1
|
Asayag K, Peled E, Crispel Y, Yanovich C, Cohen H, Keren-Politansky A, Nadir Y. Effect of bone marrow blood versus peripheral blood on the hemostatic balance of osteoblasts and endothelial cells. Sci Rep 2025; 15:13713. [PMID: 40258877 PMCID: PMC12012218 DOI: 10.1038/s41598-025-94942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
Bone and bone-marrow (BM) have the same blood supply and thus may be considered as one organ. We previously demonstrated that the microcirculation hemostatic balance that includes heparanase, tissue factor (TF), TF pathway inhibitor (TFPI) and TFPI-2 are organ dependent. The present study aim was to investigate the effect of BM microcirculation blood on osteoblasts and human umbilical vein endothelial cells (HUVECs) compared with peripheral-blood (PB). Fourteen patients were recruited. BM blood was drawn from the pelvis and PB from the arm of each patient. Mesenchymal stem cells (MSCs) from the bone pellet were differentiated to osteoblasts. Cells were evaluated by ELISA, chromogenic assays and immunostaining. We found that levels of heparanase, TF, TFPI, and TFPI-2 were reduced in osteoblasts compared with MSCs (p < 0.05). Level of heparanase was lower in BM plasma compared with PB (p < 0.05). BM plasma attenuated heparanase procoagulant activity and level and increased proliferation in osteoblasts and HUVECs compared to PB plasma or the control. BM plasma increased HUVECs tube-formation compared with PB and control. Peptide 16AC, derived from heparanase that interacts with TF, enhanced, while peptide 6, that inhibits the interaction of heparanase-TF-complex, decreased heparanase level, procoagulant activity, and proliferation in osteoblast and HUVECs. In conclusion, osteoblasts acquire an attenuated hemostatic characteristic during differentiation. The microcirculation blood of the bone supports low hemostatic parameters in osteoblasts and enhances proliferation of cells and angiogenesis. The present data support the growing notion that the local microcirculation within a tissue or organ uniquely affects local hemostasis and angiogenesis.
Collapse
Affiliation(s)
- Keren Asayag
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Eli Peled
- Orthopedic Division, Rambam Health Care Campus, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yonatan Crispel
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Chen Yanovich
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Haim Cohen
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Anat Keren-Politansky
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yona Nadir
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel.
- The Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
2
|
Xu Q, Hou W, Zhao B, Fan P, Wang S, Wang L, Gao J. Mesenchymal stem cells lineage and their role in disease development. Mol Med 2024; 30:207. [PMID: 39523306 PMCID: PMC11552129 DOI: 10.1186/s10020-024-00967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are widely dispersed in vivo and are isolated from several tissues, including bone marrow, heart, body fluids, skin, and perinatal tissues. Bone marrow MSCs have a multidirectional differentiation potential, which can be induced to differentiate the medium in a specific direction or by adding specific regulatory factors. MSCs repair damaged tissues through lineage differentiation, and the ex vivo transplantation of bone marrow MSCs can heal injured sites. MSCs have different propensities for lineage differentiation and pathological evolution for different diseases, which are crucial in disease progression. In this study, we describe various lineage analysis methods to explore lineage ontology in vitro and in vivo, elucidate the impact of MSC lineage differentiation on diseases, advance our understanding of the role of MSC differentiation in physiological and pathological states, and explore new targets and ideas associated with disease diagnosis and treatment.
Collapse
Affiliation(s)
- Qi Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Wenrun Hou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Baorui Zhao
- Stem cell Translational laboratory, Shanxi Technological Innovation Center for Clinical Diagnosis and Treatment of Immune and Rheumatic Diseases, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Peixin Fan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Sheng Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lei Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jinfang Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
3
|
Austin MJ, Kalampalika F, Cawthorn WP, Patel B. Turning the spotlight on bone marrow adipocytes in haematological malignancy and non-malignant conditions. Br J Haematol 2023; 201:605-619. [PMID: 37067783 PMCID: PMC10952811 DOI: 10.1111/bjh.18748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/18/2023]
Abstract
Whilst bone marrow adipocytes (BMAd) have long been appreciated by clinical haemato-pathologists, it is only relatively recently, in the face of emerging data, that the adipocytic niche has come under the watchful eye of biologists. There is now mounting evidence to suggest that BMAds are not just a simple structural entity of bone marrow microenvironments but a bona fide driver of physio- and pathophysiological processes relevant to multiple aspects of health and disease. Whilst the truly multifaceted nature of BMAds has only just begun to emerge, paradigms have shifted already for normal, malignant and non-malignant haemopoiesis incorporating a view of adipocyte regulation. Major efforts are ongoing, to delineate the routes by which BMAds participate in health and disease with a final aim of achieving clinical tractability. This review summarises the emerging role of BMAds across the spectrum of normal and pathological haematological conditions with a particular focus on its impact on cancer therapy.
Collapse
Affiliation(s)
- Michael J. Austin
- Barts Cancer Institute, Centre for Haemato‐OncologyQueen Mary University of LondonLondonUK
| | - Foteini Kalampalika
- Barts Cancer Institute, Centre for Haemato‐OncologyQueen Mary University of LondonLondonUK
| | - William P. Cawthorn
- BHF/University Centre for Cardiovascular Science, Edinburgh BioquarterUniversity of EdinburghEdinburghUK
| | - Bela Patel
- Barts Cancer Institute, Centre for Haemato‐OncologyQueen Mary University of LondonLondonUK
| |
Collapse
|
4
|
Ostrovsky O, Beider K, Magen H, Leiba M, Sanderson RD, Vlodavsky I, Nagler A. Effect of HPSE and HPSE2 SNPs on the Risk of Developing Primary Paraskeletal Multiple Myeloma. Cells 2023; 12:913. [PMID: 36980254 PMCID: PMC10047783 DOI: 10.3390/cells12060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that is accompanied by hypercalcemia, renal failure, anemia, and lytic bone lesions. Heparanase (HPSE) plays an important role in supporting and promoting myeloma progression, maintenance of plasma cell stemness, and resistance to therapy. Previous studies identified functional single nucleotide polymorphisms (SNPs) located in the HPSE gene. In the present study, 5 functional HPSE SNPs and 11 novel HPSE2 SNPs were examined. A very significant association between two enhancer (rs4693608 and rs4693084), and two insulator (rs4364254 and rs4426765) HPSE SNPs and primary paraskeletal disease (PS) was observed. SNP rs657442, located in intron 9 of the HPSE2 gene, revealed a significant protective association with primary paraskeletal disease and lytic bone lesions. The present study demonstrates a promoting (HPSE gene) and protective (HPSE2 gene) role of gene regulatory elements in the development of paraskeletal disease and bone morbidity. The effect of signal discrepancy between myeloma cells and normal cells of the tumor microenvironment is proposed as a mechanism for the involvement of heparanase in primary PS. We suggest that an increase in heparanase-2 expression can lead to effective suppression of heparanase activity in multiple myeloma accompanied by extramedullary and osteolytic bone disease.
Collapse
Affiliation(s)
- Olga Ostrovsky
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer 5266202, Israel
| | - Katia Beider
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer 5266202, Israel
| | - Hila Magen
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer 5266202, Israel
| | - Merav Leiba
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer 5266202, Israel
| | - Ralph D. Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa 3525433, Israel
| | - Arnon Nagler
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer 5266202, Israel
| |
Collapse
|
5
|
Xiong T, Lv XS, Wu GJ, Guo YX, Liu C, Hou FX, Wang JK, Fu YF, Liu FQ. Single-Cell Sequencing Analysis and Multiple Machine Learning Methods Identified G0S2 and HPSE as Novel Biomarkers for Abdominal Aortic Aneurysm. Front Immunol 2022; 13:907309. [PMID: 35769488 PMCID: PMC9234288 DOI: 10.3389/fimmu.2022.907309] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/06/2022] [Indexed: 11/20/2022] Open
Abstract
Identifying biomarkers for abdominal aortic aneurysms (AAA) is key to understanding their pathogenesis, developing novel targeted therapeutics, and possibly improving patients outcomes and risk of rupture. Here, we identified AAA biomarkers from public databases using single-cell RNA-sequencing, weighted co-expression network (WGCNA), and differential expression analyses. Additionally, we used the multiple machine learning methods to identify biomarkers that differentiated large AAA from small AAA. Biomarkers were validated using GEO datasets. CIBERSORT was used to assess immune cell infiltration into AAA tissues and investigate the relationship between biomarkers and infiltrating immune cells. Therefore, 288 differentially expressed genes (DEGs) were screened for AAA and normal samples. The identified DEGs were mostly related to inflammatory responses, lipids, and atherosclerosis. For the large and small AAA samples, 17 DEGs, mostly related to necroptosis, were screened. As biomarkers for AAA, G0/G1 switch 2 (G0S2) (Area under the curve [AUC] = 0.861, 0.875, and 0.911, in GSE57691, GSE47472, and GSE7284, respectively) and for large AAA, heparinase (HPSE) (AUC = 0.669 and 0.754, in GSE57691 and GSE98278, respectively) were identified and further verified by qRT-PCR. Immune cell infiltration analysis revealed that the AAA process may be mediated by T follicular helper (Tfh) cells and the large AAA process may also be mediated by Tfh cells, M1, and M2 macrophages. Additionally, G0S2 expression was associated with neutrophils, activated and resting mast cells, M0 and M1 macrophages, regulatory T cells (Tregs), resting dendritic cells, and resting CD4 memory T cells. Moreover, HPSE expression was associated with M0 and M1 macrophages, activated and resting mast cells, Tregs, and resting CD4 memory T cells. Additional, G0S2 may be an effective diagnostic biomarker for AAA, whereas HPSE may be used to confer risk of rupture in large AAAs. Immune cells play a role in the onset and progression of AAA, which may improve its diagnosis and treatment.
Collapse
Affiliation(s)
- Tao Xiong
- Department of Cardiovascular, Shaanxi Provincial People’s Hospital, Xi’an, China
- Department of Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiao-Shuo Lv
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Gu-Jie Wu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yao-Xing Guo
- Department of Pathology, College of Basic Medical Sciences China Medical University, Shenyang, China
| | - Chang Liu
- Department of Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fang-Xia Hou
- Department of Cardiovascular, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Jun-Kui Wang
- Department of Cardiovascular, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yi-Fan Fu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Fu-Qiang Liu
- Department of Cardiovascular, Shaanxi Provincial People’s Hospital, Xi’an, China
- *Correspondence: Fu-Qiang Liu,
| |
Collapse
|
6
|
Chen TT, Lv JJ, Chen L, Gao YW, Liu LP. Role of heparinase in the gastrointestinal dysfunction of sepsis (Review). Exp Ther Med 2022; 23:119. [PMID: 34970342 PMCID: PMC8713170 DOI: 10.3892/etm.2021.11042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
Heparinase (HPA) is a β-D glucuronidase that belongs to the endoglycosidase enzyme family, and plays an important role in numerous pathological and physiological processes, including inflammation, angiogenesis and tumor metastasis. When the expression of HPA is abnormally high, the side chain of heparin sulfate proteoglycans degrades, destroying the cell barrier and leading to the occurrence and development of inflammation, with systemic inflammation occurring in severe cases. Sepsis is a major cause of mortality in critically ill patients. In sepsis, the gastrointestinal tract is the first and most frequently involved target organ, which often leads to gastrointestinal dysfunction. HPA overexpression has been determined to accelerate sepsis progression and gastrointestinal dysfunction; thus, it was hypothesized that HPA may play an important role and may serve as an index for the diagnosis of gastrointestinal dysfunction in sepsis. HPA inhibitors may therefore become applicable as targeted drugs for the treatment of gastrointestinal dysfunction in patients with sepsis. The present review mainly discussed the role of HPA in gastrointestinal dysfunction of sepsis.
Collapse
Affiliation(s)
- Ting-Ting Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jia-Jun Lv
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ling Chen
- Department of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Emergency, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yu-Wei Gao
- Department of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Emergency, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Li-Ping Liu
- Department of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Emergency, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
7
|
Zhang C, Xu X, Trotter TN, Gowda PS, Lu Y, Suto MJ, Javed A, Murphy-Ullrich JE, Li J, Yang Y. Runx2 deficiency in osteoblasts promotes myeloma resistance to bortezomib by increasing TSP-1-dependent TGF-β1 activation and suppressing immunity in bone marrow. Mol Cancer Ther 2021; 21:347-358. [PMID: 34907087 DOI: 10.1158/1535-7163.mct-21-0310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/25/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that thrives in the bone marrow (BM). The proteasome inhibitor bortezomib (BTZ) is one of the most effective front-line chemotherapeutic drugs for MM; however, 15-20% of high-risk patients do not respond to or become resistant to this drug and the mechanisms of chemoresistance remain unclear. We previously demonstrated that MM cells inhibit Runt-related transcription factor 2 (Runx2) in pre- and immature osteoblasts (OBs), and that this OB-Runx2 deficiency induces a cytokine-rich and immunosuppressive microenvironment in the BM. In the current study, we assessed the impact of OB-Runx2 deficiency on the outcome of BTZ treatment using OB-Runx2+/+ and OB-Runx2-/- mouse models of MM. In vitro and in vivo experiments revealed that OB-Runx2 deficiency induces MM cell resistance to BTZ via the upregulation of immunosuppressive myeloid-derived suppressor cells (MDSCs), downregulation of cytotoxic T cells, and activation of TGF-β1 in the BM. In MM tumor-bearing OB-Runx2-/- mice, treatment with SRI31277, an antagonist of thrombospondin-1 (TSP-1)-mediated TGF-β1 activation, reversed the BM immunosuppression and significantly reduced tumor burden. Furthermore, treatment with SRI31277 combined with BTZ alleviated MM cell resistance to BTZ-induced apoptosis caused by OB-Runx2 deficiency in co-cultured cells and produced a synergistic effect on tumor burden in OB-Runx2-/- mice. Depletion of MDSCs by 5-fluorouracil or gemcitabine similarly reversed the immunosuppressive effects and BTZ resistance induced by OB-Runx2 deficiency in tumor-bearing mice, indicating the importance of the immune environment for drug resistance and suggesting new strategies to overcome BTZ resistance in the treatment of MM.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Hematology, First Affiliated Hospital of Sun Yat-sen University
| | - Xiaoxuan Xu
- Department of Hematology, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology
| | | | | | - Yun Lu
- Radiology, University of Alabama at Birmingham
| | | | - Amjad Javed
- 3Comprehensive Cancer Center and the Center for Metabolic Bone Disease, University of Alabama at Birmingham
| | - Joanne E Murphy-Ullrich
- Pathology, Cell Developmental and Integrative Biology, and Ophthalmology, University of Alabama at Birmingham
| | - Juan Li
- First Affiliated Hospital of Sun Yat-sen University
| | - Yang Yang
- Pathology, University of Alabama at Birmingham
| |
Collapse
|
8
|
Xu Z, Chen S, Feng D, Liu Y, Wang Q, Gao T, Liu Z, Zhang Y, Chen J, Qiu L. Biological role of heparan sulfate in osteogenesis: A review. Carbohydr Polym 2021; 272:118490. [PMID: 34420746 DOI: 10.1016/j.carbpol.2021.118490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022]
Abstract
Heparan sulfate (HS) is extensively expressed in cells, for example, cell membrane and extracellular matrix of most mammalian cells and tissues, playing a key role in the growth and development of life by maintaining homeostasis and implicating in the etiology and diseases. Recent studies have revealed that HS is involved in osteogenesis via coordinating multiple signaling pathways. The potential effect of HS on osteogenesis is a complicated and delicate biological process, which involves the participation of osteocytes, chondrocytes, osteoblasts, osteoclasts and a variety of cytokines. In this review, we summarized the structural and functional characteristics of HS and highlighted the molecular mechanism of HS in bone metabolism to provide novel research perspectives for the further medical research.
Collapse
Affiliation(s)
- Zhujie Xu
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Shayang Chen
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Dehong Feng
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Yi Liu
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China.
| | - Qiqi Wang
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Tianshu Gao
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Zhenwei Liu
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Yan Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jinghua Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Lipeng Qiu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
9
|
Andrews RE, Brown JE, Lawson MA, Chantry AD. Myeloma Bone Disease: The Osteoblast in the Spotlight. J Clin Med 2021; 10:jcm10173973. [PMID: 34501423 PMCID: PMC8432062 DOI: 10.3390/jcm10173973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Lytic bone disease remains a life-altering complication of multiple myeloma, with up to 90% of sufferers experiencing skeletal events at some point in their cancer journey. This tumour-induced bone disease is driven by an upregulation of bone resorption (via increased osteoclast (OC) activity) and a downregulation of bone formation (via reduced osteoblast (OB) activity), leading to phenotypic osteolysis. Treatments are limited, and currently exclusively target OCs. Despite existing bone targeting therapies, patients successfully achieving remission from their cancer can still be left with chronic pain, poor mobility, and reduced quality of life as a result of bone disease. As such, the field is desperately in need of new and improved bone-modulating therapeutic agents. One such option is the use of bone anabolics, drugs that are gaining traction in the osteoporosis field following successful clinical trials. The prospect of using these therapies in relation to myeloma is an attractive option, as they aim to stimulate OBs, as opposed to existing therapeutics that do little to orchestrate new bone formation. The preclinical application of bone anabolics in myeloma mouse models has demonstrated positive outcomes for bone repair and fracture resistance. Here, we review the role of the OB in the pathophysiology of myeloma-induced bone disease and explore whether novel OB targeted therapies could improve outcomes for patients.
Collapse
Affiliation(s)
- Rebecca E. Andrews
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
- Correspondence:
| | - Janet E. Brown
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| | - Michelle A. Lawson
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
| | - Andrew D. Chantry
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| |
Collapse
|
10
|
Maiso P, Mogollón P, Ocio EM, Garayoa M. Bone Marrow Mesenchymal Stromal Cells in Multiple Myeloma: Their Role as Active Contributors to Myeloma Progression. Cancers (Basel) 2021; 13:2542. [PMID: 34067236 PMCID: PMC8196907 DOI: 10.3390/cancers13112542] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy of plasma cells that proliferate and accumulate within the bone marrow (BM). Work from many groups has made evident that the complex microenvironment of the BM plays a crucial role in myeloma progression and response to therapeutic agents. Within the cellular components of the BM, we will specifically focus on mesenchymal stromal cells (MSCs), which are known to interact with myeloma cells and the other components of the BM through cell to cell, soluble factors and, as more recently evidenced, through extracellular vesicles. Multiple structural and functional abnormalities have been found when characterizing MSCs derived from myeloma patients (MM-MSCs) and comparing them to those from healthy donors (HD-MSCs). Other studies have identified differences in genomic, mRNA, microRNA, histone modification, and DNA methylation profiles. We discuss these distinctive features shaping MM-MSCs and propose a model for the transition from HD-MSCs to MM-MSCs as a consequence of the interaction with myeloma cells. Finally, we review the contribution of MM-MSCs to several aspects of myeloma pathology, specifically to myeloma growth and survival, drug resistance, dissemination and homing, myeloma bone disease, and the induction of a pro-inflammatory and immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Patricia Maiso
- University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria, 39008 Santander, Spain
| | - Pedro Mogollón
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (P.M.); (M.G.)
| | - Enrique M. Ocio
- University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria, 39008 Santander, Spain
| | - Mercedes Garayoa
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (P.M.); (M.G.)
| |
Collapse
|
11
|
Kaur R, Deb PK, Diwan V, Saini B. Heparanase Inhibitors in Cancer Progression: Recent Advances. Curr Pharm Des 2021; 27:43-68. [PMID: 33185156 DOI: 10.2174/1381612826666201113105250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND An endo-β-glucuronidase enzyme, Heparanase (HPSE), degrades the side chains of polymeric heparan sulfate (HS), a glycosaminoglycan formed by alternate repetitive units of D-glucosamine and D-glucuronic acid/L-iduronic acid. HS is a major component of the extracellular matrix and basement membranes and has been implicated in processes of the tissue's integrity and functional state. The degradation of HS by HPSE enzyme leads to conditions like inflammation, angiogenesis, and metastasis. An elevated HPSE expression with a poor prognosis and its multiple roles in tumor growth and metastasis has attracted significant interest for its inhibition as a potential anti-neoplastic target. METHODS We reviewed the literature from journal publication websites and electronic databases such as Bentham, Science Direct, PubMed, Scopus, USFDA, etc., about HPSE, its structure, functions, and role in cancer. RESULTS The present review is focused on Heparanase inhibitors (HPIns) that have been isolated from natural resources or chemically synthesized as new therapeutics for metastatic tumors and chronic inflammatory diseases in recent years. The recent developments made in the HPSE structure and function are also discussed, which can lead to the future design of HPIns with more potency and specificity for the target. CONCLUSION HPIns can be a better target to be explored against various cancers.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University, Philadelphia, Jordan
| | - Vishal Diwan
- Faculty of Medicine, The University of Queensland, Queensland, Australia
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
12
|
Rangarajan S, Richter JR, Richter RP, Bandari SK, Tripathi K, Vlodavsky I, Sanderson RD. Heparanase-enhanced Shedding of Syndecan-1 and Its Role in Driving Disease Pathogenesis and Progression. J Histochem Cytochem 2020; 68:823-840. [PMID: 32623935 PMCID: PMC7711244 DOI: 10.1369/0022155420937087] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023] Open
Abstract
Both heparanase and syndecan-1 are known to be present and active in disease pathobiology. An important feature of syndecan-1 related to its role in pathologies is that it can be shed from the surface of cells as an intact ectodomain composed of the extracellular core protein and attached heparan sulfate and chondroitin sulfate chains. Shed syndecan-1 remains functional and impacts cell behavior both locally and distally from its cell of origin. Shedding of syndecan-1 is initiated by a variety of stimuli and accomplished predominantly by the action of matrix metalloproteinases. The accessibility of these proteases to the core protein of syndecan-1 is enhanced, and shedding facilitated, when the heparan sulfate chains of syndecan-1 have been shortened by the enzymatic activity of heparanase. Interestingly, heparanase also enhances shedding by upregulating the expression of matrix metalloproteinases. Recent studies have revealed that heparanase-induced syndecan-1 shedding contributes to the pathogenesis and progression of cancer and viral infection, as well as other septic and non-septic inflammatory states. This review discusses the heparanase/shed syndecan-1 axis in disease pathogenesis and progression, the potential of targeting this axis therapeutically, and the possibility that this axis is widespread and of influence in many diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Israel Vlodavsky
- The University of Alabama at Birmingham, Birmingham, Alabama, and Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
13
|
Affiliation(s)
- Yi-Jen Chen
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Wen-Ling Lee
- Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
- Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan, ROC
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, National Yang-Ming University, Taipei, Taiwan, ROC
- Female Cancer Foundation, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
- Address correspondence. Dr. Peng-Hui Wang, Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail address: ; (P.-H. Wang)
| |
Collapse
|
14
|
Wang JY, Chen CF. Heparanase-1 facilitates bone remodeling on bone defect animal model with optimal dosage and treatment duration. J Chin Med Assoc 2020; 83:799-800. [PMID: 32649419 PMCID: PMC7478219 DOI: 10.1097/jcma.0000000000000391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Jir-You Wang
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Cheng-Fong Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Address correspondence. Dr. Cheng-Fong Chen, Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail address: (C.-F. Chen)
| |
Collapse
|
15
|
Teixeira FCOB, Götte M. Involvement of Syndecan-1 and Heparanase in Cancer and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:97-135. [PMID: 32274708 DOI: 10.1007/978-3-030-34521-1_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cell surface heparan sulfate proteoglycan Syndecan-1 acts as an important co-receptor for receptor tyrosine kinases and chemokine receptors, and as an adhesion receptor for structural glycoproteins of the extracellular matrix. It serves as a substrate for heparanase, an endo-β-glucuronidase that degrades specific domains of heparan sulfate carbohydrate chains and thereby alters the functional status of the proteoglycan and of Syndecan-1-bound ligands. Syndecan-1 and heparanase show multiple levels of functional interactions, resulting in mutual regulation of their expression, processing, and activity. These interactions are of particular relevance in the context of inflammation and malignant disease. Studies in animal models have revealed a mechanistic role of Syndecan-1 and heparanase in the regulation of contact allergies, kidney inflammation, multiple sclerosis, inflammatory bowel disease, and inflammation-associated tumorigenesis. Moreover, functional interactions between Syndecan-1 and heparanase modulate virtually all steps of tumor progression as defined in the Hallmarks of Cancer. Due to their prognostic value in cancer, and their mechanistic involvement in tumor progression, Syndecan-1 and heparanase have emerged as important drug targets. Data in preclinical models and preclinical phase I/II studies have already yielded promising results that provide a translational perspective.
Collapse
Affiliation(s)
- Felipe C O B Teixeira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
16
|
Liu Z, Liu H, He J, Lin P, Tong Q, Yang J. Myeloma cells shift osteoblastogenesis to adipogenesis by inhibiting the ubiquitin ligase MURF1 in mesenchymal stem cells. Sci Signal 2020; 13:13/633/eaay8203. [PMID: 32457115 DOI: 10.1126/scisignal.aay8203] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The suppression of bone formation is a hallmark of multiple myeloma. Myeloma cells inhibit osteoblastogenesis from mesenchymal stem cells (MSCs), which can also differentiate into adipocytes. We investigated myeloma-MSC interactions and the effects of such interactions on the differentiation of MSCs into adipocytes or osteoblasts using single-cell RNA sequencing, in vitro coculture, and subcutaneous injection of MSCs and myeloma cells into mice. Our results revealed that the α4 integrin subunit on myeloma cells stimulated vascular cell adhesion molecule-1 (VCAM1) on MSCs, leading to the activation of protein kinase C β1 (PKCβ1) signaling and repression of the muscle ring-finger protein-1 (MURF1)-mediated ubiquitylation of peroxisome proliferator-activated receptor γ2 (PPARγ2). Stabilized PPARγ2 proteins enhanced adipogenesis and consequently reduced osteoblastogenesis from MSCs, thus suppressing bone formation in vitro and in vivo. These findings reveal that suppressed bone formation is a direct consequence of myeloma-MSC contact that promotes the differentiation of MSCs into adipocytes at the expense of osteoblasts. Thus, this study provides a potential strategy for treating bone resorption in patients with myeloma by counteracting tumor-MSC interactions.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. .,Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.,Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Huan Liu
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Hematologic Malignancy, Research Institute Houston Methodist Hospital, Houston, TX 77030, USA
| | - Jin He
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Hematologic Malignancy, Research Institute Houston Methodist Hospital, Houston, TX 77030, USA
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qiang Tong
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jing Yang
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. .,Center for Hematologic Malignancy, Research Institute Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
17
|
Spurny M, Jiang Y, Sowah SA, Schübel R, Nonnenmacher T, Bertheau R, Kirsten R, Johnson T, Hillengass J, Schlett CL, von Stackelberg O, Ulrich CM, Kaaks R, Kauczor HU, Kühn T, Nattenmüller J. Changes in Bone Marrow Fat upon Dietary-Induced Weight Loss. Nutrients 2020; 12:nu12051509. [PMID: 32455947 PMCID: PMC7284630 DOI: 10.3390/nu12051509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Bone marrow fat is implicated in metabolism, bone health and haematological diseases. Thus, this study aims to analyse the impact of moderate weight loss on bone marrow fat content (BMFC) in obese, healthy individuals. Methods: Data of the HELENA-Trial (Healthy nutrition and energy restriction as cancer prevention strategies: a randomized controlled intervention trial), a randomized controlled trial (RCT) among 137 non-smoking, overweight or obese participants, were analysed to quantify the Magnetic Resonance Imaging (MRI)-derived BMFC at baseline, after a 12-week dietary intervention phase, and after a 50-week follow-up. The study cohort was classified into quartiles based on changes in body weight between baseline and week 12. Changes in BMFC in respect of weight loss were analysed by linear mixed models. Spearman’s coefficients were used to assess correlations between anthropometric parameters, blood biochemical markers, blood cells and BMFC. Results: Relative changes in BMFC from baseline to week 12 were 0.0 ± 0.2%, −3.2 ± 0.1%, −6.1 ± 0.2% and −11.5 ± 0.6% for Q1 to Q4. Across all four quartiles and for the two-group comparison, Q1 versus Q4, there was a significant difference (p < 0.05) for changes in BMFC. BMFC was not associated with blood cell counts and showed only weaker correlations (<0.3) with metabolic biomarkers. Conclusion: Weight loss is associated with a decrease of BMFC. However, BMFC showed no stronger associations with inflammatory and metabolic biomarkers.
Collapse
Affiliation(s)
- Manuela Spurny
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Yixin Jiang
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Solomon A. Sowah
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Ruth Schübel
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Tobias Nonnenmacher
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Robert Bertheau
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Romy Kirsten
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Theron Johnson
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Jens Hillengass
- Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, New York 14263, USA;
| | - Christopher L. Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, D-79106 Freiburg, Germany;
| | - Oyunbileg von Stackelberg
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112-5550, USA;
| | - Rudolf Kaaks
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Hans-Ulrich Kauczor
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Tilman Kühn
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Johanna Nattenmüller
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
- Correspondence: ; Tel.: +49-6221-5636462
| |
Collapse
|
18
|
Xu X, Zhang C, Trotter TN, Gowda PS, Lu Y, Ponnazhagan S, Javed A, Li J, Yang Y. Runx2 Deficiency in Osteoblasts Promotes Myeloma Progression by Altering the Bone Microenvironment at New Bone Sites. Cancer Res 2020; 80:1036-1048. [PMID: 31911552 PMCID: PMC7056521 DOI: 10.1158/0008-5472.can-19-0284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 11/18/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022]
Abstract
Multiple myeloma is a plasma cell malignancy that thrives in the bone marrow (BM), with frequent progression to new local and distant bone sites. Our previous studies demonstrated that multiple myeloma cells at primary sites secrete soluble factors and suppress osteoblastogenesis via the inhibition of Runt-related transcription factor 2 (Runx2) in pre- and immature osteoblasts (OB) in new bone sites, prior to the arrival of metastatic tumor cells. However, it is unknown whether OB-Runx2 suppression in new bone sites feeds back to promote multiple myeloma dissemination to and progression in these areas. Hence, we developed a syngeneic mouse model of multiple myeloma in which Runx2 is specifically deleted in the immature OBs of C57BL6/KaLwRij mice (OB-Runx2-/- mice) to study the effect of OB-Runx2 deficiency on multiple myeloma progression in new bone sites. In vivo studies with this model demonstrated that OB-Runx2 deficiency attracts multiple myeloma cells and promotes multiple myeloma tumor growth in bone. Mechanistic studies further revealed that OB-Runx2 deficiency induces an immunosuppressive microenvironment in BM that is marked by an increase in the concentration and activation of myeloid-derived suppressor cells (MDSC) and the suppression and exhaustion of cytotoxic CD8+ T cells. In contrast, MDSC depletion by either gemcitabine or 5-fluorouracil treatment in OB-Runx2-/- mice prevented these effects and inhibited multiple myeloma tumor growth in BM. These novel discoveries demonstrate that OB-Runx2 deficiency in new bone sites promotes multiple myeloma dissemination and progression by increasing metastatic cytokines and MDSCs in BM and inhibiting BM immunity. Importantly, MDSC depletion can block multiple myeloma progression promoted by OB-Runx2 deficiency.Significance: This study demonstrates that Runx2 deficiency in immature osteoblasts at distant bone sites attracts myeloma cells and allows myeloma progression in new bone sites via OB-secreted metastatic cytokines and MDSC-mediated suppression of bone marrow immunity.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- Department of Hematology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chao Zhang
- Department of Hematology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Timothy N Trotter
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Pramod S Gowda
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yun Lu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Selvarangan Ponnazhagan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amjad Javed
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Juan Li
- Department of Hematology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Yang Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
19
|
Batsivari A, Haltalli MLR, Passaro D, Pospori C, Lo Celso C, Bonnet D. Dynamic responses of the haematopoietic stem cell niche to diverse stresses. Nat Cell Biol 2020; 22:7-17. [PMID: 31907409 DOI: 10.1038/s41556-019-0444-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
Abstract
Adult haematopoietic stem cells (HSCs) mainly reside in the bone marrow, where stromal and haematopoietic cells regulate their function. The steady state HSC niche has been extensively studied. In this Review, we focus on how bone marrow microenvironment components respond to different insults including inflammation, malignant haematopoiesis and chemotherapy. We highlight common and unique patterns among multiple cell types and their environment and discuss current limitations in our understanding of this complex and dynamic tissue.
Collapse
Affiliation(s)
- Antoniana Batsivari
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK
| | - Myriam Luydmila Rachelle Haltalli
- Department of Life Sciences, Imperial College London, South Kensington campus, London, UK
- Lo Celso Laboratory, The Francis Crick Institute, London, UK
| | - Diana Passaro
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK
| | - Constandina Pospori
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK
- Department of Life Sciences, Imperial College London, South Kensington campus, London, UK
- Lo Celso Laboratory, The Francis Crick Institute, London, UK
| | - Cristina Lo Celso
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK.
- Department of Life Sciences, Imperial College London, South Kensington campus, London, UK.
- Lo Celso Laboratory, The Francis Crick Institute, London, UK.
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK.
| |
Collapse
|
20
|
Liu K, Liu Y, Xu Y, Nandakumar KS, Tan H, He C, Dang W, Lin J, Zhou C. Asperosaponin VI protects against bone destructions in collagen induced arthritis by inhibiting osteoclastogenesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153006. [PMID: 31299594 DOI: 10.1016/j.phymed.2019.153006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/13/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Bone destructive diseases like rheumatoid arthritis (RA), osteoporosis and bone metastatic tumors are mainly mediated by over-activated osteoclasts. Asperosaponin VI (AVI), isolated from the rhizome of Dipsacus asper, belongs to triterpenoid saponins. It has multiple physiological activities but its effects on RA, especially on osteoclast differentiation and activation are still unclear. PURPOSE Explore the protective role of AVI on collagen induced arthritis (CIA) in vivo and RANKL induced osteoclastogenesis in vitro. METHODS The effects of AVI on cell viability and RANKL-induced osteoclastogenesis, actin ring formation, bone resorption activity as well as on osteoclast specific gene and protein expression were tested using bone marrow derived monocytes (BMMs). Paws from CIA mice were used for micro-CT, HE and TRAP staining, real-time PCR and western blot. Sera were used for cytokine analysis by ELISA. The signaling pathways were detected using western blot, real-time PCR and immunofluorescence assay. RESULTS AVI significantly inhibited RANKL-induced osteoclast formation and bone resorption activity by suppressing the formation of actin ring. It also inhibited the expression of various osteoclatogenesis marker genes and signaling pathways. AVI protected arthritis in vivo by suppressing inflammation and bone loss. CONCLUSION AVI exerts its anti-osteoclastogenic activity both in vitro and in vivo by inhibiting RANKL-induced osteoclast differentiation and function. Thus, our studies demonstrate a potential therapeutic role for AVI in preventing or inhibiting RANKL-mediated osteolytic bone diseases.
Collapse
Affiliation(s)
- Kaifei Liu
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pharmacy, Jingzhou Central Hospital, Jingzhou, Hubei 434020, China
| | - Ying Liu
- School of Pharmacy, Xinhua College of Sun Yat-Sen University, Guangzhou 510520, China
| | - Yanting Xu
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kutty Selva Nandakumar
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huijing Tan
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chonghua He
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenzhen Dang
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiahe Lin
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chun Zhou
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
21
|
Dual roles of heparanase in human carotid plaque calcification. Atherosclerosis 2019; 283:127-136. [DOI: 10.1016/j.atherosclerosis.2018.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/30/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022]
|
22
|
Adamik J, Roodman GD, Galson DL. Epigenetic-Based Mechanisms of Osteoblast Suppression in Multiple Myeloma Bone Disease. JBMR Plus 2019; 3:e10183. [PMID: 30918921 PMCID: PMC6419609 DOI: 10.1002/jbm4.10183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/29/2018] [Accepted: 02/03/2019] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) bone disease is characterized by the development of osteolytic lesions, which cause severe complications affecting the morbidity, mortality, and treatment of myeloma patients. Myeloma tumors seeded within the bone microenvironment promote hyperactivation of osteoclasts and suppression of osteoblast differentiation. Because of this prolonged suppression of bone marrow stromal cells’ (BMSCs) differentiation into functioning osteoblasts, bone lesions in patients persist even in the absence of active disease. Current antiresorptive therapy provides insufficient bone anabolic effects to reliably repair MM lesions. It has become widely accepted that myeloma‐exposed BMSCs have an altered phenotype with pro‐inflammatory, immune‐modulatory, anti‐osteogenic, and pro‐adipogenic properties. In this review, we focus on the role of epigenetic‐based modalities in the establishment and maintenance of myeloma‐induced suppression of osteogenic commitment of BMSCs. We will focus on recent studies demonstrating the involvement of chromatin‐modifying enzymes in transcriptional repression of osteogenic genes in MM‐BMSCs. We will further address the epigenetic plasticity in the differentiation commitment of osteoprogenitor cells and assess the involvement of chromatin modifiers in MSC‐lineage switching from osteogenic to adipogenic in the context of the inflammatory myeloma microenvironment. Lastly, we will discuss the potential of employing small molecule epigenetic inhibitors currently used in the MM research as therapeutics and bone anabolic agents in the prevention or repair of osteolytic lesions in MM. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Juraj Adamik
- Department of Medicine Division of Hematology/Oncology, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh PA USA
| | - G David Roodman
- Department of Medicine Division of Hematology-Oncology Indiana University Indianapolis IN USA.,Richard L Roudebush VA Medical Center Indianapolis IN USA
| | - Deborah L Galson
- Department of Medicine Division of Hematology/Oncology, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh PA USA
| |
Collapse
|
23
|
Xie M, Li JP. Heparan sulfate proteoglycan - A common receptor for diverse cytokines. Cell Signal 2018; 54:115-121. [PMID: 30500378 DOI: 10.1016/j.cellsig.2018.11.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/04/2023]
Abstract
Heparan sulfate proteoglycans (HSPG) are macromolecular glyco-conjugates expressed ubiquitously on the cell surface and in the extracellular matrix where they interact with a wide range of ligands to regulate many aspects of cellular function. The capacity of the side glycosaminoglycan chain heparan sulfate (HS) being able to interact with diverse protein ligands relies on its complex structure that is generated by a controlled biosynthesis process, involving the actions of glycosyl-transferases, sulfotransferases and the glucuronyl C5-epimerase. It is believed that activities of the modification enzymes control the HS structures that are designed to serve the biological functions in a given cell or biological status. In this review, we briefly discuss recent understandings on the roles of HSPG in cytokine stimulated cellular signaling, focusing on FGF, TGF-β, Wnt, Hh, HGF and VEGF.
Collapse
Affiliation(s)
- Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
24
|
Demystifying the pH dependent conformational changes of human heparanase pertaining to structure–function relationships: an in silico approach. J Comput Aided Mol Des 2018; 32:821-840. [DOI: 10.1007/s10822-018-0131-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
|
25
|
Jin H, Cui M. Gene silencing of heparanase results in suppression of invasion and migration of gallbladder carcinoma cells. Biosci Biotechnol Biochem 2018; 82:1116-1122. [PMID: 29598788 DOI: 10.1080/09168451.2018.1456316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This study investigated the effect of transcriptional gene silencing of the heparanase gene on standard gallbladder carcinoma cells (GBC-SD). The miRNAs targeting the promoter region and coding region of the heparanase gene were designed and synthesized. We transfected four recombinant miRNA vectors into GBC-SD. We performed the wound healing assays and invasion assays. The result shows that the heparanase expression was significantly decreased by recombinant vectors in transfected GBC-SD cells (p < 0.01), of which pmiR-Hpa-2 showed best interference effect (p < 0.05). The penetrated and migrating cells numbers and adherence rate of GBC-SD cells were significantly decreased by pmiR-Hpa-2 (p < 0.05).
Collapse
Affiliation(s)
- Hao Jin
- a The Second Department of General Surgery , Zhuhai People's Hospital , Zhuhai , China
| | - Min Cui
- a The Second Department of General Surgery , Zhuhai People's Hospital , Zhuhai , China
| |
Collapse
|
26
|
Zangari M, Yoo H, Shin IJ, Yoon D, Suva LJ. Surgical thyroparathyroidectomy prevents progression of 5TGM1 murine multiple myeloma in vivo. J Bone Oncol 2018; 12:19-22. [PMID: 29556454 PMCID: PMC5854927 DOI: 10.1016/j.jbo.2018.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 12/29/2022] Open
Abstract
The 5TGM1 multiple myeloma transplanted C57BL6/KaLwRij model recapitulates many disease features including monoclonal paraprotein production as well as the development of osteolytic bone lesions. Since a significant association between serum parathyroid hormone PTH variations, bone anabolism and myeloma progression in patients receiving proteasome inhibitors exists, this study investigated the effect of the PTH axis on murine myeloma development in vivo. C57BL6/KaLwRij myeloma-bearing mice underwent thyroparathyroidectomy (TPTX) before and after 5TGM1 cell transplantation. TPTX significantly and permanently inhibited 5TGM1 myeloma cell engraftment and prevented multiple myeloma growth and progression. These data support the hypothesis that the PTH axis is an important mediator of myeloma bone disease.
Collapse
Affiliation(s)
- Maurizio Zangari
- University of Arkansas for Medical Sciences, Myeloma Institute for Research and Therapy, 4301W Markham #816, Little Rock, AR 72205, USA
- Corresponding author.
| | - Hanna Yoo
- University of Arkansas for Medical Sciences, Myeloma Institute for Research and Therapy, 4301W Markham #816, Little Rock, AR 72205, USA
| | - Ik Jae Shin
- University of Arkansas for Medical Sciences, Myeloma Institute for Research and Therapy, 4301W Markham #816, Little Rock, AR 72205, USA
| | - Donghoon Yoon
- University of Arkansas for Medical Sciences, Myeloma Institute for Research and Therapy, 4301W Markham #816, Little Rock, AR 72205, USA
| | - Larry J. Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
27
|
Frączak E, Olbromski M, Piotrowska A, Glatzel-Plucińska N, Dzięgiel P, Dybko J, Kuliczkowski K, Wróbel T. Bone marrow adipocytes in haematological malignancies. Acta Histochem 2018; 120:22-27. [PMID: 29146005 DOI: 10.1016/j.acthis.2017.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 01/25/2023]
Abstract
Bone marrow adipocytes (BMAs) derived from mesenchymal stem cells (MSC) are an active and significant element of the bone marrow microenvironment. They are involved in metabolic functions, complex interactions with other stromal cells, and in the development and progression of tumours. Currently, there is little data regarding the role of BMAs in haematological malignancies. Due to this, we have attempted to characterise the BMAs in these malignancies in terms of quantity and morphology. Our study included 30 patients aged 22-76 with myelo- (n=17) and lymphoproliferative malignancies (n=13), both with and without bone marrow infiltration. Trepanobioptate was the evaluated material. The number and diameter of BMAs were measured, and the percentage of adipocytes (adipocyte fraction - AF), hematopoietic cells (hematopoietic fraction - HF) and trabecular bone (trabecular bone fraction - BF) was calculated. The obtained results were considered against the clinical parameters of age, sex, body weight, body surface area (BSA) and body mass index (BMI). We observed that as age increases, the number of BMA/mm2, the diameter of adipocytes and AF increase while BF and HF decrease. However, this relationship was not statistically significant. A significant correlation of BMA parameters was also not found in relation to weight, BMI and BSA, and the number and diameter of BMAs were comparable in both sexes. The trepanobioptate of infiltrated bone marrow showed a decreased number of BMA/mm2 compared to the trepanobioptate from bone marrow without infiltration (97.44±69.16 vs. 164.14±54.16; p=0.010) with a marked difference in men (69.75±65.26 vs. 180.33±60.40; p=0.007). These trepanobioptate also showed an increase in the number of BMA/mm2 with age (r=0.472; p=0.041), and with an increase of BMI, an increase in diameter of BMAs (r=0.625; p=0.007) and AF (r=0.546; p=0.023). The number and size of BMAs, as well as AF, BF and HF in patients with myeloproliferative malignancies did not differ significantly compared to patients with lymphoproliferative malignancies.
Collapse
|
28
|
Li J, Pan Q, Rowan PD, Trotter TN, Peker D, Regal KM, Javed A, Suva LJ, Yang Y. Heparanase promotes myeloma progression by inducing mesenchymal features and motility of myeloma cells. Oncotarget 2017; 7:11299-309. [PMID: 26849235 PMCID: PMC4905474 DOI: 10.18632/oncotarget.7170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 01/21/2016] [Indexed: 11/25/2022] Open
Abstract
Bone dissemination and bone disease occur in approximately 80% of patients with multiple myeloma (MM) and are a major cause of patient mortality. We previously demonstrated that MM cell-derived heparanase (HPSE) is a major driver of MM dissemination to and progression in new bone sites. However the mechanism(s) by which HPSE promotes MM progression remains unclear. In the present study, we investigated the involvement of mesenchymal features in HPSE-promoted MM progression in bone. Using a combination of molecular, biochemical, cellular, and in vivo approaches, we demonstrated that (1) HPSE enhanced the expression of mesenchymal markers in both MM and vascular endothelial cells; (2) HPSE expression in patient myeloma cells positively correlated with the expression of the mesenchymal markers vimentin and fibronectin. Additional mechanistic studies revealed that the enhanced mesenchymal-like phenotype induced by HPSE in MM cells is due, at least in part, to the stimulation of the ERK signaling pathway. Finally, knockdown of vimentin in HPSE expressing MM cells resulted in significantly attenuated MM cell dissemination and tumor growth in vivo. Collectively, these data demonstrate that the mesenchymal features induced by HPSE in MM cells contribute to enhanced tumor cell motility and bone-dissemination.
Collapse
Affiliation(s)
- Juan Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Hematology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, China
| | - Qianying Pan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Hematology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, China
| | - Patrick D Rowan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Timothy N Trotter
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Deniz Peker
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kellie M Regal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amjad Javed
- Comprehensive Cancer Center and The Center for Metabolic Bone Disease, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, USA
| | - Yang Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center and The Center for Metabolic Bone Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
29
|
Mondello P, Cuzzocrea S, Navarra M, Mian M. Bone marrow micro-environment is a crucial player for myelomagenesis and disease progression. Oncotarget 2017; 8:20394-20409. [PMID: 28099912 PMCID: PMC5386771 DOI: 10.18632/oncotarget.14610] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/05/2017] [Indexed: 01/06/2023] Open
Abstract
Despite the advent of many therapeutic agents, such as bortezomib and lenalidomide that have significantly improved the overall survival, multiple myeloma remains an incurable disease. Failure to cure is multifactorial and can be attributed to the underlying genetic heterogeneity of the cancer and to the surrounding micro-environment. Understanding the mutual interaction between myeloma cells and micro-environment may lead to the development of novel treatment strategies able to eradicate this disease. In this review we discuss the principal molecules involved in the micro-environment network in multiple myeloma and the currently available therapies targeting them.
Collapse
Affiliation(s)
- Patrizia Mondello
- Department of Human Pathology, University of Messina, Messina, Italy.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michael Mian
- Department of Hematology and Center of Bone Marrow Transplantation, Hospital of Bolzano, Bolzano/Bozen, Italy.,Department of Internal Medicine V, Hematology & Oncology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Xu Z, Chen J, Shao W, Wang R, Liu Y. [Research progress in osteogenesis and osteogenic mechanism of heparan sulfate]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1016-1020. [PMID: 29806444 PMCID: PMC8458588 DOI: 10.7507/1002-1892.201701103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/13/2017] [Indexed: 11/03/2022]
Abstract
Objective To discuss the role of heparan sulfate (HS) in bone formation and bone remodeling and summarize the research progress in the osteogenic mechanism of HS. Methods The domestic and abroad related literature about HS acting on osteoblast cell line in vitro, HS and HS composite scaffold materials acting on the ani-mal bone defect models, and the effect of HS proteoglycans on bone development were summarized and analyzed. Results Many growth factors involved in fracture healing especially heparin-binding growth factors, such as fibroblast growth factors, bone morphogenetic protein, and transforming growth factor β, are connected noncovalently with long HS chains. HS proteoglycans protect these proteins from protease degradation and are directly involved in the regulation of growth factors signaling and bone cell function. HS can promote the differentiation of stem cells into osteoblasts and enhance the differentiation of osteoblasts. In bone matrix, HS plays a significant role in promoting the formation, maintaining the stability, and accelerating the mineralization. Conclusion The osteogenesis of HS is pronounced. HS is likely to become the clinical treatment measures of fracture nonunion or delayed union, and is expected to provide more choices for bone tissue engineering with identification of its long-term safety.
Collapse
Affiliation(s)
- Zhujie Xu
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi Jiangsu, 214000, P.R.China
| | - Jinghua Chen
- Medicinal Biopolymer Laboratory of College of Pharmacy, Jiangnan University, Wuxi Jiangsu, 214000, P.R.China
| | - Wei Shao
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi Jiangsu, 214000, P.R.China
| | - Rui Wang
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi Jiangsu, 214000, P.R.China
| | - Yi Liu
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi Jiangsu, 214000, P.R.China;Medicinal Biopolymer Laboratory of College of Pharmacy, Jiangnan University, Wuxi Jiangsu, 214000,
| |
Collapse
|
31
|
Jin H, Zhou S, Yang S, Cao HM. Heparanase overexpression down-regulates syndecan-1 expression in a gallbladder carcinoma cell line. J Int Med Res 2017; 45:662-672. [PMID: 28351285 PMCID: PMC5536678 DOI: 10.1177/0300060517700323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Objective To discuss the relevance of heparanase and syndecan-1 and regulation of the heparanase-syndecan1 axis in the invasiveness of gallbladder carcinoma cells. Methods 1. Generation of a gallbladder cancer cell line overexpressing a heparanase (GBD-SD) transgene. 2. Western blot analysis of syndecan-1 levels of GBD-SD and control gallbladder carcinoma (GBC-SD) cells. 3. RT-PCR analysis of syndecan-1 mRNA levels of GBD-SD and GBC-SD. 4. Evaluation of invasion and migration of GBD-SD and GBC-SD cells. Results 1. Heparanase expression in GBD-SD cells was significantly increased. 2. The syndecan-1 mRNA level of GBD-SD cells was significantly lower compared with that of GBC-SD cells. 3. The syndecan-1 DNA copy number in GBD-SD cells was significantly lower compared with that of GBC-SD. 4. The invasiveness and migration of GBD-SD cells were significantly higher compared with GBC-SD cells. Conclusions 1. The expression of heparanase negatively correlated with that of syndecan-1 in a gallbladder carcinoma cell line. 2. The expression of heparanase and syndecan-1 in gallbladder carcinomas negatively correlated, similar to other tumours. 3. The heparanase/syndecan1 axis in gallbladder carcinoma plays an important role in the invasion and metastasis, thus providing a new therapeutic target. 4. Further research is required to identify the detailed mechanisms.
Collapse
Affiliation(s)
- Hao Jin
- 1 Zhuhai People's Hospital, Zhuhai, China
| | | | - Song Yang
- 2 The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | | |
Collapse
|
32
|
Trotter TN, Gibson JT, Sherpa TL, Gowda PS, Peker D, Yang Y. Adipocyte-Lineage Cells Support Growth and Dissemination of Multiple Myeloma in Bone. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3054-3063. [PMID: 27648615 DOI: 10.1016/j.ajpath.2016.07.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/01/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023]
Abstract
Multiple myeloma (MM) cells reside in the bone marrow microenvironment and form complicated interactions with nonneoplastic, resident stromal cells. We previously found that aggressive MM cells shift osteoblast progenitors toward adipogenesis. In addition, adipocytes are among the most common cell types in the adult skeleton; both mature adipocytes and preadipocytes serve as endocrine cells that secrete a number of soluble molecules into the microenvironment. Therefore, we used a combination of in vivo and in vitro methods to test the hypothesis that an increase in adipocyte lineage cells feeds back to promote MM progression. The results of this study revealed that bone marrow from patients with MM indeed contains increased preadipocytes and significantly larger mature adipocytes than normal bone marrow. We also found that preadipocytes and mature adipocytes secrete many molecules important for supporting MM cells in the bone marrow and directly recruit MM cells through both monocyte chemotactic protein-1 and stromal cell-derived factor-1α. Co-culture experiments found that preadipocytes activate Wnt signaling and decrease cleaved caspase-3, whereas mature adipocytes activate ERK signaling in MM cells. Furthermore, mature adipocyte conditioned medium promotes MM growth, whereas co-culture with preadipocytes results in enhanced MM cell chemotaxis in vitro and increased tumor growth in bone in vivo. Combined, these data reveal the importance of preadipocytes and mature adipocytes on MM progression and represent a unique target in the bone marrow microenvironment.
Collapse
Affiliation(s)
- Timothy N Trotter
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Justin T Gibson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tshering Lama Sherpa
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Pramod S Gowda
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Deniz Peker
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yang Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; Comprehensive Cancer Center and the Center for Metabolic Bone Disease, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
33
|
Xi H, An R, Li L, Wang G, Tao Y, Gao L. Myeloma bone disease: Progress in pathogenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:149-155. [PMID: 27496181 DOI: 10.1016/j.pbiomolbio.2016.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/31/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022]
Abstract
Myeloma bone disease (MBD) is one of the most serious complications of multiple myeloma (MM) and the most severe cause of MM morbidity. Dysregulation of osteoblast and osteoclast cells plays key roles in MBD. In the bone marrow microenvironment, myeloma cells, osteoblasts, osteoclasts and bone marrow stromal cells can secrete multiple cytokines, categorized as osteoclast cell activating factors (OAFs) and osteoblast cell inactivating factors, which have been discovered to participate in bone metabolism and contribute to the pathogenesis of MBD. Several signaling pathways related to these cytokines were also revealed in the MBD pathogenesis. To better understand the pathogenesis of MBD and therefore the potential therapeutic targets of this disease, we will summarize recent study progress in the factors and underlying signaling pathways involved in the occurrence and development of MBD.
Collapse
Affiliation(s)
- Hao Xi
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ran An
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lu Li
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Gang Wang
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Yi Tao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Lu Gao
- Department of Physiology, Second Military Medical University, Shanghai, China.
| |
Collapse
|
34
|
Suvannasankha A, Tompkins DR, Edwards DF, Petyaykina KV, Crean CD, Fournier PG, Parker JM, Sandusky GE, Ichikawa S, Imel EA, Chirgwin JM. FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells. Oncotarget 2016; 6:19647-60. [PMID: 25944690 PMCID: PMC4637311 DOI: 10.18632/oncotarget.3794] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/10/2015] [Indexed: 01/09/2023] Open
Abstract
Multiply myeloma (MM) grows in and destroys bone, where osteocytes secrete FGF23, a hormone which affects phosphate homeostasis and aging. We report that multiple myeloma (MM) cells express receptors for and respond to FGF23. FGF23 increased mRNA for EGR1 and its target heparanase, a pro-osteolytic factor in MM. FGF23 signals through a complex of klotho and a classical FGF receptor (FGFR); both were expressed by MM cell lines and patient samples. Bone marrow plasma cells from 42 MM patients stained positively for klotho, while plasma cells from 8 patients with monoclonal gammopathy of undetermined significance (MGUS) and 6 controls were negative. Intact, active FGF23 was increased 2.9X in sera of MM patients compared to controls. FGF23 was not expressed by human MM cells, but co-culture with mouse bone increased its mRNA. The FGFR inhibitor NVP-BGJ398 blocked the heparanase response to FGF23. NVP-BGJ398 did not inhibit 8226 growth in vitro but significantly suppressed growth in bone and induction of the osteoclast regulator RANK ligand, while decreasing heparanase mRNA. The bone microenvironment provides resistance to some anti-tumor drugs but increased the activity of NVP-BGJ398 against 8226 cells. The FGF23/klotho/heparanase signaling axis may offer targets for treatment of MM in bone.
Collapse
Affiliation(s)
- Attaya Suvannasankha
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Douglas R Tompkins
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel F Edwards
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Katarina V Petyaykina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Colin D Crean
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pierrick G Fournier
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jamie M Parker
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George E Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shoji Ichikawa
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erik A Imel
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John M Chirgwin
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
35
|
Shay G, Hazlehurst L, Lynch CC. Dissecting the multiple myeloma-bone microenvironment reveals new therapeutic opportunities. J Mol Med (Berl) 2015; 94:21-35. [PMID: 26423531 DOI: 10.1007/s00109-015-1345-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/13/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022]
Abstract
Multiple myeloma is a plasma cell skeletal malignancy. While therapeutic agents such as bortezomib and lenalidomide have significantly improved overall survival, the disease is currently incurable with the emergence of drug resistance limiting the efficacy of chemotherapeutic strategies. Failure to cure the disease is in part due to the underlying genetic heterogeneity of the cancer. Myeloma progression is critically dependent on the surrounding microenvironment. Defining the interactions between myeloma cells and the more genetically stable hematopoietic and mesenchymal components of the bone microenvironment is critical for the development of new therapeutic targets. In this review, we discuss recent advances in our understanding of how microenvironmental elements contribute to myeloma progression and, therapeutically, how those elements can or are currently being targeted in a bid to eradicate the disease.
Collapse
Affiliation(s)
- G Shay
- Tumor Biology Department, SRB-3, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Blvd, Tampa, FL, 33612, USA
| | - L Hazlehurst
- Department of Pharmaceutical Sciences and The Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, West Virginia University, Morgantown, WV, 26506, USA
| | - C C Lynch
- Tumor Biology Department, SRB-3, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
36
|
Myeloma cell-derived Runx2 promotes myeloma progression in bone. Blood 2015; 125:3598-608. [PMID: 25862559 DOI: 10.1182/blood-2014-12-613968] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/31/2015] [Indexed: 12/15/2022] Open
Abstract
The progression of multiple myeloma (MM) is governed by a network of molecular signals, the majority of which remain to be identified. Recent studies suggest that Runt-related transcription factor 2 (Runx2), a well-known bone-specific transcription factor, is also expressed in solid tumors, where expression promotes both bone metastasis and osteolysis. However, the function of Runx2 in MM remains unknown. The current study demonstrated that (1) Runx2 expression in primary human MM cells is significantly greater than in plasma cells from healthy donors and patients with monoclonal gammopathy of undetermined significance; (2) high levels of Runx2 expression in MM cells are associated with a high-risk population of MM patients; and (3) overexpression of Runx2 in MM cells enhanced tumor growth and disease progression in vivo. Additional studies demonstrated that MM cell-derived Runx2 promotes tumor progression through a mechanism involving the upregulation of Akt/β-catenin/Survivin signaling and enhanced expression of multiple metastatic genes/proteins, as well as the induction of a bone-resident cell-like phenotype in MM cells. Thus, Runx2 expression supports the aggressive phenotype of MM and is correlated with poor prognosis. These data implicate Runx2 expression as a major regulator of MM progression in bone and myeloma bone disease.
Collapse
|
37
|
Beksac M, Waage A, Bringhen S, Kristinsson SY, Sucak GT, Gimsing P, Lupparelli G, Fıratlı-Tuğlular T, Juliusson G, Turesson I, Palumbo A. Does low-molecular-weight heparin influence the antimyeloma effects of thalidomide? A retrospective analysis of data from the GIMEMA, Nordic and Turkish myeloma study groups. Acta Haematol 2015; 133:372-380. [PMID: 25824293 DOI: 10.1159/000370023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/20/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM Low-molecular-weight heparin (LMWH) has been shown to prolong survival among patients with solid tumors, but its role among myeloma patients is unknown. PATIENTS Data from the GIMEMA (Gruppo Italiano Malattie Ematologiche dell'Adulto), Nordic and Turkish myeloma study groups comparing melphalan and prednisolone with (MPT, n: 404) or without thalidomide (MP, n: 393) are analyzed for effects of LMWH. Forty percent (159/394) of the patients on MPT and 7.4% (29/390) in the MP arm received LMWH. RESULTS Thalidomide improved response and progression-free survival (PFS). Regardless of thalidomide treatment, response rate was higher among those receiving LMWH vs. none vs. other anticoagulants (58.1 vs. 44.9 vs. 50.4%, p = 0.01). PFS was significantly longer (median 32 vs. 21 and 17 vs. 17 months, p = 0.004) only among international scoring system (ISS) I patients receiving MPT ± LMWH vs. MP ± LMWH. The group of MPT patients who also received LMWH had a better OS compared to those who did not [45 months, 95% confidence interval (CI) 27.7-62.3, vs. 32 months, 95% CI 26.1-37.9; p = 0.034]. When multivariate analysis was repeated in subgroups, thalidomide was no longer a significant factor (response, PFS) among those receiving LMWH. CONCLUSION Addition of LMWH to MPT, in particular in patients with low ISS, suggests additive effects, but the results are limited by the retrospective design of our study.
Collapse
|
38
|
Papamerkouriou YM, Kenanidis E, Gamie Z, Papavasiliou K, Kostakos T, Potoupnis M, Sarris I, Tsiridis E, Kyrkos J. Treatment of multiple myeloma bone disease: experimental and clinical data. Expert Opin Biol Ther 2014; 15:213-30. [DOI: 10.1517/14712598.2015.978853] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Jöhrer K, Ploner C, Thangavadivel S, Wuggenig P, Greil R. Adipocyte-derived players in hematologic tumors: useful novel targets? Expert Opin Biol Ther 2014; 15:61-77. [PMID: 25308972 DOI: 10.1517/14712598.2015.970632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Adipocytes and their products play essential roles in tumor establishment and progression. As the main cellular component of the bone marrow, adipocytes may contribute to the development of hematologic tumors. AREAS COVERED This review summarizes experimental data on adipocytes and their interaction with various cancer cells. Special focus is set on the interactions of bone marrow adipocytes and normal and transformed cells of the hematopoietic system such as myeloma and leukemia cells. Current in vitro and in vivo data are summarized and the potential of novel therapeutic targets is critically discussed. EXPERT OPINION Targeting lipid metabolism of cancer cells and adipocytes in combination with standard therapeutics might open novel therapeutic avenues in these cancer entities. Adipocyte-derived products such as free fatty acids and specific adipokines such as adiponectin may be vital anti-cancer targets in hematologic malignancies. However, available data on lipid metabolism is currently mostly referring to peripheral fat cell/cancer cell interactions and results need to be evaluated specifically for the bone marrow niche.
Collapse
Affiliation(s)
- Karin Jöhrer
- Tyrolean Cancer Research Institute , Innrain 66, 6020 Innsbruck , Austria
| | | | | | | | | |
Collapse
|
40
|
Developmental pathways hijacked by osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 804:93-118. [PMID: 24924170 DOI: 10.1007/978-3-319-04843-7_5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer of any type often can be described by an arrest, alteration or disruption in the normal development of a tissue or organ, and understanding of the normal counterpart's development can aid in understanding the malignant state. This is certainly true for osteosarcoma and the normal developmental pathways that guide osteoblast development that are changed in the genesis of osteogenic sarcoma. A carefully regulated crescendo-decrescendo expression of RUNX2 accompanies the transition from mesenchymal stem cell to immature osteoblast to mature osteoblast. This pivotal role is controlled by several pathways, including bone morphogenic protein (BMP), Wnt/β-catenin, fibroblast growth factor (FGF), and protein kinase C (PKC). The HIPPO pathway and its downstream target YAP help to regulate proliferation of immature osteoblasts and their maturation into non-proliferating mature osteoblasts. This pathway also helps regulate expression of the mature osteoblast protein osteocalcin. YAP also regulates expression of MT1-MMP, a membrane-bound matrix metalloprotease responsible for remodeling the extracellular matrix surrounding the osteoblasts. YAP, in turn, can be regulated by the ERBB family protein Her-4. Osteosarcoma may be thought of as a cell held at the immature osteoblast stage, retaining some of the characteristics of that developmental stage. Disruptions of several of these pathways have been described in osteosarcoma, including BMP, Wnt/b-catenin, RUNX2, HIPPO/YAP, and Her-4. Further, PKC can be activated by several receptor tyrosine kinases implicated in osteosarcoma, including the ERBB family (EGFR, Her-2 and Her-4 in osteosarcoma), IGF1R, FGF, and others. Understanding these functions may aid in the understanding the mechanisms underpinning clinical observations in osteosarcoma, including both the lytic and blastic phenotypes of tumors, the invasiveness of the disease, and the tendency for treated tumors to ossify rather than shrink. Through a better understanding of the relationship between normal osteoblast development and osteosarcoma, we may gain insights into novel therapeutic avenues and improved outcomes.
Collapse
|
41
|
Hammond E, Khurana A, Shridhar V, Dredge K. The Role of Heparanase and Sulfatases in the Modification of Heparan Sulfate Proteoglycans within the Tumor Microenvironment and Opportunities for Novel Cancer Therapeutics. Front Oncol 2014; 4:195. [PMID: 25105093 PMCID: PMC4109498 DOI: 10.3389/fonc.2014.00195] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are an integral and dynamic part of normal tissue architecture at the cell surface and within the extracellular matrix. The modification of HSPGs in the tumor microenvironment is known to result not just in structural but also functional consequences, which significantly impact cancer progression. As substrates for the key enzymes sulfatases and heparanase, the modification of HSPGs is typically characterized by the degradation of heparan sulfate (HS) chains/sulfation patterns via the endo-6-O-sulfatases (Sulf1 and Sulf2) or by heparanase, an endo-glycosidase that cleaves the HS polymers releasing smaller fragments from HSPG complexes. Numerous studies have demonstrated how these enzymes actively influence cancer cell proliferation, signaling, invasion, and metastasis. The activity or expression of these enzymes has been reported to be modified in a variety of cancers. Such observations are consistent with the degradation of normal architecture and basement membranes, which are typically compromised in metastatic disease. Moreover, recent studies elucidating the requirements for these proteins in tumor initiation and progression exemplify their importance in the development and progression of cancer. Thus, as the influence of the tumor microenvironment in cancer progression becomes more apparent, the focus on targeting enzymes that degrade HSPGs highlights one approach to maintain normal tissue architecture, inhibit tumor progression, and block metastasis. This review discusses the role of these enzymes in the context of the tumor microenvironment and their promise as therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
| | - Ashwani Khurana
- Department of Experimental Pathology, Mayo Clinic College of Medicine , Rochester, MN , USA
| | - Viji Shridhar
- Department of Experimental Pathology, Mayo Clinic College of Medicine , Rochester, MN , USA
| | - Keith Dredge
- Progen Pharmaceuticals Ltd. , Brisbane, QLD , Australia
| |
Collapse
|
42
|
Andersen NF, Vogel U, Klausen TW, Gimsing P, Gregersen H, Abildgaard N, Vangsted AJ. Polymorphisms in the heparanase gene in multiple myeloma association with bone morbidity and survival. Eur J Haematol 2014; 94:60-6. [DOI: 10.1111/ejh.12401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Niels F. Andersen
- Department of Haematology; Aarhus University Hospital; Aarhus Denmark
| | - Ulla Vogel
- National Research Centre for Working Environment; Copenhagen Denmark
| | - Tobias W. Klausen
- Department of Haematology; University Hospital of Copenhagen at Herlev; Herlev Denmark
| | - Peter Gimsing
- Department of Haematology; University Hospital of Copenhagen at Rigshospitalet; Copenhagen Denmark
| | - Henrik Gregersen
- Department of Haematology; Aalborg University Hospital; Aalborg Denmark
| | - Niels Abildgaard
- Department of Haematology; Odense University Hospital; Odense Denmark
| | - Annette J. Vangsted
- Department of Haematology; University Hospital of Copenhagen at Rigshospitalet; Copenhagen Denmark
| |
Collapse
|