1
|
Chlebek C, McNeill TJ, Huang M, Raynor MS, van der Meulen MCH. Bioenergetic programs of cancellous and cortical bone are distinct and differ with age and mechanical loading. Sci Rep 2025; 15:19134. [PMID: 40450018 DOI: 10.1038/s41598-025-02141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 05/12/2025] [Indexed: 06/03/2025] Open
Abstract
Mechanical loading induces bone formation in young rodents, but mechanoresponsiveness is reduced with age. Glycolytic activity and mitochondrial dysfunction increase with age and may change bone mechanotransduction. To evaluate load-induced changes to bioenergetic activity in young and adult animals, we loaded the tibia of 10-wk and 26-wk female C57BL/6J mice and examined transcriptomic responses at the mid-diaphysis, and metaphyseal cortical shell and cancellous core. Across all biological processes, oxidative phosphorylation and mitochondrial pathways were most often enriched with loading and had contrasting enrichment in young and adult animals. Following loading, young animals had temporally-coordinated differential expression of mitochondrial-associated genes, with greatest expression at the mid-diaphysis. In adults, bioenergetic gene expression was lower compared to young animals. To assess individual contributions of glycolysis and pyruvate-mediated oxidative phosphorylation to load-induced bone formation in vivo, we inhibited each pathway therapeutically and loaded the tibia of young and adult female mice for 2 weeks. In both young and adult mice, loading increased cortical bone mass, but inhibition of oxidative phosphorylation reduced cortical area and moment of inertia in both loaded and control limbs. Conversely, load-induced improvements of adult cancellous bone depended on glycolysis. In summary, mechanical loading transcriptionally activated mitochondrial pathways in an age-specific manner and bioenergetic inhibition revealed unique metabolic programs for cortical and cancellous bone.
Collapse
Affiliation(s)
- Carolyn Chlebek
- Meinig School of Biomedical Engineering, Cornell University, 121 Weill Hall, Ithaca, NY, 14853, USA
| | - Tyler J McNeill
- Meinig School of Biomedical Engineering, Cornell University, 121 Weill Hall, Ithaca, NY, 14853, USA
| | - Muyin Huang
- Meinig School of Biomedical Engineering, Cornell University, 121 Weill Hall, Ithaca, NY, 14853, USA
| | - Maia S Raynor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, 121 Weill Hall, Ithaca, NY, 14853, USA.
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.
- Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
2
|
Meslier QA, Hoffmann J, Oehrlein R, Kurczy D, Monaghan JR, Shefelbine SJ. 3D spatial distribution of Sost mRNA and sclerostin protein expression in response to in vivo tibia loading in female mice. Bone 2025; 193:117422. [PMID: 39978613 DOI: 10.1016/j.bone.2025.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/13/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Bones adapt to external mechanical loads through a process known as mechanoadaptation. Osteocytes are the bone cells that sense the mechanical environment and initiate a biological response. Investigating the changes in osteocyte molecular expression following mechanical loading has been instrumental in characterizing the regulatory pathways involved in bone adaptation. However, current methods for examining osteocyte molecular expression do not preserve the three-dimensional structure of the bone, which plays a critical role in the mechanical stimuli sensed by the osteocytes and their spatially controlled biological responses. In this study, we used WISH-BONE (Whole-mount In Situ Histology of Bone) to investigate the spatial distribution of Sost-mRNA transcripts and its encoded protein, sclerostin, in 3D mouse tibia midshaft following in vivo tibia loading. Our findings showed a decrease in the percentage of Sost-positive osteocytes, after loading, along the posterior-lateral side of the tibia. The number of sclerostin-positive osteocytes were found to significantly decrease at a very specific 2D location of the tibia after loading. However, in 3D, the total number of sclerostin-positive osteocytes was similar between loaded and control legs. This work is the first to provide a 3D analysis of Sost and sclerostin distribution in loaded versus contralateral mouse tibia midshafts. It also highlights the importance of the bone region analyzed and the method utilized when interpreting mechanoadaptation results. WISH-BONE represents a powerful tool for further characterization of mechanosensitive genes regulation in bone and holds the potential for advancing the development of new treatments targeting mechanosensitivity-related bone disorders.
Collapse
Affiliation(s)
- Quentin A Meslier
- Department of Bioengineering, Northeastern University, Boston, MA, United States; LifeCanvas Technologies, Cambridge, MA, United States.
| | - Jacy Hoffmann
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Robert Oehrlein
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Daniel Kurczy
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - James R Monaghan
- Department of Bioengineering, Northeastern University, Boston, MA, United States; Department of Biology, Northeastern University, Boston, MA, United States; Institute for Chemical Imaging of Living Systems, Northeastern University, Boston, MA, United States
| | - Sandra J Shefelbine
- Department of Bioengineering, Northeastern University, Boston, MA, United States; Institute for Chemical Imaging of Living Systems, Northeastern University, Boston, MA, United States
| |
Collapse
|
3
|
Mathavan N, Singh A, Marques FC, Günther D, Kuhn GA, Wehrle E, Müller R. Spatial transcriptomics in bone mechanomics: Exploring the mechanoregulation of fracture healing in the era of spatial omics. SCIENCE ADVANCES 2025; 11:eadp8496. [PMID: 39742473 DOI: 10.1126/sciadv.adp8496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
In recent decades, the field of bone mechanobiology has sought experimental techniques to unravel the molecular mechanisms governing the phenomenon of mechanically regulated fracture healing. Each cell within a fracture site resides within different local microenvironments characterized by different levels of mechanical strain; thus, preserving the spatial location of each cell is critical in relating cellular responses to mechanical stimuli. Our spatial transcriptomics-based "mechanomics" platform facilitates spatially resolved analysis of the molecular profiles of cells with respect to their local in vivo mechanical environment by integrating time-lapsed in vivo micro-computed tomography, spatial transcriptomics, and micro-finite element analysis. We investigate the transcriptomic responses of cells as a function of the local strain magnitude by identifying the differential expression of genes in regions of high and low strain within a fracture site. Our platform thus has the potential to address fundamental open questions within the field and to discover mechano-responsive targets to enhance fracture healing.
Collapse
Affiliation(s)
| | - Amit Singh
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | - Denise Günther
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Gisela A Kuhn
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- AO Research Institute Davos, Davos Platz, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
Chermside-Scabbo CJ, Shuster JT, Erdmann-Gilmore P, Tycksen E, Zhang Q, Townsend RR, Silva MJ. A proteomics approach to study mouse long bones: examining baseline differences and mechanical loading-induced bone formation in young-adult and old mice. Aging (Albany NY) 2024; 16:12726-12768. [PMID: 39400554 PMCID: PMC11501390 DOI: 10.18632/aging.206131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
With aging, bone mass declines and the anabolic effects of skeletal loading diminish. While much research has focused on gene transcription, how bone ages and loses its mechanoresponsiveness at the protein level remains unclear. We developed a novel proteomics approach and performed a paired mass spectrometry and RNA-seq analysis on tibias from young-adult (5-month) and old (22-month) mice. We report the first correlation estimate between the bone proteome and transcriptome (Spearman ρ = 0.40), which is in line with other tissues but indicates that a relatively low amount of variation in protein levels is explained by the variation in transcript levels. Of 71 shared targets that differed with age, eight were associated with bone mineral density in previous GWAS, including understudied targets Asrgl1 and Timp2. We used complementary RNA in situ hybridization to confirm that Asrgl1 and Timp2 had reduced expression in osteoblasts/osteocytes in old bones. We also found evidence for reduced TGF-beta signaling with aging, in particular Tgfb2. Next, we defined proteomic changes following mechanical loading. At the protein level, bone differed more with age than with loading, and aged bone had fewer loading-induced changes. Overall, our findings underscore the need for complementary protein-level assays in skeletal biology research.
Collapse
Affiliation(s)
- Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John T. Shuster
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Petra Erdmann-Gilmore
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric Tycksen
- Department of Genetics, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Qiang Zhang
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - R. Reid Townsend
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| |
Collapse
|
5
|
Li X, Zhang C, Vail CE, Sherrill JT, Xiong J. Piezo1 expression in mature osteocytes is dispensable for the skeletal response to mechanical loading. Bone 2024; 190:117276. [PMID: 39389439 DOI: 10.1016/j.bone.2024.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Mechanical loading is essential for bone growth and homeostasis, with osteocytes considered the primary mechanosensors. Deleting the mechanosensitive ion channel Piezo1 from Dmp1-Cre-targeted cells, which include both osteoblasts and osteocytes, resulted in reduced bone mass and impaired skeletal responses to mechanical stimuli. To specifically isolate Piezo1's role in osteocytes, we used Sost-Cre mice to generate mice with Piezo1 deletion exclusively in mature osteocytes. These mice exhibited lower bone mineral density, decreased cancellous bone mass, and reduced cortical thickness with decrease periosteal expansion. However, unlike mice lacking Piezo1 in both osteoblasts and osteocytes, those with Piezo1 deletion in mature osteocytes responded normally to mechanical loading. These findings suggest that Piezo1 expression in mature osteocytes contributes to bone maintenance under normal physiological condition, but is dispensable for the skeletal response to mechanical loading.
Collapse
Affiliation(s)
- Xuehua Li
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Connie Zhang
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cameron E Vail
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John T Sherrill
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jinhu Xiong
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
6
|
Barak MM. Cortical and Trabecular Bone Modeling and Implications for Bone Functional Adaptation in the Mammalian Tibia. Bioengineering (Basel) 2024; 11:514. [PMID: 38790379 PMCID: PMC11118124 DOI: 10.3390/bioengineering11050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Bone modeling involves the addition of bone material through osteoblast-mediated deposition or the removal of bone material via osteoclast-mediated resorption in response to perceived changes in loads by osteocytes. This process is characterized by the independent occurrence of deposition and resorption, which can take place simultaneously at different locations within the bone due to variations in stress levels across its different regions. The principle of bone functional adaptation states that cortical and trabecular bone tissues will respond to mechanical stimuli by adjusting (i.e., bone modeling) their morphology and architecture to mechanically improve their mechanical function in line with the habitual in vivo loading direction. This principle is relevant to various research areas, such as the development of improved orthopedic implants, preventative medicine for osteopenic elderly patients, and the investigation of locomotion behavior in extinct species. In the present review, the mammalian tibia is used as an example to explore cortical and trabecular bone modeling and to examine its implications for the functional adaptation of bones. Following a short introduction and an exposition on characteristics of mechanical stimuli that influence bone modeling, a detailed critical appraisal of the literature on cortical and trabecular bone modeling and bone functional adaptation is given. By synthesizing key findings from studies involving small mammals (rodents), large mammals, and humans, it is shown that examining both cortical and trabecular bone structures is essential for understanding bone functional adaptation. A combined approach can provide a more comprehensive understanding of this significant physiological phenomenon, as each structure contributes uniquely to the phenomenon.
Collapse
Affiliation(s)
- Meir M Barak
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| |
Collapse
|
7
|
Antoinette AY, Ziemian SN, Brown AR, Hudson EB, Chlebek C, Wright TM, Goldring SR, Goldring MB, Otero M, van der Meulen MC. PTH treatment before cyclic joint loading improves cartilage health and attenuates load-induced osteoarthritis development in mice. SCIENCE ADVANCES 2024; 10:eadk8402. [PMID: 38640238 PMCID: PMC11029811 DOI: 10.1126/sciadv.adk8402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
Osteoarthritis (OA) treatment is limited by the lack of effective nonsurgical interventions to slow disease progression. Here, we examined the contributions of the subchondral bone properties to OA development. We used parathyroid hormone (PTH) to modulate bone mass before OA initiation and alendronate (ALN) to inhibit bone remodeling during OA progression. We examined the spatiotemporal progression of joint damage by combining histopathological and transcriptomic analyses across joint tissues. The additive effect of PTH pretreatment before OA initiation and ALN treatment during OA progression most effectively attenuated load-induced OA pathology. Individually, PTH directly improved cartilage health and slowed the development of cartilage damage, whereas ALN primarily attenuated subchondral bone changes associated with OA progression. Joint damage reflected early transcriptomic changes. With both treatments, the structural changes were associated with early modulation of immunoregulation and immunoresponse pathways that may contribute to disease mechanisms. Overall, our results demonstrate the potential of subchondral bone-modifying therapies to slow the progression of OA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Miguel Otero
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
8
|
Machireddy M, Oberman AG, DeBiase L, Stephens M, Li J, Littlepage LE, Niebur GL. Controlled mechanical loading affects the osteocyte transcriptome in porcine trabecular bone in situ. Bone 2024; 181:117028. [PMID: 38309412 PMCID: PMC10923013 DOI: 10.1016/j.bone.2024.117028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Osteocytes modulate bone adaptation in response to mechanical stimuli imparted by the deforming bone tissue in which they are encased by communicating with osteoclasts and osteoblasts as well as other osteocytes in the lacuna-canalicular network through secreted cytokines and chemokines. Understanding the transcriptional response of osteocytes to mechanical stimulation in situ could identify new targets to inhibit bone loss or enhance bone formation in the presence of diseases like osteoporosis or metastatic cancer. We compared the mechanically regulated transcriptional response of osteocytes in trabecular bone following one or three days of controlled mechanical loading. METHODS Porcine trabecular bone explants were cultured in a bioreactor for 48 h and subsequently loaded twice a day for one day or 3 days. RNA was isolated and sequenced, and the Tuxedo suite was used to identify differentially expressed genes and pathway analysis was conducted using Ingenuity Pathway Analysis (IPA). RESULTS There were about 4000 differentially expressed genes following in situ culture relative to fresh bone. One hundred six genes were differentially expressed between the loaded and non-loaded groups following one day of loading compared to 913 genes after 3 d of loading. Only 45 of these were coincident between the two time points, indicating an evolving transcriptome. Clustering and principal component analysis indicated differences between the loaded and non-loaded groups after 3 d of loading. DISCUSSION With sustained loading, there was a nine-fold increase in the number of differentially expressed genes, suggesting that osteocytes respond to loading through sequential activation of downstream genes in the same pathways. The differentially expressed genes were related to osteoarthritis, osteocyte, and chondrocyte signaling pathways. We noted that NFkB and TNF signaling are affected by early loading and this may drive downstream effects on the mechanobiological response. Moreover, these genes may regulate catabolic effects of mechanical disuse through their actions on pre-osteoclasts in the bone marrow niche.
Collapse
Affiliation(s)
- Meghana Machireddy
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Alyssa G Oberman
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Lucas DeBiase
- Dept. of Aerospace and Mechanical Engineering, University of Notre Dame, IN 46556, USA
| | - Melissa Stephens
- Genomics and Bioinformatics Core Facility, University of Notre Dame, IN 46556, USA
| | - Jun Li
- Dept. of Applied Mathematics, Computations, and Statistics, University of Notre Dame, IN 46556, USA
| | - Laurie E Littlepage
- Dept. of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA
| | - Glen L Niebur
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA; Dept. of Aerospace and Mechanical Engineering, University of Notre Dame, IN 46556, USA.
| |
Collapse
|
9
|
Yue Q, Chen Y, Chen H, Zhou R. Transcriptome profile reveals novel candidate genes associated with bone strength in end-of-lay hens. Anim Biotechnol 2023; 34:3099-3107. [PMID: 36309812 DOI: 10.1080/10495398.2022.2134884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Bone weakness causes many problems such as osteoporosis, bone fractures, and economic loss, especially at the late stage of lay, in laying hen production. However, the genetic factors and molecular mechanism affecting the bone strength is still largely unknown. To elucidate the molecular mechanism and genetic factors affecting bone strength, a total of six cDNA libraries were constructed and used to compare genetic differences between tibia with higher(Group HBS)and lower(Group LBS)breaking strength in Hyline grey layers. A comparison between Groups HBS and LBS revealed nine differentially expressed genes, of which five were upregulated and four were downregulated in the LBS relative to the HBS in tibia. Our results showed novel candidate genes concerned with bone strength in the late laying period. These include transcription factor paired box protein Pax-5 (Pax5), tissue inhibitor of Metallopoteinase-4 (TIMP4), Kelch-like protein 14 (KLHL14), predicted MAGUK p55 subfamily member 7 isoform X4 (MPP7) and Osteoclast-associated Ig-like receptor (OSCAR). Our data provide a vital resource for discovering important candidate genes associated with bone strength and will help further study the molecular mechanisms for bone remodeling.
Collapse
Affiliation(s)
- Qiaoxian Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Ye Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Rongyan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Tetrault E, Swenson J, Aaronson B, Marcho C, Albertson RC. The transcriptional state and chromatin landscape of cichlid jaw shape variation across species and environments. Mol Ecol 2023; 32:3922-3941. [PMID: 37160741 PMCID: PMC10524807 DOI: 10.1111/mec.16975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Adaptive phenotypes are shaped by a combination of genetic and environmental forces, but how they interact remains poorly understood. Here, we utilize the cichlid oral jaw apparatus to better understand these gene-by-environment effects. First, we employed RNA-seq in bony and ligamentous tissues important for jaw opening to identify differentially expressed genes between species and across foraging environments. We used two Lake Malawi species adapted to different foraging habitats along the pelagic-benthic ecomorphological axis. Our foraging treatments were designed to force animals to employ either suction or biting/scraping, which broadly mimic pelagic or benthic modes of feeding. We found a large number of differentially expressed genes between species, and while we identified relatively few differences between environments, species differences were far more pronounced when they were challenged with a pelagic versus benthic foraging mode. Expression data carried the signature of genetic assimilation, and implicated cell cycle regulation in shaping the jaw across species and environments. Next, we repeated the foraging experiment and performed ATAC-seq procedures on nuclei harvested from the same tissues. Cross-referencing results from both analyses revealed subsets of genes that were both differentially expressed and differentially accessible. This reduced dataset implicated notable candidate genes including the Hedgehog effector, KIAA0586 and the ETS transcription factor, etv4, which connects environmental stress and craniofacial morphogenesis. Taken together, these data provide novel insights into the epigenetic, genetic and cellular bases of species- and environment-specific bone shapes.
Collapse
Affiliation(s)
- Emily Tetrault
- Graduate Program in Molecular and Cell Biology, University of Massachusetts, Amherst MA, 01003, U.S.A
| | - John Swenson
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst MA, 01003, U.S.A
| | - Ben Aaronson
- Biology Department, University of Massachusetts, Amherst MA, 01003, U.S.A
| | - Chelsea Marcho
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst MA, 01003, U.S.A
| | - R. Craig Albertson
- Biology Department, University of Massachusetts, Amherst MA, 01003, U.S.A
| |
Collapse
|
11
|
Guerrero J, Maevskaia E, Ghayor C, Bhattacharya I, Weber FE. Influence of Scaffold Microarchitecture on Angiogenesis and Regulation of Cell Differentiation during the Early Phase of Bone Healing: A Transcriptomics and Histological Analysis. Int J Mol Sci 2023; 24:ijms24066000. [PMID: 36983073 PMCID: PMC10056849 DOI: 10.3390/ijms24066000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The early phase of bone healing is a complex and poorly understood process. With additive manufacturing, we can generate a specific and customizable library of bone substitutes to explore this phase. In this study, we produced tricalcium phosphate-based scaffolds with microarchitectures composed of filaments of 0.50 mm in diameter, named Fil050G, and 1.25 mm named Fil125G, respectively. The implants were removed after only 10 days in vivo followed by RNA sequencing (RNAseq) and histological analysis. RNAseq results revealed upregulation of adaptive immune response, regulation of cell adhesion, and cell migration-related genes in both of our two constructs. However, significant overexpression of genes linked to angiogenesis, regulation of cell differentiation, ossification, and bone development was observed solely in Fil050G scaffolds. Moreover, quantitative immunohistochemistry of structures positive for laminin revealed a significantly higher number of blood vessels in Fil050G samples. Furthermore, µCT detected a higher amount of mineralized tissue in Fil050G samples suggesting a superior osteoconductive potential. Hence, different filament diameters and distances in bone substitutes significantly influence angiogenesis and regulation of cell differentiation involved in the early phase of bone regeneration, which precedes osteoconductivity and bony bridging seen in later phases and as consequence, impacts the overall clinical outcome.
Collapse
Affiliation(s)
- Julien Guerrero
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Ekaterina Maevskaia
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Chafik Ghayor
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Indranil Bhattacharya
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Franz E Weber
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
12
|
Chlebek C, Rosen CJ. The Role of Bone Cell Energetics in Altering Bone Quality and Strength in Health and Disease. Curr Osteoporos Rep 2023; 21:1-10. [PMID: 36435911 DOI: 10.1007/s11914-022-00763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Bone quality and strength are diminished with age and disease but can be improved by clinical intervention. Energetic pathways are essential for cellular function and drive osteogenic signaling within bone cells. Altered bone quality is associated with changes in the energetic activity of bone cells following diet-based or therapeutic interventions. Energetic pathways may directly or indirectly contribute to changes in bone quality. The goal of this review is to highlight tissue-level and bioenergetic changes in bone health and disease. RECENT FINDINGS Bone cell energetics are an expanding field of research. Early literature primarily focused on defining energetic activation throughout the lifespan of bone cells. Recent studies have begun to connect bone energetic activity to health and disease. In this review, we highlight bone cell energetic demands, the effect of substrate availability on bone quality, altered bioenergetics associated with disease treatment and development, and additional biological factors influencing bone cell energetics. Bone cells use several energetic pathways during differentiation and maturity. The orchestration of bioenergetic pathways is critical for healthy cell function. Systemic changes in substrate availability alter bone quality, potentially due to the direct effects of altered bone cell bioenergetic activity. Bone cell bioenergetics may also contribute directly to the development and treatment of skeletal diseases. Understanding the role of energetic pathways in the cellular response to disease will improve patient treatment.
Collapse
Affiliation(s)
- Carolyn Chlebek
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA.
| |
Collapse
|
13
|
Xu X, Yang H, Bullock WA, Gallant MA, Ohlsson C, Bellido TM, Main RP. Osteocyte Estrogen Receptor β (Ot-ERβ) Regulates Bone Turnover and Skeletal Adaptive Response to Mechanical Loading Differently in Male and Female Growing and Adult Mice. J Bone Miner Res 2023; 38:186-197. [PMID: 36321245 PMCID: PMC10108310 DOI: 10.1002/jbmr.4731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/15/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Age-related bone loss is a failure of balanced bone turnover and diminished skeletal mechanoadaptation. Estrogen receptors, ERα and ERβ, play critical roles in osteoprotective regulation activated by estrogen and mechanical signals. Previous studies mainly focused on ERα and showed that osteocyte-ERα (Ot-ERα) regulated trabecular, but not cortical bone, and played a minor role in load-induced cortical adaptation. However, the role of Ot-ERβ in bone mass regulation remains unrevealed. To address this issue, we characterized bone (re)modeling and gene expression in male and female mice with Ot-ERβ deletion (ERβ-dOT) and littermate control (LC) at 10 weeks (young) or 28 weeks (adult) of age, as well as their responses to in vivo tibial compressive loading. Increased cancellous bone mass appeared in the L4 vertebral body of young male ERβ-dOT mice. At the same time, femoral cortical bone gene expression showed signs consistent with elevated osteoblast and osteoclast activities (type-I collagen, Cat K, RANKL). Upregulated androgen receptor (AR) expression was observed in young male ERβ-dOT mice relative to LC, suggesting a compensatory effect of testosterone on male bone protection. In contrast, bone mass in L4 decreased in adult male ERβ-dOT mice, attributed to potentially increased bone resorption activity (Cat K) with no change in bone formation. There was no effect of ERβ-dOT on bone mass or gene expression in female mice. Sex-dependent regulation of Ot-ERβ also appeared in load-induced cortical responsiveness. Young female ERβ-dOT mice showed an enhanced tibial cortical anabolic adaptation compared with LC. In contrast, an attenuated cortical anabolic response presented at the proximal tibia in male ERβ-dOT mice at both ages. For the first time, our findings suggest that Ot-ERβ regulates bone (re)modeling and the response to mechanical signals through different mechanisms in males and females. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xiaoyu Xu
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteINUSA
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| | | | - Maxim A. Gallant
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical NutritionInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Drug TreatmentSahlgrenska University HospitalGothenburgSweden
| | - Teresita M. Bellido
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Russell P. Main
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteINUSA
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
14
|
Kalyanaraman H, China SP, Cabriales JA, Moininazeri J, Casteel DE, Garcia JJ, Wong VW, Chen A, Sah RL, Boss GR, Pilz RB. Protein Kinase G2 Is Essential for Skeletal Homeostasis and Adaptation to Mechanical Loading in Male but Not Female Mice. J Bone Miner Res 2023; 38:171-185. [PMID: 36371651 PMCID: PMC9825661 DOI: 10.1002/jbmr.4746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
Abstract
We previously showed that the NO/cGMP/protein kinase G (PKG) signaling pathway positively regulates osteoblast proliferation, differentiation, and survival in vitro, and that cGMP-elevating agents have bone-anabolic effects in mice. Here, we generated mice with an osteoblast-specific (OB) knockout (KO) of type 2 PKG (gene name Prkg2) using a Col1a1(2.3 kb)-Cre driver. Compared to wild type (WT) littermates, 8-week-old male OB Prkg2-KO mice had fewer osteoblasts, reduced bone formation rates, and lower trabecular and cortical bone volumes. Female OB Prkg2-KO littermates showed no bone abnormalities, despite the same degree of PKG2 deficiency in bone. Expression of osteoblast differentiation- and Wnt/β-catenin-related genes was lower in primary osteoblasts and bones of male KO but not female KO mice compared to WT littermates. Osteoclast parameters were unaffected in both sexes. Since PKG2 is part of a mechano-sensitive complex in osteoblast membranes, we examined its role during mechanical loading. Cyclical compression of the tibia increased cortical thickness and induced mechanosensitive and Wnt/β-catenin-related genes to a similar extent in male and female WT mice and female OB Prkg2-KO mice, but loading had a minimal effect in male KO mice. We conclude that PKG2 drives bone acquisition and adaptation to mechanical loading via the Wnt/β-catenin pathway in male mice. The striking sexual dimorphism of OB Prkg2-KO mice suggests that current U.S. Food and Drug Administration-approved cGMP-elevating agents may represent novel effective treatment options for male osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- These two authors contributed equally to the work
| | - Shyamsundar Pal China
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- These two authors contributed equally to the work
| | - Justin A. Cabriales
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jafar Moininazeri
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Darren E. Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Julian J. Garcia
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Van W. Wong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Albert Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gerry R. Boss
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Renate B. Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Ghuloum FI, Johnson CA, Riobo-Del Galdo NA, Amer MH. From mesenchymal niches to engineered in vitro model systems: Exploring and exploiting biomechanical regulation of vertebrate hedgehog signalling. Mater Today Bio 2022; 17:100502. [PMID: 36457847 PMCID: PMC9707069 DOI: 10.1016/j.mtbio.2022.100502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Tissue patterning is the result of complex interactions between transcriptional programs and various mechanical cues that modulate cell behaviour and drive morphogenesis. Vertebrate Hedgehog signalling plays key roles in embryogenesis and adult tissue homeostasis, and is central to skeletal development and the osteogenic differentiation of mesenchymal stem cells. The expression of several components of the Hedgehog signalling pathway have been reported to be mechanically regulated in mesodermal tissue patterning and osteogenic differentiation in response to external stimulation. Since a number of bone developmental defects and skeletal diseases, such as osteoporosis, are directly linked to aberrant Hedgehog signalling, a better knowledge of the regulation of Hedgehog signalling in the mechanosensitive bone marrow-residing mesenchymal stromal cells will present novel avenues for modelling these diseases and uncover novel opportunities for extracellular matrix-targeted therapies. In this review, we present a brief overview of the key molecular players involved in Hedgehog signalling and the basic concepts of mechanobiology, with a focus on bone development and regeneration. We also highlight the correlation between the activation of the Hedgehog signalling pathway in response to mechanical cues and osteogenesis in bone marrow-derived mesenchymal stromal cells. Finally, we propose different tissue engineering strategies to apply the expanding knowledge of 3D material-cell interactions in the modulation of Hedgehog signalling in vitro for fundamental and translational research applications.
Collapse
Affiliation(s)
- Fatmah I. Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Colin A. Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
16
|
Chlebek C, Moore JA, Ross FP, van der Meulen MCH. Molecular Identification of Spatially Distinct Anabolic Responses to Mechanical Loading in Murine Cortical Bone. J Bone Miner Res 2022; 37:2277-2287. [PMID: 36054133 DOI: 10.1002/jbmr.4686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/05/2022] [Accepted: 08/20/2022] [Indexed: 11/08/2022]
Abstract
Osteoporosis affects over 200 million women worldwide, one-third of whom are predicted to suffer from an osteoporotic fracture in their lifetime. The most promising anabolic drugs involve administration of expensive antibodies. Because mechanical loading stimulates bone formation, our current data, using a mouse model, replicates the anabolic effects of loading in humans and may identify novel pathways amenable to oral treatment. Murine tibial compression produces axially varying deformations along the cortical bone, inducing highest strains at the mid-diaphysis and lowest at the metaphyseal shell. To test the hypothesis that load-induced transcriptomic responses at different axial locations of cortical bone would vary as a function of strain magnitude, we loaded the left tibias of 10-week-old female C57Bl/6 mice in vivo in compression, with contralateral limbs as controls. Animals were euthanized at 1, 3, or 24 hours post-loading or loaded for 1 week (n = 4-5/group). Bone marrow and cancellous bone were removed, cortical bone was segmented into the metaphyseal shell, proximal diaphysis, and mid-diaphysis, and load-induced differential gene expression and enriched biological processes were examined for the three segments. At each time point, the mid-diaphysis (highest strain) had the greatest transcriptomic response. Similarly, biological processes regulating bone formation and turnover increased earlier and to the greatest extent at the mid-diaphysis. Higher strain induced greater levels of osteoblast and osteocyte genes, whereas expression was lower in osteoclasts. Among the top differentially expressed genes at 24-hours post-loading, 17 had known functions in bone biology, of which 12 were present only in osteoblasts, 3 exclusively in osteoclasts, and 2 were present in both cell types. Based on these results, we conclude that murine tibial loading induces spatially unique transcriptomic responses correlating with strain magnitude in cortical bone. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Carolyn Chlebek
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jacob A Moore
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | | | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
17
|
Lawson LY, Migotsky N, Chermside-Scabbo CJ, Shuster JT, Joeng KS, Civitelli R, Lee B, Silva MJ. Loading-induced bone formation is mediated by Wnt1 induction in osteoblast-lineage cells. FASEB J 2022; 36:e22502. [PMID: 35969160 PMCID: PMC9430819 DOI: 10.1096/fj.202200591r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Mechanical loading on the skeleton stimulates bone formation. Although the exact mechanism underlying this process remains unknown, a growing body of evidence indicates that the Wnt signaling pathway is necessary for the skeletal response to loading. Recently, we showed that Wnts produced by osteoblast lineage cells mediate the osteo-anabolic response to tibial loading in adult mice. Here, we report that Wnt1 specifically plays a crucial role in mediating the mechano-adaptive response to loading. Independent of loading, short-term loss of Wnt1 in the Osx-lineage resulted in a decreased cortical bone area in the tibias of 5-month-old mice. In females, strain-matched loading enhanced periosteal bone formation in Wnt1F/F controls, but not in Wnt1F/F; OsxCreERT2 knockouts. In males, strain-matched loading increased periosteal bone formation in both control and knockout mice; however, the periosteal relative bone formation rate was 65% lower in Wnt1 knockouts versus controls. Together, these findings show that Wnt1 supports adult bone homeostasis and mediates the bone anabolic response to mechanical loading.
Collapse
Affiliation(s)
- Lisa Y. Lawson
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Nicole Migotsky
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - John T. Shuster
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Kyu Sang Joeng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Roberto Civitelli
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, MO, United States
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Waco, TX, United States
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| |
Collapse
|
18
|
Fretwurst T, Tritschler I, Rothweiler R, Nahles S, Altmann B, Schilling O, Nelson K. Proteomic profiling of human bone from different anatomical sites - A pilot study. Proteomics Clin Appl 2022; 16:e2100049. [PMID: 35462455 DOI: 10.1002/prca.202100049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE The study aim is a comparative proteome-based analysis of different autologous bone entities (alveolar bone [AB], iliac cortical [IC] bone, and iliac spongiosa [IS]) used for alveolar onlay grafting. EXPERIMENTAL DESIGN Site-matched bone samples of AB, IC, and IS were harvested during alveolar onlay grafting. Proteins were extracted using a detergent-based (sodium dodecyl sulfate) strategy and trypsinized. Proteome analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). MaxQuant was used for peptide-to-spectrum matching, peak detection, and quantitation. Linear models for microarray analysis (LIMMA) were used to detect differentially abundant peptides and proteins. RESULTS A total of 1730 different proteins were identified across the 15 samples at a false discovery rate of 1%. Partial least-squares discriminant analysis approved segregation of AB, IC, and IS protein profiles. LIMMA statistics highlighted 66 proteins that were more abundant in AB then in IC (vs. 92 proteins were enriched in IC over AB). Gene Ontology enrichment analysis revealed a matrisomal versus an immune-related proteome fingerprint in AB versus IC. CONCLUSION AND CLINICAL RELEVANCE This pilot study demonstrates an ECM protein-related proteome fingerprint in AB and an immune-related proteome fingerprint in IS and IC.
Collapse
Affiliation(s)
- Tobias Fretwurst
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | | | - René Rothweiler
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Nahles
- Department of Oral and Maxillofacial Surgery, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Brigitte Altmann
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,G.E.R.N Center for Tissue Replacement, Regeneration & Neogenesis, Department of Prosthetic Dentistry, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Katja Nelson
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
20
|
Lawson LY, Brodt MD, Migotsky N, Chermside-Scabbo CJ, Palaniappan R, Silva MJ. Osteoblast-Specific Wnt Secretion Is Required for Skeletal Homeostasis and Loading-Induced Bone Formation in Adult Mice. J Bone Miner Res 2022; 37:108-120. [PMID: 34542191 PMCID: PMC8770559 DOI: 10.1002/jbmr.4445] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/10/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023]
Abstract
Wnt signaling is critical to many aspects of skeletal regulation, but the importance of Wnt ligands in the bone anabolic response to mechanical loading is not well established. Recent transcriptome profiling studies by our laboratory and others show that mechanical loading potently induces genes encoding Wnt ligands, including Wnt1 and Wnt7b. Based on these findings, we hypothesized that mechanical loading stimulates adult bone formation by inducing Wnt ligand expression. To test this hypothesis, we inhibited Wnt ligand secretion in adult (5 months old) mice using a systemic (drug) and a bone-targeted (conditional gene knockout) approach, and subjected them to axial tibial loading to induce lamellar bone formation. Mice treated with the Wnt secretion inhibitor WNT974 exhibited a decrease in bone formation in non-loaded bones as well as a 54% decline in the periosteal bone formation response to tibial loading. Next, osteoblast-specific Wnt secretion was inhibited by dosing 5-month-old Osx-CreERT2; WlsF/F mice with tamoxifen. Within 1 to 2 weeks of Wls deletion, skeletal homeostasis was altered with decreased bone formation and increased resorption, and the anabolic response to loading was reduced 65% compared to control (WlsF/F ). Together, these findings show that Wnt ligand secretion is required for adult bone homeostasis, and furthermore establish a role for osteoblast-derived Wnts in mediating the bone anabolic response to tibial loading. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lisa Y. Lawson
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Michael D. Brodt
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Nicole Migotsky
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Ramya Palaniappan
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Matthew J. Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| |
Collapse
|
21
|
Bouchard AL, Dsouza C, Julien C, Rummler M, Gaumond MH, Cermakian N, Willie BM. Bone adaptation to mechanical loading in mice is affected by circadian rhythms. Bone 2022; 154:116218. [PMID: 34571201 DOI: 10.1016/j.bone.2021.116218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022]
Abstract
Physical forces are critical for successful function of many organs including bone. Interestingly, the timing of exercise during the day alters physiology and gene expression in many organs due to circadian rhythms. Circadian clocks in tissues, such as bone, express circadian clock genes that target tissue-specific genes, resulting in tissue-specific rhythmic gene expression (clock-controlled genes). We hypothesized that the adaptive response of bone to mechanical loading is regulated by circadian rhythms. First, mice were sham loaded and sacrificed 8 h later, which amounted to tissues being collected at zeitgeber time (ZT)2, 6, 10, 14, 18, and 22. Cortical bone of the tibiae collected from these mice displayed diurnal expression of core clock genes and key osteocyte and osteoblast-related genes, such as the Wnt-signaling inhibitors Sost and Dkk1, indicating these are clock-controlled genes. Serum bone turnover markers did not display rhythmicity. Second, mice underwent a single bout of in vivo loading at either ZT2 or ZT14 and were sacrificed 1, 8, or 24 h after loading. Loading at ZT2 resulted in Sost upregulation, while loading at ZT14 led to Sost and Dkk1 downregulation. Third, mice underwent daily in vivo tibial loading over 2 weeks administered either in the morning, (ZT2, resting phase) or evening (ZT14, active phase). In vivo microCT was performed at days 0, 5, 10, and 15 and conventional histomorphometry was performed at day 15. All outcome measures indicated a robust response to loading, but only microCT-based time-lapse morphometry showed that loading at ZT14 resulted in a greater endocortical bone formation response compared to mice loaded at ZT2. The decreased Sost and Dkk1 expression coincident with the modest, but significant time-of-day specific increase in adaptive bone formation, suggests that circadian clocks influence bone mechanoresponse.
Collapse
Affiliation(s)
- Alice L Bouchard
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Chrisanne Dsouza
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Catherine Julien
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Maximilian Rummler
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Marie-Hélène Gaumond
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Research Centre, Montreal, Canada; Department of Psychiatry, McGill University, Montreal, Canada
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada.
| |
Collapse
|
22
|
Osteocytic Pericellular Matrix (PCM): Accelerated Degradation under In Vivo Loading and Unloading Conditions Using a Novel Imaging Approach. Genes (Basel) 2021; 13:genes13010072. [PMID: 35052411 PMCID: PMC8775093 DOI: 10.3390/genes13010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 01/03/2023] Open
Abstract
The proteoglycan-containing pericellular matrix (PCM) controls both the biophysical and biochemical microenvironment of osteocytes, which are the most abundant cells embedded and dispersed in bones. As a molecular sieve, osteocytic PCMs not only regulate mass transport to and from osteocytes but also act as sensors of external mechanical environments. The turnover of osteocytic PCM remains largely unknown due to technical challenges. Here, we report a novel imaging technique based on metabolic labeling and “click-chemistry,” which labels de novo PCM as “halos” surrounding osteocytes in vitro and in vivo. We then tested the method and showed different labeling patterns in young vs. old bones. Further “pulse-chase” experiments revealed dramatic difference in the “half-life” of PCM of cultured osteocytes (~70 h) and that of osteocytes in vivo (~75 d). When mice were subjected to either 3-week hindlimb unloading or 7-week tibial loading (5.1 N, 4 Hz, 3 d/week), PCM half-life was shortened (~20 d) and degradation accelerated. Matrix metallopeptidase MMP-14 was elevated in mechanically loaded osteocytes, which may contribute to PCM degradation. This study provides a detailed procedure that enables semi-quantitative study of the osteocytic PCM remodeling in vivo and in vitro.
Collapse
|
23
|
Wee NK, Sims NA, Morello R. The Osteocyte Transcriptome: Discovering Messages Buried Within Bone. Curr Osteoporos Rep 2021; 19:604-615. [PMID: 34757588 PMCID: PMC8720072 DOI: 10.1007/s11914-021-00708-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE OF THE REVIEW Osteocytes are cells embedded within the bone matrix, but their function and specific patterns of gene expression remain only partially defined; this is beginning to change with recent studies using transcriptomics. This unbiased approach can generate large amounts of data and is now being used to identify novel genes and signalling pathways within osteocytes both at baseline conditions and in response to stimuli. This review outlines the methods used to isolate cell populations containing osteocytes, and key recent transcriptomic studies that used osteocyte-containing preparations from bone tissue. RECENT FINDINGS Three common methods are used to prepare samples to examine osteocyte gene expression: digestion followed by sorting, laser capture microscopy, and the isolation of cortical bone shafts. All these methods present challenges in interpreting the data generated. Genes previously not known to be expressed by osteocytes have been identified and variations in osteocyte gene expression have been reported with age, sex, anatomical location, mechanical loading, and defects in bone strength. A substantial proportion of newly identified transcripts in osteocytes remain functionally undefined but several have been cross-referenced with functional data. Future work and improved methods (e.g. scRNAseq) likely provide useful resources for the study of osteocytes and important new information on the identity and functions of this unique cell type within the skeleton.
Collapse
Affiliation(s)
- Natalie Ky Wee
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, Australia
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, 3065, Australia
| | - Roy Morello
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
24
|
Vollersen N, Zhao W, Rolvien T, Lange F, Schmidt FN, Sonntag S, Shmerling D, von Kroge S, Stockhausen KE, Sharaf A, Schweizer M, Karsak M, Busse B, Bockamp E, Semler O, Amling M, Oheim R, Schinke T, Yorgan TA. The WNT1 G177C mutation specifically affects skeletal integrity in a mouse model of osteogenesis imperfecta type XV. Bone Res 2021; 9:48. [PMID: 34759273 PMCID: PMC8580994 DOI: 10.1038/s41413-021-00170-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/28/2021] [Accepted: 06/27/2021] [Indexed: 12/27/2022] Open
Abstract
The recent identification of homozygous WNT1 mutations in individuals with osteogenesis imperfecta type XV (OI-XV) has suggested that WNT1 is a key ligand promoting the differentiation and function of bone-forming osteoblasts. Although such an influence was supported by subsequent studies, a mouse model of OI-XV remained to be established. Therefore, we introduced a previously identified disease-causing mutation (G177C) into the murine Wnt1 gene. Homozygous Wnt1G177C/G177C mice were viable and did not display defects in brain development, but the majority of 24-week-old Wnt1G177C/G177C mice had skeletal fractures. This increased bone fragility was not fully explained by reduced bone mass but also by impaired bone matrix quality. Importantly, the homozygous presence of the G177C mutation did not interfere with the osteoanabolic influence of either parathyroid hormone injection or activating mutation of LRP5, the latter mimicking the effect of sclerostin neutralization. Finally, transcriptomic analyses revealed that short-term administration of WNT1 to osteogenic cells induced not only the expression of canonical WNT signaling targets but also the expression of genes encoding extracellular matrix modifiers. Taken together, our data demonstrate that regulating bone matrix quality is a primary function of WNT1. They further suggest that individuals with WNT1 mutations should profit from existing osteoanabolic therapies.
Collapse
Affiliation(s)
- Nele Vollersen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Wenbo Zhao
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Fabiola Lange
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Felix Nikolai Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stephan Sonntag
- PolyGene AG, 8153, Rümlang, Switzerland.,ETH Phenomics Center (EPIC), ETH Zürich, 8092, Zürich, Switzerland
| | | | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kilian Elia Stockhausen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ahmed Sharaf
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center, Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ernesto Bockamp
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, D 55131, Mainz, Germany
| | - Oliver Semler
- Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne, 50937, Cologne, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
25
|
Spatz JM, Ko FC, Ayturk UM, Warman ML, Bouxsein ML. RNAseq and RNA molecular barcoding reveal differential gene expression in cortical bone following hindlimb unloading in female mice. PLoS One 2021; 16:e0250715. [PMID: 34637435 PMCID: PMC8509868 DOI: 10.1371/journal.pone.0250715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022] Open
Abstract
Disuse-induced bone loss is seen following spinal cord injury, prolonged bed rest, and exposure to microgravity. We performed whole transcriptomic profiling of cortical bone using RNA sequencing (RNAseq) and RNA molecular barcoding (NanoString) on a hindlimb unloading (HLU) mouse model to identify genes whose mRNA transcript abundances change in response to disuse. Eleven-week old female C57BL/6 mice were exposed to ambulatory loading or HLU for 7 days (n = 8/group). Total RNA from marrow-flushed femoral cortical bone was analyzed on HiSeq and NanoString platforms. The expression of several previously reported genes associated with Wnt signaling and metabolism was altered by HLU. Furthermore, the increased abundance of transcripts, such as Pfkfb3 and Mss51, after HLU imply these genes also have roles in the cortical bone’s response to altered mechanical loading. Our study demonstrates that an unbiased approach to assess the whole transcriptomic profile of cortical bone can reveal previously unidentified mechanosensitive genes and may eventually lead to novel targets to prevent disuse-induced osteoporosis.
Collapse
Affiliation(s)
- Jordan M Spatz
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America.,University of California San Francisco School of Medicine, San Francisco, California, United States of America.,Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frank C Ko
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America.,Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ugur M Ayturk
- Harvard Medical School, Boston, Massachusetts, United States of America.,Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Matthew L Warman
- Harvard Medical School, Boston, Massachusetts, United States of America.,Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America.,Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
26
|
Dole NS, Yoon J, Monteiro DA, Yang J, Mazur CM, Kaya S, Belair CD, Alliston T. Mechanosensitive miR-100 coordinates TGFβ and Wnt signaling in osteocytes during fluid shear stress. FASEB J 2021; 35:e21883. [PMID: 34569659 PMCID: PMC9153140 DOI: 10.1096/fj.202100930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/12/2021] [Indexed: 11/12/2022]
Abstract
Organism scale mechanical forces elicit cellular scale changes through coordinated regulation of multiple signaling pathways. The mechanisms by which cells integrate signaling to generate a unified biological response remains a major question in mechanobiology. For example, the mechanosensitive response of bone and other tissues requires coordinated signaling by the transforming growth factor beta (TGFβ) and Wnt pathways through mechanisms that are not well‐defined. Here we report a new microRNA‐dependent mechanism that mediates mechanosensitive crosstalk between TGFβ and Wnt signaling in osteocytes exposed to fluid shear stress (FSS). From 60 mechanosensitive microRNA (miRs) identified by small‐RNAseq, miR100 expression is suppressed by in vivo hindlimb loading in the murine tibia and by cellular scale FSS in OCY454 cells. Though FSS activates both TGFβ and Wnt signaling in osteocytes, only TGFβ represses miR‐100 expression. miR‐100, in turn, antagonizes Wnt signaling by targeting and inhibiting expression of Frizzled receptors (FZD5/FZD8). Accordingly, miR‐100 inhibition blunts FSS‐ and TGFβ‐inducible Wnt signaling. Therefore, our results identify FSS‐responsive miRNAs in osteocytes, including one that integrates the mechanosensitive function of two essential signaling pathways in the osteoanabolic response of bone to mechanical load.
Collapse
Affiliation(s)
- Neha S Dole
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Jihee Yoon
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - David A Monteiro
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Jason Yang
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Courtney M Mazur
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Cassandra D Belair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA.,Department of Urology, University of California, San Francisco, San Francisco, California, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
27
|
Harris TL, Silva MJ. Gene expression of intracortical bone demonstrates loading-induced increases in Wnt1 and Ngf and inhibition of bone remodeling processes. Bone 2021; 150:116019. [PMID: 34023542 PMCID: PMC8408835 DOI: 10.1016/j.bone.2021.116019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Osteocytes are the primary mechanosensitive cells in bone. However, their location in mineralized matrix has limited the in vivo study of osteocytic genes induced by mechanical loading. Laser Capture Microdissection (LCM) allows isolation of intracortical bone (Intra-CB), enriched for osteocytes, from bone tissue for gene expression analysis. We used microarray to analyze gene expression from mouse tibial Intra-CB dissected using LCM 4 h after a single loading bout or after 5 days of loading. Osteocyte enrichment was supported by greater expression of Sost, Dmp1, Dkk1, and Mepe in Intra-CB regions vs. Mixed regions containing periosteum and muscle (fold-change (FC) = 3.4, 2.2, 5.1, 3.0, respectively). Over 150 differentially expressed genes (DEGs) due to loading (loaded vs. contralateral control) in Intra-CB were found on Day 1 and Day 5, but only 10 genes were differentially expressed on both days, including Ngf (Day 1 FC = 13.5, Day 5 FC = 11.1) and Wnt1 (Day 1 FC = 1.5, Day 5 FC = 5.1). The expression of Ngf and Wnt1 within Intra-CB was confirmed by in situ hybridization, and a significant increase in number of Wnt1 mRNA molecules occurred on day 1. We also found changes in extracellular matrix remodeling with Timp1 (FC = 3.1) increased on day 1 and MMP13 (FC = 0.3) decreased on day 5. Supporting this result, IHC for osteocytic MMP13 demonstrated a marginal decrease due to loading on day 5. Gene Ontology (GO) biological processes for loading DEGs indicated regulation of vasculature, neuronal and immune processes while cell-type specific gene lists suggested regulation of osteoclast, osteoblast, and endothelial related genes. In summary, microarray analysis of microdissected Intra-CB revealed differential regulation of Ngf, Wnt1, and MMP13 due to loading in osteocytes.
Collapse
Affiliation(s)
- Taylor L Harris
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States.
| | - Matthew J Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
28
|
The Cellular Choreography of Osteoblast Angiotropism in Bone Development and Homeostasis. Int J Mol Sci 2021; 22:ijms22147253. [PMID: 34298886 PMCID: PMC8305002 DOI: 10.3390/ijms22147253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
Interaction between endothelial cells and osteoblasts is essential for bone development and homeostasis. This process is mediated in large part by osteoblast angiotropism, the migration of osteoblasts alongside blood vessels, which is crucial for the homing of osteoblasts to sites of bone formation during embryogenesis and in mature bones during remodeling and repair. Specialized bone endothelial cells that form "type H" capillaries have emerged as key interaction partners of osteoblasts, regulating osteoblast differentiation and maturation and ensuring their migration towards newly forming trabecular bone areas. Recent revolutions in high-resolution imaging methodologies for bone as well as single cell and RNA sequencing technologies have enabled the identification of some of the signaling pathways and molecular interactions that underpin this regulatory relationship. Similarly, the intercellular cross talk between endothelial cells and entombed osteocytes that is essential for bone formation, repair, and maintenance are beginning to be uncovered. This is a relatively new area of research that has, until recently, been hampered by a lack of appropriate analysis tools. Now that these tools are available, greater understanding of the molecular relationships between these key cell types is expected to facilitate identification of new drug targets for diseases of bone formation and remodeling.
Collapse
|
29
|
Fioravanti G, Hua PQ, Tomlinson RE. The TrkA agonist gambogic amide augments skeletal adaptation to mechanical loading. Bone 2021; 147:115908. [PMID: 33713848 PMCID: PMC8097708 DOI: 10.1016/j.bone.2021.115908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The periosteal and endosteal surfaces of mature bone are densely innervated by sensory nerves expressing TrkA, the high-affinity receptor for nerve growth factor (NGF). In previous work, we demonstrated that administration of exogenous NGF significantly increased load-induced bone formation through the activation of Wnt signaling. However, the translational potential of NGF is limited by the induction of substantial mechanical and thermal hyperalgesia in mice and humans. Here, we tested the effect of gambogic amide (GA), a recently identified robust small molecule agonist for TrkA, on hyperalgesia and load-induced bone formation. Behavioral analysis was used to assess pain up to one week after axial forelimb compression. Contrary to our expectations, GA treatment was not associated with diminished use of the loaded forelimb or sensitivity to thermal stimulus. Furthermore, dynamic histomorphometry revealed a significant increase in relative periosteal bone formation rate as compared to vehicle treatment. Additionally, we found that GA treatment was associated with an increase in the number of osteoblasts per bone surface in loaded limbs as well as a significant increase in the fold change of Ngf, Wnt7b, and Axin2 mRNA expression as compared to vehicle (control). To test the effect of GA on osteoblasts directly, we cultured MC3T3-E1 cells for up to 21 days in osteogenic differentiation media containing NGF, GA, or vehicle (control). Media containing GA induced the significant upregulation of the osteoblastic differentiation markers Runx2, Bglap2, and Sp7 in a dose-dependent manner, whereas treatment with NGF was not associated with any significant increases in these markers. Furthermore, consistent with our in vivo findings, we observed that administration of 50 nM of GA upregulated expression of Ngf at both Day 3 and Day 7. However, cells treated with the highest dose of GA (500 nM) had significantly increased apoptosis and impaired cell proliferation. In conclusion, our study indicates GA may be useful for augmenting skeletal adaptation to mechanical forces without inducing hyperalgesia.
Collapse
Affiliation(s)
- Gabriella Fioravanti
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Phuong Q Hua
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America
| | - Ryan E Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America.
| |
Collapse
|
30
|
Civil R, Brook MS, Elliott-Sale KJ, Santos L, Varley I, Lensu S, Kainulainen H, Koch LG, Britton SL, Wilkinson DJ, Smith K, Sale C, Atherton PJ. A collagen extraction and deuterium oxide stable isotope tracer method for the quantification of bone collagen synthesis rates in vivo. Physiol Rep 2021; 9:e14799. [PMID: 34042295 PMCID: PMC8157767 DOI: 10.14814/phy2.14799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 12/25/2022] Open
Abstract
The development of safe and practical strategies to prevent weakening of bone tissue is vital, yet attempts to achieve this have been hindered by a lack of understanding of the short-term (days-weeks) physiology of bone collagen turnover. To address this, we have developed a method to quantify bone collagen synthesis in vivo, using deuterium oxide (D2 O) tracer incorporation techniques combined with gas chromatography pyrolysis isotope-ratio mass spectrometry (GC-pyrolysis-IRMS). Forty-six male and female rats from a selectively bred model ingested D2 O for 3 weeks. Femur diaphyses (FEM), tibia proximal (T-PRO), and distal (T-DIS) epiphyses-metaphyses and tibia mid-shaft diaphyses (T-MID) were obtained from all rats after necropsy. After demineralisation, collagen proteins were isolated and hydrolysed and collagen fractional synthetic rates (FSRs) determined by incorporation of deuterium into protein-bound alanine via GC-pyrolysis-IRMS. The collagen FSR for the FEM (0.131 ± 0.078%/day; 95% CI [0.106-0.156]) was greater than the FSR at T-MID (0.055 ± 0.049%/day; 95% CI [0.040-0.070]; p < 0.001). The T-PRO site had the highest FSR (0.203 ± 0.123%/day; 95% CI [0.166-0.241]) and T-DIS the lowest (0.027 ± 0.015%/day; 95% CI [0.022-0.031]). The three tibial sites exhibited different FSRs (p < 0.001). Herein, we have developed a sensitive method to quantify in vivo bone collagen synthesis and identified site-specific rates of synthesis, which could be applicable to studies of human bone collagen turnover.
Collapse
Affiliation(s)
- Rita Civil
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Matthew S Brook
- Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Kirsty J Elliott-Sale
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Lívia Santos
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Sanna Lensu
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Kainulainen
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Wilkinson
- Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Kenneth Smith
- Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Philip J Atherton
- Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, UK
| |
Collapse
|
31
|
Yang H, Bullock WA, Myhal A, DeShield P, Duffy D, Main RP. Cancellous Bone May Have a Greater Adaptive Strain Threshold Than Cortical Bone. JBMR Plus 2021; 5:e10489. [PMID: 33977205 PMCID: PMC8101616 DOI: 10.1002/jbm4.10489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 01/12/2023] Open
Abstract
Strain magnitude has a controlling influence on bone adaptive response. However, questions remain as to how and if cancellous and cortical bone tissues respond differently to varied strain magnitudes, particularly at a molecular level. The goal of this study was to characterize the time‐dependent gene expression, bone formation, and structural response of the cancellous and cortical bone of female C57Bl/6 mice to mechanical loading by applying varying load levels (low: −3.5 N; medium: −5.2 N; high: −7 N) to the skeleton using a mouse tibia loading model. The loading experiment showed that cortical bone mass at the tibial midshaft was significantly enhanced following all load levels examined and bone formation activities were particularly elevated at the medium and high loads applied. In contrast, for the proximal metaphyseal cancellous bone, only the high load led to significant increases in bone mass and bone formation indices. Similarly, expression of genes associated with inhibition of bone formation (e.g., Sost) was altered in the diaphyseal cortical bone at all load levels, but in the metaphyseal cortico‐cancellous bone only by the high load. Finite element analysis determined that the peak tensile or compressive strains that were osteogenic for the proximal cancellous bone under the high load were significantly greater than those that were osteogenic for the midshaft cortical tissues under the low load. These results suggest that the magnitude of the strain stimulus regulating structural, cellular, and molecular responses of bone to loading may be greater for the cancellous tissues than for the cortical tissues. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life Beijing University of Technology Beijing China
| | | | - Alexandra Myhal
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences Purdue University West Lafayette IN USA
| | - Philip DeShield
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences Purdue University West Lafayette IN USA
| | - Daniel Duffy
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
| | - Russell P Main
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences Purdue University West Lafayette IN USA.,Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
| |
Collapse
|
32
|
Youlten SE, Kemp JP, Logan JG, Ghirardello EJ, Sergio CM, Dack MRG, Guilfoyle SE, Leitch VD, Butterfield NC, Komla-Ebri D, Chai RC, Corr AP, Smith JT, Mohanty ST, Morris JA, McDonald MM, Quinn JMW, McGlade AR, Bartonicek N, Jansson M, Hatzikotoulas K, Irving MD, Beleza-Meireles A, Rivadeneira F, Duncan E, Richards JB, Adams DJ, Lelliott CJ, Brink R, Phan TG, Eisman JA, Evans DM, Zeggini E, Baldock PA, Bassett JHD, Williams GR, Croucher PI. Osteocyte transcriptome mapping identifies a molecular landscape controlling skeletal homeostasis and susceptibility to skeletal disease. Nat Commun 2021; 12:2444. [PMID: 33953184 PMCID: PMC8100170 DOI: 10.1038/s41467-021-22517-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Osteocytes are master regulators of the skeleton. We mapped the transcriptome of osteocytes from different skeletal sites, across age and sexes in mice to reveal genes and molecular programs that control this complex cellular-network. We define an osteocyte transcriptome signature of 1239 genes that distinguishes osteocytes from other cells. 77% have no previously known role in the skeleton and are enriched for genes regulating neuronal network formation, suggesting this programme is important in osteocyte communication. We evaluated 19 skeletal parameters in 733 knockout mouse lines and reveal 26 osteocyte transcriptome signature genes that control bone structure and function. We showed osteocyte transcriptome signature genes are enriched for human orthologs that cause monogenic skeletal disorders (P = 2.4 × 10-22) and are associated with the polygenic diseases osteoporosis (P = 1.8 × 10-13) and osteoarthritis (P = 1.6 × 10-7). Thus, we reveal the molecular landscape that regulates osteocyte network formation and function and establish the importance of osteocytes in human skeletal disease.
Collapse
Affiliation(s)
- Scott E Youlten
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - John P Kemp
- University of Queensland Diamantina Institute, UQ, Brisbane, QLD, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - John G Logan
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Elena J Ghirardello
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Claudio M Sergio
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Michael R G Dack
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Siobhan E Guilfoyle
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC, UK
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ryan C Chai
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Alexander P Corr
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Faculty of Science, University of Bath, Bath, UK
| | - James T Smith
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Faculty of Science, University of Bath, Bath, UK
| | - Sindhu T Mohanty
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - John A Morris
- New York Genome Center, New York, NY, USA
- Faculty of Arts and Science, Department of Biology, New York University, New York, NY, USA
| | - Michelle M McDonald
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Julian M W Quinn
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Amelia R McGlade
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Nenad Bartonicek
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, NSW, Australia
| | - Matt Jansson
- Viapath Genetics Laboratory, Viapath Analytics LLP, Guy's Hospital, London, UK
- Department of Clinical Genetics, Guy's Hospital, London, UK
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Phoenix, AZ, USA
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Melita D Irving
- Department of Clinical Genetics, Guy's and St Thomas' NHS Trust, London, UK
| | | | | | - Emma Duncan
- Faculty of Life Sciences and Medicine, Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - J Brent Richards
- Faculty of Life Sciences and Medicine, Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
- Faculty of Medicine, McGill University, Quebec, Canada
| | | | | | - Robert Brink
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Division of Immunology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Tri Giang Phan
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Division of Immunology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - John A Eisman
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- School of Medicine Sydney, University of Notre Dame Australia, Fremantle, Australia
| | - David M Evans
- University of Queensland Diamantina Institute, UQ, Brisbane, QLD, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Phoenix, AZ, USA
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Paul A Baldock
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Peter I Croucher
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, Australia.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Skeletal adaptation to mechanical loading plays a critical role in bone growth and the maintenance of bone homeostasis. Osteocytes are postulated to serve as a hub orchestrating bone remodeling. The recent findings on the molecular mechanisms by which osteocytes sense mechanical loads and the downstream bone-forming factors are reviewed. RECENT FINDINGS Calcium channels have been implicated in mechanotransduction in bone cells for a long time. Efforts have been made to identify a specific calcium channel mediating the skeletal response to mechanical loads. Recent studies have revealed that Piezo1, a mechanosensitive ion channel, is critical for normal bone growth and is essential for the skeletal response to mechanical loading. Identification of mechanosensors and their downstream effectors in mechanosensing bone cells is essential for new strategies to modulate regenerative responses and develop therapies to treat the bone loss related to disuse or advanced age.
Collapse
Affiliation(s)
- Xuehua Li
- Department of Orthopaedic Surgery, Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jacob Kordsmeier
- Department of Orthopaedic Surgery, Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jinhu Xiong
- Department of Orthopaedic Surgery, Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
34
|
Dechaumet B, Cleret D, Linossier MT, Vanden-Bossche A, Chanon S, Lefai E, Laroche N, Lafage-Proust MH, Vico L. Hypergravity as a gravitational therapy mitigates the effects of knee osteoarthritis on the musculoskeletal system in a murine model. PLoS One 2020; 15:e0243098. [PMID: 33296408 PMCID: PMC7725345 DOI: 10.1371/journal.pone.0243098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Insights into the effects of osteoarthritis (OA) and physical interventions on the musculoskeletal system are limited. Our goal was to analyze musculoskeletal changes in OA mice and test the efficacy of 8-week exposure to hypergravity, as a replacement of physical activity. 16-week-old male (C57BL/6J) mice allocated to sham control and OA groups not centrifuged (Ctrl 1g and OA 1g, respectively) or centrifuged at 2g acceleration (Ctrl 2g and OA 2g). OA 1g displayed decreased trabecular bone in the proximal tibia metaphysis and increased osteoclastic activity and local TNFα gene expression, all entirely prevented by 2g gravitational therapy. However, while cortical bone of tibia midshaft was preserved in OA 1g (vs. ctrl), it is thinner in OA 2g (vs. OA 1g). In the hind limb, OA at 1g increased fibers with lipid droplets by 48% in the tibialis anterior, a fact fully prevented by 2g. In Ctrl, 2g increased soleus, tibialis anterior and gastrocnemius masses. In the soleus of both Ctrl and OA, 2g induced larger fibers and a switch from type-II to type-I fiber. Catabolic (myostatin and its receptor activin RIIb and visfatine) and anabolic (FNDC5) genes dramatically increased in Ctrl 2g and OA 2g (p<0.01 vs 1g). Nevertheless, the overexpression of FNDC5 (and follistatine) was smaller in OA 2g than in Ctrl 2g. Thus, hypergravity in OA mice produced positive effects for trabecular bone and muscle typology, similar to resistance exercises, but negative effects for cortical bone.
Collapse
Affiliation(s)
- Benoit Dechaumet
- SAINBIOSE Laboratory, INSERM, University of Lyon, Saint-Etienne, France
| | - Damien Cleret
- SAINBIOSE Laboratory, INSERM, University of Lyon, Saint-Etienne, France
| | | | | | - Stéphanie Chanon
- CarMeN Laboratory, INSERM, INRA, University of Lyon, Pierre-Bénite, France
| | - Etienne Lefai
- CarMeN Laboratory, INSERM, INRA, University of Lyon, Pierre-Bénite, France
| | - Norbert Laroche
- SAINBIOSE Laboratory, INSERM, University of Lyon, Saint-Etienne, France
| | | | - Laurence Vico
- SAINBIOSE Laboratory, INSERM, University of Lyon, Saint-Etienne, France
- * E-mail:
| |
Collapse
|
35
|
Chermside-Scabbo CJ, Harris TL, Brodt MD, Braenne I, Zhang B, Farber CR, Silva MJ. Old Mice Have Less Transcriptional Activation But Similar Periosteal Cell Proliferation Compared to Young-Adult Mice in Response to in vivo Mechanical Loading. J Bone Miner Res 2020; 35:1751-1764. [PMID: 32311160 PMCID: PMC7486279 DOI: 10.1002/jbmr.4031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Mechanical loading is a potent strategy to induce bone formation, but with aging, the bone formation response to the same mechanical stimulus diminishes. Our main objectives were to (i) discover the potential transcriptional differences and (ii) compare the periosteal cell proliferation between tibias of young-adult and old mice in response to strain-matched mechanical loading. First, to discover potential age-related transcriptional differences, we performed RNA sequencing (RNA-seq) to compare the loading responses between tibias of young-adult (5-month) and old (22-month) C57BL/6N female mice following 1, 3, or 5 days of axial loading (loaded versus non-loaded). Compared to young-adult mice, old mice had less transcriptional activation following loading at each time point, as measured by the number of differentially expressed genes (DEGs) and the fold-changes of the DEGs. Old mice engaged fewer pathways and gene ontology (GO) processes, showing less activation of processes related to proliferation and differentiation. In tibias of young-adult mice, we observed prominent Wnt signaling, extracellular matrix (ECM), and neuronal responses, which were diminished with aging. Additionally, we identified several targets that may be effective in restoring the mechanoresponsiveness of aged bone, including nerve growth factor (NGF), Notum, prostaglandin signaling, Nell-1, and the AP-1 family. Second, to directly test the extent to which periosteal cell proliferation was diminished in old mice, we used bromodeoxyuridine (BrdU) in a separate cohort of mice to label cells that divided during the 5-day loading interval. Young-adult and old mice had an average of 15.5 and 16.7 BrdU+ surface cells/mm, respectively, suggesting that impaired proliferation in the first 5 days of loading does not explain the diminished bone formation response with aging. We conclude that old mice have diminished transcriptional activation following mechanical loading, but periosteal proliferation in the first 5 days of loading does not differ between tibias of young-adult and old mice. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Christopher J Chermside-Scabbo
- Musculoskeletal Research Center Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | - Taylor L Harris
- Musculoskeletal Research Center Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Michael D Brodt
- Musculoskeletal Research Center Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Ingrid Braenne
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Bo Zhang
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University, St. Louis, MO, USA
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Matthew J Silva
- Musculoskeletal Research Center Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
36
|
Main RP, Shefelbine SJ, Meakin LB, Silva MJ, van der Meulen MC, Willie BM. Murine Axial Compression Tibial Loading Model to Study Bone Mechanobiology: Implementing the Model and Reporting Results. J Orthop Res 2020; 38:233-252. [PMID: 31508836 PMCID: PMC9344861 DOI: 10.1002/jor.24466] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/23/2019] [Indexed: 02/04/2023]
Abstract
In vivo, tibial loading in mice is increasingly used to study bone adaptation and mechanotransduction. To achieve standardized and defined experimental conditions, loading parameters and animal-related factors must be considered when performing in vivo loading studies. In this review, we discuss these loading and animal-related experimental conditions, present methods to assess bone adaptation, and suggest reporting guidelines. This review originated from presentations by each of the authors at the workshop "Developing Best Practices for Mouse Models of In Vivo Loading" during the Preclinical Models Section at the Orthopaedic Research Society Annual Meeting, San Diego, CA, March 2017. Following the meeting, the authors engaged in detailed discussions with consideration of relevant literature. The guidelines and recommendations in this review are provided to help researchers perform in vivo loading experiments in mice, and thus further our knowledge of bone adaptation and the mechanisms involved in mechanotransduction. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:233-252, 2020.
Collapse
Affiliation(s)
- Russell P. Main
- Department of Basic Medical Sciences and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA,Corresponding author: Russell Main ()
| | - Sandra J. Shefelbine
- Department of Bioengineering, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Lee B. Meakin
- Bristol Veterinary School, University of Bristol, Langford, Bristol BS40 5DU, UK
| | - Matthew J. Silva
- Departments of Orthopaedic Surgery and Biomedical Engineering, Musculoskeletal Research Center, Washington University, Saint Louis, MO, USA
| | - Marjolein C.H van der Meulen
- Meinig School of Biomedical Engineering and Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Bettina M. Willie
- Research Centre, Shriners Hospital for Children-Canada, Department of Pediatric Surgery, McGill University, Montreal, Canada
| |
Collapse
|
37
|
Pei S, Parthasarathy S, Parajuli A, Martinez J, Lv M, Jiang S, Wu D, Wei S, Lu XL, Farach-Carson MC, Kirn-Safran CB, Wang L. Perlecan/Hspg2 deficiency impairs bone's calcium signaling and associated transcriptome in response to mechanical loading. Bone 2020; 131:115078. [PMID: 31715337 PMCID: PMC6945981 DOI: 10.1016/j.bone.2019.115078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 10/25/2022]
Abstract
Perlecan, a heparan sulfate proteoglycan, acts as a mechanical sensor for bone to detect external loading. Deficiency of perlecan increases the risk of osteoporosis in patients with Schwartz-Jampel Syndrome (SJS) and attenuates loading-induced bone formation in perlecan deficient mice (Hypo). Considering that intracellular calcium [Ca2+]i is an ubiquitous messenger controlling numerous cellular processes including mechanotransduction, we hypothesized that perlecan deficiency impairs bone's calcium signaling in response to loading. To test this, we performed real-time [Ca2+]i imaging on in situ osteocytes of adult murine tibiae under cyclic loading (8N). Relative to wild type (WT), Hypo osteocytes showed decreases in the overall [Ca2+]i response rate (-58%), calcium peaks (-33%), cells with multiple peaks (-53%), peak magnitude (-6.8%), and recovery speed to baseline (-23%). RNA sequencing and pathway analysis of tibiae from mice subjected to one or seven days of unilateral loading demonstrated that perlecan deficiency significantly suppressed the calcium signaling, ECM-receptor interaction, and focal adhesion pathways following repetitive loading. Defects in the endoplasmic reticulum (ER) calcium cycling regulators such as Ryr1/ryanodine receptors and Atp2a1/Serca1 calcium pumps were identified in Hypo bones. Taken together, impaired calcium signaling may contribute to bone's reduced anabolic response to loading, underlying the osteoporosis risk for the SJS patients.
Collapse
Affiliation(s)
- Shaopeng Pei
- Center for Biomechanical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | | | - Ashutosh Parajuli
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, United States
| | - Jerahme Martinez
- Center for Biomechanical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - Mengxi Lv
- Center for Biomechanical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - Sida Jiang
- Center for Biomechanical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center, Houston, TX 77054, United States
| | - Shuo Wei
- Center for Biomechanical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - X Lucas Lu
- Center for Biomechanical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center, Houston, TX 77054, United States
| | - Catherine B Kirn-Safran
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States; Department of Biology, Widener University, Chester, PA 19013, United States
| | - Liyun Wang
- Center for Biomechanical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States; Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States; Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
38
|
Davis JL, Cox L, Shao C, Lyu C, Liu S, Aurora R, Veis DJ. Conditional Activation of NF-κB Inducing Kinase (NIK) in the Osteolineage Enhances Both Basal and Loading-Induced Bone Formation. J Bone Miner Res 2019; 34:2087-2100. [PMID: 31246323 PMCID: PMC6854278 DOI: 10.1002/jbmr.3819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Studies from global loss-of-function mutants suggest that alternative NF-κB downstream of NF-κB inducing kinase (NIK) is a cell-intrinsic negative regulator of osteogenesis. However, the interpretation of the osteoblast and/or osteocyte contribution to the bone phenotype is complicated by simultaneous osteoclast defects in these models. Therefore, we turned to a transgenic mouse model to investigate the direct role of NIK in the osteolineage. Osx-Cre;NT3 animals (NT3-Cre +), which bear a constitutively active NIK allele (NT3) driven by Osx-Cre, were compared with their Cre-negative, Control (Ctrl) littermates. NT3-Cre + mice had elevated serum P1NP and CTX levels. Despite this high turnover state, µCT showed that constitutive activation of NIK resulted in a net increase in basal bone mass in both cortical and cancellous compartments. Furthermore, NT3-Cre + mice exhibited a greater anabolic response following mechanical loading compared with controls. We next performed RNA-Seq on nonloaded and loaded tibias to elucidate possible mechanisms underlying the increased bone anabolism seen in NT3-Cre + mice. Hierarchical clustering revealed two main transcriptional programs: one loading-responsive and the other NT3 transgene-driven. Gene ontology (GO) analysis indicated a distinct upregulation of receptor, kinase, and growth factor activities including Wnts, as well as a calcium-response signature in NT3-Cre + limbs. The promoters of these GO-term associated genes, including many known to be bone-anabolic, were highly enriched for multiple κB recognition elements (κB-RE) relative to the background frequency in the genome. The loading response in NT3-Cre + mice substantially overlapped (>90%) with Ctrl. Surprisingly, control animals had 10-fold more DEGs in response to loading. However, most top DEGs shared between genotypes had a high incidence of multiple κB-RE in their promoters. Therefore, both transcriptional programs (loading-responsive and NT3 transgene-driven) are modulated by NF-κB. Our studies uncover a previously unrecognized role for NF-κB in the promotion of both basal and mechanically stimulated bone formation. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jennifer L Davis
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Linda Cox
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Christine Shao
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cheng Lyu
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Shaopeng Liu
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Deborah J Veis
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
- Department of Patholgy, Washington University, School of Medicine, St. Louis, MO, USA
| |
Collapse
|
39
|
Li X, Han L, Nookaew I, Mannen E, Silva MJ, Almeida M, Xiong J. Stimulation of Piezo1 by mechanical signals promotes bone anabolism. eLife 2019; 8:e49631. [PMID: 31588901 PMCID: PMC6779475 DOI: 10.7554/elife.49631] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Mechanical loading, such as caused by exercise, stimulates bone formation by osteoblasts and increases bone strength, but the mechanisms are poorly understood. Osteocytes reside in bone matrix, sense changes in mechanical load, and produce signals that alter bone formation by osteoblasts. We report that the ion channel Piezo1 is required for changes in gene expression induced by fluid shear stress in cultured osteocytes and stimulation of Piezo1 by a small molecule agonist is sufficient to replicate the effects of fluid flow on osteocytes. Conditional deletion of Piezo1 in osteoblasts and osteocytes notably reduced bone mass and strength in mice. Conversely, administration of a Piezo1 agonist to adult mice increased bone mass, mimicking the effects of mechanical loading. These results demonstrate that Piezo1 is a mechanosensitive ion channel by which osteoblast lineage cells sense and respond to changes in mechanical load and identify a novel target for anabolic bone therapy.
Collapse
Affiliation(s)
- Xuehua Li
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, United States
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Li Han
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Intawat Nookaew
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, United States
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Erin Mannen
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, United States
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University, St Louis, United States
| | - Maria Almeida
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, United States
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, United States
- Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Jinhu Xiong
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, United States
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, United States
| |
Collapse
|
40
|
Coates BA, McKenzie JA, Buettmann EG, Liu X, Gontarz PM, Zhang B, Silva MJ. Transcriptional profiling of intramembranous and endochondral ossification after fracture in mice. Bone 2019; 127:577-591. [PMID: 31369916 PMCID: PMC6708791 DOI: 10.1016/j.bone.2019.07.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/27/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022]
Abstract
Bone fracture repair represents an important clinical challenge with nearly 1 million non-union fractures occurring annually in the U.S. Gene expression differs between non-union and healthy repair, suggesting there is a pattern of gene expression that is indicative of optimal repair. Despite this, the gene expression profile of fracture repair remains incompletely understood. In this work, we used RNA-seq of two well-established murine fracture models to describe gene expression of intramembranous and endochondral bone formation. We used top differentially expressed genes, enriched gene ontology terms and pathways, callus cellular phenotyping, and histology to describe and contrast these bone formation processes across time. Intramembranous repair, as modeled by ulnar stress fracture, and endochondral repair, as modeled by femur full fracture, exhibited vastly different transcriptional profiles throughout repair. Stress fracture healing had enriched differentially expressed genes associated with bone repair and osteoblasts, highlighting the strong osteogenic repair process of this model. Interestingly, the PI3K-Akt signaling pathway was one of only a few pathways uniquely enriched in stress fracture repair. Full fracture repair involved a higher level of inflammatory and immune cell related genes than did stress fracture repair. Full fracture repair also differed from stress fracture in a robust downregulation of ion channel genes following injury, the role of which in fracture repair is unclear. This study offers a broad description of gene expression in intramembranous and endochondral ossification across several time points throughout repair and suggests several potentially intriguing genes, pathways, and cells whose role in fracture repair requires further study.
Collapse
Affiliation(s)
- Brandon A Coates
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America.
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America
| | - Evan G Buettmann
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America
| | - Xiaochen Liu
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America
| | - Paul M Gontarz
- Department of Developmental Biology, Washington University in St. Louis, MO, United States of America
| | - Bo Zhang
- Department of Developmental Biology, Washington University in St. Louis, MO, United States of America
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The goal of this paper is to review state-of-the-art transcriptome profiling methods and their recent applications in the field of skeletal biology. RECENT FINDINGS Next-generation sequencing of mRNA (RNA-seq) methods have been established and routinely used in skeletal biology research. RNA-seq has led to the identification of novel genes and transcription factors involved in skeletal development and disease, through its application in small and large animal models, as well as human tissue and cells. With the availability of advanced techniques such as single-cell RNA-seq, novel cell types in skeletal tissues are being identified. As the sequencing technologies are rapidly evolving, the exciting discoveries supported by transcriptomics will continue to emerge and improve our understanding of the biology of the skeleton.
Collapse
Affiliation(s)
- Ugur Ayturk
- Musculoskeletal Integrity Program, Hospital for Special Surgery, 515 East 71st St. Suite 403, New York, NY, 10021, USA.
| |
Collapse
|
42
|
NOTCH Signaling Is Activated through Mechanical Strain in Human Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells Int 2019; 2019:5150634. [PMID: 30936923 PMCID: PMC6413410 DOI: 10.1155/2019/5150634] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/28/2018] [Indexed: 11/18/2022] Open
Abstract
Skeletal development and remodeling of adult bone are critically controlled by activated NOTCH signaling in genetically modified mice. It is yet unclear whether NOTCH signaling is activated by mechanical strain sensed by bone cells. We found that expression of specific NOTCH target genes is induced after in vivo tibial mechanical loading in wild-type mice. We further applied mechanical strain through cyclic stretching in human bone marrow-derived mesenchymal stromal cells (BMSCs) in vitro by using a bioreactor system and detected upregulation of NOTCH target gene expression. Inhibition of the NOTCH pathway in primary BMSCs as well as telomerase-immortalized human BMSCs (hMSC-TERT) through the gamma-secretase inhibitor GSI XII blocked mechanotransduction and modulated actin cytoskeleton organization. Short-hairpin RNA gene silencing identified NOTCH2 as the key receptor mediating NOTCH effects on hMSC-TERT cells. Our data indicate a functional link between NOTCH activation and mechanotransduction in human BMSCs. We suggest that NOTCH signaling is an important contributor to molecular mechanisms that mediate the bone formation response to mechanical strain.
Collapse
|
43
|
Mikolajewicz N, Zimmermann EA, Willie BM, Komarova SV. Mechanically stimulated ATP release from murine bone cells is regulated by a balance of injury and repair. eLife 2018; 7:37812. [PMID: 30324907 PMCID: PMC6205812 DOI: 10.7554/elife.37812] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023] Open
Abstract
Bone cells sense and actively adapt to physical perturbations to prevent critical damage. ATP release is among the earliest cellular responses to mechanical stimulation. Mechanical stimulation of a single murine osteoblast led to the release of 70 ± 24 amole ATP, which stimulated calcium responses in neighboring cells. Osteoblasts contained ATP-rich vesicles that were released upon mechanical stimulation. Surprisingly, interventions that promoted vesicular release reduced ATP release, while inhibitors of vesicular release potentiated ATP release. Searching for an alternative ATP release route, we found that mechanical stresses induced reversible cell membrane injury in vitro and in vivo. Ca2+/PLC/PKC-dependent vesicular exocytosis facilitated membrane repair, thereby minimizing cell injury and reducing ATP release. Priming cellular repair machinery prior to mechanical stimulation reduced subsequent membrane injury and ATP release, linking cellular mechanosensitivity to prior mechanical exposure. Thus, our findings position ATP release as an integrated readout of membrane injury and repair. Athletes' skeletons get stronger with training, while bones weaken in people who cannot move or in astronauts experiencing weightlessness. This is because bone cells thrive when exposed to forces. When a bone cell is exposed to a physical force, the first thing that happens is the release of the energy-rich molecule called ATP into the space outside the cell. This molecule then binds to the neighboring cell to unleash a cascade of responses. ATP can exit the cell either through special canals in the cell membrane or released in tiny pod-like structures called vesicles. It is known that strong forces can injure the cell membrane and cause ATP to spill out. However, it is less clear how ATP is released when cells are subjected to regular forces. Mikolajewicz et al. investigated whether ATP exits through injured membranes of cells experiencing regular forces. Bone cells grown in the laboratory were gently poked with a glass needle or placed in a turbulent fluid to simulate forces experienced in the body. Dyes and fluorescent imaging techniques were used to observe the movement of vesicles and calculate the concentration of ATP in these cells. The experiments showed that regular forces in the body do indeed injure the cell membranes and cause ATP to spill out. But importantly, the cells repaired the injuries quickly by releasing vesicles that patch the wound. As soon as the membrane is sealed, ATP stops coming out. From the first injury, cells adapted and quickly strengthened their membrane and repair system to be more resilient against future forces. This process was also seen in the shin bones of mice. These results are important because knowing how bone cells sense, respond and convert physical forces can help us develop treatments for astronauts, the injured and aged.
Collapse
Affiliation(s)
- Nicholas Mikolajewicz
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,Shriners Hospital for Children - Canada, Montreal, Quebec, Canada
| | - Elizabeth A Zimmermann
- Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Pediatric Surgery, Montreal, Quebec, Canada
| | - Bettina M Willie
- Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Pediatric Surgery, Montreal, Quebec, Canada
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,Shriners Hospital for Children - Canada, Montreal, Quebec, Canada
| |
Collapse
|
44
|
Hsia AW, Tarke FD, Shelton TJ, Tjandra PM, Christiansen BA. Comparison of knee injury threshold during tibial compression based on limb orientation in mice. J Biomech 2018; 74:220-224. [PMID: 29678417 DOI: 10.1016/j.jbiomech.2018.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 01/27/2023]
Abstract
Our previous studies used tibial compression overload to induce anterior cruciate ligament (ACL) rupture in mice, while others have applied similar or greater compressive magnitudes without injury. The causes of these differences in injury threshold are not known. In this study, we compared knee injury thresholds using a "prone configuration" and a "supine configuration" that differed with respect to hip, knee, and ankle flexion, and utilized different fixtures to stabilize the knee. Right limbs of female and male C57BL/6 mice were loaded using the prone configuration, while left limbs were loaded using the supine configuration. Mice underwent progressive loading from 2 to 20 N, or cyclic loading at 9 N or 14 N (n = 9-11/sex/loading method). Progressive loading with the prone configuration resulted in ACL rupture at an average of 10.2 ± 0.9 N for females and 11.4 ± 0.7 N for males. In contrast, progressive loading with the supine configuration resulted in ACL rupture in only 36% of female mice and 50% of male mice. Cyclic loading with the prone configuration resulted in ACL rupture after 15 ± 8 cycles for females and 24 ± 27 cycles for males at 9 N, and always during the first cycle for both sexes at 14 N. In contrast, cyclic loading with the supine configuration was able to complete 1,200 cycles at 9 N without injury for both sexes, and an average of 45 ± 41 cycles for females and 49 ± 25 cycles for males at 14 N before ACL rupture. These results show that tibial compression configurations can strongly affect knee injury thresholds during loading.
Collapse
Affiliation(s)
- Allison W Hsia
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA, United States.
| | - Franklin D Tarke
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, United States.
| | - Trevor J Shelton
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, United States.
| | - Priscilla M Tjandra
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA, United States.
| | - Blaine A Christiansen
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA, United States; Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, United States.
| |
Collapse
|
45
|
Morse A, Schindeler A, McDonald MM, Kneissel M, Kramer I, Little DG. Sclerostin Antibody Augments the Anabolic Bone Formation Response in a Mouse Model of Mechanical Tibial Loading. J Bone Miner Res 2018; 33:486-498. [PMID: 29090474 DOI: 10.1002/jbmr.3330] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/11/2017] [Accepted: 10/29/2017] [Indexed: 12/18/2022]
Abstract
Decreased activity or expression of sclerostin, an endogenous inhibitor of Wnt/β-catenin signaling, results in increased bone formation and mass. Antibodies targeting and neutralizing sclerostin (Scl-Ab) have been shown to increase bone mass and reduce fracture risk. Sclerostin is also important in modulating the response of bone to changes in its biomechanical environment. However, the effects of Scl-Ab on mechanotransduction are unclear, and it was speculated that the loading response may be altered for individuals receiving Scl-Ab therapy. To address this, we carried out a 2-week study of tibial cyclic compressive loading on C57Bl/6 mice treated with vehicle or 100 mg/kg/wk Scl-Ab. Increases in bone volume, density, and dynamic bone formation were found with loading, and the anabolic response was further increased by the combination of load and Scl-Ab. To investigate the underlying mechanism, gene profiling by RNA sequencing (RNAseq) was performed on tibias isolated from mice from all four experimental groups. Major alterations in Wnt/β-catenin gene expression were found with tibial loading, however not with Scl-Ab treatment alone. Notably, the combination of load and Scl-Ab elicited a synergistic response from a number of specific Wnt-related and mechanotransduction factors. An unexpected finding was significant upregulation of factors in the Rho GTPase signaling pathway with combination treatment. In summary, combination therapy had a more profound anabolic response than either Scl-Ab or loading treatment alone. The Wnt/β-catenin and Rho GTPase pathways were implicated within bone mechanotransduction and support the concept that bone mechanotransduction is likely to encompass a number of interconnected signaling pathways. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alyson Morse
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Westmead, Australia.,Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Westmead, Australia.,Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Michelle M McDonald
- Bone Biology Program, The Garvan Institute of Medical Research, Darlinghurst, Australia
| | | | | | - David G Little
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Westmead, Australia.,Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
46
|
Bleedorn JA, Hornberger TA, Goodman CA, Hao Z, Sample SJ, Amene E, Markel MD, Behan M, Muir P. Temporal mechanically-induced signaling events in bone and dorsal root ganglion neurons after in vivo bone loading. PLoS One 2018; 13:e0192760. [PMID: 29486004 PMCID: PMC5828357 DOI: 10.1371/journal.pone.0192760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/30/2018] [Indexed: 11/19/2022] Open
Abstract
Mechanical signals play an integral role in the regulation of bone mass and functional adaptation to bone loading. The osteocyte has long been considered the principle mechanosensory cell type in bone, although recent evidence suggests the sensory nervous system may play a role in mechanosensing. The specific signaling pathways responsible for functional adaptation of the skeleton through modeling and remodeling are not clearly defined. In vitro studies suggest involvement of intracellular signaling through mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and mammalian target of rapamycin (mTOR). However, anabolic signaling responses to bone loading using a whole animal in vivo model have not been studied in detail. Therefore, we examined mechanically-induced signaling events at five time points from 0 to 24 hours after loading using the rat in vivo ulna end-loading model. Western blot analysis of bone for MAPK's, PI3K/Akt, and mTOR signaling, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) to estimate gene expression of calcitonin gene-related protein alpha (CGRP-α), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), c-jun, and c-fos in dorsal root ganglion (DRG) of the brachial intumescence were performed. There was a significant increase in signaling through MAPK's including extracellular signal-related kinase (ERK) and c-Jun N-terminal kinase (JNK) in loaded limbs at 15 minutes after mechanical loading. Ulna loading did not significantly influence expression of the genes of interest in DRG neurons. Bone signaling and DRG gene expression from the loaded and contralateral limbs was correlated (SR>0.40, P<0.05). However, bone signaling did not correlate with expression of the genes of interest in DRG neurons. These results suggest that signaling through the MAPK pathway may be involved in load-induced bone formation in vivo. Further characterization of the molecular events involved in regulation of bone adaptation is needed to understand the timing and impact of loading events, and the contribution of the neuronal signaling to functional adaptation of bone.
Collapse
Affiliation(s)
- Jason A. Bleedorn
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Troy A. Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Craig A. Goodman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, Australia
| | - Zhengling Hao
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susannah J. Sample
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ermias Amene
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark D. Markel
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mary Behan
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter Muir
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
47
|
Holyoak DT, Otero M, Armar NS, Ziemian SN, Otto A, Cullinane D, Wright TM, Goldring SR, Goldring MB, van der Meulen MC. Collagen XI mutation lowers susceptibility to load-induced cartilage damage in mice. J Orthop Res 2018; 36:711-720. [PMID: 28898438 PMCID: PMC8813548 DOI: 10.1002/jor.23731] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/31/2017] [Indexed: 02/04/2023]
Abstract
Interactions among risk factors for osteoarthritis (OA) are not well understood. We investigated the combined impact of two prevalent risk factors: mechanical loading and genetically abnormal cartilage tissue properties. We used cyclic tibial compression to simulate mechanical loading in the cho/+ (Col11a1 haploinsufficient) mouse, which has abnormal collagen fibrils in cartilage due to a point mutation in the Col11a1 gene. We hypothesized that the mutant collagen would not alter phenotypic bone properties and that cho/+ mice, which develop early onset OA, would develop enhanced load-induced cartilage damage compared to their littermates. To test our hypotheses, we applied cyclic compression to the left tibiae of 6-month-old cho/+ male mice and wild-type (WT) littermates for 1, 2, and 6 weeks at moderate (4.5 N) and high (9.0 N) peak load magnitudes. We then characterized load-induced cartilage and bone changes by histology, microcomputed tomography, and immunohistochemistry. Prior to loading, cho/+ mice had less dense, thinner cortical bone compared to WT littermates. In addition, in loaded and non-loaded limbs, cho/+ mice had thicker cartilage. With high loads, cho/+ mice experienced less load-induced cartilage damage at all time points and displayed decreased matrix metalloproteinase (MMP)-13 levels compared to WT littermates. The thinner, less dense cortical bone and thicker cartilage were unexpected and may have contributed to the reduced severity of load-induced cartilage damage in cho/+ mice. Furthermore, the spontaneous proteoglycan loss resulting from the mutant collagen XI was not additive to cartilage damage from mechanical loading, suggesting that these risk factors act through independent pathways. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:711-720, 2018.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Timothy M. Wright
- Cornell University, Ithaca, NY,Hospital for Special Surgery, New York, NY,Weill Cornell Medical College, New York, NY
| | - Steven R. Goldring
- Hospital for Special Surgery, New York, NY,Weill Cornell Medical College, New York, NY
| | - Mary B. Goldring
- Hospital for Special Surgery, New York, NY,Weill Cornell Medical College, New York, NY
| | | |
Collapse
|
48
|
Ortinau LC, Linden MA, Dirkes RK, Rector RS, Hinton PS. Exercise initiated after the onset of insulin resistance improves trabecular microarchitecture and cortical bone biomechanics of the tibia in hyperphagic Otsuka Long Evans Tokushima Fatty rats. Bone 2017; 103:188-199. [PMID: 28711659 DOI: 10.1016/j.bone.2017.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/13/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022]
Abstract
The present study extends our previous findings that exercise, which prevents the onset of insulin resistance and type 2 diabetes (T2D), also prevents the detrimental effects of T2D on whole-bone and tissue-level strength. Our objective was to determine whether exercise improves bone's structural and material properties if insulin resistance is already present in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. The OLETF rat is hyperphagic due to a loss-of-function mutation in cholecystokinin-1 receptor (CCK-1 receptor), which leads to progressive obesity, insulin resistance and T2D after the majority of skeletal growth is complete. Because exercise reduces body mass, which is a significant determinant of bone strength, we used a body-mass-matched caloric-restricted control to isolate body-mass-independent effects of exercise on bone. Eight-wk old, male OLETF rats were fed ad libitum until onset of hyperglycemia (20weeks of age), at which time they were randomly assigned to three groups: ad libitum fed, sedentary (O-SED); ad libitum fed, treadmill running (O-EX); or, sedentary, mild caloric restriction to match body mass of O-EX (O-CR). Long-Evans Tokushima Otsuka rats served as the normophagic, normoglycemic controls (L-SED). At 32weeks of age, O-SED rats had T2D as evidenced by hyperglycemia and a significant reduction in fasting insulin compared to OLETFs at 20weeks of age. O-SED rats also had reduced total body bone mineral content (BMC), increased C-terminal telopeptide of type I collagen (CTx)/tartrate resistant acid phosphatase isoform 5b (TRAP5b), decreased N-terminal propeptide of type I procollagen (P1NP), reduced percent cancellous bone volume (BV/TV), trabecular number (Tb.N) and increased trabecular separation (Tb.Sp) and structural model index (SMI) of the proximal tibia compared to L-SED. T2D also adversely affected biomechanical properties of the tibial diaphysis, and serum sclerostin was increased and β-catenin, runt-related transcription factor 2 (Runx2) and insulin-like growth factor-I (IGF-I) protein expression in bone were reduced in O-SED vs. L-SED. O-EX or O-CR had greater total body bone mineral density (BMD) and BMC, and BV/TV, Tb.N, Tb.Sp, and SMI compared to O-SED. O-EX had lower CTx and CR greater P1NP relative to O-SED. O-EX, not O-CR, had greater cortical thickness and area, and improved whole-bone and tissue-level biomechanical properties associated with a 4-fold increase in cortical bone β-catenin protein expression vs. O-SED. In summary, EX or CR initiated after the onset of insulin resistance preserved cancellous bone volume and structure, and EX elicited additional benefits in cortical bone.
Collapse
Affiliation(s)
- Laura C Ortinau
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Melissa A Linden
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Research Service-Harry S. Truman Memorial Veterans Medical Center, Columbia, MO, United States
| | - Rebecca K Dirkes
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Department of Medicine, Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States; Research Service-Harry S. Truman Memorial Veterans Medical Center, Columbia, MO, United States
| | - Pamela S Hinton
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
49
|
Scheuren A, Wehrle E, Flohr F, Müller R. Bone mechanobiology in mice: toward single-cell in vivo mechanomics. Biomech Model Mechanobiol 2017; 16:2017-2034. [PMID: 28735414 DOI: 10.1007/s10237-017-0935-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/11/2017] [Indexed: 01/27/2023]
Abstract
Mechanically driven bone (re)modeling is a multiscale process mediated through complex interactions between multiple cell types and their microenvironments. However, the underlying mechanisms of how cells respond to mechanical signals are still unclear and are at the focus of the field of bone mechanobiology. Traditionally, this complex process has been addressed by reducing the system to single scales and cell types. It is only recently that more integrative approaches have been established to study bone mechanobiology across multiple scales in which mechanical load at the organ level is related to molecular responses at the cellular level. The availability of mouse loading models and imaging techniques with improved spatial and temporal resolution has made it possible to track dynamic bone (re)modeling at the tissue and cellular level in vivo. Coupled with advanced computational models, the (re)modeling activities at the tissue scale can be associated with the mechanical microenvironment. However, methods are lacking to link the molecular responses of different cell types to their local mechanical microenvironment and bone (re)modeling activities occurring at the tissue scale. With recent improvements in "omics" technologies and single-cell molecular biology, it is now possible to sequence the complete genome and transcriptome of single cells. These technologies offer unique opportunities to comprehensively investigate the cellular transcriptional profiles within their specific microenvironment. By combining single-cell "omics" technologies with well-established tissue-scale models of bone mechanobiology, we propose a mechanomics approach to locally analyze the transcriptome of single cells with respect to their local 3D mechanical in vivo environment.
Collapse
Affiliation(s)
- Ariane Scheuren
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Felicitas Flohr
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
50
|
Spatz JM, Ellman R, Cloutier AM, Louis L, van Vliet M, Dwyer D, Stolina M, Ke HZ, Bouxsein ML. Sclerostin antibody inhibits skeletal deterioration in mice exposed to partial weight-bearing. LIFE SCIENCES IN SPACE RESEARCH 2017; 12:32-38. [PMID: 28212706 DOI: 10.1016/j.lssr.2017.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/04/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
Whereas much is known regarding the musculoskeletal responses to full unloading, little is known about the physiological effects and response to pharmacological agents in partial unloading (e.g. Moon and Mars) environments. To address this, we used a previously developed ground-based model of partial weight-bearing (PWB) that allows chronic exposure to reduced weight-bearing in mice to determine the effects of murine sclerostin antibody (SclAbII) on bone microstructure and strength across different levels of mechanical unloading. We hypothesize that treatment with SclAbII would improve bone mass, microarchitecture and strength in all loading conditions, but that there would be a greater skeletal response in the normally loaded mice than in partially unloaded mice suggesting the importance of combined countermeasures for exploration-class long duration spaceflight missions. Eleven-week-old female mice were assigned to one of four loading groups: normal weight-bearing controls (CON) or weight-bearing at 20% (PWB20), 40% (PWB40) or 70% (PWB70) of normal. Mice in each group received either SclAbII (25mg/kg) or vehicle (VEH) via twice weekly subcutaneous injection for 3 weeks. In partially-unloaded VEH-treated groups, leg BMD decreased -5 to -10% in a load-dependent manner. SclAbII treatment completely inhibited bone deterioration due to PWB, with bone properties in SclAbII-treated groups being equal to or greater than those of CON, VEH-treated mice. SclAbII treatment increased leg BMD from +14 to +18% in the PWB groups and 30 ± 3% in CON (p< 0.0001 for all). Trabecular bone volume, assessed by μCT at the distal femur, was lower in all partially unloaded VEH-treated groups vs. CON-VEH (p< 0.05), and was 2-3 fold higher in SclAbII-treated groups (p< 0.001). Midshaft femoral strength was also significantly higher in SclAbII vs. VEH-groups in all-loading conditions. These results suggest that greater weight bearing leads to greater benefits of SclAbII on bone mass, particularly in the trabecular compartment. Altogether, these results demonstrate the efficacy of sclerostin antibody therapy in preventing astronaut bone loss during terrestrial solar system exploration.
Collapse
Affiliation(s)
- J M Spatz
- Massachusetts Institute of Technology, Cambridge, MA, United Staes; Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United Staes ; Endocrine Division, Massachusetts General Hospital, Boston, MA, United Staes
| | - R Ellman
- Massachusetts Institute of Technology, Cambridge, MA, United Staes; Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United Staes
| | - A M Cloutier
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United Staes
| | - L Louis
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United Staes
| | - M van Vliet
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United Staes
| | - D Dwyer
- Amgen, Thousand Oaks, CA, United Staes
| | - M Stolina
- Amgen, Thousand Oaks, CA, United Staes
| | - H Z Ke
- Bone Research, UCB Pharma, Slough, Berkshire, UK
| | - M L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United Staes ; Endocrine Division, Massachusetts General Hospital, Boston, MA, United Staes; Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, United Staes.
| |
Collapse
|