A review. World J Orthop 2012; 3:223-34. [PMID: 23362466 PMCID: PMC3557324 DOI: 10.5312/wjo.v3.i12.223] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis in men is a heterogeneous disease that has received little attention. However, one third of worldwide hip fractures occur in the male population. This problem is more prevalent in people over 70 years of age. The etiology can be idiopathic or secondary to hypogonadism, vitamin D deficiency and inadequate calcium intake, hormonal treatments for prostate cancer, use of toxic and every disease or drug use that alters bone metabolism.Risk factors such as a previous history of fragility fracture should be assessed for the diagnosis. However, risk factors in men are very heterogeneous. There are significant differences in the pharmacological treatment of osteoporosis between men and women fundamentally due to the level of evidence in published trials supporting each treatment. New treatments will offer new therapeutic prospects. The goal of this work is a revision of the present status knowledge about male osteoporosis.
Collapse
|
40
|
Hoshi H, Hao W, Fujita Y, Funayama A, Miyauchi Y, Hashimoto K, Miyamoto K, Iwasaki R, Sato Y, Kobayashi T, Miyamoto H, Yoshida S, Mori T, Kanagawa H, Katsuyama E, Fujie A, Kitagawa K, Nakayama KI, Kawamoto T, Sano M, Fukuda K, Ohsawa I, Ohta S, Morioka H, Matsumoto M, Chiba K, Toyama Y, Miyamoto T. Aldehyde-stress resulting from Aldh2 mutation promotes osteoporosis due to impaired osteoblastogenesis. J Bone Miner Res 2012; 27:2015-23. [PMID: 22508505 DOI: 10.1002/jbmr.1634] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Osteoporosis is a complex disease with various causes, such as estrogen loss, genetics, and aging. Here we show that a dominant-negative form of aldehyde dehydrogenase 2 (ALDH2) protein, ALDH2*2, which is produced by a single nucleotide polymorphism (rs671), promotes osteoporosis due to impaired osteoblastogenesis. Aldh2 plays a role in alcohol-detoxification by acetaldehyde-detoxification; however, transgenic mice expressing Aldh2*2 (Aldh2*2 Tg) exhibited severe osteoporosis with increased levels of blood acetaldehyde without alcohol consumption, indicating that Aldh2 regulates physiological bone homeostasis. Wild-type osteoblast differentiation was severely inhibited by exogenous acetaldehyde, and osteoblastic markers such as osteocalcin, runx2, and osterix expression, or phosphorylation of Smad1,5,8 induced by bone morphogenetic protein 2 (BMP2) was strongly altered by acetaldehyde. Acetaldehyde treatment also inhibits proliferation and induces apoptosis in osteoblasts. The Aldh2*2 transgene or acetaldehyde treatment induced accumulation of the lipid-oxidant 4-hydroxy-2-nonenal (4HNE) and expression of peroxisome proliferator-activated receptor gamma (PPARγ), a transcription factor that promotes adipogenesis and inhibits osteoblastogenesis. Antioxidant treatment inhibited acetaldehyde-induced proliferation-loss, apoptosis, and PPARγ expression and restored osteoblastogenesis inhibited by acetaldehyde. Treatment with a PPARγ inhibitor also restored acetaldehyde-mediated osteoblastogenesis inhibition. These results provide new insight into regulation of osteoporosis in a subset of individuals with ALDH2*2 and in alcoholic patients and suggest a novel strategy to promote bone formation in such osteopenic diseases.
Collapse
Affiliation(s)
- Hiroko Hoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang Y, Ren J. ALDH2 in alcoholic heart diseases: molecular mechanism and clinical implications. Pharmacol Ther 2011; 132:86-95. [PMID: 21664374 DOI: 10.1016/j.pharmthera.2011.05.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/13/2011] [Indexed: 01/12/2023]
Abstract
Alcoholic cardiomyopathy is manifested as cardiac hypertrophy, disrupted contractile function and myofibrillary architecture. An ample amount of clinical and experimental evidence has depicted a pivotal role for alcohol metabolism especially the main alcohol metabolic product acetaldehyde, in the pathogenesis of this myopathic state. Findings from our group and others have revealed that the mitochondrial isoform of aldehyde dehydrogenase (ALDH2), which metabolizes acetaldehyde, governs the detoxification of acetaldehyde formed following alcohol consumption and the ultimate elimination of alcohol from the body. The ALDH2 enzymatic cascade may evolve as a unique detoxification mechanism for environmental alcohols and aldehydes to alleviate the undesired cardiac anomalies in ischemia-reperfusion and alcoholism. Polymorphic variants of the ALDH2 gene encode enzymes with altered pharmacokinetic properties and a significantly higher prevalence of cardiovascular diseases associated with alcoholism. The pathophysiological effects of ALDH2 polymorphism may be mediated by accumulation of acetaldehyde and other reactive aldehydes. Inheritance of the inactive ALDH2*2 gene product is associated with a decreased risk of alcoholism but an increased risk of alcoholic complications. This association is influenced by gene-environment interactions such as those associated with religion and national origin. The purpose of this review is to recapitulate the pathogenesis of alcoholic cardiomyopathy with a special focus on ALDH2 enzymatic metabolism. It will be important to dissect the links between ALDH2 polymorphism and prevalence of alcoholic cardiomyopathy, in order to determine the mechanisms underlying such associations. The therapeutic value of ALDH2 as both target and tool in the management of alcoholic tissue damage will be discussed.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | |
Collapse
|