1
|
He LH, Zhang ZY, Zhang X, Xiao E, Liu M, Zhang Y. Osteoclasts may contribute bone substitute materials remodeling and bone formation in bone augmentation. Med Hypotheses 2019; 135:109438. [PMID: 31739077 DOI: 10.1016/j.mehy.2019.109438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/17/2019] [Indexed: 01/04/2023]
Abstract
Bone augmentation is increasingly important in implantology. Bone substitute materials exert essential roles during bone augmentation process. However, accelerating bone substitute materials remodeling and acquiring high bone architecture quality was still the challenges of bone augmentation. Accumulated studies had suggested osteoclasts is the key cell type to resorb bone or bone substitute materials. Our previous study and other studies suggested osteoclasts contributed to bone formation by promoting osteoblast function and facilitate angiogenesis. We hypothesized that bone substitute materials loaded osteoclastogenic cytokines or osteoclast progenitors will help to bone substitute materials rapid remodeling and subsequent bone formation. Our hypothesis could help to lessen long-term post-bone augmentation period and acquire better bone quality for osseointegration.
Collapse
Affiliation(s)
- Lin-Hai He
- First Clinical Division, Peking University School Hospital of Stomatology, China; Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, China
| | - Zhi-Yong Zhang
- First Clinical Division, Peking University School Hospital of Stomatology, China
| | - Xiao Zhang
- First Clinical Division, Peking University School Hospital of Stomatology, China
| | - E Xiao
- Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, China
| | - Meng Liu
- Laser and Cosmetic Surgery Division, Peking University Hospital of Stomatology, China
| | - Yi Zhang
- Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, China.
| |
Collapse
|
2
|
Gallo M, Le Gars Santoni B, Douillard T, Zhang F, Gremillard L, Dolder S, Hofstetter W, Meille S, Bohner M, Chevalier J, Tadier S. Effect of grain orientation and magnesium doping on β-tricalcium phosphate resorption behavior. Acta Biomater 2019; 89:391-402. [PMID: 30831328 DOI: 10.1016/j.actbio.2019.02.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/05/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022]
Abstract
The efficiency of calcium phosphate (CaP) bone substitutes can be improved by tuning their resorption rate. The influence of both crystal orientation and ion doping on resorption is here investigated for beta-tricalcium phosphate (β-TCP). Non-doped and Mg-doped (1 and 6 mol%) sintered β-TCP samples were immersed in acidic solution (pH 4.4) to mimic the environmental conditions found underneath active osteoclasts. The surfaces of β-TCP samples were observed after acid-etching and compared to surfaces after osteoclastic resorption assays. β-TCP grains exhibited similar patterns with characteristic intra-crystalline pillars after acid-etching and after cell-mediated resorption. Electron BackScatter Diffraction analyses, coupled with Scanning Electron Microscopy, Inductively Coupled Plasma-Mass Spectrometry and X-Ray Diffraction, demonstrated the influence of both grain orientation and doping on the process and kinetics of resorption. Grains with c-axis nearly perpendicular to the surface were preferentially etched in non-doped β-TCP samples, whereas all grains with simple axis (a, b or c) nearly normal to the surface were etched in 6 mol% Mg-doped samples. In addition, both the dissolution rate and the percentage of etched surface were lower in Mg-doped specimens. Finally, the alignment direction of the intra-crystalline pillars was correlated with the preferential direction for dissolution. STATEMENT OF SIGNIFICANCE: The present work focuses on the resorption behavior of calcium phosphate bioceramics. A simple and cost-effective alternative to osteoclast culture was implemented to identify which material features drive resorption. For the first time, it was demonstrated that crystal orientation, measured by Electron Backscatter Diffraction, is the discriminating factor between grains, which resorbed first, and grains, which resorbed slower. It also elucidated how resorption kinetics can be tuned by doping β-tricalcium phosphate with ions of interest. Doping with magnesium impacted lattice parameters. Therefore, the crystal orientations, which preferentially resorbed, changed, explaining the solubility decrease. These important findings pave the way for the design of optimized bone graft substitutes with tailored resorption kinetics.
Collapse
Affiliation(s)
- Marta Gallo
- Univ Lyon, INSA Lyon, UCB Lyon 1, CNRS, MATEIS UMR 5510, Bât. Blaise Pascal, 7 Avenue Jean Capelle, 69621Villeurbanne, France
| | | | - Thierry Douillard
- Univ Lyon, INSA Lyon, UCB Lyon 1, CNRS, MATEIS UMR 5510, Bât. Blaise Pascal, 7 Avenue Jean Capelle, 69621Villeurbanne, France
| | - Fei Zhang
- Univ Lyon, INSA Lyon, UCB Lyon 1, CNRS, MATEIS UMR 5510, Bât. Blaise Pascal, 7 Avenue Jean Capelle, 69621Villeurbanne, France
| | - Laurent Gremillard
- Univ Lyon, INSA Lyon, UCB Lyon 1, CNRS, MATEIS UMR 5510, Bât. Blaise Pascal, 7 Avenue Jean Capelle, 69621Villeurbanne, France
| | - Silvia Dolder
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Willy Hofstetter
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Sylvain Meille
- Univ Lyon, INSA Lyon, UCB Lyon 1, CNRS, MATEIS UMR 5510, Bât. Blaise Pascal, 7 Avenue Jean Capelle, 69621Villeurbanne, France
| | - Marc Bohner
- RMS Foundation, Bischmattstrasse 12, 2544 Bettlach, Switzerland
| | - Jérôme Chevalier
- Univ Lyon, INSA Lyon, UCB Lyon 1, CNRS, MATEIS UMR 5510, Bât. Blaise Pascal, 7 Avenue Jean Capelle, 69621Villeurbanne, France
| | - Solène Tadier
- Univ Lyon, INSA Lyon, UCB Lyon 1, CNRS, MATEIS UMR 5510, Bât. Blaise Pascal, 7 Avenue Jean Capelle, 69621Villeurbanne, France.
| |
Collapse
|
3
|
Ooi JP, Kasim SR, Shaari RB, Saidin NA. In vivo efficacy and toxicity of synthesized nano-β-tricalcium phosphate in a rabbit tibial defect model. TOXICOLOGY RESEARCH AND APPLICATION 2018. [DOI: 10.1177/2397847318819499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Previous studies of the biocompatibility of β-tricalcium phosphate (β-TCP) focused on bulk-sized β-TCP, and little is known about the biocompatibility of nano β-TCP particles (nβ-TCP). The objectives of this study were to synthesize nβ-TCP particles and determine their efficacy in a rabbit tibial defect model. The nβ-TCP particles were first synthesized using a wet chemical precipitation process. The particles were then implanted in the left tibia of New Zealand white rabbits, and the defect site healing was evaluated for a period of 16 weeks using radiography, computed tomography, and histology. Data were compared with those of a sham (empty) control. Results showed that the defect site treated with nβ-TCP particles did not heal completely after 16 weeks, whereas full cortical bone recovery was observed in the sham control group of rabbits. Histopathological examination showed that the nβ-TCP particles caused an excessive and prolonged inflammatory response by the host. The nano-scaled size and biodegradability of the synthesized nβ-TCP particles may have been responsible for this progressive and extended inflammatory response, which delayed the bone healing process. The underlying mechanism for this effect remains unclear and warrants further investigation.
Collapse
Affiliation(s)
- Jer Ping Ooi
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Shah Rizal Kasim
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
| | - Rumaizi Bin Shaari
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kelantan, Malaysia
| | - Nor Aini Saidin
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
4
|
[Efficacy of inactivated autologous porous bone flap and BAM bone-induced artificial bone for repairing skull defect in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38. [PMID: 29997100 PMCID: PMC6765716 DOI: 10.3969/j.issn.1673-4254.2018.06.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To study the effect of BAM bone grafting combined with inactivated autologous porous bone flap in repairing skull defect in rats. METHODS Seventy-two Wistar rats with skull defect were randomly divided into control group, inactivated autologous bone flap group (AB group), BAM bone-induced artificial bone material group (BAM group), and inactivated autologous bone flap with BAM bone-induced artificial bone group (BAM+AB group). The bone healing was evaluated with micro-CT and the new bone formation was assessed with histological staining at 1, 2, and 3 months after modeling. RESULTS Inactivated porous bone flap combined with BAM bone-induced artificial bone effectively induced vascular and fibrous tissue regeneration and osteogenesis in the cranial defects. With the inactivated porous bone flap as the scaffold, BAM bone-induced artificial bone obviously promoted the restoration of the skull appearance in the rats with cranial defects. CONCLUSION Inactivated autologous bone flap group and BAM bone-induced artificial bone material can promote skull healing and restoration of the original skull appearance, and can be used for reconstruction of the local anatomy of the skull surface.
Collapse
|
5
|
Pascaretti-Grizon F, Guillaume B, Terranova L, Arbez B, Libouban H, Chappard D. Maxillary Sinus Lift with Beta-Tricalcium Phosphate (β-TCP) in Edentulous Patients: A Nanotomographic and Raman Study. Calcif Tissue Int 2017; 101:280-290. [PMID: 28447119 DOI: 10.1007/s00223-017-0280-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/10/2017] [Indexed: 01/06/2023]
Abstract
Sinus lift elevation restores bone mass at the maxilla in edentulate patients before the placement of dental implants. It consists of opening the lateral side of the sinus and grafting beta-tricalcium phosphate granules (β-TCP) under the olfactory membrane. Bone biopsies were obtained in five patients after 60 weeks. They were embedded undecalcified in poly(methyl methacrylate) (pMMA); blocks were analyzed by nanocomputed tomography (nanoCT); specific areas were studied by Raman microspectroscopy. Remnants of β-TCP were osseointegrated and covered with mineralized bone; osteoid tissue was also filling the inner porosity. Macrophages having engulfed numerous β-TCP grains were observed in marrow spaces. β-TCP was identified by nanoCT as osseointegrated particles and as granules in the cytoplasm of macrophages. Raman microspectroscopy permitted to compare the spectra of β-TCP and bone in different areas. The ratio of the ~820 cm-1 band of pMMA (-CH2 groups) on the ν1 phosphate band at 960 cm-1 reflected tissue hydration because water was substituted by MMA during histological processing. In bone, the ratio of the ~960 cm-1 phosphate to the amide 1 band and the ratio ν2 phosphate band by the 1240-1250 amide III band reflect the mineralization degree. Specific bands of β-TCP were found in osseointegrated β-TCP granules and in the grains phagocytized by the macrophages. The hydration degree was maximal for β-TCP phagocytized by macrophages. Raman microspectroscopy associated with nanoCT is a powerful tool in the analysis of the biomaterial degradation and osseointegration.
Collapse
Affiliation(s)
- Florence Pascaretti-Grizon
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
| | - Bernard Guillaume
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
- CFI, Collège Français d'Implantologie, 6, rue de Rome, 75005, Paris, France
| | - Lisa Terranova
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
| | - Baptiste Arbez
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
| | - Hélène Libouban
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
| | - Daniel Chappard
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France.
- GEROM - NextBone, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, 49933, Angers Cedex, France.
| |
Collapse
|
6
|
Ciapetti G, Di Pompo G, Avnet S, Martini D, Diez-Escudero A, Montufar EB, Ginebra MP, Baldini N. Osteoclast differentiation from human blood precursors on biomimetic calcium-phosphate substrates. Acta Biomater 2017; 50:102-113. [PMID: 27940198 DOI: 10.1016/j.actbio.2016.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/08/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022]
Abstract
The design of synthetic bone grafts to foster bone formation is a challenge in regenerative medicine. Understanding the interaction of bone substitutes with osteoclasts is essential, since osteoclasts not only drive a timely resorption of the biomaterial, but also trigger osteoblast activity. In this study, the adhesion and differentiation of human blood-derived osteoclast precursors (OCP) on two different micro-nanostructured biomimetic hydroxyapatite materials consisting in coarse (HA-C) and fine HA (HA-F) crystals, in comparison with sintered stoichiometric HA (sin-HA, reference material), were investigated. Osteoclasts were induced to differentiate by RANKL-containing supernatant using cell/substrate direct and indirect contact systems, and calcium (Ca++) and phosphorus (P5+) in culture medium were measured. We observed that OCP adhered to the experimental surfaces, and that osteoclast-like cells formed at a rate influenced by the micro- and nano-structure of HA, which also modulate extracellular Ca++. Qualitative differences were found between OCP on biomimetic HA-C and HA-F and their counterparts on plastic and sin-HA. On HA-C and HA-F cells shared typical features of mature osteoclasts, i.e. podosomes, multinuclearity, tartrate acid phosphatase (TRAP)-positive staining, and TRAP5b-enzyme release. However, cells were less in number compared to those on plastic or on sin-HA, and they did not express some specific osteoclast markers. In conclusion, blood-derived OCP are able to attach to biomimetic and sintered HA substrates, but their subsequent fusion and resorptive activity are hampered by surface micro-nano-structure. Indirect cultures suggest that fusion of OCP is sensitive to topography and to extracellular calcium. STATEMENT OF SIGNIFICANCE The novelty of the paper is the differentiation of human blood-derived osteoclast precursors, instead of mouse-derived macrophages as used in most studies, directly on biomimetic micro-nano structured HA-based surfaces, as triggered by osteoblast-produced factors (RANKL/OPG), and influenced by chemistry and topography of the substrate(s). Biomimetic HA-surfaces, like those obtained in calcium phosphate cements, are very different from the conventional calcium phosphate ceramics, both in terms of topography and ion exchange. The role of these factors in modulating precursors' differentiation and activity is analysed. The system is closely reproducing the physiological process of attachment of host cells and further maturation to osteoclasts toward resorption of the substrate, which occurs in vivo after filling bone defects with the calcium phosphate grafts.
Collapse
Affiliation(s)
- Gabriela Ciapetti
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Desirée Martini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| | - Anna Diez-Escudero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia, BarcelonaTech (UPC), Barcelona, Spain.
| | - Edgar B Montufar
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia, BarcelonaTech (UPC), Barcelona, Spain.
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia, BarcelonaTech (UPC), Barcelona, Spain; Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| |
Collapse
|
7
|
Xie W, Lorenz S, Dolder S, Hofstetter W. Extracellular Iron is a Modulator of the Differentiation of Osteoclast Lineage Cells. Calcif Tissue Int 2016; 98:275-83. [PMID: 26615413 DOI: 10.1007/s00223-015-0087-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/13/2015] [Indexed: 01/28/2023]
Abstract
Osteoclasts originate from the hematopoietic stem cell and share a differentiation pathway with the cells of the monocyte/macrophage lineages. Development and activation of osteoclasts, and as a consequence regulation of bone resorption, depend on two growth factors: macrophage colony-stimulating factor and receptor activator of NF-κB ligand. Furthermore, cell development and activity are modulated by a microenvironment composed of cytokines and growth factors and of the extracellular matrix. Membrane transporters are a means for cells to interact with their environment. Within this study, the expression of proteins regulating cellular iron homeostasis in osteoclast-like cells grown from bone marrow-derived progenitors was compared to the expression of this set of proteins by monocyte/macrophage lineage cells. In differentiating osteoclasts, levels of transcripts encoding transferrin receptor 1 and divalent metal transporter 1 (Slc11A2) were increased, while levels of transcripts encoding ferroportin (Slc40A1) and natural resistance-associated macrophage protein 1 (Slc11A1) were decreased. Supplementation of the culture media with exogenous iron led to an increase in the proliferation of osteoclast progenitor cells and to the expression of a macrophage-like phenotype, while the development of osteoclasts was reduced. Upon transfer of mature OC onto a CaP substrate, iron depletion of the medium with the Fe(3+)-chelator Deferoxamine Mesylate decreased CaP dissolution by ~30 %, which could be restored by addition of exogenous iron. During the 24 h of the assay, no effects were observed on total TRAP activity. The data demonstrate transcriptional regulation of the components of cellular iron transporters during OC development and suggests that iron homeostasis may contribute to fine-tuning of the RANKL-induced OC development.
Collapse
Affiliation(s)
- Wenjie Xie
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sebastian Lorenz
- City Hospital Triemli Zurich, Institute for Laboratory Medicine, Zurich, Switzerland
| | - Silvia Dolder
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland
| | - Willy Hofstetter
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland.
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
Corbella S, Taschieri S, Weinstein R, Del Fabbro M. Histomorphometric outcomes after lateral sinus floor elevation procedure: a systematic review of the literature and meta-analysis. Clin Oral Implants Res 2015; 27:1106-22. [DOI: 10.1111/clr.12702] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Stefano Corbella
- Department of Biomedical, Surgical and Dental Sciences; Università degli Studi di Milano; Milan Italy
- IRCCS Istituto Ortopedico Galeazzi; Milan Italy
| | - Silvio Taschieri
- Department of Biomedical, Surgical and Dental Sciences; Università degli Studi di Milano; Milan Italy
- IRCCS Istituto Ortopedico Galeazzi; Milan Italy
| | - Roberto Weinstein
- Department of Biomedical, Surgical and Dental Sciences; Università degli Studi di Milano; Milan Italy
- IRCCS Istituto Ortopedico Galeazzi; Milan Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences; Università degli Studi di Milano; Milan Italy
- IRCCS Istituto Ortopedico Galeazzi; Milan Italy
| |
Collapse
|
9
|
Denry I, Kuhn LT. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent Mater 2015; 32:43-53. [PMID: 26423007 DOI: 10.1016/j.dental.2015.09.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Our goal is to review design strategies for the fabrication of calcium phosphate ceramic scaffolds (CPS), in light of their transient role in bone tissue engineering and associated requirements for effective bone regeneration. METHODS We examine the various design options available to meet mechanical and biological requirements of CPS and later focus on the importance of proper characterization of CPS in terms of architecture, mechanical properties and time-sensitive properties such as biodegradability. Finally, relationships between in vitro versus in vivo testing are addressed, with an attempt to highlight reliable performance predictors. RESULTS A combinatory design strategy should be used with CPS, taking into consideration 3D architecture, adequate surface chemistry and topography, all of which are needed to promote bone formation. CPS represent the media of choice for delivery of osteogenic factors and anti-infectives. Non-osteoblast mediated mineral deposition can confound in vitro osteogenesis testing of CPS and therefore the expression of a variety of proteins or genes including collagen type I, bone sialoprotein and osteocalcin should be confirmed in addition to increased mineral content. CONCLUSIONS CPS are a superior scaffold material for bone regeneration because they actively promote osteogenesis. Biodegradability of CPS via calcium and phosphate release represents a unique asset. Structural control of CPS at the macro, micro and nanoscale and their combination with cells and polymeric materials is likely to lead to significant developments in bone tissue engineering.
Collapse
Affiliation(s)
- Isabelle Denry
- Department of Prosthodontics, University of Iowa College of Dentistry, 801 Newton Road, Iowa City, IA 52242-1010, USA.
| | - Liisa T Kuhn
- Department of Reconstructive Sciences, UConn Health, 263 Farmington Avenue, MC 1615, Farmington, CT 06030-1615, USA
| |
Collapse
|
10
|
Sodium-dependent phosphate transporters in osteoclast differentiation and function. PLoS One 2015; 10:e0125104. [PMID: 25910236 PMCID: PMC4409223 DOI: 10.1371/journal.pone.0125104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/20/2015] [Indexed: 11/19/2022] Open
Abstract
Osteoclasts are multinucleated bone degrading cells. Phosphate is an important constituent of mineralized bone and released in significant quantities during bone resorption. Molecular contributors to phosphate transport during the resorptive activity of osteoclasts have been controversially discussed. This study aimed at deciphering the role of sodium-dependent phosphate transporters during osteoclast differentiation and bone resorption. Our studies reveal RANKL-induced differential expression of sodium-dependent phosphate transport protein IIa (NaPi-IIa) transcript and protein during osteoclast development, but no expression of the closely related NaPi-IIb and NaPi-IIc SLC34 family isoforms. In vitro studies employing NaPi-IIa-deficient osteoclast precursors and mature osteoclasts reveal that NaPi-IIa is dispensable for bone resorption and osteoclast differentiation. These results are supported by the analysis of structural bone parameters by high-resolution microcomputed tomography that yielded no differences between adult NaPi-IIa WT and KO mice. By contrast, both type III sodium-dependent phosphate transporters Pit-1 and Pit-2 were abundantly expressed throughout osteoclast differentiation, indicating that they are the relevant sodium-dependent phosphate transporters in osteoclasts and osteoclast precursors. We conclude that phosphate transporters of the SLC34 family have no role in osteoclast differentiation and function and propose that Pit-dependent phosphate transport could be pivotal for bone resorption and should be addressed in further studies.
Collapse
|