1
|
Martiniakova M, Mondockova V, Kovacova V, Babikova M, Zemanova N, Biro R, Penzes N, Omelka R. Interrelationships among metabolic syndrome, bone-derived cytokines, and the most common metabolic syndrome-related diseases negatively affecting bone quality. Diabetol Metab Syndr 2024; 16:217. [PMID: 39238022 PMCID: PMC11378428 DOI: 10.1186/s13098-024-01440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Metabolic syndrome (MetS), as a set of medical conditions including hyperglycemia, hypertension, abdominal obesity, and dyslipidemia, represents a highly prevalent disease cluster worldwide. The individual components of MetS together increase the risk of MetS-related disorders. Recent research has demonstrated that bone, as an endocrine organ, releases several systemic cytokines (osteokines), including fibroblast growth factor 23 (FGF23), lipocalin 2 (LCN2), and sclerostin (SCL). This review not only summarizes current knowledge about MetS, osteokines and the most common MetS-related diseases with a detrimental impact on bone quality (type 2 diabetes mellitus: T2DM; cardiovascular diseases: CVDs; osteoporosis: OP), but also provides new interpretations of the relationships between osteokines and individual components of MetS, as well as between osteokines and MetS-related diseases mentioned above. In this context, particular emphasis was given on available clinical studies. According to the latest knowledge, FGF23 may become a useful biomarker for obesity, T2DM, and CVDs, as FGF23 levels were increased in patients suffering from these diseases. LCN2 could serve as an indicator of obesity, dyslipidemia, T2DM, and CVDs. The levels of LCN2 positively correlated with obesity indicators, triglycerides, and negatively correlated with high-density lipoprotein (HDL) cholesterol. Furthermore, subjects with T2DM and CVDs had higher LCN2 levels. SCL may act as a potential biomarker predicting the incidence of MetS including all its components, T2DM, CVDs, and OP. Elevated SCL levels were noted in individuals with T2DM, CVDs and reduced in patients with OP. The aforementioned bone-derived cytokines have the potential to serve as promising predictors and prospective treatment targets for MetS and MetS-related diseases negatively affecting bone quality.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Nina Zemanova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia.
| |
Collapse
|
2
|
Phan P, Ternier G, Edirisinghe O, Kumar TKS. Exploring endocrine FGFs - structures, functions and biomedical applications. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 15:68-99. [PMID: 39309613 PMCID: PMC11411148 DOI: 10.62347/palk2137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024]
Abstract
The family of fibroblast growth factors (FGFs) consists of 22 members with diverse biological functions in cells, from cellular development to metabolism. The family can be further categorized into three subgroups based on their three modes of action. FGF19, FGF21, and FGF23 are endocrine FGFs that act in a hormone-like/endocrine manner to regulate various metabolic activities. However, all three members of the endocrine family require both FGF receptors (FGFRs) and klotho co-receptors to elicit their functions. α-klotho and β-klotho act as scaffolds to bring endocrine FGFs closer to their receptors (FGFRs) to form active complexes. Numerous novel studies about metabolic FGFs' structures, mechanisms, and physiological insights have been published to further understand the complex molecular interactions and physiological activities of endocrine FGFs. Herein, we aim to review the structures, physiological functions, binding mechanisms to cognate receptors, and novel biomedical applications of endocrine FGFs in recent years.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of ArkansasFayetteville, AR 72701, USA
| | - Gaёtane Ternier
- Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of ArkansasFayetteville, AR 72701, USA
| | - Oshadi Edirisinghe
- Cell and Molecular Biology Program, University of ArkansasFayetteville, AR 72701, USA
| | | |
Collapse
|
3
|
Umur E, Bulut SB, Yiğit P, Bayrak E, Arkan Y, Arslan F, Baysoy E, Kaleli-Can G, Ayan B. Exploring the Role of Hormones and Cytokines in Osteoporosis Development. Biomedicines 2024; 12:1830. [PMID: 39200293 PMCID: PMC11351445 DOI: 10.3390/biomedicines12081830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The disease of osteoporosis is characterized by impaired bone structure and an increased risk of fractures. There is a significant impact of cytokines and hormones on bone homeostasis and the diagnosis of osteoporosis. As defined by the World Health Organization (WHO), osteoporosis is defined as having a bone mineral density (BMD) that is 2.5 standard deviations (SD) or more below the average for young and healthy women (T score < -2.5 SD). Cytokines and hormones, particularly in the remodeling of bone between osteoclasts and osteoblasts, control the differentiation and activation of bone cells through cytokine networks and signaling pathways like the nuclear factor kappa-B ligand (RANKL)/the receptor of RANKL (RANK)/osteoprotegerin (OPG) axis, while estrogen, parathyroid hormones, testosterone, and calcitonin influence bone density and play significant roles in the treatment of osteoporosis. This review aims to examine the roles of cytokines and hormones in the pathophysiology of osteoporosis, evaluating current diagnostic methods, and highlighting new technologies that could help for early detection and treatment of osteoporosis.
Collapse
Affiliation(s)
- Egemen Umur
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Safiye Betül Bulut
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Pelin Yiğit
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Emirhan Bayrak
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Yaren Arkan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Fahriye Arslan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Engin Baysoy
- Department of Biomedical Engineering, Bahçeşehir University, İstanbul 34353, Türkiye
| | - Gizem Kaleli-Can
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Lösser L, Ledesma-Colunga MG, Andrés Sastre E, Scholtysek C, Hofbauer LC, Noack B, Baschant U, Rauner M. Transferrin receptor 2 mitigates periodontitis-driven alveolar bone loss. J Cell Physiol 2024; 239:e31172. [PMID: 38214117 DOI: 10.1002/jcp.31172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Periodontitis is associated with significant alveolar bone loss. Patients with iron overload suffer more frequently from periodontitis, however, the underlying mechanisms remain largely elusive. Here, we investigated the role of transferrin receptor 2 (Tfr2), one of the main regulators of iron homeostasis, in the pathogenesis of periodontitis and the dental phenotype under basal conditions in mice. As Tfr2 suppresses osteoclastogenesis, we hypothesized that deficiency of Tfr2 may exacerbate periodontitis-induced bone loss. Mice lacking Tfr2 (Tfr2-/- ) and wild-type (Tfr2+/+ ) littermates were challenged with experimental periodontitis. Mandibles and maxillae were collected for microcomputed tomography and histology analyses. Osteoclast cultures from Tfr2+/+ and Tfr2-/- mice were established and analyzed for differentiation efficiency, by performing messenger RNA expression and protein signaling pathways. After 8 days, Tfr2-deficient mice revealed a more severe course of periodontitis paralleled by higher immune cell infiltration and a higher histological inflammation index than Tfr2+/+ mice. Moreover, Tfr2-deficient mice lost more alveolar bone compared to Tfr2+/+ littermates, an effect that was only partially iron-dependent. Histological analysis revealed a higher number of osteoclasts in the alveolar bone of Tfr2-deficient mice. In line, Tfr2-deficient osteoclastic differentiation ex vivo was faster and more efficient as reflected by a higher number of osteoclasts, a higher expression of osteoclast markers, and an increased resorptive activity. Mechanistically, Tfr2-deficient osteoclasts showed a higher p38-MAPK signaling and inhibition of p38-MAPK signaling in Tfr2-deficient cells reverted osteoclast formation to Tfr2+/+ levels. Taken together, our data indicate that Tfr2 modulates the inflammatory response in periodontitis thereby mitigating effects on alveolar bone loss.
Collapse
Affiliation(s)
- Lennart Lösser
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Maria G Ledesma-Colunga
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Enrique Andrés Sastre
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Carina Scholtysek
- Department of Internal Medicine 3, University of Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), University of Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Barbara Noack
- Policlinic of Operative Dentistry, Periodontology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Jurina A, Kasumović D, Delimar V, Filipec Kanižaj T, Japjec M, Dujmović T, Vučić Lovrenčić M, Starešinić M. Fibroblast growth factor 23 and its role in bone diseases. Growth Factors 2024; 42:1-12. [PMID: 37906060 DOI: 10.1080/08977194.2023.2274579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Fibroblast growth factor 23 (FGF23) has been casually linked to numerous hypophosphatemic bone diseases, however connection with bone loss or fragility fractures is still a matter of debate. The purpose of this review is to explore and summarise the known actions of FGF23 in various pathological bone conditions. Besides implication in bone mineralisation, elevated FGF23 showed a pathological effecton bone remodelling, primarily by inhibiting osteoblast function. Unlike the weak association with bone mineral density, high values of FGF23 have been connected with fragility fracture prevalence. This review shows that its effects on bone are concomitantly present on multiple levels, affecting both qualitative and quantitative part of bone strength, eventually leading to impaired bone strength and increased tendency of fractures. Recognising FGF23 as a risk factor for the development of bone diseases and correcting its levels could lead to the reduction of morbidity and mortality in specific groups of patients.
Collapse
Affiliation(s)
- Andrija Jurina
- Department of Surgery, Division of General and Sport Traumatology and Orthopaedics, Merkur University Hospital, Zagreb, Croatia
| | - Dino Kasumović
- Department of Internal Medicine, Division of Nephrology and Dialysis, Dubrava University Hospital, Zagreb, Croatia
| | - Valentina Delimar
- Special Hospital for Medical Rehabilitation KrapinskeToplice, KrapinskeToplice, Croatia
| | - Tajana Filipec Kanižaj
- Department of Internal Medicine, Division of Gastroenterology, Merkur University Hospital, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mladen Japjec
- Department of Surgery, Division of General and Sport Traumatology and Orthopaedics, Merkur University Hospital, Zagreb, Croatia
| | - Tomislav Dujmović
- Department of Surgery, Division of General and Sport Traumatology and Orthopaedics, Merkur University Hospital, Zagreb, Croatia
| | - Marijana Vučić Lovrenčić
- Department of Clinical Chemistry and Laboratory Medicine, Merkur University Hospital, Zagreb, Croatia
| | - Mario Starešinić
- Department of Surgery, Division of General and Sport Traumatology and Orthopaedics, Merkur University Hospital, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
6
|
Bosman A, Ratsma DMA, van der Eerden BCJ, Zillikens MC. Case Report: Unexplained Mild Hypophosphatemia and Very High Serum FGF23 Concentrations. JBMR Plus 2023; 7:e10790. [PMID: 37808399 PMCID: PMC10556273 DOI: 10.1002/jbm4.10790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 10/10/2023] Open
Abstract
Fibroblast growth factor (FGF)23 is one of the major regulators of phosphate homeostasis. Hypophosphatemia can lead to muscle weakness, fatigue, and osteomalacia. In the setting of hypophosphatemia, serum FGF23 can be measured to differentiate between FGF23-mediated and non-FGF23-mediated renal phosphate wasting. C-terminal FGF23 (cFGF23) assays detect both cFGF23 and intact FGF23 (iFGF23). Circulating FGF23 is regulated by 1.25-dihydroxy-vitamin D, parathyroid hormone (PTH), serum phosphate, and serum calcium but also by, for example, iron status, inflammation, erythropoietin, and hypoxia-inducible-factor-1-α. We present the case of a 48-year-old woman with unexplained mild hypophosphatemia, very high cFGF23, and normal iFGF23. The patient proved to have an iron deficiency. Iron deficiency alters the iFGF23-to-cFGF23 ratio. After initiation of iron treatment, cFGF23 strongly decreased. This case report illustrates the limitation of cFGF23 assays and urges clinicians to be aware that cFGF23 concentrations do not necessarily reflect iFGF23 concentrations and that alternative causes for its elevation should be considered (eg, iron deficiency). © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ariadne Bosman
- Department of Internal MedicineErasmus MC, University Medical CenterRotterdamThe Netherlands
| | - Danielle MA Ratsma
- Department of Internal MedicineErasmus MC, University Medical CenterRotterdamThe Netherlands
| | - Bram CJ van der Eerden
- Department of Internal MedicineErasmus MC, University Medical CenterRotterdamThe Netherlands
| | - M Carola Zillikens
- Department of Internal MedicineErasmus MC, University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
7
|
Li X, Lozovatsky L, Tommasini SM, Fretz J, Finberg KE. Bone marrow sinusoidal endothelial cells are a site of Fgf23 upregulation in a mouse model of iron deficiency anemia. Blood Adv 2023; 7:5156-5171. [PMID: 37417950 PMCID: PMC10480544 DOI: 10.1182/bloodadvances.2022009524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/08/2023] Open
Abstract
Iron deficiency is a potent stimulator of fibroblast growth factor 23 (FGF23), a hormonal regulator of phosphate and vitamin D metabolism, that is classically thought to be produced by bone-embedded osteocytes. Here, we show that iron-deficient transmembrane serine protease 6 knockout (Tmprss6-/-) mice exhibit elevated circulating FGF23 and Fgf23 messenger RNA (mRNA) upregulation in the bone marrow (BM) but not the cortical bone. To clarify sites of Fgf23 promoter activity in Tmprss6-/- mice, we introduced a heterozygous enhanced green fluorescent protein (eGFP) reporter allele at the endogenous Fgf23 locus. Heterozygous Fgf23 disruption did not alter the severity of systemic iron deficiency or anemia in the Tmprss6-/- mice. Tmprss6-/-Fgf23+/eGFP mice showed green fluorescence in the vascular regions of BM sections and showed a subset of BM endothelial cells that were GFPbright by flow cytometry. Mining of transcriptomic data sets from mice with normal iron balance revealed higher Fgf23 mRNA in BM sinusoidal endothelial cells (BM-SECs) than that in other BM endothelial cell populations. Anti-GFP immunohistochemistry of fixed BM sections from Tmprss6-/-Fgf23+/eGFP mice revealed GFP expression in BM-SECs, which was more intense than in nonanemic controls. In addition, in mice with intact Tmprss6 alleles, Fgf23-eGFP reporter expression increased in BM-SECs following large-volume phlebotomy and also following erythropoietin treatment both ex vivo and in vivo. Collectively, our results identified BM-SECs as a novel site for Fgf23 upregulation in both acute and chronic anemia. Given the elevated serum erythropoietin in both anemic models, our findings raise the possibility that erythropoietin may act directly on BM-SECs to promote FGF23 production during anemia.
Collapse
Affiliation(s)
- Xiuqi Li
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | | | - Steven M. Tommasini
- Department of Orthopaedics & Rehabilitation, Yale School of Medicine, New Haven, CT
| | - Jackie Fretz
- Department of Orthopaedics & Rehabilitation, Yale School of Medicine, New Haven, CT
| | | |
Collapse
|
8
|
Noonan ML, Ni P, Solis E, Marambio YG, Agoro R, Chu X, Wang Y, Gao H, Xuei X, Clinkenbeard EL, Jiang G, Liu S, Stegen S, Carmeliet G, Thompson WR, Liu Y, Wan J, White KE. Osteocyte Egln1/Phd2 links oxygen sensing and biomineralization via FGF23. Bone Res 2023; 11:7. [PMID: 36650133 PMCID: PMC9845350 DOI: 10.1038/s41413-022-00241-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/29/2022] [Accepted: 11/03/2022] [Indexed: 01/19/2023] Open
Abstract
Osteocytes act within a hypoxic environment to control key steps in bone formation. FGF23, a critical phosphate-regulating hormone, is stimulated by low oxygen/iron in acute and chronic diseases, however the molecular mechanisms directing this process remain unclear. Our goal was to identify the osteocyte factors responsible for FGF23 production driven by changes in oxygen/iron utilization. Hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHI) which stabilize HIF transcription factors, increased Fgf23 in normal mice, as well as in osteocyte-like cells; in mice with conditional osteocyte Fgf23 deletion, circulating iFGF23 was suppressed. An inducible MSC cell line ('MPC2') underwent FG-4592 treatment and ATACseq/RNAseq, and demonstrated that differentiated osteocytes significantly increased HIF genomic accessibility versus progenitor cells. Integrative genomics also revealed increased prolyl hydroxylase Egln1 (Phd2) chromatin accessibility and expression, which was positively associated with osteocyte differentiation. In mice with chronic kidney disease (CKD), Phd1-3 enzymes were suppressed, consistent with FGF23 upregulation in this model. Conditional loss of Phd2 from osteocytes in vivo resulted in upregulated Fgf23, in line with our findings that the MPC2 cell line lacking Phd2 (CRISPR Phd2-KO cells) constitutively activated Fgf23 that was abolished by HIF1α blockade. In vitro, Phd2-KO cells lost iron-mediated suppression of Fgf23 and this activity was not compensated for by Phd1 or -3. In sum, osteocytes become adapted to oxygen/iron sensing during differentiation and are directly sensitive to bioavailable iron. Further, Phd2 is a critical mediator of osteocyte FGF23 production, thus our collective studies may provide new therapeutic targets for skeletal diseases involving disturbed oxygen/iron sensing.
Collapse
Affiliation(s)
- Megan L Noonan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Pu Ni
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Emmanuel Solis
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yamil G Marambio
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rafiou Agoro
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaona Chu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yue Wang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaoling Xuei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Erica L Clinkenbeard
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Guanglong Jiang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Steve Stegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000, Leuven, Belgium
| | - William R Thompson
- Department of Physical Therapy, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kenneth E White
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Departments of Medicine/Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
9
|
de Sire A, de Sire R, Curci C, Castiglione F, Wahli W. Role of Dietary Supplements and Probiotics in Modulating Microbiota and Bone Health: The Gut-Bone Axis. Cells 2022; 11:cells11040743. [PMID: 35203401 PMCID: PMC8870226 DOI: 10.3390/cells11040743] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoporosis is characterized by an alteration of bone microstructure with a decreased bone mineral density, leading to the incidence of fragility fractures. Around 200 million people are affected by osteoporosis, representing a major health burden worldwide. Several factors are involved in the pathogenesis of osteoporosis. Today, altered intestinal homeostasis is being investigated as a potential additional risk factor for reduced bone health and, therefore, as a novel potential therapeutic target. The intestinal microflora influences osteoclasts’ activity by regulating the serum levels of IGF-1, while also acting on the intestinal absorption of calcium. It is therefore not surprising that gut dysbiosis impacts bone health. Microbiota alterations affect the OPG/RANKL pathway in osteoclasts, and are correlated with reduced bone strength and quality. In this context, it has been hypothesized that dietary supplements, prebiotics, and probiotics contribute to the intestinal microecological balance that is important for bone health. The aim of the present comprehensive review is to describe the state of the art on the role of dietary supplements and probiotics as therapeutic agents for bone health regulation and osteoporosis, through gut microbiota modulation.
Collapse
Affiliation(s)
- Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
- Correspondence: (A.d.S.); (W.W.)
| | - Roberto de Sire
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy; (R.d.S.); (F.C.)
| | - Claudio Curci
- Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma, 46100 Mantova, Italy;
| | - Fabiana Castiglione
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy; (R.d.S.); (F.C.)
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore 308232, Singapore
- Toxalim Research Center in Food Toxicology (UMR 1331), French National Research Institute for Agriculture, Food, and the Environment (INRAE), F-31300 Toulouse, France
- Center for Integrative Genomics, University of Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
- Correspondence: (A.d.S.); (W.W.)
| |
Collapse
|
10
|
Limm-Chan B, Wesseling-Perry K, Pearl MH, Jung G, Tsai-Chambers E, Weng PL, Hanudel MR. Associations among erythropoietic, iron-related, and FGF23 parameters in pediatric kidney transplant recipients. Pediatr Nephrol 2021; 36:3241-3249. [PMID: 33903951 PMCID: PMC8448905 DOI: 10.1007/s00467-021-05081-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND In pediatric kidney transplant recipients, anemia is common and oftentimes multifactorial. Hemoglobin concentrations may be affected by traditional factors, such as kidney function and iron status, as well as novel parameters, such as fibroblast growth factor 23 (FGF23). METHODS Here, we evaluated associations among erythropoietic, iron-related, and FGF23 parameters in a cohort of pediatric kidney transplant recipients, hypothesizing that multiple factors are associated with hemoglobin concentrations. RESULTS In a cross-sectional analysis of 59 pediatric kidney transplant recipients (median (interquartile range) age 16.3 (13.5, 18.6) years, median estimated glomerular filtration rate (eGFR) 67 (54, 87) ml/min/1.73 m2), the median age-related hemoglobin standard deviation score (SDS) was -2.1 (-3.3, -1.1). Hemoglobin SDS was positively associated with eGFR and calcium, and was inversely associated with erythropoietin (EPO), mycophenolate dose, and total, but not intact, FGF23. In multivariable analysis, total FGF23 remained inversely associated with hemoglobin SDS, independent of eGFR, iron parameters, EPO, and inflammatory markers, suggesting a novel FGF23-hemoglobin association in pediatric kidney transplant patients. In a subset of patients with repeat measurements, only delta hepcidin was inversely associated with delta hemoglobin SDS. Also, delta EPO positively correlated with delta erythroferrone (ERFE), and delta ERFE inversely correlated with delta hepcidin, suggesting a possible physiologic role for the EPO-ERFE-hepcidin axis in the setting of chronic kidney disease (CKD). CONCLUSION Our study provides further insight into factors potentially associated with erythropoiesis in pediatric kidney transplant recipients. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Blair Limm-Chan
- Department of Pediatrics, Division of Pediatric Nephrology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, MDCC A2-383, Los Angeles, CA, 90095-1752, USA
| | - Katherine Wesseling-Perry
- Department of Pediatrics, Division of Pediatric Nephrology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, MDCC A2-383, Los Angeles, CA, 90095-1752, USA
| | - Meghan H Pearl
- Department of Pediatrics, Division of Pediatric Nephrology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, MDCC A2-383, Los Angeles, CA, 90095-1752, USA
| | - Grace Jung
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1752, USA
| | | | - Patricia L Weng
- Department of Pediatrics, Division of Pediatric Nephrology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, MDCC A2-383, Los Angeles, CA, 90095-1752, USA
| | - Mark R Hanudel
- Department of Pediatrics, Division of Pediatric Nephrology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, MDCC A2-383, Los Angeles, CA, 90095-1752, USA.
| |
Collapse
|
11
|
Jaschke N, Sipos W, Hofbauer LC, Rachner TD, Rauner M. Skeletal endocrinology: where evolutionary advantage meets disease. Bone Res 2021; 9:28. [PMID: 34050126 PMCID: PMC8163738 DOI: 10.1038/s41413-021-00149-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
The regulation of whole-body homeostasis by the skeleton is mediated by its capacity to secrete endocrine signaling molecules. Although bone-derived hormones confer several adaptive benefits, their physiological functions also involve trade-offs, thus eventually contributing to disease. In this manuscript, we discuss the origins and functions of two of the best-studied skeletal mediators, fibroblast growth factor 23 and osteocalcin, in an evolutionary context. Moreover, we provide a theoretical framework seeking to explain the broad involvement of these two hormones in amniote physiology as well as their potential to fuel the development and progression of diseases. Vice versa, we outline which perturbations might be amenable to manipulation of these systems and discuss limitations and ongoing challenges in skeletal endocrine research. Finally, we summarize unresolved questions and potential future studies in this thriving field.
Collapse
Affiliation(s)
- Nikolai Jaschke
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Wolfgang Sipos
- Clinical Department for Farm Animals, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Tilman D Rachner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
12
|
Castro-Mollo M, Gera S, Ruiz-Martinez M, Feola M, Gumerova A, Planoutene M, Clementelli C, Sangkhae V, Casu C, Kim SM, Ostland V, Han H, Nemeth E, Fleming R, Rivella S, Lizneva D, Yuen T, Zaidi M, Ginzburg Y. The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry. eLife 2021; 10:e68217. [PMID: 34002695 PMCID: PMC8205482 DOI: 10.7554/elife.68217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 01/19/2023] Open
Abstract
Background Erythroblast erythroferrone (ERFE) secretion inhibits hepcidin expression by sequestering several bone morphogenetic protein (BMP) family members to increase iron availability for erythropoiesis. Methods To address whether ERFE functions also in bone and whether the mechanism of ERFE action in bone involves BMPs, we utilize the Erfe-/- mouse model as well as β-thalassemic (Hbbth3/+) mice with systemic loss of ERFE expression. In additional, we employ comprehensive skeletal phenotyping analyses as well as functional assays in vitro to address mechanistically the function of ERFE in bone. Results We report that ERFE expression in osteoblasts is higher compared with erythroblasts, is independent of erythropoietin, and functional in suppressing hepatocyte hepcidin expression. Erfe-/- mice display low-bone-mass arising from increased bone resorption despite a concomitant increase in bone formation. Consistently, Erfe-/- osteoblasts exhibit enhanced mineralization, Sost and Rankl expression, and BMP-mediated signaling ex vivo. The ERFE effect on osteoclasts is mediated through increased osteoblastic RANKL and sclerostin expression, increasing osteoclastogenesis in Erfe-/- mice. Importantly, Erfe loss in Hbbth3/+mice, a disease model with increased ERFE expression, triggers profound osteoclastic bone resorption and bone loss. Conclusions Together, ERFE exerts an osteoprotective effect by modulating BMP signaling in osteoblasts, decreasing RANKL production to limit osteoclastogenesis, and prevents excessive bone loss during expanded erythropoiesis in β-thalassemia. Funding YZG acknowledges the support of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (R01 DK107670 to YZG and DK095112 to RF, SR, and YZG). MZ acknowledges the support of the National Institute on Aging (U19 AG60917) and NIDDK (R01 DK113627). TY acknowledges the support of the National Institute on Aging (R01 AG71870). SR acknowledges the support of NIDDK (R01 DK090554) and Commonwealth Universal Research Enhancement (CURE) Program Pennsylvania.
Collapse
Affiliation(s)
- Melanie Castro-Mollo
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sakshi Gera
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Marc Ruiz-Martinez
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Maria Feola
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anisa Gumerova
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Marina Planoutene
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Cara Clementelli
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Veena Sangkhae
- Center for Iron Disorders, University of California, Los Angeles (UCLA)Los AngelesUnited States
| | - Carla Casu
- Department of Pediatrics, Division of Hematology, and Penn Center for Musculoskeletal Disorders, Children’s Hospital of Philadelphia (CHOP), University of Pennsylvania, Perelman School of MedicinePhiladelphiaUnited States
| | - Se-Min Kim
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Huiling Han
- Intrinsic Lifesciences, LLCLaJollaUnited States
| | - Elizabeta Nemeth
- Center for Iron Disorders, University of California, Los Angeles (UCLA)Los AngelesUnited States
| | - Robert Fleming
- Department of Pediatrics, Saint Louis University School of MedicineSt LouisUnited States
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, and Penn Center for Musculoskeletal Disorders, Children’s Hospital of Philadelphia (CHOP), University of Pennsylvania, Perelman School of MedicinePhiladelphiaUnited States
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Mone Zaidi
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Yelena Ginzburg
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
13
|
Qu Z, Yang F, Yan Y, Hong J, Wang W, Li S, Jiang G, Yan S. Relationship between Serum Nutritional Factors and Bone Mineral Density: A Mendelian Randomization Study. J Clin Endocrinol Metab 2021; 106:e2434-e2443. [PMID: 33581692 DOI: 10.1210/clinem/dgab085] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Multiple risk factors have been implicated in the development of osteoporosis. This study examined potential associations between serum nutritional factors and bone mineral density (BMD). METHODS Six nutritional factors were selected as exposures. Outcomes included total body BMD (n = 66 945); BMD at the forearm (FA), femoral neck (FN) and lumbar spine (LS) (n = 8143, n = 32 735, and n = 28 498, respectively); estimated heel BMD (HL eBMD) (n = 394 929); and HL eBMD stratified by sex (n = 206 496). A 2-sample Mendelian randomization approach was adopted to estimate the association between serum nutritional factors and BMD. The threshold for adjusted P value was 1.39 × 10-3. RESULTS Serum calcium levels were inversely associated with LS BMD (effect = -0.55; 95% CI, -0.86 to -0.24; P = 0.001), whereas serum selenium levels were positively correlated with HL eBMD (effect = 0.22; 95% CI, 0.10 to 0.33; P = 1.70 × 10-4). Regarding nominal significance, there was a positive association between serum selenium levels and FA BMD. Nominally significant results were also obtained for serum retinol as well as vitamin E levels and HL eBMD. Moreover, sex-specific effects of serum retinol and vitamin E levels on BMD were observed in men. CONCLUSION Serum calcium and selenium levels influence BMD at specific skeletal sites. This implies that these nutritional factors play crucial roles in bone metabolism.
Collapse
Affiliation(s)
- Zihao Qu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangkun Yang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yishang Yan
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianqiao Hong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Sihao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Guangyao Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Shigui Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Ratajczak AE, Rychter AM, Zawada A, Dobrowolska A, Krela-Kaźmierczak I. Do Only Calcium and Vitamin D Matter? Micronutrients in the Diet of Inflammatory Bowel Diseases Patients and the Risk of Osteoporosis. Nutrients 2021; 13:nu13020525. [PMID: 33562891 PMCID: PMC7914453 DOI: 10.3390/nu13020525] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is one of the most common extraintestinal complications among patients suffering from inflammatory bowel diseases. The role of vitamin D and calcium in the prevention of a decreased bone mineral density is well known, although other nutrients, including micronutrients, are also of extreme importance. Despite the fact that zinc, copper, selenium, iron, cadmium, silicon and fluorine have not been frequently discussed with regard to the prevention of osteoporosis, it is possible that a deficiency or excess of the abovementioned elements may affect bone mineralization. Additionally, the risk of malnutrition, which is common in patients with ulcerative colitis or Crohn's disease, as well as the composition of gut microbiota, may be associated with micronutrients status.
Collapse
Affiliation(s)
- Alicja Ewa Ratajczak
- Correspondence: (A.E.R.); (I.K.-K.); Tel.: +48-667-385-996 (A.E.R.); +48-8691-343 (I.K.-K.); Fax: +48-8691-686 (A.E.R.)
| | | | | | | | - Iwona Krela-Kaźmierczak
- Correspondence: (A.E.R.); (I.K.-K.); Tel.: +48-667-385-996 (A.E.R.); +48-8691-343 (I.K.-K.); Fax: +48-8691-686 (A.E.R.)
| |
Collapse
|
15
|
Hannemann A, Nauck M, Völzke H, Weidner H, Platzbecker U, Hofbauer LC, Rauner M, Baschant U. Interactions of Anemia, FGF-23, and Bone in Healthy Adults-Results From the Study of Health in Pomerania (SHIP). J Clin Endocrinol Metab 2021; 106:e288-e299. [PMID: 33034626 DOI: 10.1210/clinem/dgaa716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT Osteoporosis and anemia are among the most common diseases in the aging population with an increasing prevalence worldwide. OBJECTIVE As the bone-derived hormone fibroblast growth factor 23 (FGF-23) was recently reported to regulate erythropoiesis, we examined age-related associations between hemoglobin levels and bone quality, bone turnover, and FGF-23 concentrations. DESIGN We used data from more than 5000 adult subjects who participated in the population-based cohorts of the Study of Health in Pomerania (SHIP and SHIP-Trend). Bone quality was assessed by quantitative ultrasound at the heel, bone turnover by measurement of carboxy-terminal telopeptide of type I collagen (CTX), and intact amino-terminal propeptide of type I procollagen (P1NP) serum concentrations, respectively. Anemia was defined as hemoglobin <13 g/dL in men and <12 g/dL in women. Carboxy-terminal FGF-23 levels were measured in plasma in a subset of 852 subjects. RESULTS Anemic subjects had poorer bone quality, higher fracture risk, and lower serum levels of P1NP than nonanemic individuals. Linear regression models revealed positive associations between hemoglobin and bone quality in subjects aged 40 or above and inverse associations with CTX in subjects aged 60 or above. Hemoglobin and FGF-23 concentrations were inversely associated, while FGF-23 was not related to bone quality or turnover. CONCLUSION Our data corroborate a close link between FGF-23 and anemia, which is related to poor bone quality in elderly people. We observed no direct association of FGF-23 with bone parameters. Further studies are needed clarifying the role of FGF-23 on bone and red blood cell production.
Collapse
Affiliation(s)
- Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Henry Völzke
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Heike Weidner
- Department of Medicine III and Center for Healthy Aging, Dresden Technical University Medical Center, Dresden, Germany
| | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, Leipzig University Hospital, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Dresden Technical University Medical Center, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Dresden Technical University Medical Center, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III and Center for Healthy Aging, Dresden Technical University Medical Center, Dresden, Germany
| |
Collapse
|
16
|
Abstract
Great strides over the past few decades have increased our understanding of the pathophysiology of hypophosphatemic disorders. Phosphate is critically important to a variety of physiologic processes, including skeletal growth, development and mineralization, as well as DNA, RNA, phospholipids, and signaling pathways. Consequently, hypophosphatemic disorders have effects on multiple systems, and may cause a variety of nonspecific signs and symptoms. The acute effects of hypophosphatemia include neuromuscular symptoms and compromise. However, the dominant effects of chronic hypophosphatemia are the effects on musculoskeletal function including rickets, osteomalacia and impaired growth during childhood. While the most common causes of chronic hypophosphatemia in children are congenital, some acquired conditions also result in hypophosphatemia during childhood through a variety of mechanisms. Improved understanding of the pathophysiology of these congenital conditions has led to novel therapeutic approaches. This article will review the pathophysiologic causes of congenital hypophosphatemia, their clinical consequences and medical therapy.
Collapse
Affiliation(s)
- Erik Allen Imel
- Division of Endocrinology, Departments of Medicine and Pediatrics, Indiana University School of Medicine, 1120 West Michigan Street, Gatch Building Room 365, Indianapolis, IN, 46112, USA.
| |
Collapse
|
17
|
Skrajnowska D, Jagielska A, Ruszczyńska A, Wagner B, Bielecki W, Bobrowska-Korczak B. Title Changes in the Mineral Composition of Rat Femoral Bones Induced by Implantation of LNCaP Prostate Cancer Cells and Dietary Supplementation. Nutrients 2020; 13:E100. [PMID: 33396969 PMCID: PMC7823861 DOI: 10.3390/nu13010100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is the second most frequent cancer in men and the fifth most common cause of death worldwide, with an estimated 378,553 deaths in 2020. Prostate cancer shows a strong tendency to form metastatic foci in the bones. A number of interactions between cancer cells attacking bones and cells of the bone matrix lead to destruction of the bone and growth of the tumour. The last few decades have seen increased interest in the precise role of minerals in human health and disease. Tumour cells accumulate various minerals that promote their intensive growth. Bone, as a storehouse of elements, can be a valuable source of them for the growing tumour. There are also reports suggesting that the presence of some tumours, e.g., of the breast, can adversely affect bone structure even in the absence of metastasis to this organ. This paper presents the effect of chronic dietary intake of calcium, iron and zinc, administered in doses corresponding maximally to twice their level in a standard diet, on homeostasis of selected elements (Ca, K, Zn, Fe, Cu, Sr, Ni, Co, Mn and Mo) in the femoral bones of healthy rats and rats with implanted cancer cells of the LNCaP line. The experiment was conducted over 90 days. After the adaptation period, the animals were randomly divided into four dietary groups: standard diet and supplementation with Zn, Fe and Ca. Every dietary group was divided into experimental group (with implanted cancer cells) and control group (without implanted cancer cells). The cancer cells (LnCaP) were implanted intraperitoneally in the amount 1 × 106 to the rats at day 90 of their lifetime. Bone tissue was dried and treated with microwave-assisted mineral digestation. Total elemental content was quantified by ICP-MS. Student's t-test and Anova or Kruskal-Wallis tests were applied in order to compare treatment and dietary groups. In the case of most of the diets, especially the standard diet, the femoral bones of rats with implanted LNCaP cells showed a clear downward trend in the content of the elements tested, which may be indicative of slow osteolysis taking place in the bone tissue. In the group of rats receiving the standard diet, there were significant reductions in the content of Mo (by 83%), Ca (25%), Co (22%), Mn (13%), K (13%) and Sr (9%) in the bone tissue of rats with implanted LNCaP cells in comparison with the control group receiving the same diet but without LNCaP implantation. Supplementation of the rat diet with calcium, zinc and iron decreased the frequency of these changes relative to the standard diet, which may indicate that the diet had an inhibitory effect on bone resorption in conditions of LNCaP implantation. The principal component analysis (PCA) score plot confirms the pronounced effect of implanted LNCaP cells and the standard diet on bone composition. At the same time, supplementation with calcium, zinc and iron seems to improve bone composition. The microelements that most often underwent quantitative changes in the experimental conditions were cobalt, manganese and molybdenum.
Collapse
Affiliation(s)
- Dorota Skrajnowska
- Faculty of Pharmacy with the Laboratory Medicine Division, Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Agata Jagielska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland; (A.J.); (A.R.); (B.W.)
| | - Anna Ruszczyńska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland; (A.J.); (A.R.); (B.W.)
| | - Barbara Wagner
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland; (A.J.); (A.R.); (B.W.)
| | - Wojciech Bielecki
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Live Sciences, Nowoursynowska 159c, 02-787 Warsaw, Poland;
| | - Barbara Bobrowska-Korczak
- Faculty of Pharmacy with the Laboratory Medicine Division, Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| |
Collapse
|
18
|
Enlund-Cerullo M, Hauta-Alus H, Valkama S, Rosendahl J, Andersson S, Mäkitie O, Holmlund-Suila E. Fibroblast growth factor 23 concentrations and modifying factors in children from age 12 to 24 months. Bone 2020; 141:115629. [PMID: 32919110 DOI: 10.1016/j.bone.2020.115629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/29/2020] [Accepted: 09/05/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Fibroblast growth factor 23 (FGF23) participates in phosphate, calcium and vitamin D metabolism. In children these interactions and modifying factors are largely unknown. PARTICIPANTS AND METHODS This study evaluates temporal changes and modifiers of FGF23 concentrations from 12 to 24 months, in healthy children, participating in a randomized vitamin D intervention (VIDI). Participants received vitamin D3 of 10 or 30 μg/day from age 2 weeks to 24 months. At 12 and 24 months, growth measurements and venous blood samples were obtained for analyses of intact (iFGF23) and C-terminal FGF23 (cFGF23), 25-hydroxyvitamin D (25-OHD), calcium, phosphate, parathyroid hormone, iron and ferritin. Changes in FGF23 and modifying factors were examined by linear mixed models. RESULTS The study included 594 infants. Girls had higher iFGF23 than boys (p < 0.001 for both 12 and 24 months), cFGF23 did not differ between the sexes. Adjusted mean iFGF23 decreased from 41.4 to 38.1 pg/mL in boys (p < 0.001) and from 45.2 to 42.5 pg/mL in girls (p = 0.002). Adjusted mean cFGF23 decreased from 2.89 to 2.00 pmol/L in boys (p < 0.001) and from 2.92 to 1.93 pmol/L in girls (p < 0.001). Iron modified FGF23 in both sexes, associating positively with iFGF23 and inversely with cFGF23. In girls, 25-OHD modified iFGF23. In boys, season modified FGF23, possibly through seasonal differences in 25-OHD. Vitamin D intervention dose did not affect FGF23. CONCLUSIONS FGF23 decreases from 12 to 24 months. Girls have higher iFGF23 than boys, at both time points. Iron modifies FGF23 in both sexes.
Collapse
Affiliation(s)
- Maria Enlund-Cerullo
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland.
| | - Helena Hauta-Alus
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Saara Valkama
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Jenni Rosendahl
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Sture Andersson
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Outi Mäkitie
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland; Center for Molecular Medicine, Karolinska Institutet, Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Elisa Holmlund-Suila
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
19
|
Ozsen A, Furman A, Guran T, Bereket A, Turan S. Fibroblast Growth Factor-23 and Matrix Extracellular Phosphoglycoprotein Levels in Healthy Children and, Pregnant and Puerperal Women. Horm Res Paediatr 2020; 92:302-310. [PMID: 32187608 DOI: 10.1159/000506477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/12/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION AND OBJECTIVE Fibroblast growth factor (FGF-23) and matrix extracellular phosphoglycoprotein (MEPE) are bone-related factors and their role in physiologic conditions and in different life stages are unknown. We aimed to evaluate age- and pregnancy-related changes in MEPE and FGF-23 levels and their correlations with calcium (Ca)-phosphate (PO4) metabolism. METHODS The study population included 96 healthy children (50 females) and 31 women (11 healthy, 10 pregnant, and 10 lactating). Intact FGF-23 (iFGF-23), MEPE, ferritin, parathyroid hormone (PTH), 25-OH vitamin D, alkaline phosphatase (ALP), IGF-I, IGFBP-3 and, Ca, PO4 and creatine (Cre) in serum (S) and urine (U) samples were determined. The renal phosphate threshold (TmPO4/GFR) and z-scores for the parameters that show age-related changes were calculated. RESULTS Serum iFGF-23 concentrations showed nonsignificant changes with age; however, MEPE decreased with age, reaching the lowest levels after 7 years. Additionally, higher serum MEPE concentrations were observed during pregnancy. Other than ALP, all other examined parameters demonstrated age-related changes. ALP, BUN, S-Cre, and U-Ca/Cre showed puerperal and pregnancy related changes together with MEPE. iFGF-23 was positively correlated with S-PO4 and TmPO4/GFR. MEPE was positively correlated with S-Ca, S-PO4 and TmPO4/GFR and negatively correlated with PTH, IGF-1, and IGFBP-3. CONCLUSION Not iFGF-23 but MEPE showed age-dependent changes and was affected by pregnancy. Although, MEPE and iFGF-23 did not correlate with each other, they seem to affect serum and urinary phosphate in the same direction. Additionally, we found evidence that ferritin and growth factors might have a role in serum calcium and phosphate regulation.
Collapse
Affiliation(s)
- Ahu Ozsen
- Division of Pediatric Endocrinology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Andrzej Furman
- Institute of Environmental Sciences, Bogazici University, Istanbul, Turkey
| | - Tulay Guran
- Division of Pediatric Endocrinology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Abdullah Bereket
- Division of Pediatric Endocrinology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Serap Turan
- Division of Pediatric Endocrinology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey,
| |
Collapse
|
20
|
A Review of the Potential Application of Osteocyte-Related Biomarkers, Fibroblast Growth Factor-23, Sclerostin, and Dickkopf-1 in Predicting Osteoporosis and Fractures. Diagnostics (Basel) 2020; 10:diagnostics10030145. [PMID: 32155909 PMCID: PMC7151094 DOI: 10.3390/diagnostics10030145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/15/2023] Open
Abstract
Bone turnover markers (BTMs) derived from the secretory activities of osteoblasts and the matrix-degrading activities of osteoclasts are useful in monitoring the progression of osteoporosis and the efficacy of anti-osteoporotic treatment. However, the usefulness of BTMs in predicting osteoporosis remains elusive. Osteocytes play a central role in regulating bone formation and resorption. The proteins secreted by osteocytes, such as fibroblast growth factor-23 (FGF23), sclerostin (SOST), and dickkopf-1 (DKK1), could be candidates for osteoporosis screening and fracture prediction. This review summarizes the current evidence on the potential of osteocyte-related proteins as biomarkers for osteoporosis and fracture prediction. The literature reports that SOST may be a potential marker for osteoporosis screening but not for fracture prediction. FGF23 is a potential marker for increased fracture risk, but more studies are needed to confirm its usefulness. The role of DKK1 as a marker to predict osteoporosis and fracture risk cannot be confirmed due to a lack of consistent evidence. In conclusion, circulating osteocyte markers are potential osteoporosis biomarkers, but more studies are warranted to validate their clinical use.
Collapse
|
21
|
Imel EA, Liu Z, Coffman M, Acton D, Mehta R, Econs MJ. Oral Iron Replacement Normalizes Fibroblast Growth Factor 23 in Iron-Deficient Patients With Autosomal Dominant Hypophosphatemic Rickets. J Bone Miner Res 2020; 35:231-238. [PMID: 31652009 PMCID: PMC7333537 DOI: 10.1002/jbmr.3878] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 01/14/2023]
Abstract
Autosomal dominant hypophosphatemic rickets (ADHR) is caused by mutations impairing cleavage of fibroblast growth factor 23 (FGF23). FGF23 gene expression increases during iron deficiency. In humans and mice with the ADHR mutation, iron deficiency results in increased intact FGF23 concentrations and hypophosphatemia. We conducted a prospective open label pilot clinical trial of oral iron replacement over 12 months in ADHR patients to test the hypothesis that oral iron administration would normalize FGF23 concentrations. Eligibility criteria included: FGF23 mutation; and either serum iron <50 μg/dL; or serum iron 50 to 100 μg/dL combined with hypophosphatemia and intact FGF23 >30 pg/mL at screening. Key exclusion criteria were kidney disease and pregnancy. Oral iron supplementation started at 65 mg daily and was titrated based on fasting serum iron concentration. The primary outcome was decrease in fasting intact FGF23 by ≥20% from baseline. Six adults (three male, three female) having the FGF23-R176Q mutation were enrolled; five completed the 12-month protocol. At baseline three of five subjects had severely symptomatic hypophosphatemia (phosphorus <2.5 mg/dL) and received calcitriol with or without phosphate concurrent with oral iron during the trial. The primary outcome was met by 4 of 5 (80%) subjects all by month 4, and 5 of 5 had normal intact FGF23 at month 12. Median (minimum, maximum) intact FGF23 concentration decreased from 172 (20, 192) pg/mL at baseline to 47 (17, 78) pg/mL at month 4 and 42 (19, 63) pg/mL at month 12. Median ferritin increased from 18.6 (7.7, 82.5) ng/mL at baseline to 78.0 (49.6, 261.0) ng/mL at month 12. During iron treatment, all three subjects with baseline hypophosphatemia normalized serum phosphorus, had markedly improved symptoms, and were able to discontinue calcitriol and phosphate. Oral iron repletion normalized FGF23 and phosphorus in symptomatic, iron-deficient ADHR subjects. Thus, the standard approach to ADHR should include recognition, treatment, and prevention of iron deficiency. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Erik A Imel
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ziyue Liu
- Department of Biostatistics, Indiana University School of Public Health, Indianapolis, IN, USA
| | - Melissa Coffman
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dena Acton
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rakesh Mehta
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael J Econs
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
22
|
FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat Rev Nephrol 2019; 16:7-19. [PMID: 31519999 DOI: 10.1038/s41581-019-0189-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 23 (FGF23) was initially characterized as an important regulator of phosphate and calcium homeostasis. New research advances demonstrate that FGF23 is also linked to iron economy, inflammation and erythropoiesis. These advances have been fuelled, in part, by the serendipitous development of two distinct FGF23 assays that can substitute for invasive bone biopsies to infer the activity of the three main steps of FGF23 regulation in bone: transcription, post-translational modification and peptide cleavage. This 'liquid bone biopsy for FGF23 dynamics' enables large-scale longitudinal studies of FGF23 regulation that would otherwise be impossible in humans. The balance between FGF23 production, post-translational modification and cleavage is maintained or perturbed in different hereditary monogenic conditions and in acquired conditions that mimic these genetic disorders, including iron deficiency, inflammation, treatment with ferric carboxymaltose and chronic kidney disease. Looking ahead, a deeper understanding of the relationships between FGF23 regulation, iron homeostasis and erythropoiesis can be leveraged to devise novel therapeutic targets for treatment of anaemia and states of FGF23 excess, including chronic kidney disease.
Collapse
|
23
|
Rupp T, Butscheidt S, Vettorazzi E, Oheim R, Barvencik F, Amling M, Rolvien T. High FGF23 levels are associated with impaired trabecular bone microarchitecture in patients with osteoporosis. Osteoporos Int 2019; 30:1655-1662. [PMID: 31044263 DOI: 10.1007/s00198-019-04996-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/21/2019] [Indexed: 11/29/2022]
Abstract
UNLABELLED This cross-sectional study examined the associations between c-terminal FGF23 levels, laboratory markers of bone metabolism and bone microarchitecture in 82 patients with osteoporosis. Higher FGF23 levels were associated with impaired trabecular but not cortical bone microarchitecture, and this was confirmed after adjusting for confounding variables such as age or BMI. INTRODUCTION Fibroblast growth factor 23 (FGF23) is an endocrine hormone-regulating phosphate and vitamin D metabolism. While its mode of action is well understood in diseases such as hereditary forms of rickets or tumor-induced osteomalacia, the interpretation of FGF23 levels in patients with osteoporosis with regard to bone microarchitecture is less clear. METHODS C-terminal FGF23 levels and bone turnover markers were assessed in 82 patients with osteoporosis (i.e., DXA T-score ≤ - 2.5 at the lumbar spine or total hip). Bone microarchitecture was measured by high-resolution peripheral quantitative computed tomography (HR-pQCT) at the distal radius and tibia. Data were analyzed in a cross-sectional design using correlation and regression models. RESULTS We found a significant negative logarithmic correlation between FGF23 levels and trabecular but not cortical bone microarchitecture at both skeletal sites. Furthermore, using a multiple linear regression model, we confirmed FGF23 as a predictor for reduced trabecular parameters even when adjusting for confounding factors such as age, BMI, phosphate, bone-specific alkaline phosphatase, vitamin D3, and PTH. CONCLUSIONS Taken together, high FGF23 levels are associated with impaired trabecular bone microarchitecture in osteoporosis patients, and this association seems to occur after adjustment of confounding variables including phosphate and vitamin D. Future longitudinal studies are now needed to validate our findings and investigate FGF23 in relation to fracture risk.
Collapse
Affiliation(s)
- T Rupp
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - S Butscheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - E Vettorazzi
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - R Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - F Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - M Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - T Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany.
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
24
|
Kuo TH, Lin WH, Chao JY, Wu AB, Tseng CC, Chang YT, Liou HH, Wang MC. Serum sclerostin levels are positively related to bone mineral density in peritoneal dialysis patients: a cross-sectional study. BMC Nephrol 2019; 20:266. [PMID: 31315601 PMCID: PMC6637583 DOI: 10.1186/s12882-019-1452-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Background Sclerostin, an antagonist of the Wingless-type mouse mammary tumor virus integration site (Wnt) pathway that regulates bone metabolism, is a potential contributor of chronic kidney disease (CKD)–mineral and bone disorder (MBD), which has various forms of presentation, from osteoporosis to vascular calcification. The positive association of sclerostin with bone mineral density (BMD) has been demonstrated in CKD and hemodialysis (HD) patients but not in peritoneal dialysis (PD) patients. This study assessed the association between sclerostin and BMD in PD patients. Methods Eighty-nine PD patients were enrolled; their sera were collected for measurement of sclerostin and other CKD–MBD-related markers. BMD was also assessed simultaneously. We examined the relationship between sclerostin and each parameter through Spearman correlation analysis and by comparing group data between patients with above- and below-median sclerostin levels. Univariate and multiple logistic regression models were employed to define the most predictive of sclerostin levels in the above-median category. Results Bivariate analysis revealed that sclerostin was correlated with spine BMD (r = 0.271, P = 0.011), spine BMD T-score (r = 0.274, P = 0.010), spine BMD Z-score (r = 0.237, P = 0.027), and intact parathyroid hormone (PTH; r = − 0.357, P < 0.001) after adjustments for age and sex. High BMD, old age, male sex, increased weight and height, diabetes, and high osteocalcin and uric acid levels were observed in patients with high serum sclerostin levels and an inverse relation was noticed between PTH and sclerostin. Univariate logistic regression analysis demonstrated that BMD is positively correlated with above-median sclerostin levels (odds ratio [OR] = 65.61, P = 0.002); the correlation was retained even after multivariate adjustment (OR = 121.5, P = 0.007). Conclusions For the first time, this study demonstrated a positive association between serum sclerostin levels and BMD in the PD population.
Collapse
Affiliation(s)
- Te-Hui Kuo
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Shengli Rd., North Dist, Tainan, 704, Taiwan.,Department and Graduate Institute of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jo-Yen Chao
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Shengli Rd., North Dist, Tainan, 704, Taiwan.,Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - An-Bang Wu
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Shengli Rd., North Dist, Tainan, 704, Taiwan.,Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Chung Tseng
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Shengli Rd., North Dist, Tainan, 704, Taiwan
| | - Yu-Tzu Chang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Shengli Rd., North Dist, Tainan, 704, Taiwan
| | - Hung-Hsiang Liou
- Division of Nephrology, Department of Internal Medicine, Hsin-Jen Hospital, 395 Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 242, Taiwan.
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Shengli Rd., North Dist, Tainan, 704, Taiwan. .,Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
25
|
van Vuren AJ, Gaillard CAJM, Eisenga MF, van Wijk R, van Beers EJ. The EPO-FGF23 Signaling Pathway in Erythroid Progenitor Cells: Opening a New Area of Research. Front Physiol 2019; 10:304. [PMID: 30971944 PMCID: PMC6443968 DOI: 10.3389/fphys.2019.00304] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/07/2019] [Indexed: 12/14/2022] Open
Abstract
We provide an overview of the evidence for an erythropoietin-fibroblast growth factor 23 (FGF23) signaling pathway directly influencing erythroid cells in the bone marrow. We outline its importance for red blood cell production, which might add, among others, to the understanding of bone marrow responses to endogenous erythropoietin in rare hereditary anemias. FGF23 is a hormone that is mainly known as the core regulator of phosphate and vitamin D metabolism and it has been recognized as an important regulator of bone mineralization. Osseous tissue has been regarded as the major source of FGF23. Interestingly, erythroid progenitor cells highly express FGF23 protein and carry the FGF receptor. This implies that erythroid progenitor cells could be a prime target in FGF23 biology. FGF23 is formed as an intact, biologically active protein (iFGF23) and proteolytic cleavage results in the formation of the presumed inactive C-terminal tail of FGF23 (cFGF23). FGF23-knockout or injection of an iFGF23 blocking peptide in mice results in increased erythropoiesis, reduced erythroid cell apoptosis and elevated renal and bone marrow erythropoietin mRNA expression with increased levels of circulating erythropoietin. By competitive inhibition, a relative increase in cFGF23 compared to iFGF23 results in reduced FGF23 receptor signaling and mimics the positive effects of FGF23-knockout or iFGF23 blocking peptide. Injection of recombinant erythropoietin increases FGF23 mRNA expression in the bone marrow with a concomitant increase in circulating FGF23 protein. However, erythropoietin also augments iFGF23 cleavage, thereby decreasing the iFGF23 to cFGF23 ratio. Therefore, the net result of erythropoietin is a reduction of iFGF23 to cFGF23 ratio, which inhibits the effects of iFGF23 on erythropoiesis and erythropoietin production. Elucidation of the EPO-FGF23 signaling pathway and its downstream signaling in hereditary anemias with chronic hemolysis or ineffective erythropoiesis adds to the understanding of the pathophysiology of these diseases and its complications; in addition, it provides promising new targets for treatment downstream of erythropoietin in the signaling cascade.
Collapse
Affiliation(s)
- Annelies J van Vuren
- Van Creveldkliniek, Department of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Carlo A J M Gaillard
- Department of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Michele F Eisenga
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Eduard J van Beers
- Van Creveldkliniek, Department of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
26
|
Gaffney-Stomberg E. The Impact of Trace Minerals on Bone Metabolism. Biol Trace Elem Res 2019; 188:26-34. [PMID: 30467628 DOI: 10.1007/s12011-018-1583-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
Bone is a metabolically active tissue that responds to alterations in dietary intake and nutritional status. It is ~ 35% protein, mostly collagen which provides an organic scaffolding for bone mineral. The mineral is the remaining ~ 65% of bone tissue and composed mostly of calcium and phosphate in a form that is structurally similar to mineral within the apatite group. The skeletal tissue is constantly undergoing turnover through resorption by osteoclasts coupled with formation by osteoblasts. In this regard, the overall bone balance is determined by the relative contribution of each of these processes. In addition to macro minerals such as calcium, phosphorus, and magnesium which have well-known roles in bone health, trace elements such as boron, iron, zinc, copper, and selenium also impact bone metabolism. Effects of trace elements on skeletal metabolism and tissue properties may be indirect through regulation of macro mineral metabolism, or direct by affecting osteoblast or osteoclast proliferation or activity, or finally through incorporation into the bone mineral matrix. This review focuses on the skeletal impact of the following trace elements: boron, iron, zinc, copper, and selenium, and overviews the state of the evidence for each of these minerals.
Collapse
Affiliation(s)
- Erin Gaffney-Stomberg
- Military Performance Division of the US Army Research Institute of Environmental Medicine, Natick, MA, 01760, USA.
| |
Collapse
|
27
|
Rauner M, Baschant U, Roetto A, Pellegrino RM, Rother S, Salbach-Hirsch J, Weidner H, Hintze V, Campbell G, Petzold A, Lemaitre R, Henry I, Bellido T, Theurl I, Altamura S, Colucci S, Muckenthaler MU, Schett G, Komla Ebri D, Bassett JHD, Williams GR, Platzbecker U, Hofbauer LC. Transferrin receptor 2 controls bone mass and pathological bone formation via BMP and Wnt signaling. Nat Metab 2019; 1:111-124. [PMID: 30886999 PMCID: PMC6420074 DOI: 10.1038/s42255-018-0005-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transferrin receptor 2 (Tfr2) is mainly expressed in the liver and controls iron homeostasis. Here, we identify Tfr2 as a regulator of bone homeostasis that inhibits bone formation. Mice lacking Tfr2 display increased bone mass and mineralization independent of iron homeostasis and hepatic Tfr2. Bone marrow transplantation experiments and studies of cell-specific Tfr2 knockout mice demonstrate that Tfr2 impairs BMP-p38MAPK signaling and decreases expression of the Wnt inhibitor sclerostin specifically in osteoblasts. Reactivation of MAPK or overexpression of sclerostin rescues skeletal abnormalities in Tfr2 knockout mice. We further show that the extracellular domain of Tfr2 binds BMPs and inhibits BMP-2-induced heterotopic ossification by acting as a decoy receptor. These data indicate that Tfr2 limits bone formation by modulating BMP signaling, possibly through direct interaction with BMP either as a receptor or as a co-receptor in a complex with other BMP receptors. Finally, the Tfr2 extracellular domain may be effective in the treatment of conditions associated with pathological bone formation.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Antonella Roetto
- Department of Clinical and Biological Science, University of Torino, Torino, Italy
| | | | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Juliane Salbach-Hirsch
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Heike Weidner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Graeme Campbell
- Institute of Biomechanics, Hamburg University of Technology, Hamburg, Germany
| | - Andreas Petzold
- Deep Sequencing, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Regis Lemaitre
- Max Planck Institute for Cell Biology and Genetics, Protein Unit, Dresden, Germany
| | - Ian Henry
- Max Planck Institute for Cell Biology and Genetics, Scientific Computing Facility, Dresden, Germany
| | - Teresita Bellido
- Department of Anatomy and Cell Biology and Department of Medicine, Division of Endocrinology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Igor Theurl
- Department of Internal Medicine VI, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Silvia Colucci
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Martina U. Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nuremberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Davide Komla Ebri
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - J. H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Uwe Platzbecker
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
- Department of Medicine II, University Clinic Leipzig, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Dresden, Germany
| | - Lorenz C. Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW We will review non-renal-related mechanisms of fibroblast growth factor 23 (FGF23) pathophysiology. RECENT FINDINGS FGF23 production and metabolism may be affected by many bone, mineral, and kidney factors. However, it has recently been demonstrated that other factors, such as iron status, erythropoietin, and inflammation, also affect FGF23 production and metabolism. As these non-mineral factors are especially relevant in the setting of chronic kidney disease (CKD), they may represent emerging determinants of CKD-associated elevated FGF23 levels. Moreover, FGF23 itself may promote anemia and inflammation, thus contributing to the multifactorial etiologies of these CKD-associated comorbidities. CKD-relevant, non-mineral-related, bidirectional relationships exist between FGF23 and anemia, and between FGF23 and inflammation. Iron deficiency, anemia, and inflammation affect FGF23 production and metabolism, and FGF23 itself may contribute to anemia and inflammation, highlighting complex interactions that may affect aspects of CKD pathogenesis and treatment.
Collapse
Affiliation(s)
- Mark R Hanudel
- UCLA Department of Pediatrics, Division of Pediatric Nephrology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, MDCC A2-383, Los Angeles, CA, 90095-1752, USA.
| | - Marciana Laster
- UCLA Department of Pediatrics, Division of Pediatric Nephrology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, MDCC A2-383, Los Angeles, CA, 90095-1752, USA
| | - Isidro B Salusky
- UCLA Department of Pediatrics, Division of Pediatric Nephrology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, MDCC A2-383, Los Angeles, CA, 90095-1752, USA
| |
Collapse
|
29
|
Robinson-Cohen C, Bartz TM, Lai D, Ikizler TA, Peacock M, Imel EA, Michos ED, Foroud TM, Akesson K, Taylor KD, Malmgren L, Matsushita K, Nethander M, Eriksson J, Ohlsson C, Mellström D, Wolf M, Ljunggren O, McGuigan F, Rotter JI, Karlsson M, Econs MJ, Ix JH, Lutsey PL, Psaty BM, de Boer IH, Kestenbaum BR. Genetic Variants Associated with Circulating Fibroblast Growth Factor 23. J Am Soc Nephrol 2018; 29:2583-2592. [PMID: 30217807 PMCID: PMC6171267 DOI: 10.1681/asn.2018020192] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/06/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Fibroblast growth factor 23 (FGF23), a bone-derived hormone that regulates phosphorus and vitamin D metabolism, contributes to the pathogenesis of mineral and bone disorders in CKD and is an emerging cardiovascular risk factor. Central elements of FGF23 regulation remain incompletely understood; genetic variation may help explain interindividual differences. METHODS We performed a meta-analysis of genome-wide association studies of circulating FGF23 concentrations among 16,624 participants of European ancestry from seven cohort studies, excluding participants with eGFR<30 ml/min per 1.73 m2 to focus on FGF23 under normal conditions. We evaluated the association of single-nucleotide polymorphisms (SNPs) with natural log-transformed FGF23 concentration, adjusted for age, sex, study site, and principal components of ancestry. A second model additionally adjusted for BMI and eGFR. RESULTS We discovered 154 SNPs from five independent regions associated with FGF23 concentration. The SNP with the strongest association, rs17216707 (P=3.0×10-24), lies upstream of CYP24A1, which encodes the primary catabolic enzyme for 1,25-dihydroxyvitamin D and 25-hydroxyvitamin D. Each additional copy of the T allele at this locus is associated with 5% higher FGF23 concentration. Another locus strongly associated with variations in FGF23 concentration is rs11741640, within RGS14 and upstream of SLC34A1 (a gene involved in renal phosphate transport). Additional adjustment for BMI and eGFR did not materially alter the magnitude of these associations. Another top locus (within ABO, the ABO blood group transferase gene) was no longer statistically significant at the genome-wide level. CONCLUSIONS Common genetic variants located near genes involved in vitamin D metabolism and renal phosphate transport are associated with differences in circulating FGF23 concentrations.
Collapse
Affiliation(s)
- Cassianne Robinson-Cohen
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Departments of Biostatistics and Medicine
| | - Dongbing Lai
- Departments of Medical and Molecular Genetics and
| | - T Alp Ikizler
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Erik A Imel
- Medicine, Indiana University, Indianapolis, Indiana
| | - Erin D Michos
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Kristina Akesson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Science Malmö, Lund University, Malmö, Sweden
- Department of Orthopaedics, Skåne University Hospital, Malmö, Sweden
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles Medical Center, Torrance, California
| | - Linnea Malmgren
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Science Malmö, Lund University, Malmö, Sweden
- Department of Orthopaedics, Skåne University Hospital, Malmö, Sweden
| | - Kunihiro Matsushita
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, and
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
| | | | - Joel Eriksson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Mellström
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, and Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Osten Ljunggren
- Department of Medical Sciences, Endocrinology and Mineral Metabolism, Uppsala University, Uppsala, Sweden
| | - Fiona McGuigan
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Science Malmö, Lund University, Malmö, Sweden
- Department of Orthopaedics, Skåne University Hospital, Malmö, Sweden
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles Medical Center, Torrance, California
| | - Magnus Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Science Malmö, Lund University, Malmö, Sweden
- Department of Orthopaedics, Skåne University Hospital, Malmö, Sweden
| | - Michael J Econs
- Departments of Medical and Molecular Genetics and
- Medicine, Indiana University, Indianapolis, Indiana
| | - Joachim H Ix
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, California
- Nephrology Section, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Pamela L Lutsey
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Health Services and Medicine, and
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Ian H de Boer
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Bryan R Kestenbaum
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
30
|
Klein K, Asaad S, Econs M, Rubin JE. Severe FGF23-based hypophosphataemic osteomalacia due to ferric carboxymaltose administration. BMJ Case Rep 2018; 2018:bcr-2017-222851. [PMID: 29298794 DOI: 10.1136/bcr-2017-222851] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ferric carboxymaltose (FCM) is a novel iron formulation increasingly prescribed due to its effectiveness and fast infusion time. FCM administration can cause an asymptomatic hypophosphataemia secondary to fibroblast growth factor 23 (FGF23) dysregulation. In patients with chronic iron needs, however, a severe, long-lasting hypophosphataemia can lead to osteomalacia with associated bone pain. Lack of awareness of this complication results in delayed time to diagnosis and significant morbidity. We report a case of a patient with Crohn's disease and chronic iron-deficiency anaemia receiving multiple doses of FCM who developed severe hypophosphataemic osteomalacia with urinary phosphate loss and increased FGF23. FGF23 excess and osteomalacia resolved only months after FCM discontinuation and aggressive phosphate repletion. Potential mechanisms of FGF23 dysregulation are discussed, with the aim of raising awareness of this significant side effect for prescribers of chronic intravenous iron supplementation, and to help guide future studies to determine the safety of FCM in all patient populations.
Collapse
Affiliation(s)
- Klara Klein
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Shonda Asaad
- Southeastern Medical Oncology, Jacksonville, North Carolina, USA
| | - Michael Econs
- Department of Endocrinology and Metabolism, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Janet E Rubin
- Department of Medicine/Endocrinology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
31
|
Econs MJ. Genetic diseases resulting from disordered FGF23/klotho biology. Bone 2017; 100:56-61. [PMID: 27746322 DOI: 10.1016/j.bone.2016.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Michael J Econs
- Indiana University School of Medicine, 1120 W. Michigan Street, Gatch Clinical Building 459, Indianapolis, Indiana 46202-5111, United States.
| |
Collapse
|
32
|
Lewerin C, Ljunggren Ö, Nilsson-Ehle H, Karlsson MK, Herlitz H, Lorentzon M, Ohlsson C, Mellström D. Low serum iron is associated with high serum intact FGF23 in elderly men: The Swedish MrOS study. Bone 2017; 98:1-8. [PMID: 28212898 DOI: 10.1016/j.bone.2017.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/19/2017] [Accepted: 02/13/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Fibroblast growth factor (FGF23) is a protein that is produced by osteoblasts and osteocytes. Increased serum levels of FGF23 have been associated with increased risks of osteoporotic fractures and cardiovascular disease, particularly in participants with poor renal function. Serum iron (Fe) has been suggested as a regulator of FGF23 homeostasis. OBJECTIVE To determine whether Fe and iron status are determinants of the levels of intact FGF23 (iFGF23) in elderly men. METHODS The MrOS study is a population-based study of elderly men (N=1010; mean age, 75.3years; range, 69-81years). The levels of Fe, transferrin saturation (TS), and ferritin were evaluated in relation to the serum concentrations of iFGF23 before and after adjustments for confounders. RESULTS TS <15% was found in 3.5% (34/977) of the participants, who had a higher median level iFGF23 compared with the remaining subjects (47.4μmol/L vs. 41.9μmol/L, p=0.008). The levels of iFGF23 correlated negatively (un-adjusted) with the levels of Fe (r=-0.17, p<0.001), TS (r=-0.16, p<0.001) and serum ferritin (r=-0.07, p=0.022). In addition, in participants with estimated glomerular filtration rate eGFRCystatin C>60mL/min, the levels of iFGF23 correlated (age-adjusted) negatively with the levels of Fe (r=-0.15, p<0.001) and TS (r=-0.17, p<0.001). The level of iFGF23 correlated positively (un-adjusted) with lumbar spine bone mineral density (BMD) (r=0.14, p<0.001), total body BMD (r=0.11, p=0.001), and total hip BMD (r=0.09, p=0.004). The corresponding correlations, when adjusted for age, weight, and height were: r=0.08, p=0.018; r=0.05, p=0.120; and r=0.02, p=0.624, respectively. No associations were found between BMD and the levels of Fe or TS. Multiple step-wise linear regression analyses [adjusting for age, body mass index (BMI), comorbidity index, cystatin C, C-reactive protein (hs-CRP), serum vitamin D 25-OH (25OHD), phosphate, calcium, parathyroid hormone (PTH), erythropoietin, hemoglobin, lumbar spine BMD, apolipoprotein B/A1 ratio] were performed in three separate models with Fe, TS or ferritin as potential explanatory variables. Fe and TS, but not ferritin, were independent predictors of iFGF23 level (standardized β-values: -0.10, p<0.001; -0.10, p<0.001; and -0.05, p=0.062, respectively). CONCLUSION Low levels of Fe in elderly men are associated with high levels of iFGF23, independently of markers of inflammation and renal function, suggesting an iron-related pathway for FGF23 regulation.
Collapse
Affiliation(s)
- Catharina Lewerin
- Section of Hematology and Coagulation, Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Östen Ljunggren
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden.
| | - Herman Nilsson-Ehle
- Section of Hematology and Coagulation, Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Magnus K Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences and Orthopedics, Lund University, Malmö, Sweden.
| | - Hans Herlitz
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Mattias Lorentzon
- Center for Bone and Arthritis Research (CBAR), Departments of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Dept of Geriatric Medicine, Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Claes Ohlsson
- Center for Bone and Arthritis Research (CBAR), Departments of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Dan Mellström
- Center for Bone and Arthritis Research (CBAR), Departments of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Dept of Geriatric Medicine, Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
33
|
Mitchell DM, Jüppner H, Burnett-Bowie SAM. FGF23 Is Not Associated With Age-Related Changes in Phosphate, but Enhances Renal Calcium Reabsorption in Girls. J Clin Endocrinol Metab 2017; 102:1151-1160. [PMID: 28323960 PMCID: PMC5460726 DOI: 10.1210/jc.2016-4038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 01/25/2017] [Indexed: 02/06/2023]
Abstract
CONTEXT Fibroblast growth factor (FGF)23 is a critical determinant of phosphate homeostasis. The role of FGF23, however, in regulating physiologic changes in serum phosphate and renal phosphate handling across childhood is not well described. In addition, animal models have suggested a role for FGF23 in regulating renal calcium excretion. OBJECTIVE To assess changes in FGF23 concentrations across childhood in relation to changes in mineral ions and hormones of mineral ion homeostasis. DESIGN This was a cross-sectional study. SETTING The study was conducted at a Clinical Research Center at a tertiary care hospital. PATIENTS OR OTHER PARTICIPANTS Ninety healthy girls ages 9 to 18 years were recruited from the surrounding community. MAIN OUTCOME MEASURES The associations of intact and C-terminal FGF23 concentrations with measures of mineral ion homeostasis were determined by univariable and multivariable linear regression. RESULTS Serum phosphate and renal phosphate excretion varied with age, as expected (R = -0.49, P < 0.001 and R = -0.48, P < 0.001, respectively). Neither intact nor C-terminal FGF23 varied with age, and FGF23 was not correlated with serum or urinary phosphate. Intact FGF23 was positively correlated with serum calcium (R = 0.39, P < 0.001) and negatively correlated with urinary calcium/creatinine ratio (R = -0.27, P = 0.011). CONCLUSIONS The changes in serum and urinary phosphate handling across childhood do not appear to be determined by alterations in FGF23 concentrations. These data may point to a role for FGF23 in calcium regulation in human physiology.
Collapse
Affiliation(s)
| | - Harald Jüppner
- Endocrine Unit,
- Pediatric Nephrology Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
| | | |
Collapse
|
34
|
Kanbay M, Vervloet M, Cozzolino M, Siriopol D, Covic A, Goldsmith D, Solak Y. Novel Faces of Fibroblast Growth Factor 23 (FGF23): Iron Deficiency, Inflammation, Insulin Resistance, Left Ventricular Hypertrophy, Proteinuria and Acute Kidney Injury. Calcif Tissue Int 2017; 100:217-228. [PMID: 27826644 DOI: 10.1007/s00223-016-0206-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
FGF23 is a hormone that appears as the core regulator of phosphate metabolism. Great deal of data has accumulated to demonstrate increased FGF23 secretion from the bone to compensate for even subtle increases in serum phosphorus long before intact PTH. However, recent evidence points to the fact that actions and interactions of FGF23 are not limited solely to phosphate metabolism. FGF23 may be implicated in iron metabolism and erythropoiesis, inflammation, insulin resistance, proteinuria, acute kidney injury and left ventricular hypertrophy. In this review, we will summarize latest experimental and clinical data examining impact of FGF23 on aforementioned pathophysiologic pathways/disorders.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Sariyer, Istanbul, Turkey.
| | - Marc Vervloet
- Department of Nephrology, VU University Medical Center, Amsterdam, The Netherlands
- Institute for Cardiovascular Research VU (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Mario Cozzolino
- Renal Unit, San Paolo Hospital Milan, Department of Health and Science, University of Milan, Milan, Italy
| | - Dimitrie Siriopol
- Nephrology Clinic, Dialysis and Renal Transplant Center, 'C.I. PARHON' University Hospital, 'Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Adrian Covic
- Nephrology Clinic, Dialysis and Renal Transplant Center, 'C.I. PARHON' University Hospital, 'Grigore T. Popa' University of Medicine, Iasi, Romania
| | - David Goldsmith
- Renal and Transplantation Department, Guy's and St Thomas' Hospitals, London, UK
| | - Yalcin Solak
- Department of Nephrology, Sakarya Training and Research Hospital, Sakarya, Turkey
| |
Collapse
|