1
|
Wang S, Chang X, Li J, Shi Z, Li G. Identification of chemical components and metabolites in rats after oral administration of Epimedium-Astragalus granule pair by liquid chromatography-high resolution mass spectrometry combined with diagnostic fragment ions and mass defect filtering. J Pharm Biomed Anal 2025; 259:116768. [PMID: 40014893 DOI: 10.1016/j.jpba.2025.116768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Herbal pairs are combinations of two relatively fixed herbs that are frequently used in clinical practice to achieve specific therapeutic effect. Epimedium and Astragalus are frequently used together in clinical settings. However, there is a lack of an in-depth understanding of the active components of these herbs in vivo. In this study, a method based on ultra-high-performance liquid chromatography coupled to high resolution mass spectrometry together with diagnostic fragment ions (DFIs) mass defect filtering (MDF) was developed to systematically screen and identify the chemical ingredients presenting in Epimedium-Astragalus granule pair (EAGP) and the absorbed components and their metabolites in rat plasma following oral administration. Using accurate mass determination, mass defect filtering and diagnostic fragment ion screening strategies, a total of eighty-five ingredients were identified in EAGP. By comparing the total ion chromatograms obtained from dosed rat plasma, blank rat plasma and EAGP solution, a total of forty-six compounds were detected in dosed rat plasma, including twenty-five prototypes and twenty-one metabolites. Among these, seventeen parent compounds were derived from Epimedium and eight were from Astragalus. These metabolites were associated with ononin (M1, M2, M9 M10 and M17), calycosin-7-O-β-D-glucoside (M6, M7, M8 and M13), icariin (M3, M4, M5, M11, M14, M15, M18, M19, M20 and M21) and methylnissolin (M12). The metabolic pathways included hydroxylation, demethylation, deglycosylation and glucuronidation. This study elucidated the potential pharmacologically active components of EAGP and provided essential data for the further study on its pharmacological materials basis and mechanism of action.
Collapse
Affiliation(s)
- Song Wang
- Department of Scientific Research Management, Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Xinnan Chang
- Department of Pharmacy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Jing Li
- Department of Teaching Management, Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zuoqiao Shi
- Department of Pharmacy, Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Guowen Li
- Department of Pharmacy, Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
2
|
Khan MA, Khan MA, Siddiqui S, Misra A, Yadav K, Srivastava A, Trivedi A, Husain I, Ahmad R. Phytoestrogens as potential anti-osteoporosis nutraceuticals: Major sources and mechanism(s) of action. J Steroid Biochem Mol Biol 2025; 251:106740. [PMID: 40139537 DOI: 10.1016/j.jsbmb.2025.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
By 2050, the global aging population is predicted to reach 1.5 billion, highlighting the need to enhance the quality of life of the elderly population. Osteoporotic fractures are projected to affect one in three women and one in five men over age 50. Initial treatments for osteoporosis in postmenopausal women include antiresorptive agents such as bisphosphonates, strontium ranelate, estrogen replacement therapy (ERT) and selective estrogen receptor modulators (SERMs). However, these do not rebuild bone, limiting their effectiveness. Denosumab, an FDA-approved antiresorptive monoclonal antibody, also has drawbacks including high costs, biannual subcutaneous injections, slow healing, impaired bone growth and side effects like eczema, flatulence, cellulitis, osteonecrosis of the jaw (ONJ) and an increased risk of spinal fractures after discontinuation of treatment. Nutraceuticals, particularly phytoestrogens, are gaining attention for their health benefits and safety in osteoporosis prevention, management and treatment. Phytoestrogens are plant metabolites similar to mammalian estrogens and include isoflavones, coumestans, lignans, stilbenes, and flavonoids. They interact with estrogen receptor isoforms ERα and ERβ, acting as agonists or antagonists based on concentration and bioavailability. Their tissue-selective activities are particularly significant: anti-estrogenic effects in reproductive tissues may lower the risk of hormone-related cancers (such as ovarian, uterine, breast and prostate), while estrogenic effects on bone could contribute to the preservation of bone mineral density.Phytoestrogens are, thus, used in managing breast and prostate cancers, cardiovascular diseases, menopause and osteoporosis. The present review focuses on the botanical origin, classification, sources and mechanism(s) of action of major phytoestrogens, their potential in prevention and management of osteoporosis and the requirement for additional clinical trials to achieve more definitive outcomes in order to confirm their efficacy and dosage safety.
Collapse
Affiliation(s)
- Mohammad Amir Khan
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Mohsin Ali Khan
- Dept. of Research & Development, Era University, Lucknow, UP 226003, India
| | - Sahabjada Siddiqui
- Dept. of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Aparna Misra
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Kusum Yadav
- Dept. of Biochemistry, University of Lucknow, Lucknow, UP 226003, India
| | - Aditi Srivastava
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Anchal Trivedi
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Ishrat Husain
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Rumana Ahmad
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India.
| |
Collapse
|
3
|
Wang W, Fan J, Li F, Gan S, Zhang J, Wang Y, Li Y, Li W, He Z, Ding H, Sun Y, Zhang T, Jiang Q. Design, synthesis and evaluation of carbamate-bridged amino acid prodrugs of cycloicaritin with improved antitumor activity, aqueous solubility and phase II metabolic stability. Eur J Med Chem 2024; 276:116646. [PMID: 38972080 DOI: 10.1016/j.ejmech.2024.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
Cycloicaritin (CICT), a bioactive flavonoid derived from the genus Epimedium, exhibits a variety of beneficial biological activities, including promising anticancer effects. However, its poor oral bioavailability is attributed to its extremely low aqueous solubility and rapid elimination via phase II conjugative metabolism. To overcome these limitations, we designed and synthesized a series of carbamate-bridged prodrugs, protecting the hydroxyl group at the 3-position of cycloicaritin by binding with the N-terminus of a natural amino acid. The optimal prodrug 4b demonstrated a significant increase in aqueous solubility as compared to CICT, as well as improved stability in phase II metabolism, while allowing for a rapid release of CICT in the blood upon gastrointestinal absorption. The prodrug 4b also facilitated oral absorption through organic anion-transporting polypeptide 2B1-mediated transport and exhibited moderate cytotoxicity. Importantly, the prodrug enhanced the oral bioavailability of CICT and displayed dose-dependent antitumor activity with superior safety. In summary, the prodrug 4b is a novel potential antitumor drug candidate, and the carbamate-bridged amino acid prodrug approach is a promising strategy for the oral delivery of CICT.
Collapse
Affiliation(s)
- Weiping Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaqi Fan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Fengxiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuo Gan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaming Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanfang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yingchao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenchao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Huaiwei Ding
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yongbing Sun
- Division of Pharmaceutics, National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.
| | - Tianhong Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Zhuang W, Sun N, Gu C, Liu S, Zheng Y, Wang H, Tong X, Song J. A literature review on Epimedium, a medicinal plant with promising slow aging properties. Heliyon 2023; 9:e21226. [PMID: 38027566 PMCID: PMC10665689 DOI: 10.1016/j.heliyon.2023.e21226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Ethnopharmacological relevance Aging is related to many factors, such as genes, oxidative damage, metabolic abnormalities, immune regulation and sex hormones. This article reviews the pharmacological mechanism of Epimedium on slow aging from six aspects: gene regulation, antioxidant, the regulation of metabolism, the modulation of the immune system, the regulation of sex hormone, and clinical efficacy.Aim of the studyThrough literature review, to discover the potential pharmacological mechanism of Epimedium for slow aging. Materials and methods We reviewed the literature on the applications of Epimedium in multiple systems and the potential underlying mechanisms with systematic and comprehensive illustrations. The review includes the following aspects: gene regulation, antioxidant, the regulation of metabolism, the modulation of the immune system, the regulation of sex hormone, clinical efficacy and safety. Results The slow aging active components of Epimedium may be flavonoids, such as Epimedins A, B, C and icariin The slow aging effect of Epimedium may be related to gene regulation, antioxidant, the regulation of metabolism, the modulation of the immune system, and the regulation of sex hormone. No severe adverse reaction has been reported. Conclusions Epimedium has potential slow aging effect and been widely used in the clinic for aging-related diseases in the real world in China; however, large-scale studies are still needed.
Collapse
Affiliation(s)
- Wei Zhuang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing 100053, China
| | - Nan Sun
- Department of Pharmacy, Beijing Mentougou District Hospital,Beijing, China
| | - Chengjuan Gu
- Department of Endocrinology, Shenzhen Hospital of Guangzhou University of Chinese Medicine(Futian),Shenzhen, China
| | - Shimeng Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yujiao Zheng
- Graduate School, Beijing University of Chinese Medicine, China, Beijing, China
| | - Han Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, China
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, China
| | - Juexian Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Huong NT, Son NT. Icaritin: A phytomolecule with enormous pharmacological values. PHYTOCHEMISTRY 2023:113772. [PMID: 37356700 DOI: 10.1016/j.phytochem.2023.113772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 06/27/2023]
Abstract
Pharmacological studies on flavonoids have always drawn much interest for many years. Icaritin (ICT), a representative flavone containing an 8-prenyl group, is a principal compound detected in medicinal plants of the genus Epimedum, the family Berberidaceae. Experimental results in the phytochemistry and pharmacology of this molecule are abundant now, but a deep overview has not been carried out. The goal of this review is to provide an insight into the natural observation, biosynthesis, biotransformation, synthesis, pharmacology, and pharmacokinetics of prenyl flavone ICT. The relevant data on ICT was collected from bibliographic sources, like Google Scholar, Web of Science, Sci-Finder, and various published journals. "Icaritin" alone or in combination is the main keyword to seek for references, and references have been updated till now. ICT is among the characteristic phytomolecules of Epimedum plants. Bacteria monitored its biosynthesis and biotransformation, while this agent was rapidly synthesized from phloroglucinol by microwave-assistance Claisen rearrangement. ICT is a potential agent in numerous in vitro and in vivo pharmacological records, which demonstrated its role in cancer treatments via apoptotic-related mechanisms. It also brings in various health benefits since it reduced harmful effects on the liver, lung, heart, bone, blood, and skin, and improved immune responses. Pharmacokinetic outcomes indicated that its metabolic pathway involved hydration, hydroxylation, dehydrogenation, glycosylation, and glucuronidation. Molecule mechanisms of action at a cellular level are predominant, but clinical studies are expected to get more. Structure-activity relationship records seem insufficient, and the studies on nano-combined approaches to improve its soluble property in living bodied medium are needed.
Collapse
Affiliation(s)
- Nguyen Thi Huong
- Faculty of Chemical Technology, Hanoi University of Industry, Hanoi, Viet Nam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam.
| |
Collapse
|
6
|
Yu H, Zhou W, Zhong Z, Qiu R, Chen G, Zhang P. High-mobility group box chromosomal protein-1 deletion alleviates osteoporosis in OVX rat model via suppressing the osteoclastogenesis and inflammation. J Orthop Surg Res 2022; 17:232. [PMID: 35414033 PMCID: PMC9004163 DOI: 10.1186/s13018-022-03110-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Osteoporosis is a skeletal metabolic disease that constitutes a great threaten to human health. However, there is currently no gold standard for its treatment. High-mobility group box chromosomal protein-1 (HMGB-1) has been reported to play an important role in various orthopedic diseases. Till now, its role in osteoporosis remains elusive. METHODS Rats underwent ovariectomy (OVX) were used to construct a postmenopausal model of osteoporosis. Then, rats were divided into sham groups without OVX surgery, OVX model group, HMGB-1 knockdown (HMGB-1 KD) OVX model groups. The expression of HMGB1 was evaluated by qRT-PCR and western blotting. Subsequently, the changes of trabeculae were evaluated by micro-computed tomography (CT) assay. Skeletal necrosis and metabolism were further analyzed by hematoxylin-eosin (HE) staining, Alcian blue staining and Masson's trichrome staining. The contents of serum alkaline phosphatase (ALP) and osteocalcin were detected by ELISA assay. Expression of osteoclast-associated receptor (OSCAR) and tartrate-resistant acid phosphatase (TRAP) were determined to investigate the effects of HMGB-1 loss on osteoclastogenesis. RESULTS Single HMGB-1 deletion exerted no significant effect on rat trabeculae, serum ALP and osteocalcin. Noticeably, HMGB1 knockdown dramatically ameliorated OVX-induced changes in above indexes. Trabeculae structures of OVX rats were sparse with disorder arrangement, which were greatly recovered after HMGB-1 deletion. Enhanced osteoclastogenesis was observed in OVX rats by increasing number of TRAP + cells and expression of TRAP and OSCAR, and loss of HMGB1 ameliorated osteoclastogenesis in OVA rats. Moreover, HMGB-1 deletion antagonized OVX-evoked downregulation of osteoblast activity markers osterix (OSX), collagen type I alpha 1(COL1A1) and distal-less homeobox 2 (DLX2) protein. Furthermore, loss of HMGB-1 attenuated fluctuation of inflammatory factors in OVX rats. Additionally, HMGB-1 deficiency inhibited OVX-evoked activation of the Toll-like receptor (TLR) 4/NF-κB signaling pathway. Moreover, reactivating the TLR4 signaling further aggravated OVX-induced osteoporosis, which was reversed by HMGB1 knockdown. CONCLUSION HMGB-1 deletion alleviated OVX-triggered osteoporosis by suppressing osteoclastogenesis and inflammatory disorder via the inhibition of the TLR4 signaling. Therefore, HMGB-1 may be a promising therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Haotao Yu
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510000, Guangdong, China
| | - Wei Zhou
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510000, Guangdong, China
| | - Zhihong Zhong
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510000, Guangdong, China
| | - Ruixin Qiu
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510000, Guangdong, China
| | - Guoquan Chen
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510000, Guangdong, China
| | - Ping Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
7
|
Gao L, Zhang SQ. Antiosteoporosis Effects, Pharmacokinetics, and Drug Delivery Systems of Icaritin: Advances and Prospects. Pharmaceuticals (Basel) 2022; 15:397. [PMID: 35455393 PMCID: PMC9032325 DOI: 10.3390/ph15040397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a systemic skeletal disorder affecting over 200 million people worldwide and contributes dramatically to global healthcare costs. Available anti-osteoporotic drug treatments including hormone replacement therapy, anabolic agents, and bisphosphonates often cause adverse events which limit their long-term use. Therefore, the application of natural products has been proposed as an alternative therapy strategy. Icaritin (ICT) is not only an enzyme-hydrolyzed product of icariin but also an intestinal metabolite of eight major flavonoids of the traditional Chinese medicinal plant Epimedium with extensive pharmacological activities, such as strengthening the kidney and reinforcing the bone. ICT displays several therapeutic effects, including osteoporosis prevention, neuroprotection, antitumor, cardiovascular protection, anti-inflammation, and immune-protective effect. ICT inhibits bone resorption activity of osteoclasts and stimulates osteogenic differentiation and maturation of bone marrow stromal progenitor cells and osteoblasts. As for the mechanisms of effect, ICT regulates relative activities of two transcription factors Runx2 and PPARγ, determines the differentiation of MSCs into osteoblasts, increases mRNA expression of OPG, and inhibits mRNA expression of RANKL. Poor water solubility, high lipophilicity, and unfavorable pharmacokinetic properties of ICT restrict its anti-osteoporotic effects, and novel drug delivery systems are explored to overcome intrinsic limitations of ICT. The paper focuses on osteogenic effects and mechanisms, pharmacokinetics and delivery systems of ICT, and highlights bone-targeting strategies to concentrate ICT on the ideal specific site of bone. ICT is a promising potential novel therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Lifang Gao
- School of Public Health, Capital Medical University, 10 Youanmenwai Xitiao, Beijing 100069, China;
| | - Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing 100050, China
| |
Collapse
|
8
|
Xu Q, Zhan P, Li X, Mo F, Xu H, Liu Y, Lai Q, Zhang B, Dai M, Liu X. Bisphosphonate-enoxacin inhibit osteoclast formation and function by abrogating RANKL-induced JNK signalling pathways during osteoporosis treatment. J Cell Mol Med 2021; 25:10126-10139. [PMID: 34651433 PMCID: PMC8572771 DOI: 10.1111/jcmm.16949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/02/2021] [Accepted: 09/19/2021] [Indexed: 01/23/2023] Open
Abstract
Osteoporosis is an age‐related disease characterized by low mineral density, compromised bone strength and increased risk of fragility fracture. Most agents for treating osteoporosis focus primarily on anti‐resorption by inhibiting osteoclast activity. Bisphosphonate (BP) is a potent anti‐resorptive agent that has been used clinically for decades and is proven to be effective. However, BP has a variety of side effects and is far from being an ideal anti‐osteoporosis agent. BP selectively binds to calcium crystals, which are subsequently taken up or released by osteoclasts. Based on the action of BP, we previously demonstrated the inhibitory effect of a novel bone‐targeting BP derivative, bisphosphonate‐enoxacin (BE). In the current study, we used bone marrow‐derived osteoclast cultures to further assess the inhibitory effect of BE on osteoclastogenesis and employed reverse transcription PCR and real‐time PCR to examine expression of osteoclast‐specific genes. Additionally, we used bone resorption and F‐actin immunofluorescence assays to evaluate the effect of BE on osteoclast function and investigated the potential mechanisms affecting osteoclast differentiation and function in vitro. Furthermore, an ovariectomized (OVX) rat model was established to evaluate the therapeutic effects of BE on preventing bone loss. Results showed that BE exerted potent inhibitory effects on osteoclast formation and bone resorption by specifically abrogating RANKL‐induced JNK signalling, and that it preserved OVX rat bone mass in vivo without any notable side effects. Collectively, these results indicated that the BP derivative BE may have significant potential as a treatment for osteoporosis and other osteolytic diseases.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Ping Zhan
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Xiaofeng Li
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Fengbo Mo
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Huaen Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Yuan Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Qi Lai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| |
Collapse
|
9
|
Harrison NJ, Shumway KL, Hansen SA, Maitz CA, Thombs LA, Flesner BK. A 3D-printed Apparatus for Imaging Multiple Rats Simultaneously. Comp Med 2021; 71:116-122. [PMID: 33706858 DOI: 10.30802/aalas-cm-20-000089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
CT (computerized tomography) is a necessary imaging modality for cancer staging and disease monitoring. Rodent models of cancer are commonly studied prior to human clinical trials, but CT in rodents can be difficult due to their small size and constant movement, which necessitates general anesthesia. Because microCT equipment is not always available, clinical CT may be a viable alternative. Limitations of microCT and clinical CT include biosecurity, anesthesia to limit image distortion due to motion, and cost. To address several of these constraints, we created a 3D-printed apparatus that accommodated simultaneous imaging of as many as 9 rats under gas anesthesia. Rats were anesthetized in series and placed in a 3 × 3 arrangement. To assess differences in attenuation between individual chambers and rows or columns in the device, we first imaged a standardized phantom plug as a control. We hypothesized that attenuation of specific rat organs would not be affected regardless of the location or position in the 3D-printed device. Four organs-liver, kidney, femur, and brain-were evaluated in 9 rats. For both the phantom and kidneys, statistically significant, but clinically negligible, effects on attenuation were noted between rows but not between columns. We attribute this finding to the absence of a top layer of the apparatus, which thus created asymmetric attenuation and beam hardening through the device. This apparatus allowed us to successfully image 9 rats simultaneously in a clinical CT machine, with negligible effects on attenuation. Planned improvements in this apparatus include completely enclosed versions for biosecure imaging.
Collapse
Affiliation(s)
- Nicholas J Harrison
- Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Kate L Shumway
- Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Sarah A Hansen
- Office of Animal Resources, University of Missouri, Columbia, Missouri
| | - Charles A Maitz
- Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Lori A Thombs
- Department of Statistics, College of Arts and Science, University of Missouri, Columbia, Missouri
| | - Brian K Flesner
- Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri;,
| |
Collapse
|
10
|
Zhou M, Zheng W, Sun X, Yuan M, Zhang J, Chen X, Yu K, Guo B, Ma B. Comparative analysis of chemical components in different parts of Epimedium Herb. J Pharm Biomed Anal 2021; 198:113984. [PMID: 33691203 DOI: 10.1016/j.jpba.2021.113984] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/29/2020] [Accepted: 02/12/2021] [Indexed: 11/28/2022]
Abstract
Epimedium herb is a well-known traditional Chinese medicine (TCM) that is used for treating kidney-yang deficiency, impotence and rheumatism, and flavonoids are the main active ingredients. The leaves and rhizomes of Epimedium herb are two separate kinds of medicinal materials with different functional indications and clinical applications. This study aimed to comprehensively analyze the chemical components of different parts of the herb from three Epimedium species (Epimedium sagittatum, E. pubescens and E. myrianthum) by using ultra high-performance liquid chromatography coupled with photo-diode array and quadrupole time-of-flight mass spectrometry (UHPLC-PDA-Q-TOF/MS) and multivariate statistical analysis to clarify the differences. Firstly, the workflow of UHPLC-Q-TOF/MS combined with UNIFI informatics was developed for characterizing the chemical compounds in different parts of Epimedium herb. Based on the exact mass information, the fragmentation characteristics and the retention times of compounds, all chromatographic peaks (74 chemical components) were identified. Secondly, 21 potential chemical markers for differentiating different parts of Epimedium herb were selected through PCA and PLS-DA analysis. The characteristic components in the leaves included flavonoids with Anhydroicaritin (type A, C-4' linked methoxy) as the backbone, and the characteristic components in the stems and rhizomes were Magnoline and flavonoids with Demethylanhydroicaritin (type B, C-4' linked hydroxyl) as the backbone. Thirdly, the UHPLC-PDA combined with heatmap visualization was employed to clarify the distribution of chemical components with high content in different parts of Epimedium herb. The results showed clear differences in the contents of chemical components in leaves, stems and rhizomes. The levels of flavonoids with Anhydroicaritin backbone were high in the leaves, and levels of flavonoids with Demethylanhydroicaritin backbone were high in the rhizomes. The levels of Magnoline in stems and rhizomes were higher than that in leaves. The contents of most of the compounds in stems remained low. The leaves and the other two parts (stems and rhizomes) can be distinguished by qualitative and semi-quantitative analysis of Magnoline and Epimedoside A (type B backbone). These results indicated that the different plant parts of Epimedium herb can be quickly and accurately distinguished by this method, establishing a foundation for the application of Epimedium herb.
Collapse
Affiliation(s)
- Ming Zhou
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wei Zheng
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xinguang Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ming Yuan
- Waters Technologies (Shanghai) Limited, Shanghai 201206, China
| | - Jie Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaojuan Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Kate Yu
- Waters Technologies (Shanghai) Limited, Shanghai 201206, China
| | - Baolin Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Baiping Ma
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
11
|
Chen M, Yang D, Hu X, Jiang G, Li T, Ouyang Z, Deng J. Stachydrine hydrochloride inhibits osteoclastogenesis by regulating the NF-κB and p38 signaling pathways to alleviate postmenopausal osteoporosis. Biochem Biophys Res Commun 2021; 542:1-8. [PMID: 33482468 DOI: 10.1016/j.bbrc.2021.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/06/2021] [Indexed: 01/21/2023]
Abstract
Osteoporosis is a common skeletal disorder characterized by low bone mass, defective bone microstructure, and increased risk of fracture. It's well known that excessive activation of osteoclasts plays a vital role in the pathogenesis of osteoporosis. Thus, inhibition of osteoclast formation and function might be a proving strategy for osteoporosis. In our study, for the first time we explored the effect of Stachydrine Hydrochloride in the treatment of osteoporosis. We demonstrated that SH markedly inhibited osteoclastogenesis and osteoclast function in vitro and effectively decrease bone resorption in vivo. These finding were further supported by changes in the NF-κB and p38 signaling pathways, which are classical downstream pathways of RANKL-mediated osteoclastogensis. Collectively, these data suggest the possible future use of SH to protect against bone loss in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Minghui Chen
- Department of Orthopedics, Changsha Central Hospital, Changsha, Hunan, 410011, PR China
| | - Daishui Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Xuantao Hu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Guangyao Jiang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Tao Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Jianliang Deng
- Department of Orthopedics, Changsha Central Hospital, Changsha, Hunan, 410011, PR China.
| |
Collapse
|
12
|
Wang M, Gao H, Li W, Wu B. Icariin and its metabolites regulate lipid metabolism: From effects to molecular mechanisms. Biomed Pharmacother 2020; 131:110675. [PMID: 32861069 DOI: 10.1016/j.biopha.2020.110675] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Icariin has a variety of biological activities, such as lipid-lowering effects, and has attracted widespread attention in recent years. However, it is not clear whether lipid-lowering effect is that multiple metabolites or a particular component plays a major role. It is known that icariin has a variety of metabolites in the body, including icariside I, icariside II, icaritin, desmethylicaritin, and other metabolites. Many of these studies have shown that the metabolites of icariin have a lipid-lowering effect. This paper focuses on the lipid-regulating effects of icariin and its metabolites in vitro and in vivo, and highlights the mechanisms involved. Icariin may have potential in the development of therapeutic strategies to regulate lipid metabolism.
Collapse
Affiliation(s)
- Miao Wang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
| | - Hongyan Gao
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China; Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, PR China
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, PR China.
| | - Bin Wu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China; Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China.
| |
Collapse
|
13
|
Jia Y, Jiang J, Zhao K, Zhang T, Sun P, Peng J, Yang Q, Qian Y. Disulfiram suppressed ethanol promoted RANKL-induced osteoclastogenesis in vitro and ethanol-induced osteoporosis in vivo via ALDH1A1-NFATc1 axis. Aging (Albany NY) 2019; 11:8103-8119. [PMID: 31596733 PMCID: PMC6814600 DOI: 10.18632/aging.102279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
Abstract
Excessive alcohol consumption is positively related to osteoporosis, and its treatment strategies are poorly developed. Disulfiram inhibits receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis; however, whether it can be used for ethanol-induced osteoclastogenesis and its underlying mechanism are still unclear. In this study, we demonstrated that ethanol promoted RANKL-induced osteoclast formation and bone resorption, whereas, disulfiram suppressed ethanol-induced osteoclastogenesis by abrogating the expression of nuclear factor of activated T cell c1 (NFATc1) in vitro. Further analysis revealed that aldehyde dehydrogenase 1A1 (ALDH1A1) is important for the expression of NFATc1, the master regulator of osteoclast differentiation. Furthermore, we showed that disulfiram protected ethanol-induced osteoporosis in vivo. Overall, our study provides promising evidence that disulfiram can be used as a treatment strategy for alcohol-related osteoporosis via the ALDH1A1T–NFATc1 axis.
Collapse
Affiliation(s)
- Yewei Jia
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing), Zhejiang 312000, China.,Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 312000, China
| | - Jiawei Jiang
- Department of Urinary Surgery, Jinhua Central Hospital (Jinhua Hospital, Zhejiang University School of Medicine, Jinhua), Zhejiang 321000, China
| | - Kangxian Zhao
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing), Zhejiang 312000, China
| | - Tan Zhang
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing), Zhejiang 312000, China
| | - Peng Sun
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing), Zhejiang 312000, China
| | - Jiaxuan Peng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi 530021, China
| | - Qichang Yang
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing), Zhejiang 312000, China
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing), Zhejiang 312000, China
| |
Collapse
|
14
|
Yin Z, Zhu W, Wu Q, Zhang Q, Guo S, Liu T, Li S, Chen X, Peng D, Ouyang Z. Glycyrrhizic acid suppresses osteoclast differentiation and postmenopausal osteoporosis by modulating the NF-κB, ERK, and JNK signaling pathways. Eur J Pharmacol 2019; 859:172550. [DOI: 10.1016/j.ejphar.2019.172550] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
|
15
|
Li C, Li Y, Zhang L, Zhang S, Yao W, Zuo Z. The protective effect of piperine on ovariectomy induced bone loss in female mice and its enhancement effect of osteogenic differentiation via Wnt/β-catenin signaling pathway. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
16
|
Chen X, Ouyang Z, Shen Y, Liu B, Zhang Q, Wan L, Yin Z, Zhu W, Li S, Peng D. CircRNA_28313/miR-195a/CSF1 axis modulates osteoclast differentiation to affect OVX-induced bone absorption in mice. RNA Biol 2019; 16:1249-1262. [PMID: 31204558 DOI: 10.1080/15476286.2019.1624470] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Osteoblastic bone formation and osteoclastic bone resorption dynamically maintain the bone homeostasis; in the present study, we attempt to investigate the mechanism of the excessive activation of osteoclasts inducing the deregulation of bone homeostasis from the perspective of non-coding RNA regulation. Differentially expressed patterns of circRNAs were examined in non-treated and RANKL + CSF1-treated bone marrow monocyte/macrophage (BMM) cells and differentially-expressed miRNAs during osteoclast differentiation were analyzed and identified. We found that circRNA_28313 was significantly induced by RANKL + CSF1 treatment. circRNA_28313 knockdown significantly inhibited RANKL + CSF1-induced differentiation of osteoclasts within BMM cells in vitro, while suppressed ovariectomized (OVX)-induced bone resorption in mice in vivo. Via bioinformatics analyses, it has been demonstrated that miR-195a might bind to circRNA_28313 and CSF1 and together form a circRNA-miRNA-mRNA network. circRNA_28313 relieves miR-195a-mediated suppression on CSF1 via acting as a ceRNA, therefore modulating the osteoclast differentiation in BMM cells. In conclusion, circRNA_28313, miR-195a, and CSF1 form a ceRNA network to function in RANKL + CSF1-induced osteoclast differentiation, thus affecting OVX-induced bone absorption in mice.
Collapse
Affiliation(s)
- Xia Chen
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Zhengxiao Ouyang
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Yi Shen
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Bo Liu
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Qiang Zhang
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Lu Wan
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Ziqing Yin
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Wei Zhu
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Shuai Li
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Dan Peng
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| |
Collapse
|
17
|
Wang X, Zhang M, Zhang D, Wang X, Cao H, Zhang Q, Yan C. Structural elucidation and anti-osteoporosis activities of polysaccharides obtained from Curculigo orchioides. Carbohydr Polym 2019; 203:292-301. [DOI: 10.1016/j.carbpol.2018.09.059] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/02/2018] [Accepted: 09/21/2018] [Indexed: 11/25/2022]
|
18
|
Huang L, Wang X, Cao H, Li L, Chow DHK, Tian L, Wu H, Zhang J, Wang N, Zheng L, Yao X, Yang Z, Qin L. A bone-targeting delivery system carrying osteogenic phytomolecule icaritin prevents osteoporosis in mice. Biomaterials 2018; 182:58-71. [DOI: 10.1016/j.biomaterials.2018.07.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022]
|
19
|
Lin J, Zhu J, Wang Y, Zhang N, Gober HJ, Qiu X, Li D, Wang L. Chinese single herbs and active ingredients for postmenopausal osteoporosis: From preclinical evidence to action mechanism. Biosci Trends 2018; 11:496-506. [PMID: 29151553 DOI: 10.5582/bst.2017.01216] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Postmenopausal osteoporosis is a systemic metabolic skeletal disease generally ascribable to a dearth of estrogen. Whether traditional Chinese medicine is effective in management of postmenopausal osteoporosis remains unclear. This article reviews the experimental evidence of both in vitro and in vivo preclinical studies with the theme of the application of Chinese single herbs and active ingredients in postmenopausal osteoporosis. It includes three single herbs (Herba Epimedium, Rhizoma Drynariae, and Salvia miltiorrhiza) and eight active ingredients (saikosaponins, linarin, echinacoside, sweroside, psoralen, poncirin, vanillic acid, and osthole). The experimental studies indicated their potential use as treatment for postmenopausal osteoporosis and investigated the underlying mechanisms including osteoprotegerin/receptor activator of nuclear factor κB ligand (OPG/RANKL), extracellular-signal-regulated kinase/c-Jun N terminal kinase/mitogen-activated protein kinase (ERK/JNK/MAPK), estrogen receptor (ER), bone morphogenetic protein (BMP), transforming growth factor (TGF)-β, Wnt/β-catenin, and Notch signaling pathways. This review contributes to a better understanding of traditional Chinese medicine and provides useful information for the development of more effective anti-osteoporosis drugs.
Collapse
Affiliation(s)
- Jing Lin
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Jun Zhu
- Department of Obstetrics and Gynecology, Wenling People's Hospital, Wenzhou Medical University
| | - Yan Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Na Zhang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | | | - Xuemin Qiu
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Dajin Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| |
Collapse
|
20
|
Hwang E, Lin P, Ngo HTT, Gao W, Wang YS, Yu HS, Yi TH. Icariin and icaritin recover UVB-induced photoaging by stimulating Nrf2/ARE and reducing AP-1 and NF-κB signaling pathways: a comparative study on UVB-irradiated human keratinocytes. Photochem Photobiol Sci 2018; 17:1396-1408. [DOI: 10.1039/c8pp00174j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Icariin (ICA) and icaritin (ICT) have potential to treat UVB-induced skin oxidative stress, inflammation and photoaging.
Collapse
Affiliation(s)
- Eunson Hwang
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Pei Lin
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Hien T. T. Ngo
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Wei Gao
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Yu-Shuai Wang
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Hong-Shan Yu
- College of Biotechnology
- Dalian Polytechnic University
- Dalian
- PR China
| | - Tae-Hoo Yi
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| |
Collapse
|
21
|
Li ZR, Cheng LM, Wang KZ, Yang NP, Yang SH, He W, Wang YS, Wang ZM, Yang P, Liu XZ, Luo YZ, Sun W, Wang HT, Zheng LZ, Wang XL, Qin L. Herbal Fufang Xian Ling Gu Bao prevents corticosteroid-induced osteonecrosis of the femoral head-A first multicentre, randomised, double-blind, placebo-controlled clinical trial. J Orthop Translat 2017; 12:36-44. [PMID: 29662777 PMCID: PMC5866478 DOI: 10.1016/j.jot.2017.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 02/05/2023] Open
Abstract
Background/Objective This is a multicentre, randomised, double-blind, placebo-controlled clinical trial to investigate the safety and efficacy of Chinese herbal Fufang Xian Ling Gu Bao (XLGB) with antiadipogenic compounds for the prevention of corticosteroid (CS)-induced osteonecrosis of femoral head (ONFH). Methods Patients of both genders, aged between 18 and 65 years, with diseases such as systemic lupus erythematosus, nephrosis, dermatosis and rheumatoid arthritis indicated for CS treatment and who did not show magnetic resonance imaging of ONFH at baseline were recruited into the study and then randomised into either XLGB group (n = 129) with daily oral administration of XLGB or placebo group (n = 146). Results Magnetic resonance imaging revealed a total of 30 ONFH cases at 6 months after CS treatment, with 6.98% (9 of 129 cases) and 14.4% (21 of 146 cases) in the XLGB group and placebo group, respectively, (p < 0.05), i.e., a 2-fold significantly less ONFH identified in the XLGB treatment group. Blood tests suggested that XLGB significantly inhibited the elevation of activated protein C resistance induced by CS treatment. Conclusion This is the first multicentre clinical study to demonstrate that the antiadipogenic compounds–rich herbal Fufang (formula) XLGB is effective in preventing CS-associated ONFH in patients with immune-inflammatory diseases under CS treatment. The translational potential of this article The translation potential of this clinical trial is that the initially officially approved clinical indication for XLGB for treatment of osteoporosis has been now also proven to be effective for a new clinical application.
Collapse
Affiliation(s)
- Zi-Rong Li
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li-Ming Cheng
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Kun-Zheng Wang
- Department of Orthopaedics, Second Affiliated Hospital, Xi'an Jiao Tong University, School of Medicine, Xi'an 710004, China
| | - Nan-Ping Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shu-Hua Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical Collage, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei He
- Department of Hip Joint Disease, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yi-Sheng Wang
- Department of Orthopaedics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Zhong-Ming Wang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pei Yang
- Department of Orthopaedics, Second Affiliated Hospital, Xi'an Jiao Tong University, School of Medicine, Xi'an 710004, China
| | - Xian-Zhe Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical Collage, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yue-Zhong Luo
- Department of Rheumatology and Immunology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wei Sun
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hai-Tao Wang
- Department of Orthopaedics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Li-Zhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xin-Luan Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China.,Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China.,Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
22
|
Lim R, Li L, Chew N, Yong EL. The prenylflavonoid Icaritin enhances osteoblast proliferation and function by signal transducer and activator of transcription factor 3 (STAT-3) regulation of C-X-C chemokine receptor type 4 (CXCR4) expression. Bone 2017; 105:122-133. [PMID: 28863947 DOI: 10.1016/j.bone.2017.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
Abstract
In this study, we examined the effects of a natural prenylflavonoid Icaritin (ICT), on human osteoblast proliferation and osteogenic function. We observed that ICT dose-dependently enhanced osteoblast proliferation by ~15% over a 7day period. This increase in cell proliferation was associated with corresponding increases in osteoblast functions as measured by ALP secretion, intracellular calcium ions influx and calcium deposition. These anabolic effects were associated with a 4-fold increase in CXCR4 mRNA and protein expression. Silencing of CXCR4 protein expression using small interfering RNA reversed ICT-induced increase in cell proliferation, ALP activity and calcium deposition. Interestingly, we observed that ICT dose-dependently increased STAT-3 phosphorylation; and this resulted in increased binding of phosphorylated STAT-3 to the promoter region of the CXCR4 gene, to increase CXCR4 protein expression. Furthermore, we found that inhibition of STAT-3 phosphorylation resulted in a decrease in CXCR4 protein expression; whilst increasing phosphorylation of STAT-3 using a constitutive active STAT-3 vector significantly increased CXCR4 levels. Moreover, the chemical inhibition of STAT-3 phosphorylation annulled our previously observed ICT-induced increases of osteoblast proliferation and function. Finally, in a rat model of estrogen-deficient osteoporosis, ICT restored both osteoblasts numbers and CXCR4 expression. Taken together, both cellular and animal models support the novel findings that ICT; through the phosphorylation of STAT-3, up-regulated CXCR4, to increase osteoblast proliferation and function.
Collapse
Affiliation(s)
- Rzl Lim
- Department of Obstetrics & Gynaecology, National University of Singapore, Singapore.
| | - L Li
- Department of Medicine, National University of, Singapore, Singapore
| | - N Chew
- Department of Medicine, National University of, Singapore, Singapore; Division of Infectious Diseases, National University Hospital Singapore, Singapore.
| | - E L Yong
- Department of Obstetrics & Gynaecology, National University of Singapore, Singapore.
| |
Collapse
|
23
|
Liu X, Chin JF, Qu X, Bi H, Liu Y, Yu Z, Zhai Z, Qin A, Zhang B, Dai M. The Beneficial Effect of Praeruptorin C on Osteoporotic Bone in Ovariectomized Mice via Suppression of Osteoclast Formation and Bone Resorption. Front Pharmacol 2017; 8:627. [PMID: 28955232 PMCID: PMC5601062 DOI: 10.3389/fphar.2017.00627] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/28/2017] [Indexed: 01/23/2023] Open
Abstract
Being a highly prevalent disease, osteoporosis causes metabolism defects. Low bone density, compromised bone strength, and an increased danger of fragility fracture are its main characteristics. Natural compounds have been considered as potential alternative therapeutic agents for treating osteoporosis. In this study, we demonstrated that a natural compound, praeruptorin C (Pra-C), derived from the dried roots of Peucedanum praeruptorum, has beneficial effects in suppressing osteoclast formation and resorption function via attenuating the activation of nuclear factor kappa B as well as c-Jun N-terminal kinase/mitogen-activated protein kinase signaling pathways. Moreover, Pra-C was tested in the ovariectomized (OVX) mice, a well-established model of post-menopausal bone loss, and the results indicated Pra-C exerted beneficial effects on inhibiting excessive osteoclast activity and increasing bone mass of OVX mice. Therefore, the protective effects of Pra-C on OVX mice bone are related to its inhibition of osteoclast formation and bone resorption, suggesting that Pra-C is a good potential candidate for osteoporosis treatment.
Collapse
Affiliation(s)
- Xuqiang Liu
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Jie-Fen Chin
- Department of Orthopedics, Erasmus University Medical CenterRotterdam, Netherlands
| | - Xinhua Qu
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Haidi Bi
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Yuan Liu
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Ziqiang Yu
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Zanjing Zhai
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Bin Zhang
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Min Dai
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang UniversityNanchang, China
| |
Collapse
|
24
|
Arpornmaeklong P, Sutthitrairong C, Jantaramanant P, Pripatnanont P. Allogenic human serum, a clinical grade serum supplement for promoting human periodontal ligament stem cell expansion. J Tissue Eng Regen Med 2017; 12:142-152. [PMID: 27957806 DOI: 10.1002/term.2379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 11/14/2016] [Accepted: 12/06/2016] [Indexed: 12/24/2022]
Abstract
Exposing human periodontal ligament stem cells (hPDLSCs) to animal proteins during cell expansion would compromise quality and safety of the hPDLSCs for clinical applications. The current study aimed to evaluate the replacement of animal-based serum by human serum for the expansion of hPDLSCs. hPDLSCs were cultured in culture media supplemented with four types of serums: Group A: fetal bovine serum (FBS); Group B: allogeneic human male AB serum (HS); Group C: in-house autologous (Auto-HS); and Group D: in-house allogeneic human serums (Allo-HS). Exhibitions of mesenchymal stem cell characteristics of hPDLSCs were examined. Then, growth and osteogenic (OS) differentiation potential of hPDLSCs in FBS and HS at passages 5 and 15 were compared to investigate the effects of serum supplements on growth and expansion stability of the expanded hPDLSCs. After that, growth and OS differentiation of hPDLSCs in Auto- and Allo-HS were investigated. Flow cytometrical analyses, functional differentiations, cell growth kinetic, cytogenetic analysis, alkaline phosphatase and calcium content assays, and oil red O and von Kossa staining were performed. Results showed that at passage 5, HS promoted growth and OS differentiation of hPDLSCs and extensive cell expansion, decreased growth and differentiation potential of the expanded hPDLSCs, particularly in HS. Growth and OS differentiation of hPDLSCs in Auto-HS and Allo-HS were not different. In summary, allogeneic human serum could be a replacement to FBS for hPDLSC expansion. In vitro cell expansion of hPDLSCs should be minimal to ensure optimal cell quality. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Premjit Arpornmaeklong
- Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand.,CranioMaxillofacial Hard Tissue Engineering Center, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Chotika Sutthitrairong
- CranioMaxillofacial Hard Tissue Engineering Center, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Piyathida Jantaramanant
- CranioMaxillofacial Hard Tissue Engineering Center, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Prisana Pripatnanont
- CranioMaxillofacial Hard Tissue Engineering Center, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
25
|
Zhang B, Chen X, Zhang R, Zheng F, Du S, Zhang X. Metabolite Profiling, Pharmacokinetics, and In Vitro Glucuronidation of Icaritin in Rats by Ultra-Performance Liquid Chromatography Coupled with Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:1073607. [PMID: 28785509 PMCID: PMC5529662 DOI: 10.1155/2017/1073607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Icaritin is a naturally bioactive flavonoid with several significant effects. This study aimed to clarify the metabolite profiling, pharmacokinetics, and glucuronidation of icaritin in rats. An ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) assay was developed and validated for qualitative and quantitative analysis of icaritin. Glucuronidation rates were determined by incubating icaritin with uridine diphosphate glucuronic acid- (UDPGA-) supplemented microsomes. Kinetic parameters were derived by appropriate model fitting. A total of 30 metabolites were identified or tentatively characterized in rat biosamples based on retention times and characteristic fragmentations, following proposed metabolic pathway which was summarized. Additionally, the pharmacokinetics parameters were investigated after oral administration of icaritin. Moreover, icaritin glucuronidation in rat liver microsomes was efficient with CLint (the intrinsic clearance) values of 1.12 and 1.56 mL/min/mg for icaritin-3-O-glucuronide and icaritin-7-O-glucuronide, respectively. Similarly, the CLint values of icaritin-3-O-glucuronide and icaritin-7-O-glucuronide in rat intestine microsomes (RIM) were 1.45 and 0.86 mL/min/mg, respectively. Taken altogether, dehydrogenation at isopentenyl group and glycosylation and glucuronidation at the aglycone were main biotransformation process in vivo. The general tendency was that icaritin was transformed to glucuronide conjugates to be excreted from rat organism. In conclusion, these results would improve our understanding of metabolic fate of icaritin in vivo.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaoli Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Rui Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Fangfang Zheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuzhang Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
26
|
Abstract
Drynariae Rhizoma is a kidney-tonifying herb that has a long history in clinical practice for the treatment of bone fractures and joint diseases in China. Flavonoids are considered to be its major active ingredients and are reported to ease bone loss in ovariectomized rats. However, the beneficial effects of the total flavonoids of Drynariae Rhizoma on osteoporosis caused by microgravity or mechanical inactivity remain unknown. This study assessed the effects of total Drynariae Rhizoma flavonoids (DRTF, Qihuang, Beijing, China, national medicine permit No. Z20030007, number of production: 04080081, content of DRTF ≥80%) against bone loss induced by simulated microgravity. A hindlimb unloading tail-suspended rat model was established to determine the effect of DRTF on bone mineral density (BMD), biomechanical strength and trabecular bone microarchitecture. Twenty-eight male Sprague-Dawley rats were divided into four groups: the baseline, control, hindlimb unloading with vehicle (HLU), and hindlimb unloading treated with DRTF (HLU-DRTF, 75 mg/kg/day) groups. Oral DRTF was administered for 4 weeks. The underlying mechanisms of the DRTF actions on disuse-induced osteoporosis are discussed. The results showed that DRTF treatment significantly increased the BMD and mechanical strength of tail-suspended rats. Enhanced bone turnover markers with HLU treatment were attenuated by DRTF administration. Deterioration of trabecular bone induced by HLU was prevented through elevated bone volume/tissue volume (BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th) and decreased trabecular separation (Tb. Sp). The present study provides the first evidence that DRTF prevents bone loss induced by HLU treatment, indicating its potential application in the treatment of disuse-induced osteoporosis.
Collapse
|
27
|
Liu X, Qu X, Nie T, Zhai Z, Li H, Ouyang Z, Qin A, Zhang S, Zhang S, Fan Q, Tang T, Yu Z, Dai M. The Beneficial Effects of Bisphosphonate-enoxacin on Cortical Bone Mass and Strength in Ovariectomized Rats. Front Pharmacol 2017. [PMID: 28638344 PMCID: PMC5461254 DOI: 10.3389/fphar.2017.00355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Osteoporosis is a major age-related bone disease characterized by low bone mineral density and a high risk of fractures. Bisphosphonates are considered as effective agents treating osteoporosis. However, long-term use of bisphosphonates is associated with some serious side effects, which limits the widespread clinical use of bisphosphonates. Here, we demonstrate a novel type of bone-targeting anti-resorptive agent, bisphosphonate-enoxacin (BE). In this study, ovariectomized rat model was established and treated with PBS, zoledronate (50 μg/kg) and different dose of BE (5 mg/kg and 10 mg/kg), respectively. The rats subjected to sham-operation and PBS treatment were considered as control group. Then, micro-computed tomography scanning, biomechanical tests, nano-indentation test and Raman analysis were used to compare the effects of zoledronate and BE on cortical bone mass, strength, and composition in ovariectomized rats. We found that both zoledronate and BE were beneficial to cortical bone strength. Three-point bending and nano-indentation tests showed that zoledronate- and BE-treated groups had superior general and local biomechanical properties compared to the ovariectomized groups. Interestingly, it seemed that BE-treated group got a better biomechanical property than the zoledronate-treated group. Also, BE-treated group showed significantly increased proteoglycan content compared with the zoledronate-treated group. We hypothesized that the increased bone strength and biomechanical properties was due to altered bone composition after treatment with BE. BE, a new bone-targeting agent, may be considered a more suitable anti-resorptive agent to treat osteoporosis and other bone diseases associated with decreased bone mass.
Collapse
Affiliation(s)
- Xuqiang Liu
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China.,Department of Orthopedics, The First Affiliated Hospital of Nanchang University, The Artificial Joint Engineering and Technology Research Center of Jiangxi ProvinceNanchang, China
| | - Xinhua Qu
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Tao Nie
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, The Artificial Joint Engineering and Technology Research Center of Jiangxi ProvinceNanchang, China
| | - Zanjing Zhai
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Haowei Li
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Zhengxiao Ouyang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China.,Department of Orthopedics, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - An Qin
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Shuhong Zhang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Shuangyan Zhang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Qiming Fan
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Tingting Tang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Zhifeng Yu
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, The Artificial Joint Engineering and Technology Research Center of Jiangxi ProvinceNanchang, China
| |
Collapse
|
28
|
Wang L, Hong X, Yao Z, Dai Y, Zhao G, Qin Z, Wu B, Gonzalez FJ, Yao X. Glucuronidation of icaritin by human liver microsomes, human intestine microsomes and expressed UDP-glucuronosyltransferase enzymes: identification of UGT1A3, 1A9 and 2B7 as the main contributing enzymes. Xenobiotica 2017; 48:357-367. [PMID: 28443723 DOI: 10.1080/00498254.2017.1323139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. Icaritin is a natural flavonoid with anti-osteoporosis activity. This study aimed to characterize icaritin glucuronidation by pooled human liver microsomes (HLM) and pooled human intestine microsomes (HIM), and to determine the contribution of individual UDP-glucuronosyltrans-ferase (UGT) enzyme to icaritin glucuronidation. 2. Glucuronidation rates were determined by incubating icaritin with uridine diphosphate glucuronic acid (UDPGA)-supplemented microsomes. Kinetic parameters were derived by appropriate model fitting. Relative activity factors and activity correlation analysis were performed to identify main UGT isoforms. 3. UGT1A3, 1A7, 1A8, 1A9 and 2B7 were mainly responsible for catalyzing the formation of two glucuronides (G1 and G2). Icaritin 3-O-glucuronidation (G1) was significantly correlated with Chenodeoxycholic acid (CDCA) glucuronidation (r = 0.787, p = 0.002), propofol glucuronidation (r = 0.661, p = 0.019) and Zidovudine (AZT) glucuronidation (r = 0.805, p = 0.002). Similarly, icaritin 7-O-glucuronidation (G2) was also correlated with CDCA glucuronidation (r = 0.640, p = 0.025), propofol glucuronidation (r = 0.592, p = 0.043) and AZT glucuronidation (r = 0.661, p = 0.019). In addition, UGT1A3, 1A9 and 2B7 contributed 37.5, 33.8 and 21.3% for G1 in pooled HLM, respectively. Also, UGT1A3, 1A9 and 2B7 contributed 34.3, 20.0 and 8.6% for G2 in pooled HLM, respectively. 4. Icaritin was subjected to significant glucuronidation, wherein UGT1A3, 1A7, 1A8, 1A9 and 2B7 were main contributing enzymes.
Collapse
Affiliation(s)
- Li Wang
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China
| | - Xiaodan Hong
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China
| | - Zhihong Yao
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China
| | - Yi Dai
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China
| | - Guoping Zhao
- c Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou , P.R. China , and
| | - Zifei Qin
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China.,c Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou , P.R. China , and
| | - Baojian Wu
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China.,c Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou , P.R. China , and
| | - Frank J Gonzalez
- d Laboratory of Metabolism , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Xinsheng Yao
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China.,c Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou , P.R. China , and
| |
Collapse
|
29
|
Tan EM, Li L, Indran IR, Chew N, Yong EL. TRAF6 Mediates Suppression of Osteoclastogenesis and Prevention of Ovariectomy-Induced Bone Loss by a Novel Prenylflavonoid. J Bone Miner Res 2017; 32:846-860. [PMID: 27813153 DOI: 10.1002/jbmr.3031] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 11/05/2022]
Abstract
Given the limitations of current therapeutic options for postmenopausal osteoporosis, there is a need for alternatives with minimal adverse effects. In this study, we evaluated the effects of icaritin (ICT), a natural prenylflavonoid, on osteoclastogenesis both in vitro and in an ovariectomized (OVX) rat model and investigated its underlying molecular mechanism(s) of action. ICT inhibited osteoclast formation in two osteoclast precursor models, RAW 264.7 mouse monocyte cell line and human PBMC. ICT also inhibited sealing zone and resorption pit formation in a dose-dependent manner. Mechanistically, ICT inhibited RANKL-induced NF-κB and MAPK/AP-1 pathways to suppress gene expression of nuclear factor of activated T cells (NFAT)c1, the master transcription regulator of osteoclast differentiation. ICT, by inhibiting the TRAF6/c-Src/PI3K pathway, suppressed NADPH oxidase-1 activation to attenuate intracellular ROS production and downregulate calcineurin phosphatase activity. As a result, NFATc1 nuclear translocation and activity was suppressed. Crucially, ICT promoted proteasomal degradation of TRAF6, the critical adaptor protein that transduces RANKL/RANK signaling, and the inhibitory effect of ICT on osteoclastogenesis was reversed by the proteasomal inhibitor MG 132. ICT administration inhibited OVX-induced bone loss and resorption by suppressing osteoclast formation and activity. Consistent with cellular studies, ICT downregulated TRAF6 and NFATc1 protein expression in CD11b+ /Gr-1-/low osteoclast precursors isolated from OVX rats. Put together, we present novel findings that ICT, by downregulating TRAF6, coordinates inhibition of NF-κB, MAPK/AP-1, and ROS signaling pathways to reduce expression and activity of NFATc1. These results demonstrate the potential of ICT for treatment of postmenopausal osteoporosis and point to TRAF6 as a promising target for novel anti-osteoporotic drugs. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ee Min Tan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lei Li
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Inthrani Raja Indran
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas Chew
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Infectious Diseases, University Medicine Cluster, National University Hospital Singapore, Singapore
| | - Eu-Leong Yong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
30
|
Glucocorticoid-induced leucine zipper may play an important role in icariin by suppressing osteogenesis inhibition induced by glucocorticoids in osteoblasts. Biomed Pharmacother 2017; 90:237-243. [PMID: 28363169 DOI: 10.1016/j.biopha.2017.03.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/27/2017] [Accepted: 03/17/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Icariin is a potent stimulator of osteogenic differentiation; however, the mechanism underlying its osteogenic effect remains unclear. The osteogenic effect of icariin is related to the upstream glucocorticoid-induced leucine zipper (GILZ) signaling pathway, and antagonism with dexamethasone-induced osteoblast inhibition was noted. METHODS MC3T3-E1 cells were cultured in induced medium treated with icariin with or without dexamethasone. After short interfering RNA (siRNA) were used to silence GILZ expression, the degree of mineralization, proliferation, and GILZ expression as well as the levels of osteogenic (OPG, RANKL, ALP, OC and RUNX2) markers were tested. RESULTS Dexamethasone inhibited, while icariin increased, osteogenic activity, as indicated by ALP activity and calcium nodules. Meanwhile, dexamethasone dose-dependently (10-6M-10-4M) increased GILZ and RANKL expression and reduced ALP, OPG and OC, but the pattern of mRNA expression was reversed when icariin was added. Furthermore, GILZ (dexamethasone-induced) inhibition caused by icariin or moderately silenced by GILZ siRNA abolished the osteogenesis inhibition effect of dexamethasone, as indicated by the changes in the GILZ, ALP, OPG and RANKL expression levels; ALP activity; and calcium nodule. CONCLUSIONS These results indicate that the GILZ-mediated osteogenic signal pathway is involved in the osteogenic effect induced by icariin.
Collapse
|
31
|
Antiadipogenic and proosteogenic effects of luteolin, a major dietary flavone, are mediated by the induction of DnaJ (Hsp40) Homolog, Subfamily B, Member 1. J Nutr Biochem 2016; 30:24-32. [DOI: 10.1016/j.jnutbio.2015.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 02/07/2023]
|
32
|
Dou C, Li J, Kang F, Cao Z, Yang X, Jiang H, Yang B, Xiang J, Xu J, Dong S. Dual Effect of Cyanidin on RANKL-Induced Differentiation and Fusion of Osteoclasts. J Cell Physiol 2016; 231:558-67. [PMID: 25545964 DOI: 10.1002/jcp.24916] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 12/18/2014] [Indexed: 11/08/2022]
Abstract
Bone homeostasis is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption. Osteoclasts are multinucleated cells derived from hematopoietic stem cells (HSCs) or monocyte/macrophage progenitor cells and formed by osteoclasts precursors (OCPs) fusion. Cyanidin is an anthocyanin widely distributed in food diet with novel antioxidant activity. However, the effect of cyanidin on osteoclasts is still unknown. We investigated the effect of cyanidin on RANKL-induced osteoclasts differentiation and cell fusion. The results showed that cyanidin had a dual effect on RANKL-induced osteoclastogenesis. Lower dosage of cyanidin (< 1 µg/ml) has a promoting effect on osteoclastogenesis while higher dosage of cyanidin (> 10 µg/ml) has an inhibitory effect. Fusogenic genes like CD9, ATP6v0d2, DC-STAMP, OC-STAMP, and osteoclasts related genes like NFATc1, mitf, and c-fos were all regulated by cyanidin consistent to its dual effect. Further exploration showed that low concentration of cyanidin could increase osteoclasts fusion whereas higher dosage of cyanidin lead to the increase of LXR-β expression and activation which is suppressive to osteoclasts differentiaton. All these results showed that cyanidin exhibits therapeutic potential in prevention of osteoclasts related bone disorders.
Collapse
Affiliation(s)
- Ce Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China.,National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianmei Li
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Fei Kang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Zhen Cao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Xiaochao Yang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Hong Jiang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Bo Yang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Junyu Xiang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Jianzhong Xu
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| |
Collapse
|
33
|
Anti-osteoclastogenic activity of isoliquiritigenin via inhibition of NF-κB-dependent autophagic pathway. Biochem Pharmacol 2016; 106:82-93. [PMID: 26947453 DOI: 10.1016/j.bcp.2016.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
Abstract
Previous studies, including those from our laboratory, have demonstrated that the natural flavonoid isoliquiritigenin (ISL) is a promising agent for bone destructive diseases. However, the mechanisms underlying its anti-osteoclastogenic effects are still far from clear. Here, we evaluated the potential alterations of autophagy and nuclear factor-κB (NF-κB) during anti-osteoclastogenic effects by ISL in vitro and in vivo. We observed that ISL inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and suppressed autophagic microtubule-associated protein light chain 3 (LC3)-II and Beclin 1 accumulation. ISL treatment resulted in the interruption of several specific features for autophagy in osteoclast precursors, including acidic vesicular organelle formation, LC3-II accumulation, and appearance of autophagic vacuoles. The RANKL-stimulated expression levels of autophagy-related genes and proteins also diminished in ISL-treated osteoclast precursors. The reactivation of autophagy by rapamycin almost reversed the ISL-elicited anti-osteoclastogenic effects. Interestingly, ISL inhibited the RANKL-stimulated NF-κB expression and nuclear translocation, whereas the NF-κB inhibitor Bay 11-7082 markedly suppressed the RANKL-induced autophagic activation. Consistent with the in vitro results, the administration of ISL could attenuate osteoclastogenic cathepsin K, autophagic LC3, and NF-κB expression to protect against inflammatory calvarial bone erosion in vivo. Our findings highlight the inhibition of NF-κB-dependent autophagy as an important mechanism of ISL-mediated anti-osteoclastogenic activity.
Collapse
|
34
|
Che CT, Wong MS, Lam CWK. Natural Products from Chinese Medicines with Potential Benefits to Bone Health. Molecules 2016; 21:239. [PMID: 26927052 PMCID: PMC6274145 DOI: 10.3390/molecules21030239] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 01/23/2023] Open
Abstract
Osteoporosis is a progressive, systemic bone disorder characterized by loss of bone mass and microstructure, leading to reduced bone strength and increased risk of fracture. It is often associated with reduced quality of life and other medical complications. The disease is common in the aging population, particularly among postmenopausal women and patients who receive long-term steroidal therapy. Given the rapid growth of the aging population, increasing life expectancy, the prevalence of bone loss, and financial burden to the healthcare system and individuals, demand for new therapeutic agents and nutritional supplements for the management and promotion of bone health is pressing. With the advent of global interest in complementary and alternative medicine and natural products, Chinese medicine serves as a viable source to offer benefits for the improvement and maintenance of bone health. This review summarizes the scientific information obtained from recent literatures on the chemical ingredients of Chinese medicinal plants that have been reported to possess osteoprotective and related properties in cell-based and/or animal models. Some of these natural products (or their derivatives) may become promising leads for development into dietary supplements or therapeutic drugs.
Collapse
Affiliation(s)
- Chun-Tao Che
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Man Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
35
|
Indran IR, Liang RLZ, Min TE, Yong EL. Preclinical studies and clinical evaluation of compounds from the genus Epimedium for osteoporosis and bone health. Pharmacol Ther 2016; 162:188-205. [PMID: 26820757 DOI: 10.1016/j.pharmthera.2016.01.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The morbidity and mortality associated with fractures due to osteoporosis or "porous bone" contributes significantly to global healthcare costs and will increase exponentially with ageing populations. In menopausal women, the onset of menopause and rapid estrogen withdrawal leads to osteoporotic fractures. Healthy bone requires the coordinated remodeling function of osteoclasts, osteoblasts, and osteocytes in the basic bone multicellular unit, regulated by estrogen, RANKL/OPG, ROS, growth factors, and other kinase signaling pathways. Anti-osteoporotic drugs in current use such as hormone replacement therapy, selective estrogen receptor modulators, and bisphosphonates are designed to target these pathways, but all have their limitations. Extracts of the dried aerial parts of the traditional Chinese medicinal plant Epimedium (Berberidaceae) has long been used for bone health. Some nine Epimedium prenylflavonoid compounds have been reported to target estrogen signaling and other bone morphogenesis pathways in mesenchymal stem cell, osteoblast, and osteoclast cell lineages. Epimedium prenylflavonoids and enriched extracts can exert beneficial effects on bone health in estrogen-deficient and other osteoporosis animal models. The development of sensitive and rapid mass chromatographic techniques to quantify compounds extracted from Epimedium, including icariin and icaritin, has been used to standardize production and to study the pharmacokinetics and metabolism of Epimedium in animal models and humans. Recent clinical trials have reported positive effects on bone health, suggesting that compounds or extracts of Epimedium have the potential to be developed as agents, alone or in combination with other drugs, to prevent or delay the onset of osteoporosis and reduce the risk of hip fractures.
Collapse
Affiliation(s)
- Inthrani Raja Indran
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ryan Lim Zhen Liang
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tan Ee Min
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eu-Leong Yong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
36
|
Jiang J, Zhao BJ, Song J, Jia XB. Pharmacology and Clinical Application of Plants in Epimedium L. CHINESE HERBAL MEDICINES 2016. [DOI: 10.1016/s1674-6384(16)60003-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
37
|
Ye LH, Xiao BX, Cao FR, Zheng Y, Pan RL, Chang Q. Identification of Icaritin Metabolites in Rats by LC-MS/MS. CHINESE HERBAL MEDICINES 2015. [DOI: 10.1016/s1674-6384(15)60055-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Luo X, Barbieri D, Duan R, Yuan H, Bruijn JD. Strontium-containing apatite/polylactide composites enhance bone formation in osteopenic rabbits. Acta Biomater 2015; 26:331-7. [PMID: 26234489 DOI: 10.1016/j.actbio.2015.07.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/06/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
Strontium (Sr) has been shown to favor bone formation and is used clinically to treat osteoporosis. We have previously reported that Sr addition in apatite/polylactide composites could enhance the BMP-induced bone formation around implants at ectopic site in healthy animals. In this study we aimed to investigate the effectiveness of Sr addition on the local bone formation in osteoporosis. Apatite/polylactide composite granules with different Sr content were loaded with equal amount of rhBMP-2 and implanted intramuscularly in healthy rabbits (Con) and rabbits that received bilateral ovariectomy and daily injection of glucocorticoid (OP) for 12 weeks. The potential effect of Sr on the final volume of BMP-induced bone in both groups was investigated histologically and histomorphometrically. The de novo bone formed in OP implants was significantly less than in Con group when the implants contained no Sr, indicating that the BMP-induced osteogenesis was impaired in OP animals. Sr substitution as low as 0.5 mol% in apatite increased the bone volume in OP implants to levels comparable to that in the Con group, indicating a positive effect of Sr addition on the local bone formation in OP animals. In addition, more adipose tissue formed in parallel with the appearance of cartilage tissue in OP implants, suggesting that the differentiation potential of stem cell in OP animals may have shifted towards adipogenesis and chondrogenesis. From these results, we conclude that the use of Sr addition to enhance the bone growth surrounding implants in osteoporosis merits further study. STATEMENT OF SIGNIFICANCE The impaired bone healing capacity of osteoporotic patients might result in poor osteointegration and surgical failure in case implants are placed. In this study we aimed to enhance the bone formation around implants under such scenario by adding strontium as the stimulus. Different from other studies, the samples were loaded with rhBMP-2 and implanted at an ectopic site (spinal muscles of New Zealand rabbits) to exclude the influence of conductive bone repair. The results showed that the addition of strontium could enhance the BMP-2-induced bone formation on implants in osteopenic rabbits to levels comparable to that in healthy rabbits. Secondarily, we observed more adipose tissue and cartilage tissue in osteopenic implants, suggesting the role of adipogenesis and chondrogenesis in osteopenia/osteoporosis.
Collapse
|
39
|
Jiang J, Li J, Zhang Z, Sun E, Feng L, Jia X. Mechanism of enhanced antiosteoporosis effect of circinal-icaritin by self-assembled nanomicelles in vivo with suet oil and sodium deoxycholate. Int J Nanomedicine 2015; 10:2377-89. [PMID: 25848257 PMCID: PMC4381633 DOI: 10.2147/ijn.s76191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Circinal-icaritin (CIT), one new active aglycone of Epimedium, can exert a beneficial effect on osteoporotic bone. However, its low bioavailability limits its clinical efficacy for the treatment of osteoporosis. MATERIALS AND METHODS In this paper, suet oil (SO) was used to improve the oral bioavailability of CIT and enhance its antiosteoporosis effect and absorption. After oral administration of CIT together with SO, the CIT and SO self-assembled into nanomicelles under the action of sodium deoxycholate (DOC) by bile secretion. The antiosteoporosis effects of the CIT-SO-DOC nanomicelles were evaluated in osteoporotic rats by bone mineral density, serum biochemical markers, bone microarchitecture, bone biomechanical properties, and related protein and gene expressions. We examined the bioavailability of CIT and its nanomicelles in vivo, and subsequently the nanomicelles were verified using transmission electron microscopy. Finally, we evaluated absorption across a rat intestinal perfusion model. RESULTS Compared with CIT, in the CIT-SO groups, protein and messenger ribonucleic acid expressions of osteoprotegerin were increased, while expressions of receptor activator of nuclear factor-κB ligand in bone tissue were decreased; bone-turnover markers in serum of hydroxyproline, alkaline phosphatase, tartrate-resistant acid phosphatase 5b, and receptor activator of nuclear factor-κB ligand levels were decreased, while osteoprotegerin and osteocalcin levels were increased; and trabecular bone mass, microarchitecture, and bone biomechanical strength were enhanced. The relative bioavailabilities of CIT-SO high dosage, CIT-SO medium dosage, and CIT-SO low dosage (area under concentration-time curve [AUC]0-∞) compared with that of raw CIT high dosage, CIT medium dosage, and CIT low dosage (AUC0-∞) were 127%, 121%, and 134%, respectively. The average particle size of CIT-DOC was significantly decreased after adding SO (P<0.01), and the intestinal permeability coefficients of CIT-SO-DOC nanomicelles in the duodenum, jejunum, ileum, and colon were all significantly improved (P<0.01). CONCLUSION The increased antiosteoporosis effects and bioavailability of CIT-SO-DOC self-assembled nanomicelles were due to an increase in absorption of CIT by reducing the particle sizes of CIT. SO may be a practical oral carrier for antiosteoporosis drugs with low bioavailability.
Collapse
Affiliation(s)
- Jun Jiang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, People’s Republic of China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jie Li
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, People’s Republic of China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Zhenhai Zhang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, People’s Republic of China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - E Sun
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, People’s Republic of China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Liang Feng
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, People’s Republic of China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Xiaobin Jia
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, People’s Republic of China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
40
|
Kyllönen L, D’Este M, Alini M, Eglin D. Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater 2015; 11:412-34. [PMID: 25218339 DOI: 10.1016/j.actbio.2014.09.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/30/2014] [Accepted: 09/04/2014] [Indexed: 01/08/2023]
Abstract
Fragility fractures can cause significant morbidity and mortality in patients with osteoporosis and inflict a considerable medical and socioeconomic burden. Moreover, treatment of an osteoporotic fracture is challenging due to the decreased strength of the surrounding bone and suboptimal healing capacity, predisposing both to fixation failure and non-union. Whereas a systemic osteoporosis treatment acts slowly, local release of osteogenic agents in osteoporotic fracture would act rapidly to increase bone strength and quality, as well as to reduce the bone healing period and prevent development of a problematic non-union. The identification of agents with potential to stimulate bone formation and improve implant fixation strength in osteoporotic bone has raised hope for the fast augmentation of osteoporotic fractures. Stimulation of bone formation by local delivery of growth factors is an approach already in clinical use for the treatment of non-unions, and could be utilized for osteoporotic fractures as well. Small molecules have also gained ground as stable and inexpensive compounds to enhance bone formation and tackle osteoporosis. The aim of this paper is to present the state of the art on local drug delivery in osteoporotic fractures. Advantages, disadvantages and underlying molecular mechanisms of different active species for local bone healing in osteoporotic bone are discussed. This review also identifies promising new candidate molecules and innovative approaches for the local drug delivery in osteoporotic bone.
Collapse
|
41
|
Zhang SQ. Ultra-high performance liquid chromatography–tandem mass spectrometry for the quantification of icaritin in mouse bone. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 978-979:24-8. [DOI: 10.1016/j.jchromb.2014.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/27/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
|
42
|
Lee YE, Liu HC, Lin YL, Liu SH, Yang RS, Chen RM. Drynaria fortunei J. Sm. improves the bone mass of ovariectomized rats through osteocalcin-involved endochondral ossification. JOURNAL OF ETHNOPHARMACOLOGY 2014; 158 Pt A:94-101. [PMID: 25456426 DOI: 10.1016/j.jep.2014.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 09/01/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
AIM OF THIS STUDY Our previous study showed that Drynaria fortunei J. Sm. (Kunze), a traditional Chinese medical herb, can promote osteoblast differentiation and maturation. This study was further aimed to confirm the traditional effects of Kunze on the bone mass of ovariectomized rats. MATERIALS AND METHODS Female Wistar rats were given an ovariectomy and then administered the water extract of Kunze (WEK). Systemic and tissue toxicities of WEK were assessed. A biomechanical test, bone mineral contents, and bone histomorphometry were analyzed to determine the effects of the WEK on the bone mass. Levels of osteocalcin (OCN) in bone tissues were determined by immunohistochemistry and immunoblotting. The effects of naringin, one of the bioactive compounds of the WEK, on the bone mass were evaluated. RESULTS A bilateral ovariectomy in rats caused a time-dependent decrease in levels of serum 17β-estradiol. Exposure of ovariectomized rats to the WEK at 0.5 and 1g/kg body weight/day for 1, 2, 3, and 6 months did not induce systemic or tissue toxicities. Biomechanical testing and a bone mineral content analysis showed that the ovariectomy decreased the bone torsion force and bone ash in time-dependent manners. In comparison, after exposure to the WEK, the ovariectomy-induced reductions in the bone torsion force and bone ash were significantly alleviated. In parallel, results of a bone histomorphometric assay further revealed that the ovariectomy caused significant diminution in the production of prehypertrophic chondrocytes and trabecular bone but enhanced hypertrophic chondrocyte numbers in the growth plate. However, exposure to the WEK lowered ovariectomy-induced changes in these cellular events. As to the mechanism, the WEK increased OCN biosynthesis in bone tissues of ovariectomized rats. Administration of naringin to ovariectomized rats caused significant amelioration of the bone strength, bone mineral contents, and trabecular bone amounts. CONCLUSIONS This study shows that the WEK can translationally promote the bone mass in ovariectomized rats through stimulating OCN-involved endochondral ossification.
Collapse
Affiliation(s)
- Yong-Eng Lee
- Department of Orthopedic Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University׳s Wan-Fang Hospital, Taipei, Taiwan
| | - Hwa-Chang Liu
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ling Lin
- Cell Physiology and Molecular Image Research Center, Taipei Medical University׳s Wan-Fang Hospital, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rong-Sen Yang
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ruei-Ming Chen
- Cell Physiology and Molecular Image Research Center, Taipei Medical University׳s Wan-Fang Hospital, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Anesthetics Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
43
|
The antiosteoporotic activity of central-icaritin (CIT) on bone metabolism of ovariectomized rats. Molecules 2014; 19:18690-704. [PMID: 25405287 PMCID: PMC6271928 DOI: 10.3390/molecules191118690] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/23/2014] [Accepted: 10/29/2014] [Indexed: 01/19/2023] Open
Abstract
Central-icaritin (CIT) is a flavonoid aglycone first discovered in our laboratory, which is an isomeric aglycone of icaritin (IT). We wanted to know whether CIT also had anti-osteoporosis activity. In this study, CIT was investigated in an ovariectomized rat (OVX) model. Fifty-six 6-month old female Sprague-Dawley rats were randomly assigned to sham operated group (Sham) and six OVX subgroups (n = 8 each). The OVX rats were then subdivided into six groups treated with vehicle (OVX), icaritin (IT, 40 mg/kg body weight/day), estradiol valerate (EV, 100 μg/kg body weight/day) or CIT (10, 20, and 40 mg/kg body weight/day) for 12 weeks, respectively. Then, the serum biochemical parameters, bone mineral density (BMD), bone biomechanical properties, bone microarchitecture, bone immunohistochemistry and related protein and gene expressions were evaluated. In OVX rats, the increases of body weight, HOP, AKP, and TRACP5b levels, and the decreases of uterus wet weight, femurs weight, BMD, serum OPG/RANKL and OCN were significantly inhibited by CIT treatment. Micro-CT analysis results showed that CIT apparently enhanced trabecular bone compared with the OVX group (p < 0.05). Total femur BMD and biomechanical strength of tibia were significantly improved (p < 0.05) after 12 weeks of CIT administration. In addition, the CIT administration also significantly enhanced the OPG expression, whereas reduced the RANKL expression in femurs according to RT-PCR, western blot assays and immunohistochemical evaluation. CIT had the antiosteoporotic activity, and its antiosteoporotic effects in OVX rats may be stronger than that of IT.
Collapse
|
44
|
Zhang SQ. Biodistribution evaluation of icaritin in rats by ultra-performance liquid chromatography-tandem mass spectrometry. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:1382-1387. [PMID: 25086407 DOI: 10.1016/j.jep.2014.07.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/10/2014] [Accepted: 07/19/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Icaritin (ICT) is a major bioactive prenylflavonoid derivative contained in the Epimedium which is a widely used herbal medicine for the treatment of infertility, impotence, cardiovascular and skeletal diseases listed in the Chinese Pharmacopoeia. The aim of this study is to investigate the tissue distribution of ICT in rats by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) MATERIALS AND METHODS: ICT was intraperitoneally administrated to rats for 7 consecutive days at dose levels of 20, 40 and 60 mg/kg/day, respectively. Various tissue homogenates were pretreated by protein precipitation with acetonitrile. ICT and internal standard coumestrol were separated on a BEH C18 column with a gradient mobile phase and detected using precursor-product ion transitions of m/z 367.1→297.1 for ICT and 267.0→211.1 for coumestrol at the negative ionization mode, respectively. RESULTS ICT was widely distributed in rat's various tissues and its concentrations in tissues increased with elevated doses. A sensitive and reliable UPLC-MS/MS method was firstly established to quantify ICT in rat tissues. The lower limit of quantification was 0.5 ng/mL based on 100 μL of tissue homogenates. The intra- and inter-day accuracy at all levels fell in the ranges of 90.8-103.4% and 91.6-100.3%, and the intra- and inter-day precision (RSD) were in the ranges of 2.9-10.5% and 2.6-9.1%, respectively. CONCLUSIONS The UPLC-MS/MS showed good accuracy, precision and recovery and was suitable for the quantification of ICT in rat tissues. Wide distribution of ICT could helpfully elucidate systemic effects and various functions of ICT.
Collapse
Affiliation(s)
- Shuang-Qing Zhang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Food Safety, China Center for Disease Control and Prevention, Beijing 100050, China.
| |
Collapse
|
45
|
Jiang J, Feng L, Sun E, Li H, Cui L, Jia X. Metabolic profiling of isomeric aglycones central-icaritin (c-IT) and icaritin (IT) in osteoporotic rats by UPLC-QTOF-MS. Drug Test Anal 2014; 7:309-19. [PMID: 24934976 DOI: 10.1002/dta.1672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 01/23/2023]
Abstract
The isomers, although of similarly chemical structures, have different pharmacological activities due to their metabolic processes in vivo. Central-icaritin (c-IT) and icaritin (IT) are isomers and major bioactive aglycones of the Herba Epimedii. In this study, we found that the anti-osteoporotic effect of c-IT was stronger than IT on bone structural changes in osteoporotic rats evaluated by Micro-μCT with the parameters of bone mineral density (BMD), bone mineral content (BMC), tissue mineral content (TMC), and tissue mineral density (TMD). c-IT treatment significantly increased the bone microarchitecture, compared with IT (p < 0.05). In order to explain their differences in anti-osteoporosis, the metabolic profiling and pathways of c-IT and IT in the plasma, bile, urine, and faeces of ovariectomized (OVX) rats were investigated by ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS) after oral administration of c-IT or IT (80 mg/kg). Finally, 59 metabolites of c-IT and 43 metabolites of IT were identified by elucidating their corresponding quasimolecular ions and fragment ions. IT could be quickly absorbed into blood and reached a maximum plasma concentration, and then be rapidly conversed to its glucuronidation metabolites, most of which were excreted out by urine. Interestingly, the absorbed and conjugated speeds of c-IT were slower than IT. The metabolic processes of c-IT existed enterohepatic circulation, which decreased the metabolism and excretion rate of c-IT, and prolonged the anti-osteoporosis effect. Our findings provided evidence on the difference on metabolic profiles of c-IT and IT in osteoporotic rats, which might shed new lights on improving anti-osteoporotic effects of IT and c-IT.
Collapse
Affiliation(s)
- Jun Jiang
- Affiliated Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, 100# Shizi Road, Nanjing, 210028, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
46
|
Luo R, Wang J, Zhao L, Lu N, You Q, Guo Q, Li Z. Synthesis and biological evaluation of baicalein derivatives as potent antitumor agents. Bioorg Med Chem Lett 2014; 24:1334-8. [DOI: 10.1016/j.bmcl.2014.01.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/07/2014] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
|
47
|
Guo B, Zhang B, Zheng L, Tang T, Liu J, Wu H, Yang Z, Peng S, He X, Zhang H, Yue KKM, He F, Zhang L, Qin L, Bian Z, Tan W, Liang Z, Lu A, Zhang G. Therapeutic RNA interference targeting CKIP-1 with a cross-species sequence to stimulate bone formation. Bone 2014; 59:76-88. [PMID: 24246247 DOI: 10.1016/j.bone.2013.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/06/2013] [Accepted: 11/10/2013] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Casein kinase 2 interacting protein 1 (CKIP-1) is a newly discovered intracellular negative regulator of bone formation without affecting bone resorption. In this study, we aimed to identify a cross-species siRNA sequence targeting CKIP-1 to facilitate developing a novel RNAi-based bone anabolic drug for reversing established osteoporosis. METHODS Eight specifically designed cross-species CKIP-1 siRNA sequences were screened in human, rhesus, rat and mouse osteoblast-like cells in vitro to identify the optimal sequence with the highest knockdown efficiency. The effect of this optimal siRNA sequence on osteogenic differentiation and matrix mineralization was further examined in osteoblast-like cells across different species, followed by an immunogenicity assessment in human peripheral blood mononuclear cells in vitro. The intra-osseous localization and silencing efficiency of the optimal siRNA were examined in vivo using a biophotonic system and real-time polymerase chain reaction, respectively. The RNAi-mediated cleavage of the CKIP-1 transcript was confirmed by rapid amplification of the 5' cDNA ends in vivo. Furthermore, the effect of the optimal siRNA sequence on osteogenic differentiation, bone turnover biomarkers, bone mass and micro-architecture parameters was investigated in healthy and osteoporotic rodents. RESULTS The CKIP-1 siRNA sequence (si-3) was identified as the optimal sequence, which consistently maintained CKIP-1 mRNA/protein expression at the lowest level across species in vitro. The si-3 significantly increased mRNA expression levels of osteoblast phenotypic genes and matrix mineralization across species without inducing an immunostimulatory activity in vitro. The intra-osseous localization and RNAi-mediated CKIP-1 silencing with high efficiency were confirmed in vivo. Periodic intravenous injections of si-3 promoted mRNA expression of osteoblast phenotypic genes, enhanced bone formation, increased bone mass and elevated serum level of bone formation marker without raising urine level of bone resorption marker in the healthy rodents. Moreover, the si-3 treatment promoted bone formation, improved trabecular micro-architecture and reversed bone loss in the osteoporotic mice. CONCLUSIONS The identified optimal CKIP-1 siRNA sequence (si-3) could promote osteogenic differentiation across species in vitro, stimulate bone formation in the healthy rodents and reverse bone loss in the osteoporotic mice.
Collapse
Affiliation(s)
- Baosheng Guo
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China; Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Academician CHAN Sun Chi Albert Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu, China
| | - Baoting Zhang
- School of Chinese Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Lizhen Zheng
- School of Chinese Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Tang
- School of Chinese Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jin Liu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China; Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Academician CHAN Sun Chi Albert Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu, China
| | - Heng Wu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China; Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Academician CHAN Sun Chi Albert Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu, China
| | - Zhijun Yang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China; Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Academician CHAN Sun Chi Albert Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu, China
| | - Songlin Peng
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China; Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongqi Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China; Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Kevin K M Yue
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China; Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ling Qin
- School of Chinese Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhaoxiang Bian
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China; Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Academician CHAN Sun Chi Albert Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu, China
| | - Weihong Tan
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China; Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, China
| | - Zicai Liang
- Academician CHAN Sun Chi Albert Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu, China; Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Aiping Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China; Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Academician CHAN Sun Chi Albert Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China; Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Academician CHAN Sun Chi Albert Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu, China.
| |
Collapse
|
48
|
Antiosteoporosis effect of radix scutellariae extract on density and microstructure of long bones in tail-suspended sprague-dawley rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:753703. [PMID: 24223617 PMCID: PMC3809931 DOI: 10.1155/2013/753703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/11/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022]
Abstract
Radix Scutellariae (RS), a medicinal herb, is extensively employed in traditional Chinese medicines and modern herbal prescriptions. Two major flavonoids in RS were known to induce osteoblastic differentiation and inhibit osteoclast differentiation, respectively. This study aimed to investigate the effect of Radix Scutellariae extract (RSE) against bone loss induced by mechanical inactivity or weightlessness. A hindlimb unloading tail-suspended rat model (TS) was established to determine the effect of RSE on bone mineral density and bone microarchitecture. Treatment of RSE at 50 mg/kg/day and alendronate (ALE) at 2 mg/kg/day as positive control for 42 days significantly increased the bone mineral density and mechanical strength compared with TS group. Enhanced bone turnover markers by TS treatment were attenuated by RSE and ALE administration. Deterioration of bone trabecula induced by TS was prevented. Moreover, both treatments counteracted the reduction of bone volume fraction, trabecular thickness and number, and connectivity density. In conclusion, RSE was demonstrated for the first time to prevent osteoporosis induced by TS treatment, which suggests the potential application of RSE in the treatment of disuse-induced osteoporosis.
Collapse
|