1
|
Agarwal R, Ye R, Smith MD, Smith JC, Quarles LD, Pi M. Osteocalcin binds to a GPRC6A Venus fly trap allosteric site to positively modulate GPRC6A signaling. FASEB Bioadv 2024; 6:365-376. [PMID: 39399472 PMCID: PMC11467737 DOI: 10.1096/fba.2024-00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 10/15/2024] Open
Abstract
GPRC6A, a member of the Family C G-protein coupled receptors, regulates energy metabolism and sex hormone production and is activated by diverse ligands, including cations, L-amino acids, the osteocalcin (Ocn) peptide and the steroid hormone testosterone. We sought a structural framework for the ability of multiple distinct classes of ligands to active GPRC6A. We created a structural model of GPRC6A using Alphafold2. Using this model we explored a putative orthosteric ligand binding site in the bilobed Venus fly trap (VFT) domain of GPRC6A and two positive allosteric modulator (PAM) sites, one in the VFT and the other in the 7 transmembrane (7TM) domain. We provide evidence that Ocn peptides act as a PAM for GPRC6A by binding to a site in the VFT that is distinct from the orthosteric site for calcium and L-amino acids. In agreement with this prediction, alternatively spliced GPRC6A isoforms 2 and 3, which lack regions of the VFT, and mutations in the computationally predicted Ocn binding site, K352E and H355P, prevent Ocn activation of GPRC6A. These observations explain how dissimilar ligands activate GPRC6A and set the stage to develop novel molecules to activate and inhibit this previously poorly understood receptor.
Collapse
Affiliation(s)
- Rupesh Agarwal
- Oak Ridge National Laboratory Center for Molecular BiophysicsUniversity of TennesseeOak RidgeTennesseeUSA
- Department of Biochemistry and Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Ruisong Ye
- Department of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Micholas Dean Smith
- Oak Ridge National Laboratory Center for Molecular BiophysicsUniversity of TennesseeOak RidgeTennesseeUSA
- Department of Biochemistry and Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Jeremy C. Smith
- Oak Ridge National Laboratory Center for Molecular BiophysicsUniversity of TennesseeOak RidgeTennesseeUSA
- Department of Biochemistry and Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - L. Darryl Quarles
- Department of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Min Pi
- Department of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
2
|
Wen S, Xu C, Yuan Y, Li Y, Xu D, Gong M, Zhou M, Zhou L. The Evolution of the Bone Turnover Marker in Patients Following Recovery from Diabetic Ketoacidosis. Horm Metab Res 2024; 56:662-669. [PMID: 38346689 DOI: 10.1055/a-2247-5610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The aim of the study was to investigate whether the biomarkers for bone turnover could rapidly recover during the period of diabetic ketoacidosis (DKA). Bone turnover biomarkers, including 25-hydroxyvitamin D3, N-terminal middle molecular fragment of osteocalcin (NMID), and β-C terminal cross-linking telopeptide of type 1 collagen were evaluated using in-patient data (n=627) from Shanghai Pudong Hospital from 2018-2022. The comparison was performed between type 2 diabetes (T2D only) (n=602) and DKA (n=25), in which we checked the bone turnover markers at pre-treatment and recovery. After matching by body mass index (BMI), we found that except for 25-OH-VitD3, the age difference, indices of glucose metabolism, and bone turnover were significant between the 2 groups (p<0.05). We found only a significant restoration of NMID (p<0.001). NMID and β-CTX, when compared with T2D, showed overt distinction between recovery and T2D (p<0.05). In addition, the investigations demonstrated a substantial difference between 25-OH-VitD3 in males and NMID in females, regardless of age (p<0.05). Multilinear regression analysis revealed that 2 hours postprandial plasma C-peptide was an independent predictor of the NMID in both pre-treatment (β=0.58, p=0.003) and recovery (β=0.447, p=0.025), although sex was significant in pre-treatment (β=-0.444, p=0.020). Finally, we found that only age variation affected DKA's fasting plasma glucose level (p<0.05). The study revealed that the bone turnover of DKA is significantly different in pre-treatment and recovery; however, NMID might recover quickly if the patients received appropriate treatment. Importantly, pancreatic function plays a critical role in changing bone turnover biomarkers.
Collapse
Affiliation(s)
- Song Wen
- Fudan Zhangjiang Institute, Shanghai Pudong Hospital, Shanghai, China
- Department of Endocrinology, Shanghai Pudong Hospital, Shanghai, China
| | - Chenglin Xu
- Department of Endocrinology, Shanghai Pudong Hospital, Shanghai, China
| | - Yue Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Shanghai, China
| | - Yanyan Li
- Department of Endocrinology, Shanghai Pudong Hospital, Shanghai, China
| | - Dongxiang Xu
- Department of Endocrinology, Shanghai Pudong Hospital, Shanghai, China
| | - Min Gong
- Department of Endocrinology, Shanghai Pudong Hospital, Shanghai, China
| | - Mingyue Zhou
- Clinical Research OB/GYN REI Division, University of California, San Francisco, USA
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Shanghai, China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Shanghai, China
| |
Collapse
|
3
|
Pi M, Agarwal R, Smith MD, Smith JC, Quarles LD. GPRC6A is a Potential Therapeutic Target for Metformin Regulation of Glucose Homeostasis in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608635. [PMID: 39229180 PMCID: PMC11370357 DOI: 10.1101/2024.08.19.608635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Understanding the mechanism of metformin actions in treating type 2 diabetes is limited by an incomplete knowledge of the specific protein targets mediating its metabolic effects. Metformin has structural similarities to L-Arginine (2-amino-5-guanidinopentanoic acid), which is a ligand for GPRC6A, a Family C G-protein coupled receptor that regulates energy metabolism. Ligand activation of GPRC6A results in lowering of blood glucose and other metabolic changes resembling the therapeutic effect of metformin. In the current study, we tested if metformin activates GPRC6A. We used Alphafold2 to develop a structural model for L-Arginine (L-Arg) binding to the extracellu-lar bilobed venus flytrap domain (VFT) of GPRC6A. We found that metformin docked to the site in the VFT that overlaps the binding site for L-Arg. Metformin resulted in a dose-dependent stimulation of GPRC6A activity in HEK-293 cells transfected with full-length wild-type GPRC6A but not in untransfected control cells. In addition, metformin failed to activate an alternatively spliced GPRC6A isoform lacking the putative binding site in the VFT. More specifically, mutation of the predicted metformin key binding residues Glu170 and Asp303 in the GPRC6A VFT resulted in loss of metformin receptor activation in vitro. The in vivo role of GPRC6A in mediating the effects of metformin was tested in Gprc6a-/- mice. Administration of therapeutic doses of metformin lowered blood glucose levels following a glucose tolerance test in wild-type but not Gprc6a-/- mice. Finally, we EN300, created by adding a carboxymethyl group from L-Arg to the biguanide backbone of metformin. EN300 showed dose-dependent stimulation of GPRC6A activity in vitro with greater potency than L-Arginine, but less than metformin. Thus, we suggest that GPRC6A is a potential molecular target for metformin which may be used to understand the therapeutic actions of metformin and develop novel small molecules to treat T2D.
Collapse
Affiliation(s)
- Min Pi
- Departments of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Rupesh Agarwal
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, Tennessee 37830
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Micholas Dean Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, Tennessee 37830
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Jeremy C. Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, Tennessee 37830
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - L. Darryl Quarles
- Departments of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
- Oak Ridge Therapeutic Discovery, LLC, Memphis, Tennessee 38137
| |
Collapse
|
4
|
Bouvard B, Mabilleau G. Gut hormones and bone homeostasis: potential therapeutic implications. Nat Rev Endocrinol 2024:10.1038/s41574-024-01000-z. [PMID: 38858581 DOI: 10.1038/s41574-024-01000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
Bone resorption follows a circadian rhythm, with a marked reduction in circulating markers of resorption (such as carboxy-terminal telopeptide region of collagen type I in serum) in the postprandial period. Several gut hormones, including glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP1) and GLP2, have been linked to this effect in humans and rodent models. These hormones are secreted from enteroendocrine cells in the gastrointestinal tract in response to a variety of stimuli and effect a wide range of physiological processes within and outside the gut. Single GLP1, dual GLP1-GIP or GLP1-glucagon and triple GLP1-GIP-glucagon receptor agonists have been developed for the treatment of type 2 diabetes mellitus and obesity. In addition, single GIP, GLP1 and GLP2 analogues have been investigated in preclinical studies as novel therapeutics to improve bone strength in bone fragility disorders. Dual GIP-GLP2 analogues have been developed that show therapeutic promise for bone fragility in preclinical studies and seem to exert considerable activity at the bone material level. This Review summarizes the evidence of the action of gut hormones on bone homeostasis and physiology.
Collapse
Affiliation(s)
- Béatrice Bouvard
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France
- CHU Angers, Service de Rhumatologie, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France.
- CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France.
| |
Collapse
|
5
|
Paracha N, Mastrokostas P, Kello E, Gedailovich Y, Segall D, Rizzo A, Mitelberg L, Hassan N, Dowd TL. Osteocalcin improves glucose tolerance, insulin sensitivity and secretion in older male mice. Bone 2024; 182:117048. [PMID: 38378083 DOI: 10.1016/j.bone.2024.117048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Osteocalcin deficient mice (OC-/-), on a mixed 129/BL6J background, were reported to show glucose intolerance, insulin insensitivity and reduced insulin secretion at 1-6 mos of age. This is controversial as two studies in OC-/- mice on different backgrounds (C3H/BL6 (5-6 mos.) and C57BL/6N (5 and 9 mos.)) found no effect on glucose metabolism. To determine the role of OC in glucose metabolism we conducted glucose tolerance tests (GTT), insulin tolerances tests (ITT) and glucose stimulated insulin secretion (GSIS) on 6 and 9.5 month-old male OC-/- and OC+/+ mice on a pure C57BL/6J background and fed a normal chow diet. All results were analyzed with a two-way repeated measures ANOVA. The GTT results showed no effect on males at 6 months of age but glucose intolerance was significantly increased (p < 0.05) in male OC-/- mice at 9.5 months of age. The ITT results indicated significantly increased insulin resistance in male OC-/- mice. Glucose stimulated insulin secretion (GSIS) showed insulin significantly (p < 0.05) reduced in OC-/- at several time points. Mouse Osteocalcin injected into OC-/- mice decreased the glucose level. Our results confirm the role of OC in glucose metabolism and insulin sensitivity and demonstrate a role in insulin secretion in older male mice on a C57BL/6J background. Differences in background, age, or experimental procedures could explain controversial results. A delayed onset of the effect of OC on glucose metabolism at 9.5 months in male C57BL/6J mice highlights the importance of background on phenotype. Consideration of genetic background and age may be beneficial for human studies on osteocalcin and glucose homeostasis and may be relevant to the elderly where osteocalcin is reduced.
Collapse
Affiliation(s)
- Noorulain Paracha
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| | - Paul Mastrokostas
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| | - Evan Kello
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| | - Yosef Gedailovich
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| | - Devorah Segall
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| | - Alexis Rizzo
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| | - Lawrence Mitelberg
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| | - Naif Hassan
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| | - Terry Lynne Dowd
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America; Ph.D. Program in Chemistry and Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America.
| |
Collapse
|
6
|
Otani T, Mizokami A, Takeuchi H, Inai T, Hirata M. The role of adhesion molecules in osteocalcin-induced effects on glucose and lipid metabolism in adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119701. [PMID: 38417588 DOI: 10.1016/j.bbamcr.2024.119701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Recent findings suggest that uncarboxylated osteocalcin (GluOC) promotes glucose and lipid metabolism via its putative receptor GPRC6A; however, its direct effect on adipocytes remains elusive. In this study, we elucidated the effects of GluOC on adipocytes, with an emphasis on the role of cell adhesion molecules. We determined that GluOC promoted the expression of adipocyte adhesion molecule (ACAM) and its transcription factor Krüppel-like factor 4 and enhanced the cortical actin filament assembly, which ameliorated lipid droplet hypertrophy. Additionally, GluOC upregulated the expression of integrin αVβ3 and activation of focal adhesion kinase (FAK) and prevented insulin receptor substrate 1 (IRS1) degradation by inhibiting the ubiquitin-proteasome system via the FAK-PLC-PKC axis, which activated IRS1-Akt-mediated glucose transporter 4 (GLUT4) transport. Furthermore, we showed that GluOC elevated the expression of the insulin-independent glucose transporters GLUT1 and GLUT8, which facilitated insulin stimulation-independent glucose transport. The GluOC-induced activation of integrin αVβ3 signaling promoted microtubule assembly, which improved glucose and lipid metabolism via its involvement in intracellular vesicular transport. GluOC treatment also suppressed collagen type 1 formation, which might prevent adipose tissue fibrosis in obese individuals. Overall, our results imply that GluOC promotes glucose and lipid metabolism via ACAM, integrin αVβ3, and GLUT1 and 8 expression, directly affecting adipocytes.
Collapse
Affiliation(s)
- Takahito Otani
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan.
| | - Akiko Mizokami
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroshi Takeuchi
- Division of Applied Pharmacology, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Tetsuichiro Inai
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Masato Hirata
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 814-0193, Japan.
| |
Collapse
|
7
|
Khachatryan H, Hakobyan G. Diagnostic and prognostic value of indicators of markers of bone metabolism in type 2 diabetes mellitus patients with UV functionalised dental implants. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101608. [PMID: 37648210 DOI: 10.1016/j.jormas.2023.101608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Diabetes mellitus affects many organ systems, including bone tissue.In diabetic patients, the activity of osteoblasts is suppressed and the activity of osteoclasts in the bone matrix increases, bone formation decreases, which can disrupt the process of osseointegration and ultimately lead to disintegration and failed implants. Based on the foregoing, with diabetes, it is very important to study bone metabolism to predict and dynamically control dental implants. OBJECTIVES To assess the indicators of bone metabolism markers Osteocalcin and β-Cross-Laps in blood serum in patients with type 2 diabetes mellitus with intraosseous dental implants. METHODS The study included 86 patients, diagnosed type 2 diabetes mellitus in period 2018 - 2023 with partially or complete edentulous. Implant surgery was performed after periodontal therapy using 367 UV functionalized dental implants in patients 1 group. Patients 2 group was performed implant surgery using 54 dental implants that were not UV functionalization. Final dental prosthetics was performed 4-5 months. UV functionalization of the implant surface was carried out using a UV Activator YWJ-QSY001 (Foshan, Wenjian Medikal Enstriman) for 20 s. The content biochemical markers of bone Osteocalcin and β-Cross-Laps serum was determined by enzyme-linked immunosorbent assay ELISA (ELISA, IFA Roche Diagnostics, Basel, Switzerland) before and after dental implantation according to the manufacturers' protocols. Outcomes assessed included; implant survival, men MBL, PPD, BOP, RFA, prosthetic success. RESULTS There were no clinical examinations of serious biological or prosthetic complications. There is a correlation between different concentrations of Osteocalcin or β-Cross- Laps and the success rate of implants. Implants were shown to be unsuccessful low concentrations of Osteocalcin and high concentrations β-Cross- Laps in serum compared with average mean biochemical markers of bone in 2 group patients. In patients of the 2nd group, the indicators of biochemical bone markers were within the normal range; no correlation was found between osseointegration failers and the complication of peri-implatitis. Short implants success rate was 96,7 %, standart implants success rate was after 97,5 after 5 years. CONCLUSION Implant therapy can be successfully used in diabetic patients with UV photofunctionalized implants, blood glucose levels should be constantly maintained at a normal level. Monitoring of bone metabolism markers in patients with type 2 diabetes mellitus may have prognostic value for implants and will encourage the practitioner to apply corrective drug therapy in case of violation of markers.
Collapse
Affiliation(s)
- Hakob Khachatryan
- Maxillofacial surgeon, Central clinical Military hospital (Ministry of Defence of The Republic of Armenia), Department of Oral and Maxillofacial Surgery, Yerevan State Medical University after M. Heratsi, Armenia
| | - Gagik Hakobyan
- Department of Oral and Maxillofacial Surgery, Yerevan State Medical University after M. Heratsi, Armenia.
| |
Collapse
|
8
|
Liu J, Wei Y, Zang P, Wang W, Feng Z, Yuan Y, Zhou H, Zhang Z, Lei H, Yang X, Liu J, Lu B, Shao J. Circulating osteocalcin is associated with time in range and other metrics assessed by continuous glucose monitoring in type 2 diabetes. Diabetol Metab Syndr 2022; 14:109. [PMID: 35927761 PMCID: PMC9351112 DOI: 10.1186/s13098-022-00863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteocalcin, a protein secreted mainly by mature osteoblasts, has been shown to be involved in glucose metabolism through various pathways. However, few studies has explored the association between osteocalcin and Time in range (TIR). Continuous glucose monitoring (CGM) -derived metrics, such as TIR and other indexes have been gradually and widely used in clinical practice to assess glucose fluctuations. The main purpose of this study was to investigate the correlation between osteocalcin and indexes from CGM in patients with type 2 diabetes mellitus (T2DM). METHOD The total number of 376 patients with T2D were enrolled, all of them performed three consecutive days of monitoring. They were divided into four groups on account of the quartile of osteocalcin. Time in range, Time below range (TBR), Time above range(TAR) and measures of glycemic variability (GV) were assessed for analysing. After a 100 g standard steamed bread meal, blood glucose (Glu0h Glu0.5 h, Glu1h, Glu2h, GLu3h), C-peptide (Cp0h, Cp0.5 h, Cp1h, Cp2h, Cp3h), serum insulin (INS0h, INS0.5 h, INS1h, INS2h, INS3h) concentrations at different time points were obtained. HOMA-IS, HOMA-βwas calculated to evaluate insulin sensitivity and insulin secreting of the participants. RESULTS Patients with higher osteocalcin level had higher TIR (P < 0.05). Spearman correlation analysis showed that osteocalcin was positively correlated with TBR (although the P value for TBR was greater than 0.05) (r = 0.227, P < 0.001 r = 0.068, P = 0.189) and negatively correlated with TAR (- 0.229, P < 0.001). Similarly, there was a negative correlation between osteocalcin and glycemic variability (GV) indicators, including SD, MBG, MODD, ADDR, and MAGE (P value of MAGE > 0.05). Multiple stepwise regression showed that osteocalcin was an independent contributor to TIR, TAR and HOMA-IS. CONCLUSION Circulating osteocalcin is positively correlated with TIR and negatively correlated with MODD, ADDR, and MAGE. Osteocalcin may have a beneficial impact on glucose homeostasis in T2DM patients.
Collapse
Affiliation(s)
- Jun Liu
- Department of Endocrinology, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Yinghua Wei
- Department of Endocrinology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Pu Zang
- Department of Endocrinology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Wei Wang
- Department of Endocrinology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Zhouqin Feng
- Department of Endocrinology, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Yanyu Yuan
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Hui Zhou
- Department of Endocrinology, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Zhen Zhang
- Department of Endocrinology, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Haiyan Lei
- Department of Endocrinology, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Xinyi Yang
- Department of Endocrinology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Jun Liu
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Bin Lu
- Department of Endocrinology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China.
| | - Jiaqing Shao
- Department of Endocrinology, Jinling Hospital, Southern Medical University, Nanjing, China.
| |
Collapse
|
9
|
Karsenty G, Khosla S. The crosstalk between bone remodeling and energy metabolism: A translational perspective. Cell Metab 2022; 34:805-817. [PMID: 35545088 PMCID: PMC9535690 DOI: 10.1016/j.cmet.2022.04.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/30/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022]
Abstract
Genetics in model organisms has progressively broken down walls that previously separated different disciplines of biology. One example of this holistic evolution is the recognition of the complex relationship that exists between the control of bone mass (bone remodeling) and energy metabolism in mammals. Numerous hormones orchestrate this crosstalk. In particular, the study of the leptin-mediated regulation of bone mass has not only revealed the existence of a central control of bone mass but has also led to the realization that sympathetic innervation is a major regulator of bone remodeling. This happened at a time when the use of drugs aiming at treating osteoporosis, the most frequent bone disease, has dwindled. This review will highlight the main aspects of the leptin-mediated regulation of bone mass and how this led to the realization that β-blockers, which block the effects of the sympathetic nervous system, may be a viable option to prevent osteoporosis.
Collapse
Affiliation(s)
- Gerard Karsenty
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Sundeep Khosla
- Kogod Center of Aging and Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
10
|
Lok KH, Wareham NJ, Nair RS, How CW, Chuah LH. Revisiting the concept of incretin and enteroendocrine L-cells as type 2 diabetes mellitus treatment. Pharmacol Res 2022; 180:106237. [PMID: 35487405 PMCID: PMC7614293 DOI: 10.1016/j.phrs.2022.106237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/19/2022]
Abstract
The significant growth in type 2 diabetes mellitus (T2DM) prevalence strikes a common threat to the healthcare and economic systems globally. Despite the availability of several anti-hyperglycaemic agents in the market, none can offer T2DM remission. These agents include the prominent incretin-based therapy such as glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 inhibitors that are designed primarily to promote GLP-1R activation. Recent interest in various therapeutically useful gastrointestinal hormones in T2DM and obesity has surged with the realisation that enteroendocrine L-cells modulate the different incretins secretion and glucose homeostasis, reflecting the original incretin definition. Targeting L-cells offers promising opportunities to mimic the benefits of bariatric surgery on glucose homeostasis, bodyweight management, and T2DM remission. Revising the fundamental incretin theory is an essential step for therapeutic development in this area. Therefore, the present review explores enteroendocrine L-cell hormone expression, the associated nutrient-sensing mechanisms, and other physiological characteristics. Subsequently, enteroendocrine L-cell line models and the latest L-cell targeted therapies are reviewed critically in this paper. Bariatric surgery, pharmacotherapy and new paradigm of L-cell targeted pharmaceutical formulation are discussed here, offering both clinician and scientist communities a new common interest to push the scientific boundary in T2DM therapy.
Collapse
Affiliation(s)
- Kok-Hou Lok
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Nicholas J Wareham
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; MRC Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Cambridge, UK.
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
11
|
Xu C, Gong M, Wen S, Zhou M, Li Y, Zhou L. The Comparative Study on the Status of Bone Metabolism and Thyroid Function in Diabetic Patients with or without Ketosis or Ketoacidosis. Diabetes Metab Syndr Obes 2022; 15:779-797. [PMID: 35309734 PMCID: PMC8926020 DOI: 10.2147/dmso.s349769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE This study aims to identify changes in bone turnover markers and thyroid function in diabetic ketosis (DK) and diabetic ketoacidosis (DKA). MATERIALS AND METHODS We compared data from the Department of Endocrinology at Shanghai Pudong Hospital from 2018 to 2020 on the pancreatic status and previous glucose control, bone transformation, calcium homeostasis, and thyroid function in groups with diabetes (DM alone, n=602), DK (n=232), and DKA (n=60). Similar comparisons were made in recurrent DK (A) (n=17) and single DK (A) (n=272). RESULTS The fasting C-peptide level decreased significantly, but hemoglobin A1c (HbA1c) levels were higher in DK or DKA (p<0.05). Blood calcium and 25-hydroxyvitamin D3 (25-OH-VitD3) levels were significantly lower in DKA (p<0.05), but parathyroid hormone (PTH) levels remained constant across all three groups. The N-terminal middle molecular fragment of osteocalcin (N-MID) and β-C terminal cross-linking telopeptide of type 1 collagen (β-CTX) showed significant inverse alterations in DKA, regardless of gender or age (p<0.05). Otherwise, DKA significantly inhibited thyroid function (p<0.05). Furthermore, Spearman correlation analyses revealed a relationship between N-MID and HbA1c in DM alone (r=-0.27, p<0.01), while total triiodothyronine (TT3, r=0.62, p<0.01) or free T3 (FT3, r=0.61, p<0.01) in DK, and DKA (TT3, r=0.45, p<0.01; FT3, r=0.43, p<0.01). Multilinear regression analyses revealed that β-CTX (β=0.564), HbA1c (β=-0.196), TT3 (β=0.183), and 25-OH-VitD3 (β=-0.120) were the only independent determinants of N-MID in DM, whereas FT3 (β=0.491), β-CTX (β=0.315) in DK, and FT3 (β=0.420), β-CTX (β=0.367), TG (β=-0.278) in DKA. Only 25-OH-VitD3 was found to be significantly lower in recurrent DK (A) than in single onset DK (A) (p<0.05), and β-CTX (β=0.745) was found to be significantly independently associated with N-MID. CONCLUSION Our preliminary findings show a dramatic change in bone turnover markers in DM patients with DK and DKA, and this change may be related to thyroid function.
Collapse
Affiliation(s)
- Chenglin Xu
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Min Gong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Mingyue Zhou
- Clinical Research OB/GYN REI Division, University of California, San Francisco, CA, USA
| | - Yanyan Li
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Shanghai, People’s Republic of China
- Correspondence: Ligang Zhou, Tel +8613611927616, Email
| |
Collapse
|
12
|
Roberts A, Phuah P, Cheng S, Murphy KG. Targeting Enteroendocrine Cells to Treat Metabolic Disease. COMPREHENSIVE PHARMACOLOGY 2022:344-372. [DOI: 10.1016/b978-0-12-820472-6.00068-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Berger JM, Karsenty G. Osteocalcin and the Physiology of Danger. FEBS Lett 2021; 596:665-680. [PMID: 34913486 PMCID: PMC9020278 DOI: 10.1002/1873-3468.14259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022]
Abstract
Bone biology has long been driven by the question as to what molecules affect cell differentiation or the functions of bone. Exploring this issue has been an extraordinarily powerful way to improve our knowledge of bone development and physiology. More recently, a second question has emerged: does bone have other functions besides making bone? Addressing this conundrum revealed that the bone-derived hormone osteocalcin affects a surprisingly large number of organs and physiological processes, including acute stress response. This review will focus on this emerging aspect of bone biology taking osteocalcin as a case study and will show how classical and endocrine functions of bone help to define a new functional identity for this tissue.
Collapse
Affiliation(s)
- Julian Meyer Berger
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, NY, 10032, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, NY, 10032, USA
| |
Collapse
|
14
|
Kawakubo-Yasukochi T, Yano E, Kimura S, Nishinakagawa T, Mizokami A, Hayashi Y, Hatakeyama Y, Ohe K, Yasukochi A, Nakamura S, Jimi E, Hirata M. Hepatic glycogenolysis is determined by maternal high-calorie diet via methylation of Pygl and it is modified by oteocalcin administration in mice. Mol Metab 2021; 54:101360. [PMID: 34673295 PMCID: PMC8606545 DOI: 10.1016/j.molmet.2021.101360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 12/24/2022] Open
Abstract
Objective Accumulating evidence indicates that an adverse perinatal environment contributes to a higher risk of metabolic disorders in the later life of the offspring. However, the underlying molecular mechanisms remain largely unknown. Thus, we investigated the contribution of maternal high-calorie diet and osteocalcin to metabolic homeostasis in the offspring. Methods Eight-week-old C57Bl/6N female mice were mated with age-matched males and allocated randomly to three groups: a normal-diet (ND) or a high-fat, high-sucrose diet group, which was administered either saline (control) or GluOC (10 ng/g body mass) from the day of mating to that of delivery, and the dams were fed a ND after the delivery. Pups weaned at 24 days after birth were analyzed. Results A maternal high-fat, high-sucrose diet during pregnancy causes metabolic disorders in the liver of the offspring via hypermethylation of the Pygl gene, encoding glycogen phosphorylase L, which mediates hepatic glycogenolysis. The reduced expression of Pygl induced by the maternal diet causes the hepatic accumulation of glycogen and triglyceride in the offspring, which remains in adulthood. In addition, the administration of uncarboxylated osteocalcin during pregnancy upregulates Pygl expression via both direct CREBH and ATF4 and indirect epigenomic pathways, mitigating the maternal diet-induced obesity and abnormal glucose and lipid metabolism in adulthood. Conclusions We propose that maternal energy status is reflected in the hepatic glycogenolysis capacity of the offspring via epigenetic modification of Pygl and uncarboxylated osteocalcin regulates glycogenolysis. A high-calorie diet during pregnancy causes metabolic disorders in mouse offspring. These are mediated by low liver expression of Pygl encoding glycogen phosphorylase. Hypermethylation of the Pygl promoter in utero suppresses subsequent gene expression. Modification and phenotypic changes are prevented by GluOC administration during pregnancy.
Collapse
Affiliation(s)
- Tomoyo Kawakubo-Yasukochi
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Ena Yano
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Soi Kimura
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takuya Nishinakagawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Akiko Mizokami
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshikazu Hayashi
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Yuji Hatakeyama
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Atsushi Yasukochi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eijiro Jimi
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masato Hirata
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan.
| |
Collapse
|
15
|
Endocrine role of bone in the regulation of energy metabolism. Bone Res 2021; 9:25. [PMID: 34016950 PMCID: PMC8137703 DOI: 10.1038/s41413-021-00142-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Bone mainly functions as a supportive framework for the whole body and is the major regulator of calcium homeostasis and hematopoietic function. Recently, an increasing number of studies have characterized the significance of bone as an endocrine organ, suggesting that bone-derived factors regulate local bone metabolism and metabolic functions. In addition, these factors can regulate global energy homeostasis by altering insulin sensitivity, feeding behavior, and adipocyte commitment. These findings may provide a new pathological mechanism for related metabolic diseases or be used in the diagnosis, treatment, and prevention of metabolic diseases such as osteoporosis, obesity, and diabetes mellitus. In this review, we summarize the regulatory effect of bone and bone-derived factors on energy metabolism and discuss directions for future research.
Collapse
|
16
|
Donat A, Knapstein PR, Jiang S, Baranowsky A, Ballhause TM, Frosch KH, Keller J. Glucose Metabolism in Osteoblasts in Healthy and Pathophysiological Conditions. Int J Mol Sci 2021; 22:ijms22084120. [PMID: 33923498 PMCID: PMC8073638 DOI: 10.3390/ijms22084120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 01/01/2023] Open
Abstract
Bone tissue in vertebrates is essential to performing movements, to protecting internal organs and to regulating calcium homeostasis. Moreover, bone has also been suggested to contribute to whole-body physiology as an endocrine organ, affecting male fertility; brain development and cognition; and glucose metabolism. A main determinant of bone quality is the constant remodeling carried out by osteoblasts and osteoclasts, a process consuming vast amounts of energy. In turn, clinical conditions associated with impaired glucose metabolism, including type I and type II diabetes and anorexia nervosa, are associated with impaired bone turnover. As osteoblasts are required for collagen synthesis and matrix mineralization, they represent one of the most important targets for pharmacological augmentation of bone mass. To fulfill their function, osteoblasts primarily utilize glucose through aerobic glycolysis, a process which is regulated by various molecular switches and generates adenosine triphosphate rapidly. In this regard, researchers have been investigating the complex processes of energy utilization in osteoblasts in recent years, not only to improve bone turnover in metabolic disease, but also to identify novel treatment options for primary bone diseases. This review focuses on the metabolism of glucose in osteoblasts in physiological and pathophysiological conditions.
Collapse
|
17
|
Ando E, Higashi S, Mizokami A, Watanabe S, Hirata M, Takeuchi H. Osteocalcin promotes proliferation, differentiation, and survival of PC12 cells. Biochem Biophys Res Commun 2021; 557:174-179. [PMID: 33865226 DOI: 10.1016/j.bbrc.2021.03.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
Involvement of the bone matrix protein osteocalcin (OC) in the development of learning and memory, and the prevention of anxiety-like behaviors in mice. However, the direct effects of OC on neurons are still unknown comparing to the mechanism how OC affects systemic energy expenditure and glucose homeostasis. In this study, we investigated the effect of OC on proliferation, differentiation, and survival of neurons using the rat pheochromocytoma cell line PC12. RT-PCR analysis for OC receptor candidates revealed that Gpr158, but not Gprc6a, mRNA was expressed in PC12 cells. The growth of PC12 cells cultured in the presence of 5-50 ng/mL of either uncarboxylated (GluOC) or carboxylated (GlaOC) OC was increased compared to cells cultured in the absence of OC. In addition, NGF-induced neurite outgrowth was enhanced by OC, and H2O2-induced cell death was suppressed by pretreatment with OC. All of these results were observed for both GluOC and GlaOC at comparable levels, suggesting that OC may directly affect cell proliferation, differentiation, and survival by binding to its candidate receptor, GPR158.
Collapse
Affiliation(s)
- Eika Ando
- Division of Dental Anesthesiology, Department of Control of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan; Division of Applied Pharmacology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Sen Higashi
- Division of Applied Pharmacology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Akiko Mizokami
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Seiji Watanabe
- Division of Dental Anesthesiology, Department of Control of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Masato Hirata
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Hiroshi Takeuchi
- Division of Applied Pharmacology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| |
Collapse
|
18
|
Pi M, Nishimoto SK, Darryl Quarles L. Explaining Divergent Observations Regarding Osteocalcin/GPRC6A Endocrine Signaling. Endocrinology 2021; 162:6104945. [PMID: 33474566 PMCID: PMC7880225 DOI: 10.1210/endocr/bqab011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/13/2022]
Abstract
A new schema proposes that the bone-derived osteocalcin (Ocn) peptide hormone activates the G-protein-coupled receptor GPRC6A to directly regulate glucose and fat metabolism in liver, muscle, and fat, and to stimulate the release of metabolism-regulating hormones, including insulin, fibroblast growth factor 21, glucagon-like peptide 1, testosterone, and interleukin 6. Ocn/GPRC6A activation has also been implicated in cancer progression. GPRC6A is activated by cations, amino acids, and testosterone. The multiligand specificity, the regulation of energy metabolism in diverse tissues, and the coordinated release of metabolically active hormones make the GPRC6A endocrine networks unique. Recently, the significance of Ocn/GPRCA has been questioned. There is a lack of metabolic abnormalities in newly created genetically engineered Ocn- and Gprc6a-deficient mouse models. There are also paradoxical observations that GPRC6A may function as a tumor suppressor. In addition, discordant published studies have cast doubt on the function of the most prevalent uniquely human GPRC6A-KGKY polymorphism. Explanations for these divergent findings are elusive. We provide evidence that the metabolic susceptibility of genetically engineered Ocn- and Gprc6a-deficient mice is influenced by environmental challenges and genetic differences in mouse strains. In addition, the GPRC6A-KGKY polymorphism appears to be a gain-of-function variant. Finally, alternatively spliced isoforms of GPRC6A may alter ligand specificity and signaling that modulate oncogenic effects. Thus, genetic, post-translational and environmental factors likely account for the variable results regarding the functions of GPRC6A in animal models. Pending additional information, GPRC6A should remain a potential therapeutic target for regulating energy and fat metabolism, hormone production, and cancer progression.
Collapse
Affiliation(s)
- Min Pi
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Satoru Kenneth Nishimoto
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - L Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Correspondence: L. Darryl Quarles, MD, University of Tennessee Health Sciences Center, Memphis, TN, USA. . Current Affiliation: 965 Court Ave, Suite B226, Memphis, TN 38163, USA
| |
Collapse
|
19
|
Lu VB, Gribble FM, Reimann F. Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients 2021; 13:nu13030883. [PMID: 33803183 PMCID: PMC8000029 DOI: 10.3390/nu13030883] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract can assess the nutrient composition of ingested food. The nutrient-sensing mechanisms in specialised epithelial cells lining the gastrointestinal tract, the enteroendocrine cells, trigger the release of gut hormones that provide important local and central feedback signals to regulate nutrient utilisation and feeding behaviour. The evidence for nutrient-stimulated secretion of two of the most studied gut hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), along with the known cellular mechanisms in enteroendocrine cells recruited by nutrients, will be the focus of this review. The mechanisms involved range from electrogenic transporters, ion channel modulation and nutrient-activated G-protein coupled receptors that converge on the release machinery controlling hormone secretion. Elucidation of these mechanisms will provide much needed insight into postprandial physiology and identify tractable dietary approaches to potentially manage nutrition and satiety by altering the secreted gut hormone profile.
Collapse
|
20
|
The mTORC1 complex in pre-osteoblasts regulates whole-body energy metabolism independently of osteocalcin. Bone Res 2021; 9:10. [PMID: 33551450 PMCID: PMC7868369 DOI: 10.1038/s41413-020-00123-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/23/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Overnutrition causes hyperactivation of mTORC1-dependent negative feedback loops leading to the downregulation of insulin signaling and development of insulin resistance. In osteoblasts (OBs), insulin signaling plays a crucial role in the control of systemic glucose homeostasis. We utilized mice with conditional deletion of Rptor to investigate how the loss of mTORC1 function in OB affects glucose metabolism under normal and overnutrition dietary states. Compared to the controls, chow-fed Rptorob−/− mice had substantially less fat mass and exhibited adipocyte hyperplasia. Remarkably, upon feeding with high-fat diet, mice with pre- and post-natal deletion of Rptor in OBs were protected from diet-induced obesity and exhibited improved glucose metabolism with lower fasting glucose and insulin levels, increased glucose tolerance and insulin sensitivity. This leanness and resistance to weight gain was not attributable to changes in food intake, physical activity or lipid absorption but instead was due to increased energy expenditure and greater whole-body substrate flexibility. RNA-seq revealed an increase in glycolysis and skeletal insulin signaling pathways, which correlated with the potentiation of insulin signaling and increased insulin-dependent glucose uptake in Rptor-knockout osteoblasts. Collectively, these findings point to a critical role for the mTORC1 complex in the skeletal regulation of whole-body glucose metabolism and the skeletal development of insulin resistance.
Collapse
|
21
|
Mukai S, Mizokami A, Otani T, Sano T, Matsuda M, Chishaki S, Gao J, Kawakubo-Yasukochi T, Tang R, Kanematsu T, Takeuchi H, Jimi E, Hirata M. Adipocyte-specific GPRC6A ablation promotes diet-induced obesity by inhibiting lipolysis. J Biol Chem 2021; 296:100274. [PMID: 33428938 PMCID: PMC7949034 DOI: 10.1016/j.jbc.2021.100274] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
The G protein–coupled receptor GPRC6A regulates various physiological processes in response to its interaction with multiple ligands, such as extracellular basic amino acids, divalent cations, testosterone, and the uncarboxylated form of osteocalcin (GluOC). Global ablation of GPRC6A increases the susceptibility of mice to diet-induced obesity and related metabolic disorders. However, given that GPRC6A is expressed in many tissues and responds to a variety of hormonal and nutritional signals, the cellular and molecular mechanisms underlying the development of metabolic disorders in conventional knockout mice have remained unclear. On the basis of our previous observation that long-term oral administration of GluOC markedly reduced adipocyte size and improved glucose tolerance in WT mice, we examined whether GPRC6A signaling in adipose tissue might be responsible for prevention of metabolic disorders. We thus generated adipocyte-specific GPRC6A knockout mice, and we found that these animals manifested increased adipose tissue weight, adipocyte hypertrophy, and adipose tissue inflammation when fed a high-fat and high-sucrose diet compared with control mice. These effects were associated with reduced lipolytic activity because of downregulation of lipolytic enzymes such as adipose triglyceride lipase and hormone-sensitive lipase in adipose tissue of the conditional knockout mice. Given that, among GPR6CA ligands tested, GluOC and ornithine increased the expression of adipose triglyceride lipase in cultured 3T3-L1 adipocytes in a manner dependent on GPRC6A, our results suggest that the constitutive activation of GPRC6A signaling in adipocytes by GluOC or ornithine plays a key role in adipose lipid handling and the prevention of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Satoru Mukai
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Department of Health and Nutrition care, Faculty of Allied Health Sciences, University of East Asia, Shimonoseki, Japan
| | - Akiko Mizokami
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| | - Takahito Otani
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Tomomi Sano
- Department of Cell Biology and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Sakura Chishaki
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | - Ronghao Tang
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takashi Kanematsu
- Department of Cell Biology and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroshi Takeuchi
- Division of Applied Pharmacology, Kyushu Dental University, Kitakyushu, Japan
| | - Eijiro Jimi
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masato Hirata
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan.
| |
Collapse
|
22
|
Zhang M, Nie X, Yuan Y, Wang Y, Ma X, Yin J, Bao Y. Osteocalcin Alleviates Nonalcoholic Fatty Liver Disease in Mice through GPRC6A. Int J Endocrinol 2021; 2021:9178616. [PMID: 33531899 PMCID: PMC7834799 DOI: 10.1155/2021/9178616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Osteocalcin is a bone-derived hormone that plays an important role in the crosstalk between bone and energy metabolism. Previous studies have found that treatment with uncarboxylated osteocalcin can protect mice from high-fat diet-induced nonalcoholic fatty liver disease (NAFLD). However, the potential mechanisms remain unclear. Although the G protein-coupled receptor family C group 6 subtype A (GPRC6A) is the putative receptor of osteocalcin, there is no direct evidence showing that GPRC6A mediates the effects of uncarboxylated osteocalcin in alleviating NAFLD in mice. We aimed to figure out this using liver-specific GPRC6A knockout (GPRC6ALKO) mice. Consistent with previous studies, uncarboxylated osteocalcin significantly protected high-fat diet-fed wild-type mice from obesity and NAFLD, while it did not protect high-fat diet-fed GPRC6ALKO mice from NAFLD. Differential mRNA expression of lipogenesis and lipolysis between GPRC6ALKO mice and control mice revealed that GPRC6A mediated the effects of osteocalcin in alleviating NAFLD through inhibiting lipid synthesis and promoting lipolysis. In conclusion, this study found that uncarboxylated osteocalcin alleviates NAFLD in mice through the GPRC6A signaling pathway. Our study suggests that liver GPRC6A may be a potential target for treating NAFLD.
Collapse
Affiliation(s)
- Mingliang Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| | - Xiaomin Nie
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| | - Yeqing Yuan
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| | - Yansu Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| | - Jun Yin
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| |
Collapse
|
23
|
Otani T, Mizokami A, Kawakubo-Yasukochi T, Takeuchi H, Inai T, Hirata M. The roles of osteocalcin in lipid metabolism in adipose tissue and liver. Adv Biol Regul 2020; 78:100752. [PMID: 32992234 DOI: 10.1016/j.jbior.2020.100752] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Bone provides skeletal support and functions as an endocrine organ by producing osteocalcin, whose uncarboxylated form (GluOC) increases the metabolism of glucose and lipid by activating its putative G protein-coupled receptor (family C group 6 subtype A). Low doses (≤10 ng/ml) of GluOC induce the expression of adiponectin, adipose triglyceride lipase and peroxisome proliferator-activated receptor γ, and promote active phosphorylation of lipolytic enzymes such as perilipin and hormone-sensitive lipase via the cAMP-PKA-Src-Rap1-ERK-CREB signaling axis in 3T3-L1 adipocytes. Administration of high-dose (≥20 ng/ml) GluOC induces programmed necrosis (necroptosis) through a juxtacrine mechanism triggered by the binding of Fas ligand, whose expression is induced by forkhead box O1, to Fas that is expressed in adjacent adipocytes. Furthermore, expression of adiponectin and adipose triglyceride lipase in adipocytes is triggered in the same manner as following low-dose GluOC stimulation; these effects protect mice from diet-induced accumulation of triglycerides in hepatocytes and consequent liver injury through the upregulation of nuclear translocation of nuclear factor-E2-related factor-2, expression of antioxidant enzymes, and inhibition of the c-Jun N-terminal kinase pathway. Evaluation of these molecular mechanisms leads us to consider that GluOC might have potential as a treatment for lipid metabolism disorders. Indeed, there have been many reports demonstrating the negative correlation between serum osteocalcin levels and obesity or non-alcoholic fatty liver disease, a common risk factor for which is dyslipidemia in humans. The present review summarizes the effects of GluOC on lipid metabolism as well as its possible therapeutic application for metabolic diseases including obesity and dyslipidemia.
Collapse
Affiliation(s)
- Takahito Otani
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| | - Akiko Mizokami
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | | | - Hiroshi Takeuchi
- Division of Applied Pharmacology, Kyushu Dental University, Kitakyushu, 803-8580, Japan
| | - Tetsuichiro Inai
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, 814-0193, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| | - Masato Hirata
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, 814-0193, Japan.
| |
Collapse
|
24
|
Desentis-Desentis MF, Rivas-Carrillo JD, Sánchez-Enríquez S. Protective role of osteocalcin in diabetes pathogenesis. J Bone Miner Metab 2020; 38:765-771. [PMID: 32725267 DOI: 10.1007/s00774-020-01130-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022]
Abstract
In diabetes, metabolic, inflammatory, and stress-associated alterations conduce to ß-cell failure and tissue damage. Osteocalcin is a bone protein with several endocrine functions in different tissues. In this review, we gathered scientific evidence of how osteocalcin could modulate functional disorders that are altered in diabetes in an integrative way. We include adipose tissue, pancreatic function, and oxidative stress aspects. In the first section, we focus on the role of inflammatory mediators and adiponectin in energy homeostasis and insulin sensitivity. In the following section, we discuss the effect of osteocalcin in metabolic and pancreatic function and its association in insulin signaling and in ß-cell proliferation. Finally, we focus on osteocalcin action in oxidative and endoplasmic reticulum stress, and in antioxidant regulation, since ß-cells are well known by its vulnerability to stress damage. These evidences support the notion that osteocalcin could have an important role in diabetes treatment.
Collapse
Affiliation(s)
- María Fernanda Desentis-Desentis
- Laboratory of Tissue Engineering and Transplant, Department of Physiology, University Center for Health Sciences, University de Guadalajara, 950 Sierra Mojada St., Col. Independencia, C.P. 44340, Guadalajara, Jalisco, Mexico
- cGMP Cell Processing Facility, University Center for Health Sciences, University of Guadalajara, 950 Sierra Mojada St., Col. Independencia, C.P. 44340, Guadalajara, Jalisco, Mexico
| | - Jorge David Rivas-Carrillo
- Laboratory of Tissue Engineering and Transplant, Department of Physiology, University Center for Health Sciences, University de Guadalajara, 950 Sierra Mojada St., Col. Independencia, C.P. 44340, Guadalajara, Jalisco, Mexico
- cGMP Cell Processing Facility, University Center for Health Sciences, University of Guadalajara, 950 Sierra Mojada St., Col. Independencia, C.P. 44340, Guadalajara, Jalisco, Mexico
| | - Sergio Sánchez-Enríquez
- Department of Clinics, University Center of Los Altos, University of Guadalajara, 1200 Rafael Casillas Ave, ZC47620, Tepatitlán de Morelos, Jalisco, Mexico.
| |
Collapse
|
25
|
Ducy P. Bone Regulation of Insulin Secretion and Glucose Homeostasis. Endocrinology 2020; 161:5895464. [PMID: 32822470 DOI: 10.1210/endocr/bqaa149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022]
Abstract
For centuries our image of the skeleton has been one of an inert structure playing a supporting role for muscles and a protective role for inner organs like the brain. Cell biology and physiology modified this view in the 20st century by defining the constant interplay between bone-forming and bone resorbing cells that take place during bone growth and remodeling, therefore demonstrating that bone is as alive as any other tissues in the body. During the past 40 years human and, most important, mouse genetics, have allowed not only the refinement of this notion by identifying the many genes and regulatory networks responsible for the crosstalk existing between bone cells, but have redefined the role of bone by showing that its influence goes way beyond its own physiology. Among its newly identified functions is the regulation of energy metabolism by 2 bone-derived hormones, osteocalcin and lipocalin-2. Their biology and respective roles in this process are the topic of this review.
Collapse
Affiliation(s)
- Patricia Ducy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, College of Physicians and Surgeons, New York, New York
| |
Collapse
|
26
|
Pi M, Xu F, Ye R, Nishimoto SK, Kesterson RA, Williams RW, Lu L, Quarles LD. Humanized GPRC6A KGKY is a gain-of-function polymorphism in mice. Sci Rep 2020; 10:11143. [PMID: 32636482 PMCID: PMC7341878 DOI: 10.1038/s41598-020-68113-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
GPRC6A is proposed to regulate energy metabolism in mice, but in humans a KGKY polymorphism in the third intracellular loop (ICL3) is proposed to result in intracellular retention and loss-of-function. To test physiological importance of this human polymorphism in vivo, we performed targeted genomic humanization of mice by using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9) system to replace the RKLP sequence in the ICL3 of the GPRC6A mouse gene with the uniquely human KGKY sequence to create Gprc6a-KGKY-knockin mice. Knock-in of a human KGKY sequence resulted in a reduction in basal blood glucose levels and increased circulating serum insulin and FGF-21 concentrations. Gprc6a-KGKY-knockin mice demonstrated improved glucose tolerance, despite impaired insulin sensitivity and enhanced pyruvate-mediated gluconeogenesis. Liver transcriptome analysis of Gprc6a-KGKY-knockin mice identified alterations in glucose, glycogen and fat metabolism pathways. Thus, the uniquely human GPRC6A-KGKY variant appears to be a gain-of-function polymorphism that positively regulates energy metabolism in mice.
Collapse
Affiliation(s)
- Min Pi
- Department of Medicine, University of Tennessee Health Science Center, 19 S Manassas St., Memphis, TN, 38163, USA.
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, 19 S Manassas St., Memphis, TN, 38163, USA
| | - Ruisong Ye
- Department of Medicine, University of Tennessee Health Science Center, 19 S Manassas St., Memphis, TN, 38163, USA
| | - Satoru K Nishimoto
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 19 S Manassas St., Memphis, TN, 38163, USA
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL, 35294, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, 19 S Manassas St., Memphis, TN, 38163, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, 19 S Manassas St., Memphis, TN, 38163, USA
| | - L Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, 19 S Manassas St., Memphis, TN, 38163, USA.
| |
Collapse
|
27
|
Karsenty G. The facts of the matter: What is a hormone? PLoS Genet 2020; 16:e1008938. [PMID: 32589668 PMCID: PMC7319275 DOI: 10.1371/journal.pgen.1008938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Gerard Karsenty
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
28
|
Pi M, Xu F, Ye R, Nishimoto SK, Williams RW, Lu L, Darryl Quarles L. Role of GPRC6A in Regulating Hepatic Energy Metabolism in Mice. Sci Rep 2020; 10:7216. [PMID: 32350388 PMCID: PMC7190669 DOI: 10.1038/s41598-020-64384-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/13/2020] [Indexed: 12/25/2022] Open
Abstract
GPRC6A is a widely expressed G-protein coupled receptor that regulates energy metabolism. Global deletion of Gprc6a in mice is reported to result in a metabolic syndrome-like phenotype and conditional deletion of Gprc6a in pancreatic β-cell and skeletal muscle respectively impair insulin secretion and glucose uptake. In the current study, we explore the hepatic functions of GPRC6A by conditionally deleting Gprc6a in hepatocytes by cross breeding Alb-Cre and Gprc6aflox/flox mice to obtain Gprc6aLiver-cko mice. Gprc6aLiver-cko mice on a normal diet showed excessive hepatic fat accumulation and glycogen depletion. These mice also exhibit impaired glucose and pyruvate tolerance, but normal insulin sensitivity. Decreased circulating FGF-21 levels and FGF-21 message expression in the liver were found in Gprc6aLiver-cko mice. Hepatic transcriptome analysis identified alterations in multiple pathways regulating glucose, fat and glycogen metabolism in Gprc6aLiver-cko mice. Taken together, our studies suggest that GPRC6A directly regulates hepatic metabolism as well as regulates the production and release of FGF-21 to control systemic energy homeostasis. GPRC6A's unique regulation of β-cell, skeletal muscle and hepatic function may represent a new therapeutic target for treating disordered energy metabolism metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- Min Pi
- Department of Medicine, , University of Tennessee Health Science Center, 19S Manassas St, Memphis, TN, 38163, USA.
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, 19S Manassas St, Memphis, TN, 38163, USA
| | - Ruisong Ye
- Department of Medicine, , University of Tennessee Health Science Center, 19S Manassas St, Memphis, TN, 38163, USA
| | - Satoru K Nishimoto
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 19S Manassas St, Memphis, TN, 38163, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, 19S Manassas St, Memphis, TN, 38163, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, 19S Manassas St, Memphis, TN, 38163, USA
| | - L Darryl Quarles
- Department of Medicine, , University of Tennessee Health Science Center, 19S Manassas St, Memphis, TN, 38163, USA.
| |
Collapse
|
29
|
Vyavahare SS, Mieczkowska A, Flatt PR, Chappard D, Irwin N, Mabilleau G. GIP analogues augment bone strength by modulating bone composition in diet-induced obesity in mice. Peptides 2020; 125:170207. [PMID: 31765668 DOI: 10.1016/j.peptides.2019.170207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/16/2022]
Abstract
Receptors to glucose-dependent insulinotropic polypeptide (GIP), have been identified on bone and GIP receptor (GIPr) knockout mice exhibit reduced bone strength and quality. Despite this, little is known on the potential beneficial bone effects of exogenous GIP on bone physiology. The aim of the present study was to assess whether stable GIP analogues were capable of ameliorating bone strength in mice with diet-induced obesity. The stable GIP analogue (D-Ala²)-GIP, and (D-Ala²)-GIP-Tag, a specific GIP analogue homing exclusively to bone, were employed. In vitro studies were used to assess effects of (D-Ala²)-GIP and (D-Ala²)-GIP-Tag on bone mineralization, lysyl oxidase activity, collagen maturity as well as osteoclast formation and activity. Subsequent in vivo studies employed obese-prediabetic Swiss NIH mice subjected to a 42-day period of daily administration of saline, (D-Ala²)-GIP or (D-Ala²)-GIP-Tag. In vitro studies confirmed that (D-Ala²)-GIP and (D-Ala²)-GIP-Tag had similar beneficial biological effects on bone cells. Administration of (D-Ala²)-GIP and (D-Ala²)-GIP-Tag resulted in lower blood glucose levels without any effects on body weight. Both GIP analogues augmented bone strength to a similar extent. Trabecular or cortical bone microarchitecture were not changed over the time course of the study. However, (D-Ala²)-GIP and (D-Ala²)-GIP-Tag augmented enzymatic collagen crosslinking as well as the heterogeneity of enzymatic collagen crosslinking, mineral-to-matrix ratio and significantly reduced the heterogeneity in mineral bone crystallite size. This study demonstrates that activation of skeletal GIPr by stable GIP analogues enhance bone strength in prediabetes and suggest that these analogues may be beneficial in the treatment of bone disease.
Collapse
Affiliation(s)
- Sagar S Vyavahare
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Aleksandra Mieczkowska
- Groupe études remodelage osseux et biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers Cedex, France
| | - Peter R Flatt
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Daniel Chappard
- Groupe études remodelage osseux et biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers Cedex, France; Service commun d'imageries et d'analyses microscopiques, SCIAM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers Cedex, France; Bone Pathology Unit, Angers University Hospital, 49933 Angers Cedex, France
| | - Nigel Irwin
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Guillaume Mabilleau
- Groupe études remodelage osseux et biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers Cedex, France; Service commun d'imageries et d'analyses microscopiques, SCIAM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers Cedex, France; Bone Pathology Unit, Angers University Hospital, 49933 Angers Cedex, France.
| |
Collapse
|
30
|
Uncarboxylated osteocalcin ameliorates hepatic glucose and lipid metabolism in KKAy mice via activating insulin signaling pathway. Acta Pharmacol Sin 2020; 41:383-393. [PMID: 31659239 PMCID: PMC7470804 DOI: 10.1038/s41401-019-0311-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022]
Abstract
Osteocalcin, expressed in osteoblasts of the bone marrow, undergoes post-translational carboxylation and deposits in mineralized bone matrix. A portion of osteocalcin remains uncarboxylated (uncarboxylated osteocalcin, GluOC) that is released into blood where it functions as a hormone to regulate insulin secretion and insulin sensitivity. As insulin resistance is closely associated with metabolic syndrome, this study is aimed to elucidate how GluOC regulates glucose and lipid metabolism in KKAy mice, an animal model displaying obese, hyperglycemia, hyperinsulinemia, insulin resistance, and hepatic steatosis. GluOC (3, 30 ng/g per day, ig) was orally administered to female KKAy mice for 4 weeks. Whole-body insulin sensitivity, glucose metabolism, hepatic steatosis, dyslipidemia were examined using routine laboratory assays. We found that GluOC administration significantly enhanced insulin sensitivity in KKAy mice by activating hepatic IRβ/PI3K/Akt pathway and elevated the whole-body insulin sensitivity with decreased FPI and HOMA-IR index. Furthermore, GluOC administration alleviated hyperglycemia through suppressing gluconeogenesis and promoting glycogen synthesis in KKAy mice and in cultured hepatocytes in vitro. Moreover, GluOC administration dose-dependently ameliorated dyslipidemia and attenuated hepatic steatosis in KKAy mice by inhibiting hepatic de novo lipogenesis and promoting fatty-acid β-oxidation. These results demonstrate that GluOC effectively enhances hepatic insulin sensitivity, improves hyperglycemia and ameliorates hepatic steatosis in KKAy mice, suggesting that GluOC could be a promising drug candidate for treating metabolic syndrome.
Collapse
|
31
|
Wang L, Li Y, Guo B, Zhang J, Zhu B, Li H, Ding Y, Meng B, Zhao H, Xiang L, Dong J, Liu M, Zhang J, Xiang L, Xiang G. Myeloid-Derived Growth Factor Promotes Intestinal Glucagon-Like Peptide-1 Production in Male Mice With Type 2 Diabetes. Endocrinology 2020; 161:5698328. [PMID: 31913472 DOI: 10.1210/endocr/bqaa003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Myeloid-derived growth factor (MYDGF), which is produced by bone marrow-derived cells, mediates cardiac repair following myocardial infarction by inhibiting cardiac myocyte apoptosis to subsequently reduce the infarct size. However, the function of MYDGF in the incretin system of diabetes is still unknown. Here, loss-of-function and gain-of-function experiments in mice revealed that MYDGF maintains glucose homeostasis by inducing glucagon-like peptide-1 (GLP-1) production and secretion and that it improves glucose tolerance and lipid metabolism. Treatment with recombinant MYDGF increased the secretion and production of GLP-1 in STC-1 cells in vitro. Mechanistically, the positive effects of MYDGF are potentially attributable to the activation of protein kinase A/glycogen synthase kinase 3β/β-catenin (PKA/GSK-3β/β-catenin) and mitogen-activated protein kinase (MAPK) kinases/extracellular regulated protein kinase (MEK/ERK) pathways. Based on these findings, MYDGF promotes the secretion and production of GLP-1 in intestinal L-cells and potentially represents a potential therapeutic medication target for type 2 diabetes.
Collapse
Affiliation(s)
- Li Wang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yixiang Li
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Bei Guo
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiajia Zhang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Biao Zhu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Huan Li
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Yan Ding
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Biying Meng
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hui Zhao
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Lin Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Jing Dong
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Min Liu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Junxia Zhang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | | | - Guangda Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
32
|
Russo V, Chen R, Armamento-Villareal R. Hypogonadism, Type-2 Diabetes Mellitus, and Bone Health: A Narrative Review. Front Endocrinol (Lausanne) 2020; 11:607240. [PMID: 33537005 PMCID: PMC7848021 DOI: 10.3389/fendo.2020.607240] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
One of the complications from chronic hyperglycemia and insulin resistance due to type 2 diabetes mellitus (T2DM) on the hypothalamic-pituitary-gonadal axis in men is the high prevalence of hypogonadotropic hypogonadism (HH). Both T2DM and hypogonadism are associated with impaired bone health and increased fracture risk but whether the combination results in even worse bone disease than either one alone is not well-studied. It is possible that having both conditions predisposes men to an even greater risk for fracture than either one alone. Given the common occurrence of HH or hypogonadism in general in T2DM, a significant number of men could be at risk. To date, there is very little information on the bone health men with both hypogonadism and T2DM. Insulin resistance, which is the primary defect in T2DM, is associated with low testosterone (T) levels in men and may play a role in the bidirectional relationship between these two conditions, which together may portend a worse outcome for bone. The present manuscript aims to review the available evidences on the effect of the combination of hypogonadism and T2DM on bone health and metabolic profile, highlights the possible metabolic role of the skeleton, and examines the pathways involved in the interplay between bone, insulin resistance, and gonadal steroids.
Collapse
Affiliation(s)
- Vittoria Russo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Rui Chen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
- *Correspondence: Reina Armamento-Villareal,
| |
Collapse
|
33
|
Chumachenko YD, Harbuzova VY, Ataman AV. Association Study between BGLAP Gene HindIII Polymorphism and Type 2 Diabetes Mellitus Development in Ukrainian Population. J Diabetes Res 2019; 2019:9302636. [PMID: 31886290 PMCID: PMC6900942 DOI: 10.1155/2019/9302636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/16/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) belongs to the diseases with hereditary predisposition, so both environmental and genetic factors contribute to its development. Recent studies have demonstrated that the skeleton realizes systemic regulation of energy metabolism through the secretion of osteocalcin (OCN). Thus, the association analysis between HindIII single nucleotide polymorphism of OCN gene (BGLAP) promoter region and T2DM development in Ukrainian population was carried out. 153 individuals diagnosed with T2DM and 311 control individuals were enrolled in the study. The genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The lack of association between BGLAP HindIII single nucleotide polymorphism (SNP) and T2DM development among Ukrainians was found. Further studies with extended groups of comparison are needed to confirm the obtained results.
Collapse
Affiliation(s)
- Yaroslav D. Chumachenko
- Scientific Laboratory of Molecular Genetic Studies, Medical Institute of the Sumy State University, 40007, Ukraine
| | - Viktoriia Yu. Harbuzova
- Scientific Laboratory of Molecular Genetic Studies, Medical Institute of the Sumy State University, 40007, Ukraine
| | - Alexander V. Ataman
- Department of Physiology and Pathophysiology with Medical Biology Course, Medical Institute of the Sumy State University, 40018, Ukraine
| |
Collapse
|
34
|
Shi J, Fan J, Su Q, Yang Z. Cytokines and Abnormal Glucose and Lipid Metabolism. Front Endocrinol (Lausanne) 2019; 10:703. [PMID: 31736870 PMCID: PMC6833922 DOI: 10.3389/fendo.2019.00703] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
Clear evidence indicates that cytokines, for instance, adipokines, hepatokines, inflammatory cytokines, myokines, and osteokines, contribute substantially to the development of abnormal glucose and lipid metabolism. Some cytokines play a positive role in metabolism action, while others have a negative metabolic role linking to the induction of metabolic dysfunction. The mechanisms involved are not fully understood, but are associated with lipid accumulation in organs and tissues, especially in the adipose and liver tissue, changes in energy metabolism, and inflammatory signals derived from various cell types, including immune cells. In this review, we describe the roles of certain cytokines in the regulation of metabolism and inter-organ signaling in regard to the pathophysiological aspects. Given the disease-related changes in circulating levels of relevant cytokines, these factors may serve as biomarkers for the early detection of metabolic disorders. Moreover, based on preclinical studies, certain cytokines that can induce improvements in glucose and lipid metabolism and immune response may emerge as novel targets of broader and more efficacious treatments and prevention of metabolic disease.
Collapse
Affiliation(s)
- Jie Shi
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiangao Fan
- Shanghai Key Laboratory of Children's Digestion and Nutrition, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Li X, Li P, Wang L, Zhang M, Gao X. Lysine Enhances the Stimulation of Fatty Acids on Milk Fat Synthesis via the GPRC6A-PI3K-FABP5 Signaling in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7005-7015. [PMID: 31174423 DOI: 10.1021/acs.jafc.9b02160] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Amino acids can enhance milk fat synthesis in bovine mammary epithelial cells (BMECs), but the molecular mechanism is not well-known. In this study, we explored the regulatory role and molecular mechanism of lysine (Lys) on milk fat synthesis induced by fatty acids (FAs). We show that Lys dose-dependently affects number of cells and milk fat synthesis, and has more stimulatory effects in the presence of FAs. Lys enhances FA-induced sterol regulatory element binding protein 1c (SREBP-1c) expression and maturation in a fatty-acid-binding protein 5 (FABP5)-dependent manner. We further show that the Lys stimulates FABP5 expression via the GPRC6A (GPCR, class C, group 6, subtype A)-PI3K (phosphatidylinositol 3-kinase) signaling. Lys dose-dependently affects GPRC6A expression and localization at the plasma membrane. In summary, our data reveals that Lys enhances FAs-stimulated SREBP-1c expression and maturation leading to milk fat synthesis via the GPRC6A-PI3K-FABP5 signaling in BMECs.
Collapse
Affiliation(s)
- Xueying Li
- School of Animal Science , Yangtze University , Jingzhou 434020 , China
| | - Ping Li
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| | - Lulu Wang
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| | - Minghui Zhang
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| | - Xuejun Gao
- School of Animal Science , Yangtze University , Jingzhou 434020 , China
| |
Collapse
|
36
|
Waugh DT. Fluoride Exposure Induces Inhibition of Sodium/Iodide Symporter (NIS) Contributing to Impaired Iodine Absorption and Iodine Deficiency: Molecular Mechanisms of Inhibition and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1086. [PMID: 30917615 PMCID: PMC6466022 DOI: 10.3390/ijerph16061086] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022]
Abstract
The sodium iodide symporter (NIS) is the plasma membrane glycoprotein that mediates active iodide transport in the thyroid and other tissues, such as the salivary, gastric mucosa, rectal mucosa, bronchial mucosa, placenta and mammary glands. In the thyroid, NIS mediates the uptake and accumulation of iodine and its activity is crucial for the development of the central nervous system and disease prevention. Since the discovery of NIS in 1996, research has further shown that NIS functionality and iodine transport is dependent on the activity of the sodium potassium activated adenosine 5'-triphosphatase pump (Na+, K+-ATPase). In this article, I review the molecular mechanisms by which F inhibits NIS expression and functionality which in turn contributes to impaired iodide absorption, diminished iodide-concentrating ability and iodine deficiency disorders. I discuss how NIS expression and activity is inhibited by thyroglobulin (Tg), tumour necrosis factor alpha (TNF-α), transforming growth factor beta 1 (TGF-β1), interleukin 6 (IL-6) and Interleukin 1 beta (IL-1β), interferon-γ (IFN-γ), insulin like growth factor 1 (IGF-1) and phosphoinositide 3-kinase (PI3K) and how fluoride upregulates expression and activity of these biomarkers. I further describe the crucial role of prolactin and megalin in regulation of NIS expression and iodine homeostasis and the effect of fluoride in down regulating prolactin and megalin expression. Among many other issues, I discuss the potential conflict between public health policies such as water fluoridation and its contribution to iodine deficiency, neurodevelopmental and pathological disorders. Further studies are warranted to examine these associations.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, Bandon, Co. Cork, P72 YF10, Ireland.
| |
Collapse
|
37
|
Raj JP, Venkatachalam S, Shekoba M, Norris JJ, Amaravati RS. Conventional antidiabetic agents and bone health: A pilot case-control study. Perspect Clin Res 2019; 10:177-182. [PMID: 31649868 PMCID: PMC6801990 DOI: 10.4103/picr.picr_125_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background and Objectives: The burden of noncommunicable diseases such as diabetes (type 2 diabetes mellitus [T2DM]) and osteoporosis is increasing with increasing longevity. Uncontrolled T2DM is an independent risk factor for osteoporosis explained by the insulin osteocalcin pathway. Due to limited information on the effect of various commonly used antidiabetic agents (ADA) on bone health, our study aims to analyze the association between the two. Methodology: This is a case–control study, with 100 cases of clinical osteoporosis and 100 age-, sex-, and dietary status-matched controls in whom osteoporosis was ruled out by dual-energy X-ray absorptiometry scan. Prescription details of T2DM, physical activity levels, and disease status were collected using a pretested questionnaire. Exposure to each ADA was compared using the Chi-squared test. Binary logistic regression was performed to adjust the two main confounders, namely glycemic control and physical activity levels, and adjusted risk estimates were calculated. Results: There were a total of 74 T2DM patients, of whom 45 (60.8%) were cases and 29 (39.2%) were controls. Sulfonylureas (adjusted odds ratio [aOR] = 0.164, P = 0.004) and insulin (aOR = 0.248, P = 0.042) showed a significant protective effect on bone health. Biguanides (OR = 1.994, P = 0.029) and thiazolidinediones (OR: 5.444, P = 0.033), which demonstrated that an increased risk of osteoporosis in univariate analysis became insignificant after multivariate analysis. Conclusion: Sulfonylureas and insulin through the insulin osteocalcin pathway show favorable effect on bone health, but the probability of increased fractures secondary to hypoglycemic falls should be borne in mind. We recommend larger prospective studies to confirm this association.
Collapse
Affiliation(s)
- Jeffrey Pradeep Raj
- Department of Pharmacology, St. John's Medical College, Bengaluru, Karnataka, India
| | | | - Mahesh Shekoba
- Department of Orthopaedics, St. John's Medical College, Bengaluru, Karnataka, India
| | | | - Rajkumar S Amaravati
- Department of Orthopaedics, St. John's Medical College, Bengaluru, Karnataka, India
| |
Collapse
|
38
|
Otani T, Matsuda M, Mizokami A, Kitagawa N, Takeuchi H, Jimi E, Inai T, Hirata M. Osteocalcin triggers Fas/FasL-mediated necroptosis in adipocytes via activation of p300. Cell Death Dis 2018; 9:1194. [PMID: 30546087 PMCID: PMC6294257 DOI: 10.1038/s41419-018-1257-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/13/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Abstract
The uncarboxylated form of osteocalcin (GluOC) regulates glucose and lipid metabolism in mice. We previously showed that low-dose (≤10 ng/ml) GluOC induces the expression of adiponectin and peroxisome proliferator-activated receptor γ (PPARγ) via a cAMP-PKA-ERK-CREB signaling pathway in 3T3-L1 adipocytes. We also noticed that high-dose (≥20 ng/ml) GluOC inhibits the expression of adiponectin and PPARγ in these cells. We have here explored the mechanism underlying these effects of high-dose GluOC. High-dose GluOC triggered morphological changes in 3T3-L1 adipocytes suggestive of the induction of cell death. It activated the putative GluOC receptor GPRC6A and thereby induced the production of cAMP and activation of protein kinase A (PKA), similar to signaling by low-dose GluOC with the exception that the catalytic subunit of PKA also entered the nucleus. Cytosolic PKA induced phosphorylation of cAMP response element-binding protein (CREB) at serine-133 via extracellular signal-regulated kinase (ERK). Nuclear PKA appeared to mediate the inhibitory phosphorylation of salt-inducible kinase 2 (SIK2) at serine-358 and thereby to alleviate the inhibitory phosphorylation of the CREB co-activator p300 at serine-89. The activation of CREB and p300 resulted in increased expression of the transcription factor FoxO1 and consequent upregulation of Fas ligand (FasL) at the plasma membrane. The interaction of FasL with Fas on neighboring adipocytes triggered the phosphorylation at threonine-357/serine-358 and homotrimerization of mixed-lineage kinase domain-like protein (MLKL), a key regulator of necroptosis, as well as Ca2+ influx via transient receptor potential melastatin 7 (TRPM7), the generation of reactive oxygen species and lipid peroxides, and dephosphorylation of dynamin-related protein 1 (DRP1) at serine-637, resulting in mitochondrial fragmentation. Together, our results indicate that high-dose GluOC triggers necroptosis through upregulation of FasL at the plasma membrane in a manner dependent of activation of CREB-p300, followed by the activation of Fas signaling in neighboring adipocytes.
Collapse
Affiliation(s)
- Takahito Otani
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Akiko Mizokami
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Norio Kitagawa
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| | - Hiroshi Takeuchi
- Division of Applied Pharmacology, Kyushu Dental University, Kitakyushu, 803-8580, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan.,OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tetsuichiro Inai
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| | - Masato Hirata
- School of Dental Medicine, Fukuoka Dental College, Fukuoka, 814-0193, Japan.
| |
Collapse
|
39
|
Kanazawa I, Tanaka S, Sugimoto T. The Association Between Osteocalcin and Chronic Inflammation in Patients with Type 2 Diabetes Mellitus. Calcif Tissue Int 2018; 103:599-605. [PMID: 30051143 DOI: 10.1007/s00223-018-0460-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022]
Abstract
Osteocalcin acts as an endocrine hormone to regulate energy homeostasis. Although several in vivo and in vitro studies suggest that osteocalcin is involved in chronic inflammation, the association between osteocalcin and chronic inflammation in humans is unknown. In this cross-sectional study, 246 patients with type 2 diabetes mellitus (T2DM) were recruited to investigate the association of bone turnover markers with chronic inflammation parameters such as high-sensitive C-reactive protein (hsCRP), ferritin, and leukocyte subtype counts. Bone-specific alkaline phosphatase (BAP), total osteocalcin (OC), undercarboxylated OC (ucOC), and urinary N-terminal cross-linked telopeptide of type-I collagen (uNTX) were measured. Multiple regression analysis adjusted for age, duration of diabetes, body mass index, estimated glomerular filtration rate, and hemoglobin A1c showed that serum OC levels were significantly and negatively associated with hsCRP, ferritin, basophil count, and monocyte count (β = - 0.18, p = 0.013; β = - 0.22, p = 0.031; β = - 0.14, p = 0.038; and β = - 0.17, p = 0.012, respectively). Moreover, serum ucOC levels were significantly and negatively associated with hsCRP, ferritin, total leukocyte count, neutrophil count, and monocyte count (β = - 0.24, p = 0.007; β =- 0.37, p = 0.003; β = - 0.21, p = 0.007; β = - 0.24, p = 0.002; and β = - 0.20, p = 0.011, respectively). The ratio of ucOC to OC was significantly and negatively associated with ferritin (β = - 0.31, p = 0.014). However, neither BAP nor uNTX was associated with any chronic inflammation parameters. This is the first study to show that serum OC and ucOC levels were negatively associated with chronic inflammation parameters such as hsCRP, ferritin, and leukocyte subtypes in patients with T2DM. Therefore, OC could be a therapeutic target for protecting against chronic inflammation.
Collapse
Affiliation(s)
- Ippei Kanazawa
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Sayuri Tanaka
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Toshitsugu Sugimoto
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
40
|
Diaz-Franco MC, Franco-Diaz de Leon R, Villafan-Bernal JR. Osteocalcin‑GPRC6A: An update of its clinical and biological multi‑organic interactions (Review). Mol Med Rep 2018; 19:15-22. [PMID: 30431093 PMCID: PMC6297736 DOI: 10.3892/mmr.2018.9627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
Osteocalcin is no longer regarded as a molecule exclusive to bone remodeling and osteogenesis, but as a hormone with manifold functions. The discovery of the interaction of osteocalcin with the G protein‑coupled receptor family C group 6‑member A (GPRC6A) receptor has accompanied the characterization of several roles that this peptide serves in body regulation and homeostasis. These roles include the modulation of memory in the brain, fertility in the testis, fat accumulation in the liver, incretins release in the intestine and adaptation to exercise in muscle, in addition to the well‑known effects on β‑cell proliferation, insulin release and adiponectin secretion. The aim of the present review was to provide a practical update of the multi‑organ effects that osteocalcin exerts through its interaction with GPRC6A and the clinical implications of this.
Collapse
|
41
|
Abstract
The skeleton shows an unconventional role in the physiology and pathophysiology of the human organism, not only as the target tissue for a number of systemic hormones, but also as endocrine tissue modulating some skeletal and extraskeletal systems. From this point of view, the principal cells in the skeleton are osteocytes. These cells primarily work as mechano-sensors and modulate bone remodeling. Mechanically unloaded osteocytes synthetize sclerostin, the strong inhibitor of bone formation and RANKL, the strong activator of bone resorption. Osteocytes also express hormonally active vitamin D (1,25(OH)2D) and phosphatonins, such as FGF23. Both 1,25(OH)2D and FGF23 have been identified as powerful regulators of the phosphate metabolism, including in chronic kidney disease. Further endocrine cells of the skeleton involved in bone remodeling are osteoblasts. While FGF23 targets the kidney and parathyroid glands to control metabolism of vitamin D and phosphates, osteoblasts express osteocalcin, which through GPRC6A receptors modulates beta cells of the pancreatic islets, muscle, adipose tissue, brain and testes. This article reviews some knowledge concerning the interaction between the bone hormonal network and phosphate or energy homeostasis and/or male reproduction.
Collapse
Affiliation(s)
- I. ZOFKOVA
- Institute of Endocrinology, Prague, Czech Republic
| |
Collapse
|
42
|
Liu DM, Mosialou I, Liu JM. Bone: Another potential target to treat, prevent and predict diabetes. Diabetes Obes Metab 2018; 20:1817-1828. [PMID: 29687585 DOI: 10.1111/dom.13330] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes mellitus is now a worldwide health problem with increasing prevalence. Mounting efforts have been made to treat, prevent and predict this chronic disease. In recent years, increasing evidence from mice and clinical studies suggests that bone-derived molecules modulate glucose metabolism. This review aims to summarize our current understanding of the interplay between bone and glucose metabolism and to highlight potential new means of therapeutic intervention. The first molecule recognized as a link between bone and glucose metabolism is osteocalcin (OCN), which functions in its active form, that is, undercarboxylated OCN (ucOC). ucOC acts in promoting insulin expression and secretion, facilitating insulin sensitivity, and favouring glucose and fatty acid uptake and utilization. A second bone-derived molecule, lipocalin2, functions in suppressing appetite in mice through its action on the hypothalamus. Osteocytes, the most abundant cells in bone matrix, are suggested to act on the browning of white adipose tissue and energy expenditure through secretion of bone morphogenetic protein 7 and sclerostin. The involvement of bone resorption in glucose homeostasis has also been examined. However, there is evidence indicating the implication of the receptor activator of nuclear factor κ-B ligand, neuropeptide Y, and other known and unidentified bone-derived factors that function in glucose homeostasis. We summarize recent advances and the rationale for treating, preventing and predicting diabetes by skeleton intervention.
Collapse
Affiliation(s)
- Dong-Mei Liu
- Department of Rheumatology, ZhongShan Hospital, FuDan University, Shanghai, China
| | - Ioanna Mosialou
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| |
Collapse
|
43
|
Undercarboxylated Osteocalcin: Experimental and Human Evidence for a Role in Glucose Homeostasis and Muscle Regulation of Insulin Sensitivity. Nutrients 2018; 10:nu10070847. [PMID: 29966260 PMCID: PMC6073619 DOI: 10.3390/nu10070847] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Recent advances have indicated that osteocalcin, and in particular its undercarboxylated form (ucOC), is not only a nutritional biomarker reflective of vitamin K status and an indicator of bone health but also an active hormone that mediates glucose metabolism in experimental studies. This work has been supported by the putative identification of G protein-coupled receptor, class C, group 6, member A (GPRC6A) as a cell surface receptor for ucOC. Of note, ucOC has been associated with diabetes and with cardiovascular risk in epidemiological studies, consistent with a pathophysiological role for ucOC in vivo. Limitations of existing knowledge include uncertainty regarding the underlying mechanisms by which ucOC interacts with GPRC6A to modulate metabolic and cardiovascular outcomes, technical issues with commonly used assays for ucOC in serum, and a paucity of clinical trials to prove causation and illuminate the scope for novel health interventions. A key emerging area of research is the role of ucOC in relation to expression of GPRC6A in muscle, and whether exercise interventions may modulate metabolic outcomes favorably in part via ucOC. Further research is warranted to clarify potential direct and indirect roles for ucOC in human health and cardiometabolic diseases.
Collapse
|
44
|
Abstract
New insights into G protein coupled receptor regulation of glucose metabolism by β-cells, skeletal muscle and liver hepatocytes identify GPRC6A as a potential therapeutic target for treating type 2 diabetes mellitus (T2D). Activating GPRC6A with a small molecule drug represents a potential paradigm-shifting opportunity to make significant strides in regulating glucose homeostasis by simultaneously correcting multiple metabolic derangements that underlie T2D, including abnormalities in β-cell proliferation and insulin secretion and peripheral insulin resistance. Using a computational, structure-based high-throughput screening approach, we identified novel tri-phenyl compounds predicted to bind to the venus fly trap (VFT) and 7-transmembrane (7-TM) domains of GPRC6A. Experimental testing found that these compounds dose-dependently stimulated GPRC6A signaling in a heterologous cell expression system. Additional chemical modifications and functional analysis identified one tri-phenyl lead compound, DJ-V-159 that demonstrated the greatest potency in stimulating insulin secretion in β-cells and lowering serum glucose in wild-type mice. Collectively, these studies show that GPRC6A is a “druggable” target for developing chemical probes to treat T2DM.
Collapse
|
45
|
Pi M, Kapoor K, Ye R, Smith JC, Baudry J, Quarles LD. GPCR6A Is a Molecular Target for the Natural Products Gallate and EGCG in Green Tea. Mol Nutr Food Res 2018; 62:e1700770. [PMID: 29468843 DOI: 10.1002/mnfr.201700770] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/07/2018] [Indexed: 12/15/2022]
Abstract
SCOPE The molecular mechanisms whereby gallates in green tea exert metabolic effects are poorly understood. METHODS AND RESULTS We found that GPRC6A, a multi-ligand-sensing G-protein-coupled receptor that regulates energy metabolism, sex hormone production, and prostate cancer progression, is a target for gallates. Sodium gallate (SG), gallic acid (GA) > ethyl gallate (EG) > octyl gallate (OG) dose dependently activated ERK in HEK-293 cells transfected with GPRC6A but not in non-transfected controls. SG also stimulated insulin secretion in β-cells isolated from wild-type mice similar to the endogenous GPRC6A ligands, osteocalcin (Ocn) and testosterone (T). Side-chain additions to create OG resulted in loss of GPRC6A agonist activity. Another component of green tea, epigallocatechin 3-gallate (EGCG), dose-dependently inhibited Ocn activation of GPRC6A in HEK-293 cells transfected with GPRC6A and blocked the effect of Ocn in stimulating glucose production in CH10T1/2 cells. Using structural models of the venus fly trap (VFT) and 7-transmembrane (7-TM) domains of GPRC6A, calculations suggest that l-amino acids and GA bind to the VFT, whereas EGCG is calculated to bind to sites in both the VFT and 7-TM. CONCLUSION GA and EGCG have offsetting agonist and antagonist effects on GPRC6A that may account for the variable metabolic effect of green tea consumption.
Collapse
Affiliation(s)
- Min Pi
- Department of Medicine, University of Tennessee Health Science Center, 19 S Manassas St., Memphis, TN, 38163, USA
| | - Karan Kapoor
- UT/ORNL Center for Molecular Biophysics, Oak Ridge, TN, 37830, USA
| | - Ruisong Ye
- Department of Medicine, University of Tennessee Health Science Center, 19 S Manassas St., Memphis, TN, 38163, USA
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge, TN, 37830, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jerome Baudry
- UT/ORNL Center for Molecular Biophysics, Oak Ridge, TN, 37830, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Leigh D Quarles
- Department of Medicine, University of Tennessee Health Science Center, 19 S Manassas St., Memphis, TN, 38163, USA
| |
Collapse
|
46
|
Conte C, Epstein S, Napoli N. Insulin resistance and bone: a biological partnership. Acta Diabetol 2018; 55:305-314. [PMID: 29333578 DOI: 10.1007/s00592-018-1101-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/03/2018] [Indexed: 01/27/2023]
Abstract
Despite a clear association between type 2 diabetes (T2D) and fracture risk, the pathogenesis of bone fragility in T2D has not been clearly elucidated. Insulin resistance is the primary defect in T2D. Insulin signalling regulates both bone formation and bone resorption, but whether insulin resistance can affect bone has not been established. On the other hand, evidence exists that bone might play a role in the regulation of glucose metabolism. This article reviews the available experimental and clinical evidence on the interplay between bone and insulin resistance. Interestingly, a bilateral relationship between bone and insulin resistance seems to exist that unites them in a biological partnership.
Collapse
Affiliation(s)
- Caterina Conte
- Clinical Transplant Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20163, Milan, Italy.
| | - Solomon Epstein
- Division of Endocrinology, Mount Sinai School of Medicine, New York, NY, USA
| | - Nicola Napoli
- Division of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Rome, Italy
- Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
47
|
Mabilleau G, Gobron B, Bouvard B, Chappard D. Incretin-based therapy for the treatment of bone fragility in diabetes mellitus. Peptides 2018; 100:108-113. [PMID: 29412811 DOI: 10.1016/j.peptides.2017.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/23/2022]
Abstract
Bone fractures are common comorbidities of type 2 diabetes mellitus (T2DM). Bone fracture incidence seems to develop due to increased risk of falls, poor bone quality and/or anti-diabetic medications. Previously, a relation between gut hormones and bone has been suspected. Most recent evidences suggest indeed that two gut hormones, namely glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), may control bone remodeling and quality. The GIP receptor is expressed in bone cells and knockout of either GIP or its receptor induces severe bone quality alterations. Similar alterations are also encountered in GLP-1 receptor knock-out animals associated with abnormal osteoclast resorption. Some GLP-1 receptor agonist (GLP-1RA) have been approved for the treatment of type 2 diabetes mellitus and although clinical trials may not have been designed to investigate bone fracture, first results suggest that GLP-1RA may not exacerbate abnormal bone quality observed in T2DM. The recent design of double and triple gut hormone agonists may also represent a suitable alternative for restoring compromised bone quality observed in T2DM. However, although most of these new molecules demonstrated weight loss action, little is known on their bone safety. The present review summarizes the most recent findings on peptide-based incretin therapy and bone physiology.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- GEROM-LHEA UPRES EA4658, University of Angers, Institut de Biologie en Santé, Angers, France; SCIAM, University of Angers, Institut de Biologie en Santé, Angers, France; Bone Pathology Unit, Angers University Hospital, Angers, France.
| | - Benoît Gobron
- GEROM-LHEA UPRES EA4658, University of Angers, Institut de Biologie en Santé, Angers, France; Rheumatology Department, Angers University Hospital, Angers, France
| | - Béatrice Bouvard
- GEROM-LHEA UPRES EA4658, University of Angers, Institut de Biologie en Santé, Angers, France; Rheumatology Department, Angers University Hospital, Angers, France
| | - Daniel Chappard
- GEROM-LHEA UPRES EA4658, University of Angers, Institut de Biologie en Santé, Angers, France; SCIAM, University of Angers, Institut de Biologie en Santé, Angers, France; Bone Pathology Unit, Angers University Hospital, Angers, France
| |
Collapse
|
48
|
Tangseefa P, Martin SK, Fitter S, Baldock PA, Proud CG, Zannettino ACW. Osteocalcin-dependent regulation of glucose metabolism and fertility: Skeletal implications for the development of insulin resistance. J Cell Physiol 2017; 233:3769-3783. [PMID: 28834550 DOI: 10.1002/jcp.26163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/22/2017] [Indexed: 01/22/2023]
Abstract
The skeleton has recently emerged as a critical insulin target tissue that regulates whole body glucose metabolism and male reproductive function. While our understanding of these new regulatory axes remains in its infancy, the bone-specific protein, osteocalcin, has been shown to be centrally involved. Undercarboxylated osteocalcin acts as a secretagogue in a feed-forward loop to stimulate pancreatic β-cell proliferation and insulin secretion, improve insulin sensitivity, and promote testosterone production. Importantly, dysregulation of insulin signaling in bone causes a reduction in serum osteocalcin levels that is associated with elevated blood glucose and reduced serum insulin levels, suggesting that the skeleton may play a significant role in the development of diet-induced insulin resistance. Insulin signaling is negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1) which becomes hyper-activated in response to nutrient overload. Loss- and gain-of function models suggest that mTORC1 function in bone is essential for normal skeletal development; however, the role of this complex in the regulation of glucose metabolism remains to be determined. This review highlights our current understanding of the role played by osteocalcin in the skeletal regulation of glucose metabolism and fertility. In particular, it examines data emerging from transgenic mouse models which have revealed a pancreas-bone-testis regulatory axis and discusses recent human studies which seek to corroborate findings from mouse models with clinical observations. Moreover, we review recent studies which suggest dysregulation of insulin signaling in bone leads to the development of insulin resistance and discuss the potential role of mTORC1 signaling in this process.
Collapse
Affiliation(s)
- Pawanrat Tangseefa
- Faculty of Health and Medical Science, Myeloma Research Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Sally K Martin
- Faculty of Health and Medical Science, Myeloma Research Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Stephen Fitter
- Faculty of Health and Medical Science, Myeloma Research Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Paul A Baldock
- Skeletal Metabolism Group, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Christopher G Proud
- Nutrition & Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Andrew C W Zannettino
- Faculty of Health and Medical Science, Myeloma Research Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
49
|
Recombinant Mouse Osteocalcin Secreted by Lactococcus lactis Promotes Glucagon-Like Peptide-1 Induction in STC-1 Cells. Curr Microbiol 2017; 75:92-98. [DOI: 10.1007/s00284-017-1354-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/06/2017] [Indexed: 12/23/2022]
|
50
|
Hayashi Y, Kawakubo-Yasukochi T, Mizokami A, Hazekawa M, Yakura T, Naito M, Takeuchi H, Nakamura S, Hirata M. Uncarboxylated Osteocalcin Induces Antitumor Immunity against Mouse Melanoma Cell Growth. J Cancer 2017; 8:2478-2486. [PMID: 28900485 PMCID: PMC5595077 DOI: 10.7150/jca.18648] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/04/2017] [Indexed: 12/20/2022] Open
Abstract
Because of the poor response to chemotherapy and radiation therapy, new treatment approaches by immune-based therapy involving activated T cells are required for melanoma. We previously reported that the uncarboxylated form of osteocalcin (GluOC), derived from osteoblasts, potentially suppresses human prostate cancer cell proliferation by direct suppression of cell growth. However, the mechanisms in vivo have not been elucidated. In this study, we found that GluOC suppressed tumor growth of B16 mouse melanoma transplants in C57Bl/6N wild-type mice. Our data demonstrated that GluOC suppressed cell growth by downregulating phosphorylation levels of receptor tyrosine kinases and inducing apoptosis in vitro. Additionally, stimulation of primary mouse splenocytes with concanavalin A, a polyclonal T-cell mitogen, in the presence of GluOC increased T cell proliferation and their interferon-γ production. Taken together, we demonstrate that GluOC exerts multiple antitumor effects not only in vitro, but also in vivo through cellular immunostimulatory effects against B16 mouse melanoma cells.
Collapse
Affiliation(s)
- Yoshikazu Hayashi
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.,Section of Oral and Maxillofacial Oncology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomoyo Kawakubo-Yasukochi
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.,Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Akiko Mizokami
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.,OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Mai Hazekawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Tomiko Yakura
- Department of Anatomy, Aichi Medical University, Aichi 480-1195, Japan
| | - Munekazu Naito
- Department of Anatomy, Aichi Medical University, Aichi 480-1195, Japan
| | - Hiroshi Takeuchi
- Division of Applied Pharmacology, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.,Fukuoka Dental College, Fukuoka 814-0193, Japan
| |
Collapse
|