1
|
Hua R, Truong VA, Fajardo RJ, Guda T, Gu S, Jiang JX. Connexin hemichannels drive lactation-induced osteocyte acidification and perilacunar-canalicular remodeling. Cell Rep 2024; 43:114363. [PMID: 38935505 PMCID: PMC11318086 DOI: 10.1016/j.celrep.2024.114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
The maternal skeleton experiences significant bone loss during lactation, followed by rapid restoration post weaning. Parathyroid-related protein (PTHrP)-induced acidification of the perilacunar matrix by osteocytes is crucial in this process, yet its mechanism remains unclear. Here, we identify Cx43 hemichannels (HCs) as key mediators of osteocyte acidification and perilacunar-canalicular remodeling (PLR). Utilizing transgenic mouse models expressing dominant-negative Cx43 mutants, we show that mice with impaired Cx43 HCs exhibit attenuated lactation-induced responses compared to wild-type and only gap junction-impaired groups, including lacunar enlargement, upregulation of PLR genes, and bone loss with compromised mechanical properties. Furthermore, inhibition of HCs by a Cx43 antibody blunts PTHrP-induced calcium influx and protein kinase A activation, followed by impaired osteocyte acidification. Additionally, impeded HCs suppress bone recovery during the post-lactation period. Our findings highlight the pivotal role of Cx43 HCs in orchestrating dynamic bone changes during lactation and recovery by regulating acidification and remodeling enzyme expression.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Vu A Truong
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78209, USA
| | - Roberto J Fajardo
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78209, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
2
|
Emini L, Salbach‐Hirsch J, Krug J, Jähn‐Rickert K, Busse B, Rauner M, Hofbauer LC. Utility and Limitations of TALLYHO/JngJ as a Model for Type 2 Diabetes-Induced Bone Disease. JBMR Plus 2023; 7:e10843. [PMID: 38130754 PMCID: PMC10731141 DOI: 10.1002/jbm4.10843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/06/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) increases risk of fractures due to bone microstructural and material deficits, though the mechanisms remain unclear. Preclinical models mimicking diabetic bone disease are required to further understand its pathogenesis. The TALLYHO/JngJ (TH) mouse is a polygenic model recapitulating adolescent-onset T2DM in humans. Due to incomplete penetrance of the phenotype ~25% of male TH mice never develop hyperglycemia, providing a strain-matched nondiabetic control. We performed a comprehensive characterization of the metabolic and skeletal phenotype of diabetic TH mice and compared them to either their nondiabetic TH controls or the recommended SWR/J controls to evaluate their suitability to study diabetic bone disease in humans. Compared to both controls, male TH mice with T2DM exhibited higher blood glucose levels, weight along with impaired glucose tolerance and insulin sensitivity. TH mice with/without T2DM displayed higher cortical bone parameters and lower trabecular bone parameters in the femurs and vertebrae compared to SWR/J. The mechanical properties remained unchanged for all three groups except for a low-energy failure in TH mice with T2DM only compared to SWR/J. Histomorphometry analyses only revealed higher number of osteoclasts and osteocytes for SWR/J compared to both groups of TH. Bone turnover markers procollagen type 1 N-terminal propeptide (P1NP) and tartrate-resistant acid phosphatase (TRAP) were low for both groups of TH mice compared to SWR/J. Silver nitrate staining of the femurs revealed low number of osteocyte lacunar and dendrites in TH mice with T2DM. Three-dimensional assessment showed reduced lacunar parameters in trabecular and cortical bone. Notably, osteocyte morphology changed in TH mice with T2DM compared to SWR/J. In summary, our study highlights the utility of the TH mouse to study T2DM, but not necessarily T2DM-induced bone disease, as there were no differences in bone strength and bone cell parameters between diabetic and non-diabetic TH mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lejla Emini
- Department of Medicine III and Center for Healthy AgingTechnische Universität Dresden Medical CenterDresdenGermany
| | - Juliane Salbach‐Hirsch
- Department of Medicine III and Center for Healthy AgingTechnische Universität Dresden Medical CenterDresdenGermany
| | - Johannes Krug
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Katharina Jähn‐Rickert
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Mildred Scheel Cancer Career Center HamburgUniversity Cancer Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Björn Busse
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Mildred Scheel Cancer Career Center HamburgUniversity Cancer Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy AgingTechnische Universität Dresden Medical CenterDresdenGermany
| | - Lorenz C. Hofbauer
- Department of Medicine III and Center for Healthy AgingTechnische Universität Dresden Medical CenterDresdenGermany
| |
Collapse
|
3
|
Trivedi T, Manaa M, John S, Reiken S, Murthy S, Pagnotti GM, Dole NS, She Y, Suresh S, Hain BA, Regan J, Ofer R, Wright L, Robling A, Cao X, Alliston T, Marks AR, Waning DL, Mohammad KS, Guise TA. Zoledronic acid improves bone quality and muscle function in a high bone turnover state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543305. [PMID: 37333318 PMCID: PMC10274651 DOI: 10.1101/2023.06.01.543305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
SUMMARY Zoledronic acid (ZA) prevents muscle weakness in mice with bone metastases; however, its role in muscle weakness in non-tumor-associated metabolic bone diseases and as an effective treatment modality for the prevention of muscle weakness associated with bone disorders, is unknown. We demonstrate the role of ZA-treatment on bone and muscle using a mouse model of accelerated bone remodeling, which represents the clinical manifestation of non-tumor associated metabolic bone disease. ZA increased bone mass and strength and rescued osteocyte lacunocanalicular organization. Short-term ZA treatment increased muscle mass, whereas prolonged, preventive treatment improved muscle mass and function. In these mice, muscle fiber-type shifted from oxidative to glycolytic and ZA restored normal muscle fiber distribution. By blocking TGFβ release from bone, ZA improved muscle function, promoted myoblast differentiation and stabilized Ryanodine Receptor-1 calcium channel. These data demonstrate the beneficial effects of ZA in maintaining bone health and preserving muscle mass and function in a model of metabolic bone disease. Context and significance TGFβ is a bone regulatory molecule which is stored in bone matrix, released during bone remodeling, and must be maintained at an optimal level for the good health of the bone. Excess TGFβ causes several bone disorders and skeletal muscle weakness. Reducing excess TGFβ release from bone using zoledronic acid in mice not only improved bone volume and strength but also increased muscle mass, and muscle function. Progressive muscle weakness coexists with bone disorders, decreasing quality of life and increasing morbidity and mortality. Currently, there is a critical need for treatments improving muscle mass and function in patients with debilitating weakness. Zoledronic acid's benefit extends beyond bone and could also be useful in treating muscle weakness associated with bone disorders.
Collapse
|
4
|
Wölfel EM, Lademann F, Hemmatian H, Blouin S, Messmer P, Hofbauer LC, Busse B, Rauner M, Jähn-Rickert K, Tsourdi E. Reduced Bone Mass and Increased Osteocyte Tartrate-Resistant Acid Phosphatase (TRAP) Activity, But Not Low Mineralized Matrix Around Osteocyte Lacunae, Are Restored After Recovery From Exogenous Hyperthyroidism in Male Mice. J Bone Miner Res 2023; 38:131-143. [PMID: 36331133 DOI: 10.1002/jbmr.4736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Hyperthyroidism causes secondary osteoporosis through favoring bone resorption over bone formation, leading to bone loss with elevated bone fragility. Osteocytes that reside within lacunae inside the mineralized bone matrix orchestrate the process of bone remodeling and can themselves actively resorb bone upon certain stimuli. Nevertheless, the interaction between thyroid hormones and osteocytes and the impact of hyperthyroidism on osteocyte cell function are still unknown. In a preliminary study, we analyzed bones from male C57BL/6 mice with drug-induced hyperthyroidism, which led to mild osteocytic osteolysis with 1.14-fold larger osteocyte lacunae and by 108.33% higher tartrate-resistant acid phosphatase (TRAP) activity in osteocytes of hyperthyroid mice compared to euthyroid mice. To test whether hyperthyroidism-induced bone changes are reversible, we rendered male mice hyperthyroid by adding levothyroxine into their drinking water for 4 weeks, followed by a weaning period of 4 weeks with access to normal drinking water. Hyperthyroid mice displayed cortical and trabecular bone loss due to high bone turnover, which recovered with weaning. Although canalicular number and osteocyte lacunar area were similar in euthyroid, hyperthyroid and weaned mice, the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL)-positive osteocytes was 100% lower in the weaning group compared to euthyroid mice and the osteocytic TRAP activity was eightfold higher in hyperthyroid animals. The latter, along with a 3.75% lower average mineralization around the osteocyte lacunae in trabecular bone, suggests osteocytic osteolysis activity that, however, did not result in significantly enlarged osteocyte lacunae. In conclusion, we show a recovery of bone microarchitecture and turnover after reversal of hyperthyroidism to a euthyroid state. In contrast, osteocytic osteolysis was initiated in hyperthyroidism, but its effects were not reversed after 4 weeks of weaning. Due to the vast number of osteocytes in bone, we speculate that even minor individual cell functions might contribute to altered bone quality and mineral homeostasis in the setting of hyperthyroidism-induced bone disease. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eva Maria Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Lademann
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Haniyeh Hemmatian
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Phaedra Messmer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| |
Collapse
|
5
|
Isojima T, Walker EC, Poulton IJ, McGregor NE, Wicks IP, Gooi JH, Martin TJ, Sims NA. G-CSF Receptor Deletion Amplifies Cortical Bone Dysfunction in Mice With STAT3 Hyperactivation in Osteocytes. J Bone Miner Res 2022; 37:1876-1890. [PMID: 35856245 DOI: 10.1002/jbmr.4654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/27/2022] [Accepted: 07/16/2022] [Indexed: 11/09/2022]
Abstract
Bone strength is determined by the structure and composition of its thickened outer shell (cortical bone), yet the mechanisms controlling cortical consolidation are poorly understood. Cortical bone maturation depends on SOCS3-mediated suppression of IL-6 cytokine-induced STAT3 phosphorylation in osteocytes, the cellular network embedded in bone matrix. Because SOCS3 also suppresses granulocyte-colony-stimulating factor receptor (G-CSFR) signaling, we here tested whether global G-CSFR (Csf3r) ablation altereed bone structure in male and female mice lacking SOCS3 in osteocytes, (Dmp1Cre :Socs3f/f mice). Dmp1Cre :Socs3f/f :Csf3r-/- mice were generated by crossing Dmp1Cre :Socs3f/f mice with Csf3r-/- mice. Although G-CSFR is not expressed in osteocytes, Csf3r deletion further delayed cortical consolidation in Dmp1Cre :Socs3f/f mice. Micro-CT images revealed extensive, highly porous low-density bone, with little true cortex in the diaphysis, even at 26 weeks of age; including more low-density bone and less high-density bone in Dmp1Cre :Socs3f/f :Csf3r-/- mice than controls. By histology, the area where cortical bone would normally be found contained immature compressed trabecular bone in Dmp1Cre :Socs3f/f :Csf3r-/- mice and greater than normal levels of intracortical osteoclasts, extensive new woven bone formation, and the presence of more intracortical blood vessels than the already high levels observed in Dmp1Cre :Socs3f/f controls. qRT-PCR of cortical bone from Dmp1Cre :Socs3f/f :Csf3r-/- mice also showed more than a doubling of mRNA levels for osteoclasts, osteoblasts, RANKL, and angiogenesis markers. The further delay in cortical bone maturation was associated with significantly more phospho-STAT1 and phospho-STAT3-positive osteocytes, and a threefold increase in STAT1 and STAT3 target gene mRNA levels, suggesting G-CSFR deletion further increases STAT signaling beyond that of Dmp1Cre :Socs3f/f bone. G-CSFR deficiency therefore promotes STAT1/3 signaling in osteocytes, and when SOCS3 negative feedback is absent, elevated local angiogenesis, bone resorption, and bone formation delays cortical bone consolidation. This points to a critical role of G-CSF in replacing condensed trabecular bone with lamellar bone during cortical bone formation. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tsuyoshi Isojima
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Emma C Walker
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | | | | | - Ian P Wicks
- Walter and Eliza Hall Institute, Parkville, Australia
| | - Jonathan H Gooi
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Australia
| |
Collapse
|
6
|
Zhao D, Hua R, Riquelme MA, Cheng H, Guda T, Xu H, Gu S, Jiang JX. Osteocytes regulate bone anabolic response to mechanical loading in male mice via activation of integrin α5. Bone Res 2022; 10:49. [PMID: 35851577 PMCID: PMC9293884 DOI: 10.1038/s41413-022-00222-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Physical mechanical stimulation can maintain and even increase bone mass. Here, we report an important role of osteocytic integrin α5 in regulating the anabolic response of bone to mechanical loading using an Itga5 conditional gene knockout (cKO) mouse model. Integrin α5 gene deletion increased apoptotic osteocytes and reduced cortical anabolic responses to tibial compression including decreased endosteal osteoblasts and bone formation, and increased endosteal osteoclasts and bone resorption, contributing to the decreased bone area fraction and biomechanical properties, leading to an enlarged bone marrow area in cKO mice. Similar disruption of anabolic responses to mechanical loading was also detected in cKO trabecular bone. Moreover, integrin α5 deficiency impeded load-induced Cx43 hemichannel opening, and production and release of PGE2, an anabolic factor, resulting in attenuated effects of the loading on catabolic sclerostin (SOST) reduction and anabolic β-catenin increase. Together, this study shows an indispensable role of integrin α5 in osteocytes in the anabolic action of mechanical loading on skeletal tissue through activation of hemichannels and PGE2-evoked gene expression. Integrin α5 could act as a potential new therapeutic target for bone loss, especially in the elderly population with impeded mechanical sensitivity.
Collapse
Affiliation(s)
- Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Hongyun Cheng
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas, San Antonio, TX, USA
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
7
|
Liu R, Imangali N, Ethiraj LP, Carney TJ, Winkler C. Transcriptome Profiling of Osteoblasts in a Medaka ( Oryzias latipes) Osteoporosis Model Identifies Mmp13b as Crucial for Osteoclast Activation. Front Cell Dev Biol 2022; 10:775512. [PMID: 35281094 PMCID: PMC8911226 DOI: 10.3389/fcell.2022.775512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteases (MMPs) play crucial roles in extracellular matrix (ECM) modulation during osteoclast-driven bone remodeling. In the present study, we used transcriptome profiling of bone cells in a medaka model for osteoporosis and bone regeneration to identify factors critical for bone remodeling and homeostasis. This identified mmp13b, which was strongly expressed in osteoblast progenitors and upregulated under osteoporotic conditions and during regeneration of bony fin rays. To characterize the role of mmp13b in bone remodeling, we generated medaka mmp13b mutants by CRISPR/Cas9. We found that mmp13b mutants form normal numbers of osteoblasts and osteoclasts. However, osteoclast activity was severely impaired under osteoporotic conditions. In mmp13b mutants and embryos treated with the MMP13 inhibitor CL-82198, unmineralized collagens and mineralized bone matrix failed to be degraded. In addition, the dynamic migratory behavior of activated osteoclasts was severely affected in mmp13b mutants. Expression analysis showed that maturation genes were downregulated in mmp13b deficient osteoclasts suggesting that they remain in an immature and non-activated state. We also found that fin regeneration was delayed in mmp13b mutants with a concomitant alteration of the ECM and reduced numbers of osteoblast progenitors in regenerating joint regions. Together, our findings suggest that osteoblast-derived Mmp13b alters the bone ECM to allow the maturation and activation of osteoclasts during bone remodeling in a paracrine manner. Mmp13b-induced ECM alterations are also required to facilitate osteoblast progenitor recruitment and full regeneration of bony fin rays.
Collapse
Affiliation(s)
- Ranran Liu
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Nurgul Imangali
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Lalith Prabha Ethiraj
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Tom James Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Ward DL, Schroeder L, Tinius A, Niccoli S, Voth R, Lees SJ, Silcox M, Viola B, Sanzo P. Ovariectomized Rat Model and Shape Variation in the Bony Labyrinth. Anat Rec (Hoboken) 2022; 305:3283-3296. [PMID: 35103405 DOI: 10.1002/ar.24878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022]
Abstract
Postmenopausal osteoporosis is a serious concern in aging individuals, but has not been explored for its potential to alter the shape of the inner ear by way of increased remodelling in the otic capsule. The otic capsule, or bony labyrinth, is thought to experience uniquely limited remodelling after development due to high levels of osteoprotegerin. On this basis, despite the widespread remodelling that accompanies osteoporosis, we hypothesize that both the shape and volume of the semicircular canals will resist such changes. To test this hypothesis, we conducted three-dimensional geometric morphometric shape analysis on microcomputed tomographic data collected on the semicircular canals of an ovariectomized (OVX) rat model. A Procrustes ANOVA found no statistically significant differences in shape between surgery and sham groups, and morphological disparity testing likewise found no differences in shape variation. Univariate testing found no differences in semicircular volume between OVX and control groups. The range of variation in the OVX group, however, is greater than in the sham group but this difference does not reach statistical significance, perhaps because of a combination of small effect size and low sample size. This finding suggests that labyrinthine shape remains a tool for assessing phylogeny and function in the fossil record, but that it is possible that osteoporosis may be contributing to intraspecific shape variation in the bony labyrinth. This effect warrants further exploration at a microstructural level with continued focus on variables related to remodelling. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Devin L Ward
- University of Toronto, Department of Anthropology, Toronto, Ontario
| | - Lauren Schroeder
- University of Toronto Mississauga, Department of Anthropology, Mississauga, Ontario
| | - Alexander Tinius
- University of Toronto, Department of Ecology & Evolutionary Biology, Toronto, Ontario
| | - Sarah Niccoli
- Northern Ontario School of Medicine, Thunder Bay, Ontario
| | - Riley Voth
- Northern Ontario School of Medicine, Thunder Bay, Ontario
| | - Simon J Lees
- Northern Ontario School of Medicine, Thunder Bay, Ontario
| | - Mary Silcox
- University of Toronto Scarborough, Department of Anthropology, Scarborough, Ontario
| | - Bence Viola
- University of Toronto, Department of Anthropology, Toronto, Ontario
| | - Paolo Sanzo
- Lakehead University, Northern Ontario School of Medicine and School of Kinesiology, Thunder Bay, Ontario
| |
Collapse
|
9
|
Wang JS, Kamath T, Mazur CM, Mirzamohammadi F, Rotter D, Hojo H, Castro CD, Tokavanich N, Patel R, Govea N, Enishi T, Wu Y, da Silva Martins J, Bruce M, Brooks DJ, Bouxsein ML, Tokarz D, Lin CP, Abdul A, Macosko EZ, Fiscaletti M, Munns CF, Ryder P, Kost-Alimova M, Byrne P, Cimini B, Fujiwara M, Kronenberg HM, Wein MN. Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin. Nat Commun 2021; 12:6271. [PMID: 34725346 PMCID: PMC8560803 DOI: 10.1038/s41467-021-26571-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
Some osteoblasts embed within bone matrix, change shape, and become dendrite-bearing osteocytes. The circuitry that drives dendrite formation during "osteocytogenesis" is poorly understood. Here we show that deletion of Sp7 in osteoblasts and osteocytes causes defects in osteocyte dendrites. Profiling of Sp7 target genes and binding sites reveals unexpected repurposing of this transcription factor to drive dendrite formation. Osteocrin is a Sp7 target gene that promotes osteocyte dendrite formation and rescues defects in Sp7-deficient mice. Single-cell RNA-sequencing demonstrates defects in osteocyte maturation in the absence of Sp7. Sp7-dependent osteocyte gene networks are associated with human skeletal diseases. Moreover, humans with a SP7R316C mutation show defective osteocyte morphology. Sp7-dependent genes that mark osteocytes are enriched in neurons, highlighting shared features between osteocytic and neuronal connectivity. These findings reveal a role for Sp7 and its target gene Osteocrin in osteocytogenesis, revealing that pathways that control osteocyte development influence human bone diseases.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tushar Kamath
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Courtney M Mazur
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fatemeh Mirzamohammadi
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Plastic and Reconstructive Surgery, Wright State University, Dayton, OH, USA
| | - Daniel Rotter
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Christian D Castro
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rushi Patel
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicolas Govea
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
| | - Tetsuya Enishi
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopedic Surgery, Tokushima Municipal Hospital, Tokushima, Japan
| | - Yunshu Wu
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Michael Bruce
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel J Brooks
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MaA, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MaA, USA
| | - Danielle Tokarz
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Saint Mary's University, Halifax, Canada
| | - Charles P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abdul Abdul
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa Fiscaletti
- Pediatric Department, Sainte-Justine University Hospital Centre, Montreal, Canada
| | - Craig F Munns
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Paediatrics & Child Health, University of Sydney, Sydney, 2006, Australia
| | - Pearl Ryder
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Imaging Platform, Cambridge, MA, USA
| | - Maria Kost-Alimova
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Center for the Development of Therapeutics, Cambridge, MA, USA
| | - Patrick Byrne
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Center for the Development of Therapeutics, Cambridge, MA, USA
| | - Beth Cimini
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Imaging Platform, Cambridge, MA, USA
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
10
|
Muñoz A, Docaj A, Ugarteburu M, Carriero A. Poor bone matrix quality: What can be done about it? Curr Osteoporos Rep 2021; 19:510-531. [PMID: 34414561 DOI: 10.1007/s11914-021-00696-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF THE REVIEW Bone's ability to withstand load resisting fracture and adapting to it highly depends on the quality of its matrix and its regulators. This review focuses on the contribution of bone quality to fracture resistance and possible therapeutic targets for skeletal fragility in aging and disease. RECENT FINDINGS The highly organized, hierarchical composite structure of bone extracellular matrix together with its (re)modeling mechanisms and microdamage dynamics determines its stiffness, strength, and toughness. Aging and disease affect the biological processes regulating bone quality, thus resulting in defective extracellular matrix and bone fragility. Targeted therapies are being developed to restore bone's mechanical integrity. However, their current limitations include low tissue selectivity and adverse side effects. Biological and mechanical insights into the mechanisms controlling bone quality, together with advances in drug delivery and studies in animal models, will accelerate the development and translation to clinical application of effective targeted-therapeutics for bone fragility.
Collapse
Affiliation(s)
- Asier Muñoz
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, Steinman Bldg. Room 403C, New York, NY, 10031, USA
| | - Anxhela Docaj
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, Steinman Bldg. Room 403C, New York, NY, 10031, USA
| | - Maialen Ugarteburu
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, Steinman Bldg. Room 403C, New York, NY, 10031, USA
| | - Alessandra Carriero
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, Steinman Bldg. Room 403C, New York, NY, 10031, USA.
| |
Collapse
|
11
|
Lyles KW, Riska KM, Smith SL. Is silence golden… In this context, not so much. J Am Geriatr Soc 2021; 69:3074-3076. [PMID: 34498269 DOI: 10.1111/jgs.17444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Kenneth W Lyles
- Duke University Medical Center, Durham, North Carolina, USA.,VA Medical Center, Durham, North Carolina, USA
| | | | - Sherri L Smith
- Duke University Medical Center, Durham, North Carolina, USA.,VA Medical Center, Durham, North Carolina, USA
| |
Collapse
|
12
|
Kuroda Y, Kawaai K, Hatano N, Wu Y, Takano H, Momose A, Ishimoto T, Nakano T, Roschger P, Blouin S, Matsuo K. Hypermineralization of Hearing-Related Bones by a Specific Osteoblast Subtype. J Bone Miner Res 2021; 36:1535-1547. [PMID: 33905562 PMCID: PMC8453739 DOI: 10.1002/jbmr.4320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Auditory ossicles in the middle ear and bony labyrinth of the inner ear are highly mineralized in adult mammals. Cellular mechanisms underlying formation of dense bone during development are unknown. Here, we found that osteoblast-like cells synthesizing highly mineralized hearing-related bones produce both type I and type II collagens as the bone matrix, while conventional osteoblasts and chondrocytes primarily produce type I and type II collagens, respectively. Furthermore, these osteoblast-like cells were not labeled in a "conventional osteoblast"-specific green fluorescent protein (GFP) mouse line. Type II collagen-producing osteoblast-like cells were not chondrocytes as they express osteocalcin, localize along alizarin-labeled osteoid, and form osteocyte lacunae and canaliculi, as do conventional osteoblasts. Auditory ossicles and the bony labyrinth exhibit not only higher bone matrix mineralization but also a higher degree of apatite orientation than do long bones. Therefore, we conclude that these type II collagen-producing hypermineralizing osteoblasts (termed here auditory osteoblasts) represent a new osteoblast subtype. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Katsuhiro Kawaai
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Naoya Hatano
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Yanlin Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Hidekazu Takano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Atsushi Momose
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
De Paolis A, Miller BJ, Doube M, Bodey AJ, Rau C, Richter CP, Cardoso L, Carriero A. Increased cochlear otic capsule thickness and intracortical canal porosity in the oim mouse model of osteogenesis imperfecta. J Struct Biol 2021; 213:107708. [PMID: 33581284 DOI: 10.1016/j.jsb.2021.107708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 01/19/2023]
Abstract
Osteogenesis imperfecta (OI or brittle bone disease) is a group of genetic disorders of the connective tissues caused mainly by mutations in the genes encoding collagen type I. Clinical manifestations of OI include skeletal fragility, bone deformities, and severe functional disabilities, such as hearing loss. Progressive hearing loss, usually beginning in childhood, affects approximately 70% of people with OI with more than half of the cases involving the inner ear. There is no cure for OI nor a treatment to ameliorate its corresponding hearing loss, and very little is known about the properties of OI ears. In this study, we investigate the morphology of the otic capsule and the cochlea in the inner ear of the oim mouse model of OI. High-resolution 3D images of 8-week old oim and WT inner ears were acquired using synchrotron microtomography. Volumetric morphometric measurements were conducted for the otic capsule, its intracortical canal network and osteocyte lacunae, and for the cochlear spiral ducts. Our results show that the morphology of the cochlea is preserved in the oim ears at 8 weeks of age but the otic capsule has a greater cortical thickness and altered intracortical bone porosity, with a larger number and volume density of highly branched canals in the oim otic capsule. These results portray a state of compromised bone quality in the otic capsule of the oim mice that may contribute to their hearing loss.
Collapse
Affiliation(s)
- Annalisa De Paolis
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | | | - Michael Doube
- Department of Infectious Diseases and Public Health, City University of Hong Kong, HK
| | - Andrew John Bodey
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Christoph Rau
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; University of Manchester, Manchester, UK
| | - Claus-Peter Richter
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Luis Cardoso
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Alessandra Carriero
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| |
Collapse
|
14
|
Veselka B, Locher H, de Groot JCMJ, Davies GR, Snoeck C, Kootker LM. Strontium isotope ratios related to childhood mobility: Revisiting sampling strategies of the calcined human pars petrosa ossis temporalis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9038. [PMID: 33370492 DOI: 10.1002/rcm.9038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/30/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
RATIONALE Strontium isotope analysis can be applied to the calcined human otic capsule in the petrous part (pars petrosa ossis temporalis; PP) to gain information on childhood mobility in archaeological and forensic contexts. However, only a thin layer of the otic capsule, the inner cortex, demonstrates virtually no remodelling. This paper proposes an improved sampling method for the accurate sampling of the inner cortex of the otic capsule to ensure that 87 Sr/86 Sr ratios related to early childhood are obtained. METHODS Calcined rib and diaphyseal fragments and PP from ten cremation deposits are sampled for strontium isotope analysis, whereby our improved sampling strategy is applied to sample the inner cortex of the otic capsule. This allows inter- and intraskeletal 87 Sr/86 Sr comparison within an Iron Age collection from Oss, The Netherlands. RESULTS Forty percent (4/10) of the calcined PP that were evaluated for this study show marked differences in 87 Sr/86 Sr (0.00035-0.00065) between the inner cortex and the bone sample surrounding this layer, the external cortex that has higher remodelling rates. Differences in 87 Sr/86 Sr between various skeletal elements also aided in the identification of the minimum number of individuals. CONCLUSIONS Our study demonstrates the problematic nature of the external cortex and stresses the need for a precise sampling method of the correct areas of the otic capsule. This can only be obtained by cutting the calcined PP midmodiolarly to enable adequate combustion degree assessment, and the correct identification and sampling of the inner cortex of the otic capsule.
Collapse
Affiliation(s)
- Barbara Veselka
- Maritime Cultures Research Institute, Department of Arts, Sciences, and Archaeology, Vrije Universiteit Brussel, Belgium
| | - Heiko Locher
- Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, The Netherlands
| | - John C M J de Groot
- Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, The Netherlands
| | - Gareth R Davies
- Geology and Geochemistry Cluster, Vrije Universiteit Amsterdam, The Netherlands
- Co van Ledden Hulsebosch Center (CLHC), The Netherlands
| | - Christophe Snoeck
- Maritime Cultures Research Institute, Department of Arts, Sciences, and Archaeology, Vrije Universiteit Brussel, Belgium
- Analytical, Environmental and Geo-Chemistry Research Unit, Department of Chemistry, Vrije Universiteit Brussel, Belgium
- G-time Laboratory, Department of Geoscience, Environment, and Society, Université Libre de Bruxelles, Belgium
| | - Lisette M Kootker
- Geology and Geochemistry Cluster, Vrije Universiteit Amsterdam, The Netherlands
- Co van Ledden Hulsebosch Center (CLHC), The Netherlands
| |
Collapse
|
15
|
Ward DL, Schroeder L, Pomeroy E, Roy JE, Buck LT, Stock JT, Martin-Gronert M, Ozanne SE, Silcox MT, Viola TB. Early life malnutrition and fluctuating asymmetry in the rat bony labyrinth. Anat Rec (Hoboken) 2021; 304:2645-2660. [PMID: 33586866 DOI: 10.1002/ar.24601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/26/2022]
Abstract
Maternal malnutrition during gestation and lactation is known to have adverse effects on offspring. We evaluate the impact of maternal diet on offspring bony labyrinth morphology. The bony labyrinth develops early and is thought to be stable to protect vital sensory organs within. For these reasons, bony labyrinth morphology has been used extensively to assess locomotion, hearing function, and phylogeny in primates and numerous other taxa. While variation related to these parameters has been documented, there is still a component of intraspecific variation that is unexplained. Although the labyrinthine developmental window is small, it may provide the opportunity for developmental instability to produce corresponding shape differences, as measured by fluctuating asymmetry (FA). We hypothesized that (a) offspring with poor maternal diet would exhibit increased FA, but (b) no unilateral shape difference. To test these hypotheses, we used two groups of rats (Rattus norvegicus; Crl:WI[Han] strain), one control group and one group exposed to a isocaloric, protein-restricted maternal diet during gestation and suckling. Individuals were sampled at weaning, sexual maturity, and old age. A Procrustes analysis of variance identified statistically significant FA in all diet-age subgroups. No differences in level of FA were identified among the subgroups, rejecting our first hypothesis. A principal components analysis identified no unilateral shape differences, supporting our second hypothesis. These results indicate that bony labyrinth morphology is remarkably stable and likely protected from a poor maternal diet during development. In light of this result, other factors must be explored to explain intraspecific variation in labyrinthine shape.
Collapse
Affiliation(s)
- Devin L Ward
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Schroeder
- Department of Anthropology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Emma Pomeroy
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Jocelyn E Roy
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Laura T Buck
- Department of Archaeology, University of Cambridge, Cambridge, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jay T Stock
- Department of Anthropology, Western University, London, Ontario, Canada
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Malgorzata Martin-Gronert
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - T Bence Viola
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
- Institute for Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russian Federation
| |
Collapse
|
16
|
Androjna C, Yee CS, White CR, Waldorff EI, Ryaby JT, Zborowski M, Alliston T, Midura RJ. A comparison of alendronate to varying magnitude PEMF in mitigating bone loss and altering bone remodeling in skeletally mature osteoporotic rats. Bone 2021; 143:115761. [PMID: 33217628 DOI: 10.1016/j.bone.2020.115761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 01/12/2023]
Abstract
Pulsed electromagnetic field (PEMF) treatments stimulate bone formation activities though further work is needed to optimize its therapeutic benefit. PEMF can generate local potential gradients and electric currents that have been suggested to mimic bone electrochemical responses to load. In line with this reasoning, a recent publication reported that PEMF application on isolated bone tissue induced detectable micro-vibrations (doi:https://doi.org/10.1109/TMAG.2016.2515069). To determine the ability of PEMF to intervene in a rat model of osteoporosis, we tested its effect on trabecular and cortical bone following ovariectomy. Four PEMF treatments, with increasing sinusoidal amplitude rise with time (3850 Hz pulse frequency and 15 Hz repetition rate at 10 tesla/sec (T/s), 30 T/s, 100 T/s, or 300 T/s), were compared to the efficacy of an osteoporosis drug, alendronate, in reducing levels of trabecular bone loss in the proximal tibia. Herein, the novel findings from our study are: (1) 30 T/s PEMF treatment approached the efficacy of alendronate in reducing trabecular bone loss, but differed from it by not reducing bone formation rates; and (2) 30 T/s and 100 T/s PEMF treatments imparted measurable alterations in lacunocanalicular features in cortical bone, consistent with osteocyte sensitivity to PEMF in vivo. The efficacy of specific PEMF doses may relate to their ability to modulate osteocyte function such that the 30 T/s, and to a lesser extent 100 T/s, doses preferentially antagonize trabecular bone resorption while stimulating bone formation. Thus, PEMF treatments of specific magnetic field magnitudes exert a range of measurable biological effects in trabecular and cortical bone tissue in osteoporotic rats.
Collapse
Affiliation(s)
- Caroline Androjna
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Cristal S Yee
- Department of Orthopaedic Surgery, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States of America
| | - Carter R White
- Department of Orthopaedic Surgery, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States of America
| | | | - James T Ryaby
- Orthofix, Inc., Lewisville, TX, United States of America
| | - Maciej Zborowski
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Tamara Alliston
- Department of Orthopaedic Surgery, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States of America
| | - Ronald J Midura
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America.
| |
Collapse
|
17
|
Feng S, Bao L, Qiu G, Liao Z, Deng Z, Chen N, Chu Y, Luo Z, Jin Y, Li X, Yang Y, Zhao L. [Observation of dendrite osteocytes of mice at different developmental stages using Ploton silver staining and phalloidin staining]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1656-1661. [PMID: 33243734 DOI: 10.12122/j.issn.1673-4254.2020.11.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To assess the value of Ploton silver staining and phalloidin-iFlour 488 staining in observation of the morphology of osteocyte dendrites of mice at different developmental stages. METHODS The humerus and femurs were harvested from mice at 0 (P0), 5 (P5), 15 (P15), 21 (P21), 28 (P28), and 35 days (P35) after birth to prepare cryo-sections and paraffin sections. HE staining of P35 mouse femur sections served as a reference for observing osteocytes in the trabecular bone and cortical bone. The humeral sections at different developmental stages were stained with Ploton silver staining to observe the morphology of osteocytes and canaliculi, and the canalicular lengths in the cortical and trabecular bones of the humerus of the mice in each developmental stage were recorded. The cryo-sections of the humerus from P10 and P15 mice were stained with phalloidin iFlour-488 to observe the morphology of osteocytes and measurement of the length of osteocyte dendrites in the cortical bone. RESULTS In the trabecular bone of the humerus of P0-P15 mice, Ploton silver staining only visualized the outline of the osteocytes, and the morphology of the canaliculi was poorly defined. In P21 or older mice, Ploton silver staining revealed the morphology of the trabecular bone osteocytes and the canaliculi, which were neatly arranged and whose lengths increased significantly with age (P21 vs P28, P < 0.05; P21 vs P35, P < 0.05). In the humeral cortical bone of P15 mice, the morphology of the osteocytes and canalicular could be observed with Ploton silver staining, and the length of the regularly arranged canaliculi of the osteocytes increased significantly with age (P15 vs P21, P < 0.005; P15 vs P28, P < 0.0001; P15 vs P35, P < 0.0001). Phalloidin iFlour-488 staining was capable of visualizing the complete morphology of the osteocytes at P10 and P15; the osteocyte dendrites elongated progressively with age (P10 vs P15, P < 0.01) to form connections with the surrounding osteocytes. CONCLUSIONS Mouse osteocyte dendrites elongate progressively and their arrangement gradually becomes regular with age. Ploton silver staining can clearly visualize the morphology of the osteocytes and the canaliculi in adult mice but not in mice in early stages of development. Phalloidin iFlour-488 staining for labeling the cytoskeleton can be applied for mouse osteocytes at all developmental stages and allows morphological observation of mouse osteocytes in early developmental stages.
Collapse
Affiliation(s)
- Shuhao Feng
- Department of Joint and Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Developmental Biology, Harvard School of Dental Medicine, Harvard University, Boston 02115, USA
| | - Liangxiao Bao
- Department of Joint and Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Gengtao Qiu
- Department of Joint and Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheting Liao
- Department of Joint and Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhonghao Deng
- Department of Joint and Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Nachun Chen
- Department of Joint and Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuhao Chu
- Department of Joint and Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ziheng Luo
- Department of Joint and Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu Jin
- Department of Joint and Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyu Li
- Department of Joint and Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard University, Boston 02115, USA
| | - Liang Zhao
- Department of Joint and Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
18
|
Walker EC, Truong K, McGregor NE, Poulton IJ, Isojima T, Gooi JH, Martin TJ, Sims NA. Cortical bone maturation in mice requires SOCS3 suppression of gp130/STAT3 signalling in osteocytes. eLife 2020; 9:e56666. [PMID: 32458800 PMCID: PMC7253175 DOI: 10.7554/elife.56666] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/01/2020] [Indexed: 12/23/2022] Open
Abstract
Bone strength is determined by its dense cortical shell, generated by unknown mechanisms. Here we use the Dmp1Cre:Socs3f/f mouse, with delayed cortical bone consolidation, to characterise cortical maturation and identify control signals. We show that cortical maturation requires a reduction in cortical porosity, and a transition from low to high density bone, which continues even after cortical shape is established. Both processes were delayed in Dmp1Cre:Socs3f/f mice. SOCS3 (suppressor of cytokine signalling 3) inhibits signalling by leptin, G-CSF, and IL-6 family cytokines (gp130). In Dmp1Cre:Socs3f/f bone, STAT3 phosphorylation was prolonged in response to gp130-signalling cytokines, but not G-CSF or leptin. Deletion of gp130 in Dmp1Cre:Socs3f/f mice suppressed STAT3 phosphorylation in osteocytes and osteoclastic resorption within cortical bone, leading to rescue of the corticalisation defect, and restoration of compromised bone strength. We conclude that cortical bone development includes both pore closure and accumulation of high density bone, and that these processes require suppression of gp130-STAT3 signalling in osteocytes.
Collapse
Affiliation(s)
- Emma C Walker
- St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | - Kim Truong
- St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- University of Melbourne, Department of Medicine at St. Vincent’s HospitalFitzroyAustralia
| | | | | | - Tsuyoshi Isojima
- St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- Department of Pediatrics, Teikyo University School of MedicineTokyoJapan
| | - Jonathan H Gooi
- St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneParkvilleAustralia
| | - T John Martin
- St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- University of Melbourne, Department of Medicine at St. Vincent’s HospitalFitzroyAustralia
| | - Natalie A Sims
- St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- University of Melbourne, Department of Medicine at St. Vincent’s HospitalFitzroyAustralia
| |
Collapse
|
19
|
Abstract
Hox genes are indispensable for the proper patterning of the skeletal morphology of the axial and appendicular skeleton during embryonic development. Recently, it has been demonstrated that Hox expression continues from embryonic stages through postnatal and adult stages exclusively in a skeletal stem cell population. However, whether Hox genes continue to function after development has not been rigorously investigated. We generated a Hoxd11 conditional allele and induced genetic deletion at adult stages to show that Hox11 genes play critical roles in skeletal homeostasis of the forelimb zeugopod (radius and ulna). Conditional loss of Hox11 function at adult stages leads to replacement of normal lamellar bone with an abnormal woven bone-like matrix of highly disorganized collagen fibers. Examining the lineage from the Hox-expressing mutant cells demonstrates no loss of stem cell population. Differentiation in the osteoblast lineage initiates with Runx2 expression, which is observed similarly in mutants and controls. With loss of Hox11 function, however, osteoblasts fail to mature, with no progression to osteopontin or osteocalcin expression. Osteocyte-like cells become embedded within the abnormal bony matrix, but they completely lack dendrites, as well as the characteristic lacuno-canalicular network, and do not express SOST. Together, our studies show that Hox11 genes continuously function in the adult skeleton in a region-specific manner by regulating differentiation of Hox-expressing skeletal stem cells into the osteolineage.
Collapse
|
20
|
Kegelman CD, Coulombe JC, Jordan KM, Horan DJ, Qin L, Robling AG, Ferguson VL, Bellido TM, Boerckel JD. YAP and TAZ Mediate Osteocyte Perilacunar/Canalicular Remodeling. J Bone Miner Res 2020; 35:196-210. [PMID: 31610061 PMCID: PMC7066596 DOI: 10.1002/jbmr.3876] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/13/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
Bone fragility fractures are caused by low bone mass or impaired bone quality. Osteoblast/osteoclast coordination determines bone mass, but the factors that control bone quality are poorly understood. Osteocytes regulate osteoblast and osteoclast activity on bone surfaces but can also directly reorganize the bone matrix to improve bone quality through perilacunar/canalicular remodeling; however, the molecular mechanisms remain unclear. We previously found that deleting the transcriptional regulators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-motif (TAZ) from osteoblast-lineage cells caused lethality in mice due to skeletal fragility. Here, we tested the hypothesis that YAP and TAZ regulate osteocyte-mediated bone remodeling by conditional ablation of both YAP and TAZ from mouse osteocytes using 8 kb-DMP1-Cre. Osteocyte-conditional YAP/TAZ deletion reduced bone mass and dysregulated matrix collagen content and organization, which together decreased bone mechanical properties. Further, YAP/TAZ deletion impaired osteocyte perilacunar/canalicular remodeling by reducing canalicular network density, length, and branching, as well as perilacunar flourochrome-labeled mineral deposition. Consistent with recent studies identifying TGF-β as a key inducer of osteocyte expression of matrix-remodeling enzymes, YAP/TAZ deletion in vivo decreased osteocyte expression of matrix proteases MMP13, MMP14, and CTSK. In vitro, pharmacologic inhibition of YAP/TAZ transcriptional activity in osteocyte-like cells abrogated TGF-β-induced matrix protease gene expression. Together, these data show that YAP and TAZ control bone matrix accrual, organization, and mechanical properties by regulating osteocyte-mediated bone remodeling. Elucidating the signaling pathways that control perilacunar/canalicular remodeling may enable future therapeutic targeting of bone quality to reverse skeletal fragility. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Christopher D Kegelman
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer C Coulombe
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Kelsey M Jordan
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Horan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Teresita M Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Mazur CM, Woo JJ, Yee CS, Fields AJ, Acevedo C, Bailey KN, Kaya S, Fowler TW, Lotz JC, Dang A, Kuo AC, Vail TP, Alliston T. Osteocyte dysfunction promotes osteoarthritis through MMP13-dependent suppression of subchondral bone homeostasis. Bone Res 2019; 7:34. [PMID: 31700695 PMCID: PMC6828661 DOI: 10.1038/s41413-019-0070-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA), long considered a primary disorder of articular cartilage, is commonly associated with subchondral bone sclerosis. However, the cellular mechanisms responsible for changes to subchondral bone in OA, and the extent to which these changes are drivers of or a secondary reaction to cartilage degeneration, remain unclear. In knee joints from human patients with end-stage OA, we found evidence of profound defects in osteocyte function. Suppression of osteocyte perilacunar/canalicular remodeling (PLR) was most severe in the medial compartment of OA subchondral bone, with lower protease expression, diminished canalicular networks, and disorganized and hypermineralized extracellular matrix. As a step toward evaluating the causality of PLR suppression in OA, we ablated the PLR enzyme MMP13 in osteocytes while leaving chondrocytic MMP13 intact, using Cre recombinase driven by the 9.6-kb DMP1 promoter. Not only did osteocytic MMP13 deficiency suppress PLR in cortical and subchondral bone, but it also compromised cartilage. Even in the absence of injury, osteocytic MMP13 deficiency was sufficient to reduce cartilage proteoglycan content, change chondrocyte production of collagen II, aggrecan, and MMP13, and increase the incidence of cartilage lesions, consistent with early OA. Thus, in humans and mice, defects in PLR coincide with cartilage defects. Osteocyte-derived MMP13 emerges as a critical regulator of cartilage homeostasis, likely via its effects on PLR. Together, these findings implicate osteocytes in bone-cartilage crosstalk in the joint and suggest a causal role for suppressed perilacunar/canalicular remodeling in osteoarthritis.
Collapse
Affiliation(s)
- Courtney M. Mazur
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143 USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143 USA
| | - Jonathon J. Woo
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143 USA
| | - Cristal S. Yee
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143 USA
| | - Aaron J. Fields
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143 USA
| | - Claire Acevedo
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143 USA
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 USA
| | - Karsyn N. Bailey
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143 USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143 USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143 USA
| | - Tristan W. Fowler
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143 USA
| | - Jeffrey C. Lotz
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143 USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143 USA
| | - Alexis Dang
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143 USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121 USA
| | - Alfred C. Kuo
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143 USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121 USA
| | - Thomas P. Vail
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143 USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143 USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143 USA
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW In perilacunar/canalicular remodeling (PLR), osteocytes dynamically resorb, and then replace, the organic and mineral components of the pericellular extracellular matrix. Given the enormous surface area of the osteocyte lacuna-canalicular network (LCN), PLR is important for maintaining homeostasis of the skeleton. The goal of this review is to examine the motivations and critical considerations for the analysis of PLR, in both in vitro and in vivo systems. RECENT FINDINGS Morphological approaches alone are insufficient to elucidate the complex mechanisms regulating PLR in the healthy skeleton and in disease. Understanding the role and regulation of PLR will require the incorporation of standardized PLR outcomes as a routine part of skeletal phenotyping, as well as the development of improved molecular and cellular outcomes. Current PLR outcomes assess PLR enzyme expression, the LCN, and bone matrix composition and organization, among others. Here, we discuss current PLR outcomes and how they have been applied to study PLR induction and suppression in vitro and in vivo. Given the role of PLR in skeletal health and disease, integrated analysis of PLR has potential to elucidate new mechanisms by which osteocytes participate in skeletal health and disease.
Collapse
Affiliation(s)
- Cristal S Yee
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Charles A Schurman
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, 94143, USA
| | - Carter R White
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA.
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, 94143, USA.
| |
Collapse
|
23
|
Increased autophagy in EphrinB2-deficient osteocytes is associated with elevated secondary mineralization and brittle bone. Nat Commun 2019; 10:3436. [PMID: 31366886 PMCID: PMC6668467 DOI: 10.1038/s41467-019-11373-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/10/2019] [Indexed: 12/30/2022] Open
Abstract
Mineralized bone forms when collagen-containing osteoid accrues mineral crystals. This is initiated rapidly (primary mineralization), and continues slowly (secondary mineralization) until bone is remodeled. The interconnected osteocyte network within the bone matrix differentiates from bone-forming osteoblasts; although osteoblast differentiation requires EphrinB2, osteocytes retain its expression. Here we report brittle bones in mice with osteocyte-targeted EphrinB2 deletion. This is not caused by low bone mass, but by defective bone material. While osteoid mineralization is initiated at normal rate, mineral accrual is accelerated, indicating that EphrinB2 in osteocytes limits mineral accumulation. No known regulators of mineralization are modified in the brittle cortical bone but a cluster of autophagy-associated genes are dysregulated. EphrinB2-deficient osteocytes displayed more autophagosomes in vivo and in vitro, and EphrinB2-Fc treatment suppresses autophagy in a RhoA-ROCK dependent manner. We conclude that secondary mineralization involves EphrinB2-RhoA-limited autophagy in osteocytes, and disruption leads to a bone fragility independent of bone mass. Osteoblasts mediate bone formation, and their differentiation requires expression of EphrinB2. Here, the authors show that EphrinB2 is also expressed by osteocytes, and that its genetic ablation in mice is associated with altered autophagy, elevated mineralization and brittle bone.
Collapse
|
24
|
Lotinun S, Ishihara Y, Nagano K, Kiviranta R, Carpentier VT, Neff L, Parkman V, Ide N, Hu D, Dann P, Brooks D, Bouxsein ML, Wysolmerski J, Gori F, Baron R. Cathepsin K-deficient osteocytes prevent lactation-induced bone loss and parathyroid hormone suppression. J Clin Invest 2019; 129:3058-3071. [PMID: 31112135 PMCID: PMC6668688 DOI: 10.1172/jci122936] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 05/10/2019] [Indexed: 02/02/2023] Open
Abstract
Lactation induces bone loss to provide sufficient calcium in the milk, a process that involves osteoclastic bone resorption but also osteocytes and perilacunar resorption. The exact mechanisms by which osteocytes contribute to bone loss remain elusive. Osteocytes express genes required in osteoclasts for bone resorption, including cathepsin K (Ctsk), and lactation elevates their expression. We show that Ctsk deletion in osteocytes prevented the increase in osteocyte lacunar area seen during lactation, as well as the effects of lactation to increase osteoclast numbers and decrease trabecular bone volume, cortical thickness and mechanical properties. In addition, Ctsk deletion in osteocytes increased bone Parathyroid Hormone related Peptide (PTHrP), prevented the decrease in serum Parathyroid Hormone (PTH) induced by lactation, but amplified the increase in serum 1,25(OH)2D. The net result of these changes is to maintain serum and milk calcium levels in the normal range, ensuring normal offspring skeletal development. Our studies confirm the fundamental role of osteocytic perilacunar remodeling in physiological states of lactation and provides genetic evidence that osteocyte-derived Ctsk contributes not only to osteocyte perilacunar remodeling, but also to the regulation of PTH, PTHrP, 1,25-Dyhydroxyvitamin D (1,25(OH)2D), osteoclastogenesis and bone loss in response to the high calcium demand associated with lactation.
Collapse
Affiliation(s)
- Sutada Lotinun
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Yoshihito Ishihara
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Kenichi Nagano
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Riku Kiviranta
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Departments of Medical Biochemistry and Genetics and Medicine, University of Turku, Turku, Finland
| | - Vincent T. Carpentier
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Lynn Neff
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Virginia Parkman
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Noriko Ide
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Dorothy Hu
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Pamela Dann
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daniel Brooks
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Mary L. Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - John Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Francesca Gori
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Harvard Medical School, Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Alemi AS, Mazur CM, Fowler TW, Woo JJ, Knott PD, Alliston T. Glucocorticoids cause mandibular bone fragility and suppress osteocyte perilacunar-canalicular remodeling. Bone Rep 2018; 9:145-153. [PMID: 30306100 PMCID: PMC6176786 DOI: 10.1016/j.bonr.2018.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/06/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
Osteocytes support dynamic, cell-intrinsic resorption and deposition of bone matrix through a process called perilacunar/canalicular remodeling (PLR). In long bones, PLR depends on MMP13 and is tightly regulated by PTH, sclerostin, TGFβ, and glucocorticoids. However, PLR is regulated differently in the cochlea, suggesting a mechanism that is anatomically distinct. Unlike long bones, the mandible derives from neural crest and exhibits unique susceptibility to medication and radiation induced osteonecrosis. Therefore, we sought to determine if PLR in the mandible is suppressed by glucocorticoids, as it is in long bone. Hemimandibles were collected from mice subcutaneously implanted with prednisolone or vehicle containing pellets for 7, 21, or 55 days (n = 8/group) for radiographic and histological analyses. Within 21 days, micro-computed tomography revealed a glucocorticoid-dependent reduction in bone volume/total volume and trabecular thickness and a significant decrease in bone mineral density after 55 days. Within 7 days, glucocorticoids strongly and persistently repressed osteocytic expression of the key PLR enzyme MMP13 in both trabecular and cortical bone of the mandible. Cathepsin K expression was significantly reduced only after 55 days of glucocorticoid treatment, at which point histological analysis revealed a glucocorticoid-dependent reduction in the lacunocanalicular surface area. In addition to reducing bone mass and suppressing PLR, glucocorticoids also reduced the stiffness of mandibular bone in flexural tests. Thus, osteocyte PLR in the neural crest-derived mandible is susceptible to glucocorticoids, just as it is in the mesodermally-derived femur, highlighting the need to further study PLR as a target of drugs, and radiation in mandibular osteonecrosis.
Collapse
Affiliation(s)
- A Sean Alemi
- Department of Otorhinolaryngology, Head and Neck Surgery, University of California San Francisco, United States of America
| | - Courtney M Mazur
- Department of Orthopaedic Surgery, University of California San Francisco, United States of America.,UC Berkeley-UCSF Graduate Program in Bioengineering, United States of America
| | - Tristan W Fowler
- Department of Orthopaedic Surgery, University of California San Francisco, United States of America
| | - Jonathon J Woo
- Department of Orthopaedic Surgery, University of California San Francisco, United States of America
| | - P Daniel Knott
- Department of Otorhinolaryngology, Head and Neck Surgery, University of California San Francisco, United States of America
| | - Tamara Alliston
- Department of Otorhinolaryngology, Head and Neck Surgery, University of California San Francisco, United States of America.,Department of Orthopaedic Surgery, University of California San Francisco, United States of America.,UC Berkeley-UCSF Graduate Program in Bioengineering, United States of America
| |
Collapse
|
26
|
Osteocyte-Intrinsic TGF-β Signaling Regulates Bone Quality through Perilacunar/Canalicular Remodeling. Cell Rep 2018; 21:2585-2596. [PMID: 29186693 DOI: 10.1016/j.celrep.2017.10.115] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/26/2017] [Accepted: 10/29/2017] [Indexed: 02/08/2023] Open
Abstract
Poor bone quality contributes to bone fragility in diabetes, aging, and osteogenesis imperfecta. However, the mechanisms controlling bone quality are not well understood, contributing to the current lack of strategies to diagnose or treat bone quality deficits. Transforming growth factor beta (TGF-β) signaling is a crucial mechanism known to regulate the material quality of bone, but its cellular target in this regulation is unknown. Studies showing that osteocytes directly remodel their perilacunar/canalicular matrix led us to hypothesize that TGF-β controls bone quality through perilacunar/canalicular remodeling (PLR). Using inhibitors and mice with an osteocyte-intrinsic defect in TGF-β signaling (TβRIIocy-/-), we show that TGF-β regulates PLR in a cell-intrinsic manner to control bone quality. Altogether, this study emphasizes that osteocytes are key in executing the biological control of bone quality through PLR, thereby highlighting the fundamental role of osteocyte-mediated PLR in bone homeostasis and fragility.
Collapse
|
27
|
Schneider RA. Neural crest and the origin of species-specific pattern. Genesis 2018; 56:e23219. [PMID: 30134069 PMCID: PMC6108449 DOI: 10.1002/dvg.23219] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.
Collapse
Affiliation(s)
- Richard A. Schneider
- Department of Orthopedic SurgeryUniversity of California at San Francisco, 513 Parnassus AvenueS‐1161San Francisco, California
| |
Collapse
|
28
|
Fowler TW, Acevedo C, Mazur CM, Hall-Glenn F, Fields AJ, Bale HA, Ritchie RO, Lotz JC, Vail TP, Alliston T. Glucocorticoid suppression of osteocyte perilacunar remodeling is associated with subchondral bone degeneration in osteonecrosis. Sci Rep 2017; 7:44618. [PMID: 28327602 PMCID: PMC5361115 DOI: 10.1038/srep44618] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/10/2017] [Indexed: 11/09/2022] Open
Abstract
Through a process called perilacunar remodeling, bone-embedded osteocytes dynamically resorb and replace the surrounding perilacunar bone matrix to maintain mineral homeostasis. The vital canalicular networks required for osteocyte nourishment and communication, as well as the exquisitely organized bone extracellular matrix, also depend upon perilacunar remodeling. Nonetheless, many questions remain about the regulation of perilacunar remodeling and its role in skeletal disease. Here, we find that suppression of osteocyte-driven perilacunar remodeling, a fundamental cellular mechanism, plays a critical role in the glucocorticoid-induced osteonecrosis. In glucocorticoid-treated mice, we find that glucocorticoids coordinately suppress expression of several proteases required for perilacunar remodeling while causing degeneration of the osteocyte lacunocanalicular network, collagen disorganization, and matrix hypermineralization; all of which are apparent in human osteonecrotic lesions. Thus, osteocyte-mediated perilacunar remodeling maintains bone homeostasis, is dysregulated in skeletal disease, and may represent an attractive therapeutic target for the treatment of osteonecrosis.
Collapse
Affiliation(s)
- Tristan W Fowler
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Claire Acevedo
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Courtney M Mazur
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Faith Hall-Glenn
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Aaron J Fields
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Hrishikesh A Bale
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert O Ritchie
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Jeffrey C Lotz
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Thomas P Vail
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|