1
|
Yamaguchi H, Tran LT, Bi J, Urayama A, Yutzey KE, Mishina Y, Komatsu Y. Enhanced BMP signaling in cranial neural crest cells induces aberrant chondrogenesis by upregulating Tbx20 expression during craniofacial development. Biochem Biophys Res Commun 2025; 765:151834. [PMID: 40273622 DOI: 10.1016/j.bbrc.2025.151834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
Bone morphogenetic proteins (BMPs) are critical for craniofacial development. We previously reported that cranial neural crest cell (CNCC)-specific enhanced BMP signaling through the ALK2 receptor causes ectopic cartilage formation in the face during mouse embryonic development. However, the downstream effectors triggering this ectopic chondrogenesis remain unclear. Here, we investigated the targets of BMP signaling responsible for ectopic cartilage formation. A microarray analysis using CNC-derived ectomesenchymal cells from the first branchial arches identified T-box transcription factor 20 (Tbx20) as the top candidate gene in CNC-specific gain-of-function ALK2 mouse embryos. This prompted us to hypothesize that enhanced BMP signaling increases Tbx20 expression, which triggers ectopic cartilage formation in the craniofacial region. To examine whether Tbx20 overexpression in CNCCs alters craniofacial development, we utilized a Cre-LoxP system to augment Tbx20 expression in a neural crest-specific manner in mice. CNCC-specific overexpression of Tbx20 led to neonatal death with severe craniofacial defects, such as orofacial clefts and exencephaly. Interestingly, aberrant chondrogenesis was observed in the posterior frontal (PF) suture, a structure derived from CNCCs, suggesting that augmented Tbx20 expression triggers ectopic cartilage formation in the PF suture. This study reveals that enhanced BMP-Tbx20 signaling in CNCCs causes aberrant chondrogenesis in the PF suture during craniofacial development.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Lauren T Tran
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jiarui Bi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Periodontics & Dental Hygiene, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Katherine E Yutzey
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA; The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate Program in Genetics and Epigenetics, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.
| |
Collapse
|
2
|
Haantjes RR, Strik J, de Visser J, Postma M, van Amerongen R, van Boxtel AL. Towards an integrated view and understanding of embryonic signalling during murine gastrulation. Cells Dev 2025:204028. [PMID: 40316255 DOI: 10.1016/j.cdev.2025.204028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
At the onset of mammalian gastrulation, secreted signalling molecules belonging to the Bmp, Wnt, Nodal and Fgf signalling pathways induce and pattern the primitive streak, marking the start for the cellular rearrangements that generate the body plan. Our current understanding of how signalling specifies and organises the germ layers in three dimensions, was mainly derived from genetic experimentation using mouse embryos performed over many decades. However, the exact spatiotemporal sequence of events is still poorly understood, both because of a lack of tractable models that allow for real time visualisation of signalling and differentiation and because of the molecular and cellular complexity of these early developmental events. In recent years, a new wave of in vitro embryo models has begun to shed light on the dynamics of signalling during primitive streak formation. Here we discuss the similarities and differences between a widely adopted mouse embryo model, termed gastruloids, and real embryos from a signalling perspective. We focus on the gene regulatory networks that underlie signalling pathway interactions and outline some of the challenges ahead. Finally, we provide a perspective on how embryo models may be used to advance our understanding of signalling dynamics through computational modelling.
Collapse
Affiliation(s)
- Rhanna R Haantjes
- Developmental, Stem Cell and Cancer Biology, United States of America.
| | - Jeske Strik
- Developmental, Stem Cell and Cancer Biology, United States of America; Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525GA Nijmegen, the Netherlands.
| | - Joëlle de Visser
- Developmental, Stem Cell and Cancer Biology, United States of America.
| | - Marten Postma
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | | | | |
Collapse
|
3
|
Zhang K, Li H, Wang T, Li F, Xie Z, Luo H, Zhu X, Kang P, Kang Q, Fei Z, Peng W. Mechanisms of bone regeneration repair and potential and efficacy of small molecule drugs. Biomed Pharmacother 2025; 187:118070. [PMID: 40262235 DOI: 10.1016/j.biopha.2025.118070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025] Open
Abstract
Bone regeneration and repair is a complex physiological process of bone formation. To date, existing research has greatly enhanced our understanding of bone regeneration and repair, achieving significant success in treating bone injuries. However, extensive bone defects, bone nonunion, and metabolic bone diseases remain incompletely solved challenges in modern medicine. With the emergence of High-Throughput Screening (HTS) technology, previous studies have identified numerous small molecule compounds with potential for inducing bone formation and enhancing bone metabolism. However, the effects of these small molecules on bone regeneration and repair through related signaling pathways have not been systematically elaborated. Therefore, in this literature review, we focus on summarizing the classical signaling pathways affecting bone regeneration and repair, as well as the research progress and applications of related small molecule drugs.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Hao Li
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Tao Wang
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Fanchao Li
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Zhihong Xie
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Hong Luo
- Department of Orthopedics,The Affiliated Wudang Hospital of Guizhou Medical University, Guiyang, Guizhou 550018, China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Pengde Kang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Qinglin Kang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhang Fei
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China.
| | - Wuxun Peng
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China.
| |
Collapse
|
4
|
Ahi EP. Regulation of Skeletogenic Pathways by m6A RNA Modification: A Comprehensive Review. Calcif Tissue Int 2025; 116:58. [PMID: 40180675 PMCID: PMC11968561 DOI: 10.1007/s00223-025-01367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
In the complex process of skeletal development, the significance of m6A RNA methylation-a predominant form of RNA modification-has not been fully explored. This review discuss how m6A RNA methylation plays an important, though not yet fully understood, role in regulating skeletal formation. It examines how m6A influences key signaling pathways essential for skeletal development and homeostasis, suggesting various possible interactions between m6A methylation and these critical pathways. While the exact mechanisms for many of these interactions remain to be elucidated, m6A RNA methylation is anticipated to be a key emerging regulator in skeletal structure development across vertebrates. Highlighting the need for further research, this overview provides an in-depth look at the potential regulatory interactions of m6A RNA methylation within skeletal system. Uniquely, this review is the most comprehensive compilation of evidence linking components of m6A RNA methylation to signaling pathways involved in skeletogenesis.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland.
| |
Collapse
|
5
|
Ohata Y, Ali MM, Tsubakihara Y, Itoh Y, Rosén G, Bergström T, Morén A, Golán-Cancela I, Nakada A, Voytyuk O, Tsuchiya M, Fukui R, Yamamoto K, Martín-Rubio P, Sancho P, Strell C, Micke P, Wechsler-Reya RJ, Hashizume Y, Miyazono K, Caja L, Heldin CH, Swartling FJ, Moustakas A. The transcription factor LHX2 mediates and enhances oncogenic BMP signaling in medulloblastoma. Cell Death Differ 2025:10.1038/s41418-025-01488-6. [PMID: 40148468 DOI: 10.1038/s41418-025-01488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 02/13/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Oncogenic events perturb cerebellar development leading to medulloblastoma, a common childhood brain malignancy. Molecular analyses classify medulloblastoma into the WNT, SHH, Group 3 and Group 4 subgroups. Bone morphogenetic protein (BMP) pathways control cerebellar development and have been linked to the progression of medulloblastoma disease, with major remaining gaps in their mechanistic and clinically-relevant roles. We therefore aimed at exploring BMP mechanisms of action in medulloblastoma. Patient-derived tumors from different subgroups were analyzed in mouse xenografts, complemented by independent tumor immunohistochemical analysis. Cell-based assays analyzed signaling mechanisms. Medulloblastoma cell orthotopic xenografts analyzed tumor growth and metastasis in vivo. Active BMP signaling, detected as nuclear and phosphorylated SMAD1/5, characterized several medulloblastoma subgroups, with enrichment in Group 4, SHH and Group 3 tumors. Spatial transcriptomics in tumor areas, complemented by transcriptomic analysis of multiple cell models, identified BMP-dependent transcriptional induction of the LIM-homeobox gene 2 (LHX2). BMP signaling via SMADs induced LHX2 expression and LHX2 transcriptionally induced BMP type I receptor (ACVR1) expression by association with the proximal promoter region of the ACVR1 gene. BMP signaling and LHX2 gain-of-function expression led to enriched stemness and associated chemoresistance in medulloblastoma cultures. In-mouse orthotopic transplantation of paired primary/recurrent Group 4 medulloblastoma cell populations, correspondingly expressing LHX2-low/BMP-low signaling and LHX2-high/BMP-high signaling, ascribed to the latter (high) group more efficient tumor propagation and spinal cord metastatic potential. Depletion of LHX2 in these recurrent tumor cells suppressed both BMP signaling and tumor propagation in vivo. Thus, LHX2 cooperates with, and enhances, oncogenic BMP signaling in medulloblastoma tumors. The molecular pathway that couples LHX2 function to BMP signaling in medulloblastoma deepens our understanding this malignancy.
Collapse
Affiliation(s)
- Yae Ohata
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Mohamad M Ali
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Yutaro Tsubakihara
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Yuka Itoh
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Gabriela Rosén
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tobias Bergström
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anita Morén
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Irene Golán-Cancela
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Ayana Nakada
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
- Faculty of Pharmaceutical Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Oleksandr Voytyuk
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Maiko Tsuchiya
- Department of Oral Pathology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Department of Pathology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Rei Fukui
- Department of Pathology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Paula Martín-Rubio
- Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragon, Zaragoza, Spain
| | - Patricia Sancho
- Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragon, Zaragoza, Spain
| | - Carina Strell
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Center for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Robert J Wechsler-Reya
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Yoshinobu Hashizume
- RIKEN Program for Drug Discovery and Medical Technology Platforms, Wako, Saitama, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Coculo L, Wits M, Mariani I, Fianco G, Cappato S, Bocciardi R, Pedemonte N, Volpe E, Ciolfi S, Sessa RL, Rinaldo S, Cutruzzolà F, Trisciuoglio D, Goumans MJ, Sanchez-Duffhues G, Stagni V. Interplay between ALK2 R206H mutant receptor and autophagy signaling regulates receptor stability and its chondrogenic functions. Cell Death Discov 2025; 11:117. [PMID: 40121219 PMCID: PMC11929866 DOI: 10.1038/s41420-025-02393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/14/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Heterozygous mutations in the Bone morphogenetic protein (BMP) type I receptor ACVR1, encoding activin-like kinase 2 (ALK2), underlie all cases of the rare genetic musculoskeletal disorder Fibrodysplasia Ossificans Progressiva (FOP). The most commonly found mutant ALK2 p.R206H receptor variant exhibits loss of auto inhibition of BMP signaling and can be activated by Activins, while wild-type receptors remain unresponsive. Consequently, the downstream chondrogenic signaling is enhanced, thus driving heterotopic ossification within soft connective tissues. Despite several investigational treatments being evaluated in clinical trials, no cure for FOP exists today. The cellular and molecular mechanisms underlying disease progression are still being deciphered. In this study, we show a close interplay between the mutant ALK2R206H receptor signaling and dysregulation of the autophagic flux triggered by hypoxia. Mechanistically, reduced autophagic flux correlates with increased stability of ALK2R206H, resulting in sustained signaling. Of note, we demonstrated that Rapamycin, under clinical investigation as a treatment for FOP, inhibits chondrogenic differentiation in an autophagy-dependent manner. Consistently, other pharmacological autophagy inducers, like Spermidine, can reduce ALK2R206H driven chondrogenic differentiation in vitro. These results were verified in FOP patient-derived cells. In conclusion, this study shows that aberrant autophagic flux mediates sustained ALK2R206H signaling, introducing a novel druggable target in FOP by reactivating autophagy.
Collapse
Grants
- Seed Grant FOP GSA21A002 Fondazione Telethon (Telethon Foundation)
- Seed Grant FOP-Renewal GSA23I001 Fondazione Telethon (Telethon Foundation)
- Seed Grant FOP GSA21A002 Fondazione Telethon (Telethon Foundation)
- Seed Grant FOP-Renewal GSA23I001 Fondazione Telethon (Telethon Foundation)
- Seed Grant FOP-Renewal GSA23I001 Fondazione Telethon (Telethon Foundation)
- Seed Grant FOP GSA21A002 Fondazione Telethon (Telethon Foundation)
- PRIN202224M22R Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN202224M22R Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- Netherlands Cardiovascular Research Initiative (the Dutch Heart Foundation, Dutch Federation of University Medical Centers, the Netherlands Organization for Health Research and Development, and the Royal Netherlands Academy of Sciences), PHAEDRA-IMPACT (DCVA) and DOLPHIN-GENESIS (CVON).
- Ramón y Cajal RYC2021-030866-I, PID2022-141212OA-I00 and CNS2023-145432 from the Spanish Ministry of Science and Innovation GSD is also sponsored by La Marató de TV3 (202038-30), the BHF-DZHK-DHF, 2022/23 award PROMETHEUS, the Foundation Eugenio Rodriguez Pascual (FERP-2023-058) and the Foundation “Por dos pulgares de nada”
Collapse
Affiliation(s)
- Laura Coculo
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
- Cell Signalling Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marius Wits
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Irene Mariani
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
- Cell Signalling Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giulia Fianco
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Serena Cappato
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Renata Bocciardi
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- DINOGMI, University of Genoa, Genoa, Italy
| | | | - Elisabetta Volpe
- Molecular Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Serena Ciolfi
- Molecular Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Rosario Luigi Sessa
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
- Cell Signalling Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Daniela Trisciuoglio
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Marie-Josè Goumans
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), Health Research Institute of Asturias (ISPA), Oviedo, Asturias, Spain
| | - Venturina Stagni
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy.
- Cell Signalling Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.
| |
Collapse
|
7
|
Akiki RM, Taniguchi M. An Epigenetic Mechanism Promoting Heroin Relapse After Prolonged Abstinence. Biol Psychiatry 2025; 97:552-553. [PMID: 39971399 PMCID: PMC12048022 DOI: 10.1016/j.biopsych.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025]
Affiliation(s)
- Rose Marie Akiki
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina; Medical Scientist Training Program, Medical University of South Carolina, Charleston, South Carolina
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
8
|
Dekker E, Triñanes J, Muñoz Garcia A, de Graaf N, de Koning E, Carlotti F. Enhanced BMP Signaling Alters Human β-Cell Identity and Function. Adv Biol (Weinh) 2025; 9:e2400470. [PMID: 39499224 PMCID: PMC11760635 DOI: 10.1002/adbi.202400470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Indexed: 11/07/2024]
Abstract
Inflammation contributes to the pathophysiology of diabetes. Identifying signaling pathways involved in pancreatic β-cell failure and identity loss can give insight into novel potential treatment strategies to prevent the loss of functional β-cell mass in diabetes. It is reported earlier that the immunosuppressive drug tacrolimus has a detrimental effect on human β-cell identity and function by activating bone morphogenetic protein (BMP) signaling. Here it is hypothesized that enhanced BMP signaling plays a role in inflammation-induced β-cell failure. Single-cell transcriptomics analyses of primary human islets reveal that IL-1β+IFNγ and IFNα treatment activated BMP signaling in β-cells. These findings are validated by qPCR. Furthermore, enhanced BMP signaling with recombinant BMP2 or 4 triggers a reduced expression of key β-cell maturity genes, associated with increased ER stress, and impaired β-cell function. Altogether, these results indicate that inflammation-activated BMP signaling is detrimental to pancreatic β-cells and that BMP-signaling can be a target to preserve β-cell identity and function in a pro-inflammatory environment.
Collapse
Affiliation(s)
- Esmée Dekker
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Javier Triñanes
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Amadeo Muñoz Garcia
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Natascha de Graaf
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Eelco de Koning
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Françoise Carlotti
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| |
Collapse
|
9
|
Otálora-Otálora BA, Payán-Gómez C, López-Rivera JJ, Pedroza-Aconcha NB, Arboleda-Mojica SL, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Interplay of Transcriptomic Regulation, Microbiota, and Signaling Pathways in Lung and Gut Inflammation-Induced Tumorigenesis. Cells 2024; 14:1. [PMID: 39791702 PMCID: PMC11720097 DOI: 10.3390/cells14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Inflammation can positively and negatively affect tumorigenesis based on the duration, scope, and sequence of related events through the regulation of signaling pathways. A transcriptomic analysis of five pulmonary arterial hypertension, twelve Crohn's disease, and twelve ulcerative colitis high throughput sequencing datasets using R language specialized libraries and gene enrichment analyses identified a regulatory network in each inflammatory disease. IRF9 and LINC01089 in pulmonary arterial hypertension are related to the regulation of signaling pathways like MAPK, NOTCH, human papillomavirus, and hepatitis c infection. ZNF91 and TP53TG1 in Crohn's disease are related to the regulation of PPAR, MAPK, and metabolic signaling pathways. ZNF91, VDR, DLEU1, SATB2-AS1, and TP53TG1 in ulcerative colitis are related to the regulation of PPAR, AMPK, and metabolic signaling pathways. The activation of the transcriptomic network and signaling pathways might be related to the interaction of the characteristic microbiota of the inflammatory disease, with the lung and gut cell receptors present in membrane rafts and complexes. The transcriptomic analysis highlights the impact of several coding and non-coding RNAs, suggesting their relationship with the unlocking of cell phenotypic plasticity for the acquisition of the hallmarks of cancer during lung and gut cell adaptation to inflammatory phenotypes.
Collapse
Affiliation(s)
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia; (C.P.-G.); (N.B.P.-A.)
| | - Juan Javier López-Rivera
- Grupo de Investigación INPAC, Specialized Laboratory, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| | - Natalia Belén Pedroza-Aconcha
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia; (C.P.-G.); (N.B.P.-A.)
| | | | - Claudia Aristizábal-Guzmán
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Mario Arturo Isaza-Ruget
- Keralty, Sanitas International Organization, Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Carlos Arturo Álvarez-Moreno
- Infectious Diseases Department, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| |
Collapse
|
10
|
Wits M, Haarmans N, Sanchez-Duffhues G, Goumans MJ. TGF-β receptor-specific NanoBRET Target Engagement in living cells for high-throughput kinase inhibitor screens. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100196. [PMID: 39542424 DOI: 10.1016/j.slasd.2024.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Targeting transforming growth factor-β (TGF-β) receptors is a promising pharmacological approach to normalize aberrant signaling in genetic and non-genetic TGF-β associated diseases including fibrosis, cancer, cardiovascular and musculoskeletal disorders. To identify novel TGF-β receptor kinase inhibitors, methods like in vitro kinase assays, western blot or transcriptional reporter assays are often used for screening purposes. While these methods may have certain advantages, the lack of integration of key features such as receptor specificity, high-throughput capability, and cellular context resemblance remains a major disadvantage. This deficiency could ultimately hinder the translation of study outcomes into later (clinical) stages of drug development. In this study, we introduce an adjusted and optimized live cell NanoBRET Target Engagement (TE)-based method to identify TGF-β receptor specific kinase inhibitors. This comprehensive toolkit contains various TGF-β type I and type II receptors, with corresponding nanoBRET tracers, and disease-related cell lines, including novel non-commercially available materials. The nanoBRET capacity and kinase inhibitory window can be significantly enhanced for functional measurements when stable expression cell lines and substantially low tracer concentrations are used. In addition, this system can be tailored to study TGF-β associated genetic disorders and possibly be used to screen for disease-specific therapeutics. Therefore, the use of this optimized, live cell, antibody-independent nanoBRET Target Engagement assay is highly encouraged for future high-throughput compound screens targeting TGF-β/BMP receptors.
Collapse
Affiliation(s)
- Marius Wits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Nicole Haarmans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands; Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), Health Research Institute of Asturias (ISPA), 33011 Oviedo, Asturias, Spain.
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands.
| |
Collapse
|
11
|
Jasińska-Stroschein M, Glajzner P. Searching for Old and New Small-Molecule Protein Kinase Inhibitors as Effective Treatments in Pulmonary Hypertension-A Systematic Review. Int J Mol Sci 2024; 25:12858. [PMID: 39684570 DOI: 10.3390/ijms252312858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Treatment options for pulmonary arterial hypertension (PAH) have improved substantially in the last 30 years, but there is still a need for novel molecules that can regulate the excessive accumulation of pulmonary artery smooth muscle cells (PASMCs) and consequent vascular remodeling. One set of possible candidates are protein kinases. The study provides an overview of existing preclinical and clinical data regarding small-molecule protein kinase inhibitors in PAH. Online databases were searched from 2001 to 2023 according to PRISMA. The corpus included preclinical studies demonstrating alterations in at least one PH-related parameter following chronic exposure to an individual protein kinase inhibitor, as well as prospective clinical reports including healthy adults or those with PAH, with primary outcomes defined as safety or efficacy of an individual small-molecule protein kinase inhibitor. Several models in preclinical protocols (93 papers) have been proposed for studying small-molecule protein kinase inhibitors in PAH. In total, 51 kinase inhibitors were tested. Meta-analysis of preclinical results demonstrated seralutinib, sorafenib, fasudil hydrochloride, and imatinib had the most comprehensive effects on PH with anti-inflammatory, anti-oxidant, and anti-proliferative potential. Fasudil demonstrated more than 70% animal survival with the longest experimental period, while dasatinib, nintedanib, and (R)-crizotinib could deteriorate PAH. The substances targeting the same kinases often varied considerably in their activity, and such heterogeneity may be due to the variety of causes. Recent studies have addressed the molecules that affect multiple networks such as PDG-FRα/β/CSF1R/c-KIT/BMPR2 or FKBP12/mTOR. They also focus on achieving a satisfactory safety profile using innovative inhalation formulations Many small-molecule protein kinase inhibitors are able to control migration, proliferation and survival in PASMCs in preclinical observations. Standardized animal models can successfully reduce inter-study heterogeneity and thereby facilitate successful identification of candidate drugs for further evaluations.
Collapse
Affiliation(s)
| | - Paulina Glajzner
- Department of Biopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
12
|
Koo J, Seong CS, Parker RE, Herrera A, Dwivedi B, Arthur RA, Dinasarapu AR, Johnston HR, Claussen H, Tucker-Burden C, Ramalingam SS, Fu H, Zhou W, Marcus AI, Gilbert-Ross M. Live-Cell Invasive Phenotyping Uncovers ALK2 as a Therapeutic Target in LKB1-Mutant Lung Cancer. Cancer Res 2024; 84:3761-3771. [PMID: 39207369 PMCID: PMC11565166 DOI: 10.1158/0008-5472.can-23-2631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/26/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The acquisition of invasive properties is a prerequisite for tumor progression and metastasis. Molecular subtypes of KRAS-driven lung cancer exhibit distinct modes of invasion that contribute to unique growth properties and therapeutic susceptibilities. Despite this, preclinical strategies designed to exploit growth within the context of invasion are lacking. To address this, we designed an experimental system to screen for targetable signaling pathways linked to active early 3D invasion phenotypes in different molecular subtypes of KRAS-driven lung adenocarcinoma. Combined live-cell imaging of human bronchial epithelial cells in a 3D invasion matrix and transcriptomic profiling identified mutant LKB1-specific upregulation of BMP6. LKB1 loss increased BMP6 signaling, which induced the canonical iron regulatory hormone hepcidin. Intact LKB1 was necessary to maintain BMP6 signaling homeostasis and restrict ALK2/BMP6-fueled growth. Preclinical studies in a Kras/Lkb1-mutant syngeneic mouse model and in a xenograft model showed potent growth suppression by inhibiting the ALK2/BMP6 signaling axis with single-agent inhibitors that are currently in clinical trials. Lastly, BMP6 expression was elevated in tumors of patients with LKB1-mutant early-stage lung cancer. These results are consistent with those of a model in which LKB1 acts as a "brake" to iron-regulated growth and suggest that ALK2 inhibition can be used for patients with LKB1-mutant tumors. Significance: Three-dimensional invasion-linked gene expression analysis reveals a therapeutic vulnerability to inhibition of ALK2/BMP6 signaling in LKB1-mutant lung cancer that can be rapidly translated to the clinic.
Collapse
Affiliation(s)
- Junghui Koo
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Chang-Soo Seong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Rebecca E. Parker
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
- Cancer Biology Graduate Program, Emory University, Atlanta, Georgia
| | - Amy Herrera
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Bhakti Dwivedi
- Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Robert A. Arthur
- Emory Integrated Computational Core, Emory University School of Medicine, Atlanta, Georgia
| | | | - Henry Richard Johnston
- Emory Integrated Computational Core, Emory University School of Medicine, Atlanta, Georgia
| | - Henry Claussen
- Emory Integrated Computational Core, Emory University School of Medicine, Atlanta, Georgia
| | - Carol Tucker-Burden
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Haian Fu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Adam I. Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Melissa Gilbert-Ross
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
13
|
Guan Y, Ma D. Fibrodysplasia ossificans progressiva complicated with post traumatic and infectious myositis ossificans in masseter: A case report. Medicine (Baltimore) 2024; 103:e39648. [PMID: 39287296 PMCID: PMC11404880 DOI: 10.1097/md.0000000000039648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
RATIONALE Myositis ossificans (MO) is characterized by benign heterotopic ossificans in soft tissues like muscles, which can be classified into nonhereditary MO and fibrodysplasia ossificans progressiva (FOP). Nonhereditary MO is characterized by ossification of the soft tissues after acute or repetitive trauma, burns, or surgical intervention. FOP is a rare and crippling disease characterized by congenital malformation of the big toe and heterotopic ossification in muscle. The majority of FOP's musculoskeletal traits are associated with dysregulated chondrogenesis. The diagnosis is mainly based on clinical manifestation, imaging examination, and genetic analysis. There is still no effective treatment to cure or slow its progression. The best approach remains early diagnosis, conservative drug treatment, and injury prevention to avoid local ossification. PATIENT CONCERNS A 34-year-old male presented at our hospital because of trismus caused by ossification of the masseter muscle. In addition, he had serious stiffness and multiple bony masses throughout the body, which led to limited movement. DIAGNOSES Based on the clinical manifestation of movement restriction, characteristic radiographic images of ossification of soft tissues, the genetic test showing a heterozygous molecule (c.974G > C, p.G325A) of the activin A receptor type I, the patient was diagnosed as FOP complicated with localized MO in masseter after trauma and infection. INTERVENTIONS The patient underwent the surgical resection of ossification in the masseter muscle, he was instructed to insist on mouth-opening exercises and take glucocorticoids and nonsteroidal anti-inflammatory medications after surgery. OUTCOMES The symptoms of trismus are relieved, and eating can be basically achieved after surgery, while the symptoms of trismus recurred 2 years later. LESSONS Although FOP has unique clinical manifestations, its diagnosis may be difficult because of its rarity. Gene analysis is the main standard for diagnosis, while patients with different genotypic variations may show different clinical symptoms. Therapeutic interventions are still supportive and preventive, and surgery is not recommended except under certain circumstances.
Collapse
Affiliation(s)
- Yian Guan
- Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Dongyang Ma
- Department of Oral and Maxillofacial Surgery, the 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| |
Collapse
|
14
|
Chen H, Li YY, Nio K, Tang H. Unveiling the Impact of BMP9 in Liver Diseases: Insights into Pathogenesis and Therapeutic Potential. Biomolecules 2024; 14:1013. [PMID: 39199400 PMCID: PMC11353080 DOI: 10.3390/biom14081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Bone morphogenetic proteins (BMPs) are a group of growth factors belonging to the transforming growth factor β(TGF-β) family. While initially recognized for their role in bone formation, BMPs have emerged as significant players in liver diseases. Among BMPs with various physiological activities, this comprehensive review aims to delve into the involvement of BMP9 specifically in liver diseases and provide insights into the complex BMP signaling pathway. Through an enhanced understanding of BMP9, we anticipate the discovery of new therapeutic options and potential strategies for managing liver diseases.
Collapse
Affiliation(s)
- Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan;
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan;
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Němec V, Remeš M, Beňovský P, Böck MC, Šranková E, Wong JF, Cros J, Williams E, Tse LH, Smil D, Ensan D, Isaac MB, Al-Awar R, Gomolková R, Ursachi VC, Fafílek B, Kahounová Z, Víchová R, Vacek O, Berger BT, Wells CI, Corona CR, Vasta JD, Robers MB, Krejci P, Souček K, Bullock AN, Knapp S, Paruch K. Discovery of Two Highly Selective Structurally Orthogonal Chemical Probes for Activin Receptor-like Kinases 1 and 2. J Med Chem 2024; 67:12632-12659. [PMID: 39023313 PMCID: PMC11320582 DOI: 10.1021/acs.jmedchem.4c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Activin receptor-like kinases 1-7 (ALK1-7) regulate a complex network of SMAD-independent as well as SMAD-dependent signaling pathways. One of the widely used inhibitors for functional investigations of these processes, in particular for bone morphogenetic protein (BMP) signaling, is LDN-193189. However, LDN-193189 has insufficient kinome-wide selectivity complicating its use in cellular target validation assays. Herein, we report the identification and comprehensive characterization of two chemically distinct highly selective inhibitors of ALK1 and ALK2, M4K2234 and MU1700, along with their negative controls. We show that both MU1700 and M4K2234 efficiently block the BMP pathway via selective in cellulo inhibition of ALK1/2 kinases and exhibit favorable in vivo profiles in mice. MU1700 is highly brain penetrant and shows remarkably high accumulation in the brain. These high-quality orthogonal chemical probes offer the selectivity required to become widely used tools for in vitro and in vivo investigation of BMP signaling.
Collapse
Affiliation(s)
- Václav Němec
- Institute
for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, Frankfurt am Main, 60438, Germany
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Marek Remeš
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Petr Beňovský
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Michael C. Böck
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Eliška Šranková
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Jong Fu Wong
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Julien Cros
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Eleanor Williams
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Lap Hang Tse
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - David Smil
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
| | - Deeba Ensan
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
| | - Methvin B. Isaac
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
| | - Rima Al-Awar
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Regina Gomolková
- Department
of Biology, Faculty of Medicine, Masaryk
University, 625 00 Brno, Czech
Republic
- Institute
of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Vlad-Constantin Ursachi
- Department
of Biology, Faculty of Medicine, Masaryk
University, 625 00 Brno, Czech
Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
| | - Bohumil Fafílek
- Department
of Biology, Faculty of Medicine, Masaryk
University, 625 00 Brno, Czech
Republic
- Institute
of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
| | - Zuzana Kahounová
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno Czech Republic
| | - Ráchel Víchová
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno Czech Republic
| | - Ondřej Vacek
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno Czech Republic
| | - Benedict-Tilman Berger
- Institute
for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, Frankfurt am Main, 60438, Germany
| | - Carrow I. Wells
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | - James D. Vasta
- Promega Corporation, Madison, Wisconsin 53716, United States
| | | | - Pavel Krejci
- Department
of Biology, Faculty of Medicine, Masaryk
University, 625 00 Brno, Czech
Republic
- Institute
of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
| | - Karel Souček
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno Czech Republic
| | - Alex N. Bullock
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Stefan Knapp
- Institute
for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, Frankfurt am Main, 60438, Germany
| | - Kamil Paruch
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
- Institute
of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| |
Collapse
|
16
|
Shirodkar D, Smithson SF, Keen R, Lester T, Banos-Pinero B, Burren CP. Congenital hallux valgus occurs in Fibrodysplasia Ossificans Progressiva and BMPR1B-associated dysplasia: an important distinction. BMC Med Genomics 2024; 17:160. [PMID: 38879467 PMCID: PMC11179364 DOI: 10.1186/s12920-024-01931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/12/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Fibrodysplasia Ossificans Progressiva (FOP; OMIM #135100) is an ultrarare genetic disorder characterised by congenital bilateral hallux valgus (CBHV), intermittent soft tissue swellings and progressive heterotopic ossification. We report a three-month-old girl with great toe abnormalities similar to FOP, in whom comprehensive clinical workup and genetic investigations illustrates an alternative diagnosis. CASE PRESENTATION A three-month-old girl presented with CBHV. The antenatal period was unremarkable, she was born by spontaneous vaginal delivery with an uneventful subsequent course, except for maternal concern of her bent toes which received reassurance from several health professionals. Her mother's persisting concerns were explored via the internet and social media leading her to request referral to an expert bone centre for consideration of FOP. On examination, she was thriving, there was no dysmorphism, subcutaneous lumps, skeletal or extra-skeletal deformity except for shortened great toes with lateral deviation of the proximal and distal phalanges. FOP was a feasible diagnosis, for which CBHV is highlighted as an early sign. A cautionary potential diagnosis of FOP was counselled, including advice to defer intramuscular immunisations until genetic results available. Genetic investigation was undertaken through rapid whole genomic sequencing (WGS), with analysis of data from a skeletal dysplasia gene panel, which demonstrated no ACVR1variants. The only finding was a heterozygous variant of unknown significance in BMPR1B (c1460T>A, p.(Val487Asp)), which encodes a bone morphogenic receptor involved in brachydactyly syndromes A1, A2 and D and acromesomelic dysplasia 3 (only the latter being an autosomal recessive condition). CONCLUSION This report highlights that CBHV serves as a vital diagnostic indicator of FOP and affected infants should be considered and investigated for FOP, including precautionary management whilst awaiting genetic studies. The second educational aspect is that CBHV may not represent a generalised skeletal disorder, or one much less significant than FOP. Receptor-ligand BMP and Activins mediated interactions are instrumental in the intricate embryology of the great toe. Recognition of non-FOP conditions caused by alterations in different genes are likely to increase with new genomic technology and large gene panels, enhancing understanding of bone signaling pathways.
Collapse
Affiliation(s)
- Diksha Shirodkar
- Department of Paediatric Endocrinology and Diabetes, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Maudlin Street, Bristol, BS2 8BJ, UK.
| | - Sarah Francesca Smithson
- Department of Clinical Genetics, St Michael's Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Southwell Street, Bristol, BS2 8EG, UK
| | - Richard Keen
- Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex, HA7 4LP, UK
| | - Tracy Lester
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford, Oxfordshire, OX3 9DU, UK
| | - Benito Banos-Pinero
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, OX3 7LE, UK
| | - Christine Pamela Burren
- Department of Paediatric Endocrinology and Diabetes, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Maudlin Street, Bristol, BS2 8BJ, UK
| |
Collapse
|
17
|
Verdura S, Encinar JA, Gratchev A, Llop-Hernández À, López J, Serrano-Hervás E, Teixidor E, López-Bonet E, Martin-Castillo B, Micol V, Bosch-Barrera J, Cuyàs E, Menendez JA. Silibinin is a suppressor of the metastasis-promoting transcription factor ID3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155493. [PMID: 38484626 DOI: 10.1016/j.phymed.2024.155493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND ID3 (inhibitor of DNA binding/differentiation-3) is a transcription factor that enables metastasis by promoting stem cell-like properties in endothelial and tumor cells. The milk thistle flavonolignan silibinin is a phytochemical with anti-metastatic potential through largely unknown mechanisms. HYPOTHESIS/PURPOSE We have mechanistically investigated the ability of silibinin to inhibit the aberrant activation of ID3 in brain endothelium and non-small cell lung cancer (NSCLC) models. METHODS Bioinformatic analyses were performed to investigate the co-expression correlation between ID3 and bone morphogenic protein (BMP) ligands/BMP receptors (BMPRs) genes in NSCLC patient datasets. ID3 expression was assessed by immunoblotting and qRT-PCR. Luciferase reporter assays were used to evaluate the gene sequences targeted by silibinin to regulate ID3 transcription. In silico computational modeling and LanthaScreen TR-FRET kinase assays were used to characterize and validate the BMPR inhibitory activity of silibinin. Tumor tissues from NSCLC xenograft models treated with oral silibinin were used to evaluate the in vivo anti-ID3 effects of silibinin. RESULTS Analysis of lung cancer patient datasets revealed a top-ranked positive association of ID3 with the BMP9 endothelial receptor ACVRL1/ALK1 and the BMP ligand BMP6. Silibinin treatment blocked the BMP9-induced activation of the ALK1-phospho-SMAD1/5-ID3 axis in brain endothelial cells. Constitutive, acquired, and adaptive expression of ID3 in NSCLC cells were all significantly downregulated in response to silibinin. Silibinin blocked ID3 transcription via BMP-responsive elements in ID3 gene enhancers. Silibinin inhibited the kinase activities of BMPRs in the micromolar range, with the lower IC50 values occurring against ACVRL1/ALK1 and BMPR2. In an in vivo NSCLC xenograft model, tumoral overexpression of ID3 was completely suppressed by systematically achievable oral doses of silibinin. CONCLUSIONS ID3 is a largely undruggable metastasis-promoting transcription factor. Silibinin is a novel suppressor of ID3 that may be explored as a novel therapeutic approach to interfere with the metastatic dissemination capacity of NSCLC.
Collapse
Affiliation(s)
- Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche 03202, Spain
| | - Alexei Gratchev
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Àngela Llop-Hernández
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Júlia López
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Eila Serrano-Hervás
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Eduard Teixidor
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Medical Oncology, Catalan Institute of Oncology, Girona, 17007, Spain
| | - Eugeni López-Bonet
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, Girona 17007, Spain
| | - Begoña Martin-Castillo
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Unit of Clinical Research, Catalan Institute of Oncology, Girona, 17007, Spain
| | - Vicente Micol
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche 03202, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Joaquim Bosch-Barrera
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Medical Oncology, Catalan Institute of Oncology, Girona, 17007, Spain; Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain.
| |
Collapse
|
18
|
Marañón P, Rey E, Isaza SC, Wu H, Rada P, Choya-Foces C, Martínez-Ruiz A, Martín MÁ, Ramos S, García-Monzón C, Cubero FJ, Valverde ÁM, González-Rodríguez Á. Inhibition of ALK3-mediated signalling pathway protects against acetaminophen-induced liver injury. Redox Biol 2024; 71:103088. [PMID: 38401290 PMCID: PMC10902147 DOI: 10.1016/j.redox.2024.103088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024] Open
Abstract
Acetaminophen (APAP)-induced liver injury is one of the most prevalent causes of acute liver failure (ALF). We assessed the role of the bone morphogenetic protein (BMP) type I receptors ALK2 and ALK3 in APAP-induced hepatotoxicity. The molecular mechanisms that regulate the balance between cell death and survival and the response to oxidative stress induced by APAP was assessed in cultured human hepatocyte-derived (Huh7) cells treated with pharmacological inhibitors of ALK receptors and with modulated expression of ALK2 or ALK3 by lentiviral infection, and in a mouse model of APAP-induced hepatotoxicity. Inhibition of ALK3 signalling with the pharmacological inhibitor DMH2, or by silencing of ALK3, showed a decreased cell death both by necrosis and apoptosis after APAP treatment. Also, upon APAP challenge, ROS generation was ameliorated and, thus, ROS-mediated JNK and P38 MAPK phosphorylation was reduced in ALK3-inhibited cells compared to control cells. These results were also observed in an experimental model of APAP-induced ALF in which post-treatment with DMH2 after APAP administration significantly reduced liver tissue damage, apoptosis and oxidative stress. This study shows the protective effect of ALK3 receptor inhibition against APAP-induced hepatotoxicity. Furthermore, findings obtained from the animal model suggest that BMP signalling might be a new pharmacological target for the treatment of ALF.
Collapse
Affiliation(s)
- Patricia Marañón
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.
| | - Esther Rey
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Stephania C Isaza
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Hanghang Wu
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Carmen Choya-Foces
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - María Ángeles Martín
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Madrid, Spain
| | - Sonia Ramos
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Madrid, Spain
| | - Carmelo García-Monzón
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Sols-Morreale (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
19
|
Correale M, Chirivì F, Bevere EML, Tricarico L, D’Alto M, Badagliacca R, Brunetti ND, Vizza CD, Ghio S. Endothelial Function in Pulmonary Arterial Hypertension: From Bench to Bedside. J Clin Med 2024; 13:2444. [PMID: 38673717 PMCID: PMC11051060 DOI: 10.3390/jcm13082444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Pulmonary arterial hypertension is a complex pathology whose etiology is still not completely well clarified. The pathogenesis of pulmonary arterial hypertension involves different molecular mechanisms, with endothelial dysfunction playing a central role in disease progression. Both individual genetic predispositions and environmental factors seem to contribute to its onset. To further understand the complex relationship between endothelial and pulmonary hypertension and try to contribute to the development of future therapies, we report a comprehensive and updated review on endothelial function in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Michele Correale
- Cardiothoracic Department, Policlinico Riuniti University Hospital, 71100 Foggia, Italy;
| | - Francesco Chirivì
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Ester Maria Lucia Bevere
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Lucia Tricarico
- Cardiothoracic Department, Policlinico Riuniti University Hospital, 71100 Foggia, Italy;
| | - Michele D’Alto
- Department of Cardiology, A.O.R.N. dei Colli, Monaldi Hospital, University of Campania L. ‘Vanvitelli’, 80133 Naples, Italy;
| | - Roberto Badagliacca
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.B.); (C.D.V.)
| | - Natale D. Brunetti
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Carmine Dario Vizza
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.B.); (C.D.V.)
| | - Stefano Ghio
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
20
|
Hermawan A, Putri H. Bioinformatics Analysis of the Genetic and Epigenetic Alterations of Bone Morphogenetic Protein Receptors in Metastatic Breast Cancer. Biochem Genet 2024; 62:594-620. [PMID: 37486509 DOI: 10.1007/s10528-023-10445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023]
Abstract
The leading cause of mortality in patients with breast cancer is metastasis, and bone morphogenetic protein (BMP) signaling activation regulates metastasis in breast cancer. This study explored the genetic and epigenetic modification of BMP receptor genes associated with metastatic breast cancer cells using bioinformatics. The genetic and epigenetic alterations of BMP receptors (BMPR1A, BMPR1B, BMPR2, ACVR2A, ACVR1, ACVR2B, ACVR1B, HJV, and ENG) were examined using cBioportal and methSurv, respectively. mRNA expression was analyzed using TNM plot and bcgenex, and protein expression was studied using Human Protein Atlas. Prognostic value and ROC were investigated using Kaplan-Meier (KM) and ROC plot, respectively. Finally, mutant function was predicted using several databases, including PolyPhen-2, FATHMM, Mutation Assessor, and PredictSNP. Oncoprint analysis showed genetic alterations in BMPR1A (39%), BMPR1B (13%), BMPR2 (34%), ACVR2A (14%), ACVR1 (7%), ACVR2B (13), ACVR1B (35%), HJV (40%), and ENG (33%) across the patients with breast cancer in The Metastatic Breast Cancer Project. The mRNA and protein levels of BMPR2 were increased in metastatic breast tumor tissues compared with those in normal and breast tumor tissues. BMPR1A and BMPR2 showed the highest and lowest levels of epigenetic alterations among the BMP receptors, respectively. The patients with breast cancer who had low levels of BMPR2 had a better overall survival (OS) than those with high levels of BMPR2. Functional mutation prediction showed that mutants in BMPR2 (R272L, E274K, and L685F), ACVR2A (S127L), and ACVR1B (R484H), are deleterious, probably damaging, and possess a cancer phenotype. ROC plot revealed no BMP receptors correlated with endocrine therapy sensitivity. BMPR1B, BMPR2, and ACVR2A levels were significantly linked as moderate prediction of anti-HER2, BMPR2, and ACVR1B demonstrated moderate predictive potential for chemotherapy sensitivity. This study contributed in fully comprehending the significance of genetic and epigenetic alterations in BMP receptors and BMP signaling in metastatic breast cancer cells for the development of breast cancer treatment plans.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia.
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia.
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia.
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| |
Collapse
|
21
|
Liu F, Zhao Y, Pei Y, Lian F, Lin H. Role of the NF-kB signalling pathway in heterotopic ossification: biological and therapeutic significance. Cell Commun Signal 2024; 22:159. [PMID: 38439078 PMCID: PMC10910758 DOI: 10.1186/s12964-024-01533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
Heterotopic ossification (HO) is a pathological process in which ectopic bone develops in soft tissues within the skeletal system. Endochondral ossification can be divided into the following types of acquired and inherited ossification: traumatic HO (tHO) and fibrodysplasia ossificans progressiva (FOP). Nuclear transcription factor kappa B (NF-κB) signalling is essential during HO. NF-κB signalling can drive initial inflammation through interactions with the NOD-like receptor protein 3 (NLRP3) inflammasome, Sirtuin 1 (SIRT1) and AMP-activated protein kinase (AMPK). In the chondrogenesis stage, NF-κB signalling can promote chondrogenesis through interactions with mechanistic target of rapamycin (mTOR), phosphatidylinositol-3-kinase (PI3K)/AKT (protein kinase B, PKB) and other molecules, including R-spondin 2 (Rspo2) and SRY-box 9 (Sox9). NF-κB expression can modulate osteoblast differentiation by upregulating secreted protein acidic and rich in cysteine (SPARC) and interacting with mTOR signalling, bone morphogenetic protein (BMP) signalling or integrin-mediated signalling under stretch stimulation in the final osteogenic stage. In FOP, mutated ACVR1-induced NF-κB signalling exacerbates inflammation in macrophages and can promote chondrogenesis and osteogenesis in mesenchymal stem cells (MSCs) through interactions with smad signalling and mTOR signalling. This review summarizes the molecular mechanism of NF-κB signalling during HO and highlights potential therapeutics for treating HO.
Collapse
Affiliation(s)
- Fangzhou Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yike Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yiran Pei
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Fengyu Lian
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
22
|
Elkadi OA, Abinzano F, Nippolainen E, González OB, Levato R, Malda J, Afara IO. Non-neotissue constituents as underestimated confounders in the assessment of tissue engineered constructs by near-infrared spectroscopy. Mater Today Bio 2024; 24:100879. [PMID: 38130429 PMCID: PMC10733684 DOI: 10.1016/j.mtbio.2023.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Non-destructive assessments are required for the quality control of tissue-engineered constructs and the optimization of the tissue culture process. Near-infrared (NIR) spectroscopy coupled with machine learning (ML) provides a promising approach for such assessment. However, due to its nonspecific nature, each spectrum incorporates information on both neotissue and non-neotissue constituents of the construct; the effect of these constituents on the NIR-based assessments of tissue-engineered constructs has been overlooked in previous studies. This study investigates the effect of scaffolds, growth factors, and buffers on NIR-based assessments of tissue-engineered constructs. To determine if these non-neotissue constituents have a measurable effect on the NIR spectra of the constructs that can introduce bias in their assessment, nine ML algorithms were evaluated in classifying the NIR spectra of engineered cartilage according to the scaffold used to prepare the constructs, the growth factors added to the culture media, and the buffers used for storing the constructs. The effect of controlling for these constituents was also evaluated using controlled and uncontrolled NIR-based ML models for predicting tissue maturity as an example of neotissue-related properties of interest. Samples used in this study were prepared using norbornene-modified hyaluronic acid scaffolds with or without the conjugation of an N-cadherin mimetic peptide. Selected samples were supplemented with transforming growth factor-beta1 or bone morphogenetic protein-9 growth factor. Some samples were frozen in cell lysis buffer, while the remaining samples were frozen in PBS until required for NIR analysis. The ML models for classifying the spectra of the constructs according to the four constituents exhibited high to fair performances, with F1 scores ranging from 0.9 to 0.52. Moreover, controlling for the four constituents significantly improved the performance of the models for predicting tissue maturity, with improvement in F1 scores ranging from 0.09 to 0.77. In conclusion, non-neotissue constituents have measurable effects on the NIR spectra of tissue-engineered constructs that can be detected by ML algorithms and introduce bias in the assessment of the constructs by NIR spectroscopy. Therefore, controlling for these constituents is necessary for reliable NIR-based assessments of tissue-engineered constructs.
Collapse
Affiliation(s)
- Omar Anwar Elkadi
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Florencia Abinzano
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, the Netherlands
| | - Ervin Nippolainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Ona Bach González
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, the Netherlands
| | - Riccardo Levato
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT, Utrecht, the Netherlands
| | - Jos Malda
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT, Utrecht, the Netherlands
| | - Isaac O. Afara
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
23
|
Weible MW, Lovelace MD, Mundell HD, Pang TWR, Chan-Ling T. BMPRII + neural precursor cells isolated and characterized from organotypic neurospheres: an in vitro model of human fetal spinal cord development. Neural Regen Res 2024; 19:447-457. [PMID: 37488910 PMCID: PMC10503628 DOI: 10.4103/1673-5374.373669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/12/2022] [Accepted: 03/06/2023] [Indexed: 07/26/2023] Open
Abstract
Roof plate secretion of bone morphogenetic proteins (BMPs) directs the cellular fate of sensory neurons during spinal cord development, including the formation of the ascending sensory columns, though their biology is not well understood. Type-II BMP receptor (BMPRII), the cognate receptor, is expressed by neural precursor cells during embryogenesis; however, an in vitro method of enriching BMPRII+ human neural precursor cells (hNPCs) from the fetal spinal cord is absent. Immunofluorescence was undertaken on intact second-trimester human fetal spinal cord using antibodies to BMPRII and leukemia inhibitory factor (LIF). Regions of highest BMPRII+ immunofluorescence localized to sensory columns. Parenchymal and meningeal-associated BMPRII+ vascular cells were identified in both intact fetal spinal cord and cortex by co-positivity with vascular lineage markers, CD34/CD39. LIF immunostaining identified a population of somas concentrated in dorsal and ventral horn interneurons, mirroring the expression of LIF receptor/CD118. A combination of LIF supplementation and high-density culture maintained culture growth beyond 10 passages, while synergistically increasing the proportion of neurospheres with a stratified, cytoarchitecture. These neurospheres were characterized by BMPRII+/MAP2ab+/-/βIII-tubulin+/nestin-/vimentin-/GFAP-/NeuN- surface hNPCs surrounding a heterogeneous core of βIII-tubulin+/nestin+/vimentin+/GFAP+/MAP2ab-/NeuN- multipotent precursors. Dissociated cultures from tripotential neurospheres contained neuronal (βIII-tubulin+), astrocytic (GFAP+), and oligodendrocytic (O4+) lineage cells. Fluorescence-activated cell sorting-sorted BMPRII+ hNPCs were MAP2ab+/-/βIII-tubulin+/GFAP-/O4- in culture. This is the first isolation of BMPRII+ hNPCs identified and characterized in human fetal spinal cords. Our data show that LIF combines synergistically with high-density reaggregate cultures to support the organotypic reorganization of neurospheres, characterized by surface BMPRII+ hNPCs. Our study has provided a new methodology for an in vitro model capable of amplifying human fetal spinal cord cell numbers for > 10 passages. Investigations of the role BMPRII plays in spinal cord development have primarily relied upon mouse and rat models, with interpolations to human development being derived through inference. Because of significant species differences between murine biology and human, including anatomical dissimilarities in central nervous system (CNS) structure, the findings made in murine models cannot be presumed to apply to human spinal cord development. For these reasons, our human in vitro model offers a novel tool to better understand neurodevelopmental pathways, including BMP signaling, as well as spinal cord injury research and testing drug therapies.
Collapse
Affiliation(s)
- Michael W. Weible
- Bosch Institute, Discipline of Anatomy and Histology (F13), University of Sydney, Sydney, NSW, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Michael D. Lovelace
- Bosch Institute, Discipline of Anatomy and Histology (F13), University of Sydney, Sydney, NSW, Australia
- Discipline of Medicine, Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Kingswood, NSW, Australia
| | - Hamish D. Mundell
- Bosch Institute, Discipline of Anatomy and Histology (F13), University of Sydney, Sydney, NSW, Australia
- New South Wales Brain Tissue Resource Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Charles Perkins Centre (D17), Sydney, NSW, Australia
| | - Tsz Wai Rosita Pang
- Bosch Institute, Discipline of Anatomy and Histology (F13), University of Sydney, Sydney, NSW, Australia
| | - Tailoi Chan-Ling
- Bosch Institute, Discipline of Anatomy and Histology (F13), University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
24
|
Golán-Cancela I, Caja L. The TGF-β Family in Glioblastoma. Int J Mol Sci 2024; 25:1067. [PMID: 38256140 PMCID: PMC10816220 DOI: 10.3390/ijms25021067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Members of the transforming growth factor β (TGF-β) family have been implicated in the biology of several cancers. In this review, we focus on the role of TGFβ and bone morphogenetic protein (BMP) signaling in glioblastoma. Glioblastoma (GBM) is the most common malignant brain tumor in adults; it presents at a median age of 64 years, but can occur at any age, including childhood. Unfortunately, there is no cure, and even patients undergoing current treatments (surgical resection, radiotherapy, and chemotherapy) have a median survival of 15 months. There is a great need to identify new therapeutic targets to improve the treatment of GBM patients. TGF-βs signaling promotes tumorigenesis in glioblastoma, while BMPs suppress tumorigenic potential by inducing tumor cell differentiation. In this review, we discuss the actions of TGF-βs and BMPs on cancer cells as well as in the tumor microenvironment, and their use in potential therapeutic intervention.
Collapse
Affiliation(s)
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden;
| |
Collapse
|
25
|
Koyya P, Manthari RK, Pandrangi SL. Brain-Derived Neurotrophic Factor - The Protective Agent Against Neurological Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:353-366. [PMID: 37287291 PMCID: PMC11348470 DOI: 10.2174/1871527322666230607110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
The burden of neurological illnesses on global health is significant. Our perception of the molecular and biological mechanisms underlying intellectual processing and behavior has significantly advanced over the last few decades, laying the groundwork for potential therapies for various neurodegenerative diseases. A growing body of literature reveals that most neurodegenerative diseases could be due to the gradual failure of neurons in the brain's neocortex, hippocampus, and various subcortical areas. Research on various experimental models has uncovered several gene components to understand the pathogenesis of neurodegenerative disorders. One among them is the brain-derived neurotrophic factor (BDNF), which performs several vital functions, enhancing synaptic plasticity and assisting in the emergence of long-term thoughts. The pathophysiology of some neurodegenerative diseases, including Alzheimer's, Parkinson's, Schizophrenia, and Huntington's, has been linked to BDNF. According to numerous research, high levels of BDNF are connected to a lower risk of developing a neurodegenerative disease. As a result, we want to concentrate on BDNF in this article and outline its protective role against neurological disorders.
Collapse
Affiliation(s)
- Prathyusha Koyya
- Department of Biotechnology, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Santhi Latha Pandrangi
- Department of Biochemistry and Bioinformatics, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
26
|
Yamaguchi H, Li M, Kitami M, Swaminathan S, Mishina Y, Komatsu Y. Enhanced BMP signaling in Cathepsin K-positive tendon progenitors induces heterotopic ossification. Biochem Biophys Res Commun 2023; 688:149147. [PMID: 37948912 PMCID: PMC10952113 DOI: 10.1016/j.bbrc.2023.149147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Heterotopic ossification (HO) is abnormal bone growth in soft tissues that results from injury, trauma, and rare genetic disorders. Bone morphogenetic proteins (BMPs) are critical osteogenic regulators which are involved in HO. However, it remains unclear how BMP signaling interacts with other extracellular stimuli to form HO. To address this question, using the Cre-loxP recombination system in mice, we conditionally expressed the constitutively activated BMP type I receptor ALK2 with a Q207D mutation (Ca-ALK2) in Cathepsin K-Cre labeled tendon progenitors (hereafter "Ca-Alk2:Ctsk-Cre"). Ca-Alk2:Ctsk-Cre mice were viable but they formed spontaneous HO in the Achilles tendon. Histological and molecular marker analysis revealed that HO is formed via endochondral ossification. Ectopic chondrogenesis coincided with enhanced GLI1 production, suggesting that elevated Hedgehog (Hh) signaling is involved in the pathogenesis of HO. Interestingly, focal adhesion kinase, a critical mediator for the mechanotransduction pathway, was also activated in Ca-Alk2:Ctsk-Cre mice. Our findings suggest that enhanced BMP signaling may elevate Hh and mechanotransduction pathways, thereby causing HO in the regions of the Achilles tendon.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Margaret Li
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Department of Kinesiology, Rice University Wiess School of Natural Science, Houston, TX, 77005, USA
| | - Megumi Kitami
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan; Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
| | - Sowmya Swaminathan
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; The College of Natural Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Graduate Program in Genetics and Epigenetics, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Riege D, Herschel S, Fenkl T, Schade D. Small-Molecule Probes as Pharmacological Tools for the Bone Morphogenetic Protein Signaling Pathway. ACS Pharmacol Transl Sci 2023; 6:1574-1599. [PMID: 37974621 PMCID: PMC10644459 DOI: 10.1021/acsptsci.3c00170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023]
Abstract
The bone morphogenetic protein (BMP) pathway is highly conserved and plays central roles in health and disease. The quality and quantity of its signaling outputs are regulated at multiple levels, offering pharmacological options for targeted modulation. Both target-centric and phenotypic drug discovery (PDD) approaches were applied to identify small-molecule BMP inhibitors and stimulators. In this Review, we accumulated and systematically classified the different reported chemotypes based on their targets as well as modes-of-action, and herein we illustrate the discovery history of selected candidates. A comprehensive summary of available biochemical, cellular, and in vivo activities is provided for the most relevant BMP modulators, along with recommendations on their preferred use as chemical probes to study BMP-related (patho)physiological processes. There are a number of high-quality probes used as BMP inhibitors that potently and selectively interrogate the kinase activities of distinct type I (16 chemotypes available) and type II receptors (3 chemotypes available). In contrast, only a few high-quality BMP stimulator modalities have been introduced to the field due to a lack of profound target knowledge. FK506-derived macrolides such as calcineurin-sparing FKBP12 inhibitors currently represent the best-characterized chemical tools for direct activation of BMP-SMAD signaling at the receptor level. However, several PDD campaigns succeeded in expanding the druggable space of BMP stimulators. Albeit the majority of them do not entirely fulfill the strict chemical probe criteria, many chemotypes exhibit unique and unrecognized mechanisms as pathway potentiators or synergizers, serving as valuable pharmacological tools for BMP perturbation.
Collapse
Affiliation(s)
- Daniel Riege
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Sven Herschel
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Teresa Fenkl
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Dennis Schade
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
- Partner
Site Kiel, DZHK, German Center for Cardiovascular
Research, 24105 Kiel, Germany
| |
Collapse
|
28
|
Lu X, Li L, Wu N, Chen W, Hong S, Xu M, Ding Y, Gao Y. BMP9 functions as a negative regulator in the myogenic differentiation of primary mouse myoblasts. Biosci Biotechnol Biochem 2023; 87:1255-1264. [PMID: 37553201 DOI: 10.1093/bbb/zbad104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
BMP9, a member of the TGF-β superfamily, reveals the great translational promise for it has been shown to have the strong effect of osteogenic activity in vitro and in vivo. However, the implantation of certain BMPs (bone morphogenetic proteins) into muscular tissues induces ectopic bone formation. BMPs induce osteoblastic differentiation in skeletal muscle, suggesting that myogenic stem cells, such as myoblasts, are the potential progenitors of osteoblasts during heterotopic bone differentiation. Here, we investigate the role of BMP9 during primary mouse myoblasts differentiation. We found BMP9 enhanced cell proliferation and reduced myogenic differentiation of primary mouse myoblasts. In addition, adenovirus-mediated overexpression of BMP9 delayed muscle regeneration after BaCl2-induced injury. ALK1 knockdown reversed the inhibition of myoblast differentiation induced by BMP9. Our data indicate that BMP9 inhibits myogenic differentiation in primary mouse myoblasts and delays skeletal muscle regeneration after injury.
Collapse
Affiliation(s)
- Xiya Lu
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Liang Li
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Shanghai, China
| | - Nanhui Wu
- Department of Dermatopathology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Wenjuan Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Sheng Hong
- Department of Dermatology, Changhai Hospital, Shanghai, China
| | - Mingyuan Xu
- Department of Dermatopathology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Yangfeng Ding
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Yunlu Gao
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| |
Collapse
|
29
|
Wits M, Becher C, de Man F, Sanchez-Duffhues G, Goumans MJ. Sex-biased TGFβ signalling in pulmonary arterial hypertension. Cardiovasc Res 2023; 119:2262-2277. [PMID: 37595264 PMCID: PMC10597641 DOI: 10.1093/cvr/cvad129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare cardiovascular disorder leading to pulmonary hypertension and, often fatal, right heart failure. Sex differences in PAH are evident, which primarily presents with a female predominance and increased male severity. Disturbed signalling of the transforming growth factor-β (TGFβ) family and gene mutations in the bone morphogenetic protein receptor 2 (BMPR2) are risk factors for PAH development, but how sex-specific cues affect the TGFβ family signalling in PAH remains poorly understood. In this review, we aim to explore the sex bias in PAH by examining sex differences in the TGFβ signalling family through mechanistical and translational evidence. Sex hormones including oestrogens, progestogens, and androgens, can determine the expression of receptors (including BMPR2), ligands, and soluble antagonists within the TGFβ family in a tissue-specific manner. Furthermore, sex-related genetic processes, i.e. Y-chromosome expression and X-chromosome inactivation, can influence the TGFβ signalling family at multiple levels. Given the clinical and mechanistical similarities, we expect that the conclusions arising from this review may apply also to hereditary haemorrhagic telangiectasia (HHT), a rare vascular disorder affecting the TGFβ signalling family pathway. In summary, we anticipate that investigating the TGFβ signalling family in a sex-specific manner will contribute to further understand the underlying processes leading to PAH and likely HHT.
Collapse
Affiliation(s)
- Marius Wits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Clarissa Becher
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Frances de Man
- Department of Pulmonary Medicine, Amsterdam University Medical Center (UMC) (Vrije Universiteit), 1081 HV Amsterdam, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
30
|
Yamaguchi H, Swaminathan S, Mishina Y, Komatsu Y. Enhanced BMP signaling leads to enlarged nasal cartilage formation in mice. Biochem Biophys Res Commun 2023; 678:173-178. [PMID: 37640003 DOI: 10.1016/j.bbrc.2023.08.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Bone morphogenetic proteins (BMPs) are required for craniofacial bone development. However, it remains elusive how BMP signaling regulates craniofacial cartilage development. To address this question, we utilized a genetic system to enhance BMP signaling via one of BMP type I receptors ALK2 in a chondrocyte-specific manner (hereafter Ca-Alk2:Col2-Cre) in mice. Ca-Alk2:Col2-Cre mice died shortly after birth due to severe craniofacial abnormalities including cleft palate, defective tongue, and shorter mandible formation. Histological analysis revealed that these phenotypes were attributed to the extensive chondrogenesis. Compared with controls, enhanced SOX9 and RUNX2 production were observed in nasal cartilage of Ca-Alk2:Col2-Cre mice. To reveal the mechanisms responsible for enlarged nasal cartilage, we examined Smad-dependent and Smad-independent BMP signaling pathways. While the Smad-independent BMP signaling pathway including p38, ERK, and JNK remained silent, the Smad1/5/9 was highly phosphorylated in Ca-Alk2:Col2-Cre mice. Interestingly, Ca-Alk2:Col2-Cre mice showed enhanced S6 kinase phosphorylation, a readout of mammalian target of rapamycin complex 1 (mTORC1). These findings may suggest that enhanced Smad-dependent BMP signaling positively regulates the mTOR pathway and stimulates chondrocytes toward hypertrophic differentiation, thereby leading to enlarged nasal cartilage formation in mice.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Sowmya Swaminathan
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; The College of Natural Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Graduate Program in Genetics and Epigenetics, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Rana R, Baker JT, Sorsby M, Jagga S, Venkat S, Almardini S, Liu ES. Impaired 1,25-dihydroxyvitamin D3 action underlies enthesopathy development in the Hyp mouse model of X-linked hypophosphatemia. JCI Insight 2023; 8:e163259. [PMID: 37490334 PMCID: PMC10544216 DOI: 10.1172/jci.insight.163259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
X-linked hypophosphatemia (XLH) is characterized by high serum fibroblast growth factor 23 (FGF23) levels, resulting in impaired 1,25-dihydroxyvitamin D3 (1,25D) production. Adults with XLH develop a painful mineralization of the tendon-bone attachment site (enthesis), called enthesopathy. Treatment of mice with XLH (Hyp) with 1,25D or an anti-FGF23 Ab, both of which increase 1,25D signaling, prevents enthesopathy. Therefore, we undertook studies to determine a role for impaired 1,25D action in enthesopathy development. Entheses from mice lacking vitamin D 1α-hydroxylase (Cyp27b1) (C-/-) had a similar enthesopathy to Hyp mice, whereas deletion of Fgf23 in Hyp mice prevented enthesopathy, and deletion of both Cyp27b1 and Fgf23 in mice resulted in enthesopathy, demonstrating that the impaired 1,25D action due to high FGF23 levels underlies XLH enthesopathy development. Like Hyp mice, enthesopathy in C-/- mice was observed by P14 and was prevented, but not reversed, with 1,25D therapy. Deletion of the vitamin D receptor in scleraxis-expressing cells resulted in enthesopathy, indicating that 1,25D acted directly on enthesis cells to regulate enthesopathy development. These results show that 1,25D signaling was necessary for normal postnatal enthesis maturation and played a role in XLH enthesopathy development. Optimizing 1,25D replacement in pediatric patients with XLH is necessary to prevent enthesopathy.
Collapse
Affiliation(s)
- Rakshya Rana
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jiana T. Baker
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Melissa Sorsby
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Supriya Jagga
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Shreya Venkat
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Shaza Almardini
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Eva S. Liu
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Sánchez-Duffhues G, Hiepen C. Human iPSCs as Model Systems for BMP-Related Rare Diseases. Cells 2023; 12:2200. [PMID: 37681932 PMCID: PMC10487005 DOI: 10.3390/cells12172200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Disturbances in bone morphogenetic protein (BMP) signalling contribute to onset and development of a number of rare genetic diseases, including Fibrodysplasia ossificans progressiva (FOP), Pulmonary arterial hypertension (PAH), and Hereditary haemorrhagic telangiectasia (HHT). After decades of animal research to build a solid foundation in understanding the underlying molecular mechanisms, the progressive implementation of iPSC-based patient-derived models will improve drug development by addressing drug efficacy, specificity, and toxicity in a complex humanized environment. We will review the current state of literature on iPSC-derived model systems in this field, with special emphasis on the access to patient source material and the complications that may come with it. Given the essential role of BMPs during embryonic development and stem cell differentiation, gain- or loss-of-function mutations in the BMP signalling pathway may compromise iPSC generation, maintenance, and differentiation procedures. This review highlights the need for careful optimization of the protocols used. Finally, we will discuss recent developments towards complex in vitro culture models aiming to resemble specific tissue microenvironments with multi-faceted cellular inputs, such as cell mechanics and ECM together with organoids, organ-on-chip, and microfluidic technologies.
Collapse
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), ISPA-HUCA, Avda. de Roma, s/n, 33011 Oviedo, Spain
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Christian Hiepen
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany
| |
Collapse
|
33
|
Seong CH, Chiba N, Fredy M, Kusuyama J, Ishihata K, Kibe T, Amir MS, Tada R, Ohnishi T, Nakamura N, Matsuguchi T. Early induction of Hes1 by bone morphogenetic protein 9 plays a regulatory role in osteoblastic differentiation of a mesenchymal stem cell line. J Cell Biochem 2023; 124:1366-1378. [PMID: 37565579 DOI: 10.1002/jcb.30452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Bone morphogenic protein 9 (BMP9) is one of the most potent inducers of osteogenic differentiation among the 14 BMP members, but its mechanism of action has not been fully demonstrated. Hes1 is a transcriptional regulator with basic helix-loop-helix (bHLH) domain and is a well-known Notch effector. In this study, we investigated the functional roles of early induction of Hes1 by BMP9 in a mouse mesenchymal stem cell line, ST2. Hes1 mRNA was transiently and periodically induced by BMP9 in ST2, which was inhibited by BMP signal inhibitors but not by Notch inhibitor. Interestingly, Hes1 knockdown in ST2 by siRNA increased the expression of osteogenic differentiation markers such as Sp7 and Ibsp and matrix mineralization in comparison with control siRNA transfected ST2. In contrast, forced expression of Hes1 by using the Tet-On system suppressed the expression of osteogenic markers and matrix mineralization by BMP9. We also found that the early induction of Hes1 by BMP9 suppressed the expression of Alk1, an essential receptor for BMP9. In conclusion, BMP9 rapidly induces the expression of Hes1 via the SMAD pathway in ST2 cells, which plays a negative regulatory role in osteogenic differentiation of mesenchymal stem cells induced by BMP9.
Collapse
Affiliation(s)
- Chang-Hwan Seong
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mardiyantoro Fredy
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Airlangga University, Surabaya, Indonesia
| | - Joji Kusuyama
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Brawijaya University, Malang, Indonesia
| | - Kiyohide Ishihata
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshiro Kibe
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Muhammad Subhan Amir
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Biosignals and Inheritance, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryohei Tada
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
34
|
Rossi E, Bernabeu C. Novel vascular roles of human endoglin in pathophysiology. J Thromb Haemost 2023; 21:2327-2338. [PMID: 37315795 DOI: 10.1016/j.jtha.2023.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
Endoglin, alias CD105, is a human membrane glycoprotein highly expressed in vascular endothelial cells. It is involved in angiogenesis and angiogenesis-related diseases, including the rare vascular pathology known as hereditary hemorrhagic telangiectasia type 1. Although endoglin acts as an accessory receptor for members of the transforming growth factor-β family, in recent years, emerging evidence has shown a novel functional role for this protein beyond the transforming growth factor-β system. In fact, endoglin has been found to be an integrin counterreceptor involved in endothelial cell adhesion processes during pathological inflammatory conditions and primary hemostasis. Furthermore, a circulating form of endoglin, also named as soluble endoglin, whose levels are abnormally increased in different pathological conditions, such as preeclampsia, seems to act as an antagonist of membrane-bound endoglin and as a competitor of the fibrinogen-integrin interaction in platelet-dependent thrombus formation. These studies suggest that membrane-bound endoglin and circulating endoglin are important components involved in vascular homeostasis and hemostasis.
Collapse
Affiliation(s)
- Elisa Rossi
- Université Paris Cité, INSERM U1140, Innovative Therapies in Haemostasis, Paris, France.
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
35
|
Riege D, Herschel S, Heintze L, Fenkl T, Wesseler F, Sievers S, Peifer C, Schade D. Identification of Maleimide-Fused Carbazoles as Novel Noncanonical Bone Morphogenetic Protein Synergizers. ACS Pharmacol Transl Sci 2023; 6:1207-1220. [PMID: 37588754 PMCID: PMC10426274 DOI: 10.1021/acsptsci.3c00103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 08/18/2023]
Abstract
Morphogenic signaling pathways govern embryonic development and tissue homeostasis on the cellular level. Precise control of such signaling events paves the way for innovative therapeutic approaches in the field of regenerative medicine. In line with these notions, bone morphogenic protein (BMP) is a major osteogenic driver and pharmacological stimulation of BMP signaling holds supreme potential for diseases and defects of the skeleton. Efforts to identify small-molecule modalities that activate or potentiate the BMP pathway have primarily been focused on the canonical signaling cascade. Here, we describe the phenotypic identification and development of specific carbazolomaleimides 2 as novel noncanonical BMP synergizers with submicromolar osteogenic cellular potency. The devised chemical tools are characterized to specifically regulate Id gene expression in a SMAD-independent, yet highly BMP-dependent fashion. Mechanistic studies revealed that GSK3 inhibition and increased β-catenin levels are partly responsible for this activity. The utility of the new BMP synergizer profile was further exemplified by showing how the synergistic action of canonical and noncanonical BMP enhancers additively amplifies BMP-dependent osteogenic outputs. Carbazolomaleimide 2b serves as a new and unique pharmacological tool for the modulation and study of the BMP pathway.
Collapse
Affiliation(s)
- Daniel Riege
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Sven Herschel
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Linda Heintze
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Teresa Fenkl
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Fabian Wesseler
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
- Compound Management and
Screening Center, Otto-Hahn-Strasse 11, 44227
Dortmund, Germany
| | - Sonja Sievers
- Compound Management and
Screening Center, Otto-Hahn-Strasse 11, 44227
Dortmund, Germany
| | - Christian Peifer
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Dennis Schade
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
- Partner Site Kiel, DZHK,
German Center for Cardiovascular Research, 24105
Kiel, Germany
| |
Collapse
|
36
|
Alkhathami AG, Abdullah MR, Ahmed M, Hassan Ahmed H, Alwash SW, Muhammed Mahdi Z, Alsaikhan F, Dera AA. Bone morphogenetic protein (BMP)9 in cancer development: mechanistic, diagnostic, and therapeutic approaches? J Drug Target 2023:1-11. [PMID: 37461888 DOI: 10.1080/1061186x.2023.2236330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Bone morphogenetic protein (BMP)-9 is considered a member of the transforming growth factor (TGF)β superfamily. It was first found as an inducer of bone and cartilage formation and then discovered that this factor mediates several physiologic functions and hemostasis. Besides physiological conditions, BMP9 has also been elucidated that it is involved in several pathological situations, especially cancer. In various cancers, dysregulation of BMP9 has raised the issue that BMP9 might play a conflicting role in tumour development. BMP9 binding to its receptors (BMPRs), including ALKs and BMPRII, induces canonical SMAD-dependent and non-canonical PI3K/AKT and MAPK signalling pathways in tumour cells. BMP9, via inducing apoptosis, inhibiting tumour-promoting cell signalling pathways, suppressing epithelial-mesenchymal transition (EMT) process, blocking angiogenesis, and preventing cross-talk in the tumour microenvironment, mainly exerts tumour-suppressive functions. In contrast, BMP9 triggers tumour-supportive signalling pathways, promotes EMT, and enhances angiogenesis, suggesting that BMP9 is also involved in tumour development. It has been demonstrated that modulating BMP9 expression and functions might be a promising approach to cancer treatment. It has also been indicated that evaluating BMP9 expression in cancers might be a biomarker for predicting cancer prognosis. Overall, BMP9 would provide a promising target in cancer management.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Muhjaha Ahmed
- Medical Technical college, Al-Farahidi University, Iraq
| | | | - Sarab W Alwash
- Medical Laboratory Techniques Department, Al-Mustaqbal University College, Babylon, Iraq Hillah
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
37
|
Bonjoch L, Fernandez-Rozadilla C, Alvarez-Barona M, Lopez-Novo A, Herrera-Pariente C, Amigo J, Bujanda L, Remedios D, Dacal A, Cubiella J, Balaguer F, Fernández-Bañares F, Carracedo A, Jover R, Castellvi-Bel S, Ruiz-Ponte C. BMPR2 as a Novel Predisposition Gene for Hereditary Colorectal Polyposis. Gastroenterology 2023; 165:162-172.e5. [PMID: 36907526 DOI: 10.1053/j.gastro.2023.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND & AIMS Colorectal cancer (CRC) is one of the most prevalent tumors worldwide, with incidence quickly increasing (particularly in the context of early-onset cases), despite important prevention efforts, mainly in the form of population-wide screening programs. Although many cases present a clear familial component, the current list of hereditary CRC genes leaves a considerable proportion of the cases unexplained. METHODS In this work, we used whole-exome sequencing approaches on 19 unrelated patients with unexplained colonic polyposis to identify candidate CRC predisposition genes. The candidate genes were then validated in an additional series of 365 patients. CRISPR-Cas9 models were used to validate BMPR2 as a potential candidate for CRC risk. RESULTS We found 8 individuals carrying 6 different variants in the BMPR2 gene (approximately 2% of our cohort of patients with unexplained colonic polyposis). CRISPR-Cas9 models of 3 of these variants showed that the p.(Asn442Thrfs∗32) truncating variant completely abrogated BMP pathway function in a similar way to the BMPR2 knockout. Missense variants p.(Asn565Ser), p.(Ser967Pro) had varying effects on cell proliferation levels, with the former impairing cell control inhibition via noncanonical pathways. CONCLUSIONS Collectively, these results support loss-of-function BMPR2 variants as candidates to be involved in CRC germline predisposition.
Collapse
Affiliation(s)
- Laia Bonjoch
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ceres Fernandez-Rozadilla
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Miriam Alvarez-Barona
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Anael Lopez-Novo
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Cristina Herrera-Pariente
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Jorge Amigo
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Luis Bujanda
- Hospital Universitario de Donostia, Instituto Biodonostia, Universidad del Pais Vasco, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, San Sebastián, Spain
| | - David Remedios
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Ourense, Spain
| | - Andrés Dacal
- Department of Gastroenterology, Hospital Lucus Augusti, Lugo, Spain; Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Joaquín Cubiella
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Ourense, Spain
| | - Francesc Balaguer
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Fernando Fernández-Bañares
- Hospital Universitari Mutua Terrassa, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas, Ourense, Madrid, Spain
| | - Angel Carracedo
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Rodrigo Jover
- Digestive Medicine Department, Instituto de Investigación Biomédica, Hospital General Universitario de Alicante, Departamento de Medicina Clínica, Universidad Miguel Hernández, Alicante, Spain
| | - Sergi Castellvi-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain.
| | - Clara Ruiz-Ponte
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.
| |
Collapse
|
38
|
Ruan X, Zhang Z, Aili M, Luo X, Wei Q, Zhang D, Bai M. Activin receptor-like kinase 3: a critical modulator of development and function of mineralized tissues. Front Cell Dev Biol 2023; 11:1209817. [PMID: 37457289 PMCID: PMC10347416 DOI: 10.3389/fcell.2023.1209817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Mineralized tissues, such as teeth and bones, pose significant challenges for repair due to their hardness, low permeability, and limited blood flow compared to soft tissues. Bone morphogenetic proteins (BMPs) have been identified as playing a crucial role in mineralized tissue formation and repair. However, the application of large amounts of exogenous BMPs may cause side effects such as inflammation. Therefore, it is necessary to identify a more precise molecular target downstream of the ligands. Activin receptor-like kinase 3 (ALK3), a key transmembrane receptor, serves as a vital gateway for the transmission of BMP signals, triggering cellular responses. Recent research has yielded new insights into the regulatory roles of ALK3 in mineralized tissues. Experimental knockout or mutation of ALK3 has been shown to result in skeletal dysmorphisms and failure of tooth formation, eruption, and orthodontic tooth movement. This review summarizes the roles of ALK3 in mineralized tissue regulation and elucidates how ALK3-mediated signaling influences the physiology and pathology of teeth and bones. Additionally, this review provides a reference for recommended basic research and potential future treatment strategies for the repair and regeneration of mineralized tissues.
Collapse
Affiliation(s)
- Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaowei Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Munire Aili
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiang Luo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qiang Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Koo J, Seong CS, Parker RE, Dwivedi B, Arthur RA, Dinasarapu AR, Johnston HR, Claussen H, Tucker-Burden C, Ramalingam SS, Fu H, Zhou W, Marcus AI, Gilbert-Ross M. Live-cell invasive phenotyping uncovers the ALK2/BMP6 iron homeostasis pathway as a therapeutic vulnerability in LKB1-mutant lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544941. [PMID: 37398244 PMCID: PMC10312689 DOI: 10.1101/2023.06.14.544941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The acquisition of invasive properties is a prerequisite for tumor progression and metastasis. Molecular subtypes of KRAS-driven lung cancer exhibit distinct modes of invasion that likely contribute to unique growth properties and therapeutic susceptibilities. Despite this, pre-clinical discovery strategies designed to exploit invasive phenotypes are lacking. To address this, we designed an experimental system to screen for targetable signaling pathways linked to active early invasion phenotypes in the two most prominent molecular subtypes, TP53 and LKB1, of KRAS-driven lung adenocarcinoma (LUAD). By combining live-cell imaging of human bronchial epithelial cells in a 3D invasion matrix with RNA transcriptome profiling, we identified the LKB1-specific upregulation of bone morphogenetic protein 6 (BMP6). Examination of early-stage lung cancer patients confirmed upregulation of BMP6 in LKB1-mutant lung tumors. At the molecular level, we find that the canonical iron regulatory hormone Hepcidin is induced via BMP6 signaling upon LKB1 loss, where intact LKB1 kinase activity is necessary to maintain signaling homeostasis. Furthermore, pre-clinical studies in a novel Kras/Lkb1-mutant syngeneic mouse model show that potent growth suppression was achieved by inhibiting the ALK2/BMP6 signaling axis with single agents that are currently in clinical trials. We show that alterations in the iron homeostasis pathway are accompanied by simultaneous upregulation of ferroptosis protection proteins. Thus, LKB1 is sufficient to regulate both the 'gas' and 'breaks' to finely tune iron-regulated tumor progression.
Collapse
Affiliation(s)
- Junghui Koo
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chang-Soo Seong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca E. Parker
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Cancer Biology Graduate Program, Emory University, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Robert A. Arthur
- Emory Integrated Computational Core, Emory University School of Medicine, Atlanta, GA, USA
| | | | - H. Richard Johnston
- Emory Integrated Computational Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Henry Claussen
- Emory Integrated Computational Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Carol Tucker-Burden
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Haian Fu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adam I. Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Melissa Gilbert-Ross
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
40
|
Marc S, Mizeranschi AE, Paul C, Otavă G, Savici J, Sicoe B, Torda I, Huțu I, Mircu C, Ilie DE, Carabaș M, Boldura OM. Simultaneous Occurrence of Hypospadias and Bilateral Cleft Lip and Jaw in a Crossbred Calf: Clinical, Computer Tomographic, and Genomic Characterization. Animals (Basel) 2023; 13:ani13101709. [PMID: 37238140 DOI: 10.3390/ani13101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Congenital abnormalities in animals, including abnormalities of the cleft lip and jaw and hypospadias have been reported in all domesticated species. They are a major concern for breeders due to the increased economic loss they entail. In this article, we described a congenital bilateral cheilognathoschisis (cleft lip and jaw) with campylognathia in association with penile hypospadias and preputial hypoplasia with failure of preputial fusion in a Bos taurus crossbred Piedmontese × Wagyu calf. Clinical examination, computed tomography, and whole genome sequencing were performed to describe and identify a possible cause of the abnormalities. Clinical examination revealed a bilateral cheilognathoschisis of approximately 4 cm in length and 3 cm in width in the widest part, with computer tomography analyses confirming the bilateral absence of the processus nasalis of the incisive bone and the lateral deviation of the processus palatinus towards the left side. Genomic data analyses identified 13 mutations with a high impact on the products of the following overlapped genes: ACVR1, ADGRA2, BHMT2, BMPR1B, CCDC8, CDH1, EGF, F13A1, GSTP1, IRF6, MMP14, MYBPHL, and PHC2 with ADGRA2, EGF, F13A1, GSTP1, and IRF6 having mutations in a homozygous state. The whole genome investigation indicates the involvement of multiple genes in the birth defects observed in this case.
Collapse
Affiliation(s)
- Simona Marc
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ''King Mihai I'' from Timisoara, 300645 Timișoara, Romania
| | - Alexandru Eugeniu Mizeranschi
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, 32, 310059 Arad, Romania
| | - Cristina Paul
- Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Carol Telbisz 6, 300001 Timisoara, Romania
| | - Gabriel Otavă
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ''King Mihai I'' from Timisoara, 300645 Timișoara, Romania
| | - Jelena Savici
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Bogdan Sicoe
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Iuliu Torda
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ''King Mihai I'' from Timisoara, 300645 Timișoara, Romania
| | - Ioan Huțu
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ''King Mihai I'' from Timisoara, 300645 Timișoara, Romania
| | - Călin Mircu
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ''King Mihai I'' from Timisoara, 300645 Timișoara, Romania
| | - Daniela Elena Ilie
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, 32, 310059 Arad, Romania
| | - Mihai Carabaș
- Faculty of Automatic Control and Computer Science, Politehnica University of Bucharest, Splaiul Independenţei 313, 060042 Bucharest, Romania
| | - Oana Maria Boldura
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ''King Mihai I'' from Timisoara, 300645 Timișoara, Romania
| |
Collapse
|
41
|
Darwish NHE, Hussein KA, Elmasry K, Ibrahim AS, Humble J, Moustafa M, Awadalla F, Al-Shabrawey M. Bone Morphogenetic Protein-4 Impairs Retinal Endothelial Cell Barrier, a Potential Role in Diabetic Retinopathy. Cells 2023; 12:1279. [PMID: 37174679 PMCID: PMC10177364 DOI: 10.3390/cells12091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Bone Morphogenetic Protein 4 (BMP4) is a secreted growth factor of the Transforming Growth Factor beta (TGFβ) superfamily. The goal of this study was to test whether BMP4 contributes to the pathogenesis of diabetic retinopathy (DR). Immunofluorescence of BMP4 and the vascular marker isolectin-B4 was conducted on retinal sections of diabetic and non-diabetic human and experimental mice. We used Akita mice as a model for type-1 diabetes. Proteins were extracted from the retina of postmortem human eyes and 6-month diabetic Akita mice and age-matched control. BMP4 levels were measured by Western blot (WB). Human retinal endothelial cells (HRECs) were used as an in vitro model. HRECs were treated with BMP4 (50 ng/mL) for 48 h. The levels of phospho-smad 1/5/9 and phospho-p38 were measured by WB. BMP4-treated and control HRECs were also immunostained with anti-Zo-1. We also used electric cell-substrate impedance sensing (ECIS) to calculate the transcellular electrical resistance (TER) under BMP4 treatment in the presence and absence of noggin (200 ng/mL), LDN193189 (200 nM), LDN212854 (200 nM) or inhibitors of vascular endothelial growth factor receptor 2 (VEGFR2; SU5416, 10 μM), p38 (SB202190, 10 μM), ERK (U0126, 10 μM) and ER stress (Phenylbutyric acid or PBA, 30 μmol/L). The impact of BMP4 on matrix metalloproteinases (MMP2 and MMP9) was also evaluated using specific ELISA kits. Immunofluorescence of human and mouse eyes showed increased BMP4 immunoreactivity, mainly localized in the retinal vessels of diabetic humans and mice compared to the control. Western blots of retinal proteins showed a significant increase in BMP4 expression in diabetic humans and mice compared to the control groups (p < 0.05). HRECs treated with BMP4 showed a marked increase in phospho-smad 1/5/9 (p = 0.039) and phospho-p38 (p = 0.013). Immunofluorescence of Zo-1 showed that BMP4-treated cells exhibited significant barrier disruption. ECIS also showed a marked decrease in TER of HRECs by BMP4 treatment compared to vehicle-treated HRECs (p < 0.001). Noggin, LDN193189, LDN212854, and inhibitors of p38 and VEGFR2 significantly mitigated the effects of BMP4 on the TER of HRECs. Our finding provides important insights regarding the role of BMP4 as a potential player in retinal endothelial cell dysfunction in diabetic retinopathy and could be a novel target to preserve the blood-retinal barrier during diabetes.
Collapse
Affiliation(s)
- Noureldien H. E. Darwish
- Eye Research Center, Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| | - Khaled A. Hussein
- Oral and Dental Research Insitute, Department of Oral Medicine and Surgery, National Research Center, Cairo 11553, Egypt
| | - Khaled Elmasry
- Department of Oral Biology and Diagnostic Science, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| | - Ahmed S. Ibrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35111, Egypt
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Julia Humble
- Eye Research Center, Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Mohamed Moustafa
- Eye Research Center, Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Fatma Awadalla
- Eye Research Center, Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| | - Mohamed Al-Shabrawey
- Eye Research Center, Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| |
Collapse
|
42
|
Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, Osman MA. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24076423. [PMID: 37047394 PMCID: PMC10094338 DOI: 10.3390/ijms24076423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of small, single-stranded, and non-protein coding RNAs about 19 to 22 nucleotides in length, that have been reported to have important roles in the control of bone development. MiRNAs have a strong influence on osteoblast differentiation through stages of lineage commitment and maturation, as well as via controlling the activities of osteogenic signal transduction pathways. Generally, miRNAs may modulate cell stemness, proliferation, differentiation, and apoptosis by binding the 3'-untranslated regions (3'-UTRs) of the target genes, which then can subsequently undergo messenger RNA (mRNA) degradation or protein translational repression. MiRNAs manage the gene expression in osteogenic differentiation by regulating multiple signalling cascades and essential transcription factors, including the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP), Wingless/Int-1(Wnt)/β-catenin, Notch, and Hedgehog signalling pathways; the Runt-related transcription factor 2 (RUNX2); and osterix (Osx). This shows that miRNAs are essential in regulating diverse osteoblast cell functions. TGF-βs and BMPs transduce signals and exert diverse functions in osteoblastogenesis, skeletal development and bone formation, bone homeostasis, and diseases. Herein, we highlighted the current state of in vitro and in vivo research describing miRNA regulation on the canonical TGF-β/BMP signalling, their effects on osteoblast linage, and understand their mechanism of action for the development of possible therapeutics. In this review, particular attention and comprehensive database searches are focused on related works published between the years 2000 to 2022, using the resources from PubMed, Google Scholar, Scopus, and Web of Science.
Collapse
Affiliation(s)
- Hui-Yi Loh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Brendan P Norman
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
43
|
Nakatsu D, Kunishige R, Taguchi Y, Shinozaki-Narikawa N, Osaka K, Yokomizo K, Ishida M, Takei S, Yamasaki S, Hagiya K, Hattori K, Tsukamoto T, Murata M, Kano F. BMP4-SMAD1/5/9-RUNX2 pathway activation inhibits neurogenesis and oligodendrogenesis in Alzheimer's patients' iPSCs in senescence-related conditions. Stem Cell Reports 2023; 18:688-705. [PMID: 36764297 PMCID: PMC10031282 DOI: 10.1016/j.stemcr.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
In addition to increasing β-amyloid plaque deposition and tau tangle formation, inhibition of neurogenesis has recently been observed in Alzheimer's disease (AD). This study generated a cellular model that recapitulated neurogenesis defects observed in patients with AD, using induced pluripotent stem cell lines derived from sporadic and familial AD (AD iPSCs). AD iPSCs exhibited impaired neuron and oligodendrocyte generation when expression of several senescence markers was induced. Compound screening using these cellular models identified three drugs able to restore neurogenesis, and extensive morphological quantification revealed cell-line- and drug-type-dependent neuronal generation. We also found involvement of elevated Sma- and Mad-related protein 1/5/9 (SMAD1/5/9) phosphorylation and greater Runt-related transcription factor 2 (RUNX2) expression in neurogenesis defects in AD. Moreover, BMP4 was elevated in AD iPSC medium during neural differentiation and cerebrospinal fluid of patients with AD, suggesting a BMP4-SMAD1/5/9-RUNX2 signaling pathway contribution to neurogenesis defects in AD under senescence-related conditions.
Collapse
Affiliation(s)
- Daiki Nakatsu
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Rina Kunishige
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yuki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Naeko Shinozaki-Narikawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Kishiko Osaka
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Kayo Yokomizo
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Mami Ishida
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Shunsuke Takei
- System Development Department, Technology Solutions Sector, Healthcare Business Unit, Nikon Corporation, 471, Nagaodai-cho, Sakae-ku, Yokohama, Kanagawa 244-8533, Japan
| | - Shoko Yamasaki
- Mathematical Sciences Research Laboratory, Research & Development Division, Nikon Corporation, 471, Nagaodai-cho, Sakae-ku, Yokohama, Kanagawa 244-8533, Japan
| | - Keita Hagiya
- Fujifilm Corporation, 7-3 Akasaka 9, Minato-ku, Tokyo 107-0052, Japan
| | - Kotaro Hattori
- Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Tadashi Tsukamoto
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Masayuki Murata
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| |
Collapse
|
44
|
Robert C, Kerff F, Bouillenne F, Gavage M, Vandevenne M, Filée P, Matagne A. Structural analysis of the interaction between human cytokine BMP-2 and the antagonist Noggin reveals molecular details of cell chondrogenesis inhibition. J Biol Chem 2023; 299:102892. [PMID: 36642181 PMCID: PMC9929448 DOI: 10.1016/j.jbc.2023.102892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are secreted cytokines belonging to the transforming growth factor-β superfamily. New therapeutic approaches based on BMP activity, particularly for cartilage and bone repair, have sparked considerable interest; however, a lack of understanding of their interaction pathways and the side effects associated with their use as biopharmaceuticals have dampened initial enthusiasm. Here, we used BMP-2 as a model system to gain further insight into both the relationship between structure and function in BMPs and the principles that govern affinity for their cognate antagonist Noggin. We produced BMP-2 and Noggin as inclusion bodies in Escherichia coli and developed simple and efficient protocols for preparing pure and homogeneous (in terms of size distribution) solutions of the native dimeric forms of the two proteins. The identity and integrity of the proteins were confirmed using mass spectrometry. Additionally, several in vitro cell-based assays, including enzymatic measurements, RT-qPCR, and matrix staining, demonstrated their biological activity during cell chondrogenic and hypertrophic differentiation. Furthermore, we characterized the simple 1:1 noncovalent interaction between the two ligands (KDca. 0.4 nM) using bio-layer interferometry and solved the crystal structure of the complex using X-ray diffraction methods. We identified the residues and binding forces involved in the interaction between the two proteins. Finally, results obtained with the BMP-2 N102D mutant suggest that Noggin is remarkably flexible and able to accommodate major structural changes at the BMP-2 level. Altogether, our findings provide insights into BMP-2 activity and reveal the molecular details of its interaction with Noggin.
Collapse
Affiliation(s)
- Charly Robert
- Laboratory of Enzymology and Protein Folding, University of Liège, Liège, Belgium,Centre for Protein Engineering, InBioS Research Unit, University of Liège, Liège, Belgium
| | - Frédéric Kerff
- Centre for Protein Engineering, InBioS Research Unit, University of Liège, Liège, Belgium,Biological Macromolecule Crystallography, University of Liège, Liège, Belgium
| | - Fabrice Bouillenne
- Centre for Protein Engineering, InBioS Research Unit, University of Liège, Liège, Belgium
| | - Maxime Gavage
- Analytical Laboratory, CER Groupe, rue du Point du Jour, Marloie, Belgium
| | - Marylène Vandevenne
- Laboratory of Enzymology and Protein Folding, University of Liège, Liège, Belgium,Centre for Protein Engineering, InBioS Research Unit, University of Liège, Liège, Belgium
| | - Patrice Filée
- Laboratory of immuno-biology, CER Groupe, Novalis Science Park, Aye, Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, University of Liège, Liège, Belgium; Centre for Protein Engineering, InBioS Research Unit, University of Liège, Liège, Belgium.
| |
Collapse
|
45
|
Chuai M, Serrano Nájera G, Serra M, Mahadevan L, Weijer CJ. Reconstruction of distinct vertebrate gastrulation modes via modulation of key cell behaviors in the chick embryo. SCIENCE ADVANCES 2023; 9:eabn5429. [PMID: 36598979 PMCID: PMC9812380 DOI: 10.1126/sciadv.abn5429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 11/28/2022] [Indexed: 06/10/2023]
Abstract
The morphology of gastrulation driving the internalization of the mesoderm and endoderm differs markedly among vertebrate species. It ranges from involution of epithelial sheets of cells through a circular blastopore in amphibians to ingression of mesenchymal cells through a primitive streak in amniotes. By targeting signaling pathways controlling critical cell behaviors in the chick embryo, we generated crescent- and ring-shaped mesendoderm territories in which cells can or cannot ingress. These alterations subvert the formation of the chick primitive streak into the gastrulation modes seen in amphibians, reptiles, and teleost fish. Our experimental manipulations are supported by a theoretical framework linking cellular behaviors to self-organized multicellular flows outlined in detail in the accompanying paper. Together, this suggests that the evolution of gastrulation movements is largely determined by changes in a few critical cell behaviors in the mesendoderm territory across different species and controlled by a relatively small number of signaling pathways.
Collapse
Affiliation(s)
- Manli Chuai
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Guillermo Serrano Nájera
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mattia Serra
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Lakshminarayanan Mahadevan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA
- Departments of Physics and Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cornelis J. Weijer
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
46
|
Yamamoto M, Stoessel SJ, Yamamoto S, Goldhamer DJ. Overexpression of Wild-Type ACVR1 in Fibrodysplasia Ossificans Progressiva Mice Rescues Perinatal Lethality and Inhibits Heterotopic Ossification. J Bone Miner Res 2022; 37:2077-2093. [PMID: 35637634 PMCID: PMC9708949 DOI: 10.1002/jbmr.4617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/22/2022] [Accepted: 05/28/2022] [Indexed: 11/07/2022]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a devastating disease of progressive heterotopic bone formation for which effective treatments are currently unavailable. FOP is caused by dominant gain-of-function mutations in the receptor ACVR1 (also known as ALK2), which render the receptor inappropriately responsive to activin ligands. In previous studies, we developed a genetic mouse model of FOP that recapitulates most clinical aspects of the disease. In this model, genetic loss of the wild-type Acvr1 allele profoundly exacerbated heterotopic ossification, suggesting the hypothesis that the stoichiometry of wild-type and mutant receptors dictates disease severity. Here, we tested this model by producing FOP mice that conditionally overexpress human wild-type ACVR1. Injury-induced heterotopic ossification (HO) was completely blocked in FOP mice when expression of both the mutant and wild-type receptor were targeted to Tie2-positive cells, which includes fibro/adipogenic progenitors (FAPs). Perinatal lethality of Acvr1R206H/+ mice was rescued by constitutive ACVR1 overexpression, and these mice survived to adulthood at predicted Mendelian frequencies. Constitutive overexpression of ACVR1 also provided protection from spontaneous abnormal skeletogenesis, and the incidence and severity of injury-induced HO in these mice was dramatically reduced. Analysis of pSMAD1/5/8 signaling both in cultured cells and in vivo indicates that ACVR1 overexpression functions cell-autonomously by reducing osteogenic signaling in response to activin A. We propose that ACVR1 overexpression inhibits HO by decreasing the abundance of ACVR1(R206H)-containing signaling complexes at the cell surface while increasing the representation of activin-A-bound non-signaling complexes comprised of wild-type ACVR1. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Masakazu Yamamoto
- Department of Molecular and Cell BiologyUniversity of Connecticut Stem Cell Institute, University of ConnecticutStorrsCTUSA
| | - Sean J Stoessel
- Department of Molecular and Cell BiologyUniversity of Connecticut Stem Cell Institute, University of ConnecticutStorrsCTUSA
| | - Shoko Yamamoto
- Department of Molecular and Cell BiologyUniversity of Connecticut Stem Cell Institute, University of ConnecticutStorrsCTUSA
| | - David J Goldhamer
- Department of Molecular and Cell BiologyUniversity of Connecticut Stem Cell Institute, University of ConnecticutStorrsCTUSA
| |
Collapse
|
47
|
Ganjoo S, Puebla-Osorio N, Nanez S, Hsu E, Voss T, Barsoumian H, Duong LK, Welsh JW, Cortez MA. Bone morphogenetic proteins, activins, and growth and differentiation factors in tumor immunology and immunotherapy resistance. Front Immunol 2022; 13:1033642. [PMID: 36353620 PMCID: PMC9638036 DOI: 10.3389/fimmu.2022.1033642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2024] Open
Abstract
The TGF-β superfamily is a group of secreted polypeptides with key roles in exerting and regulating a variety of physiologic effects, especially those related to cell signaling, growth, development, and differentiation. Although its central member, TGF-β, has been extensively reviewed, other members of the family-namely bone morphogenetic proteins (BMPs), activins, and growth and differentiation factors (GDFs)-have not been as thoroughly investigated. Moreover, although the specific roles of TGF-β signaling in cancer immunology and immunotherapy resistance have been extensively reported, little is known of the roles of BMPs, activins, and GDFs in these domains. This review focuses on how these superfamily members influence key immune cells in cancer progression and resistance to treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
48
|
Sun Y, Yan K, Wang Y, Xu C, Wang D, Zhou W, Guo S, Han Y, Tang L, Shao Y, Shan S, Zhang QC, Tang Y, Zhang L, Xi Q. Context-dependent tumor-suppressive BMP signaling in diffuse intrinsic pontine glioma regulates stemness through epigenetic regulation of CXXC5. NATURE CANCER 2022; 3:1105-1122. [PMID: 35915262 DOI: 10.1038/s43018-022-00408-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The most lethal subtype of diffuse intrinsic pontine glioma (DIPG) is H3K27M. Although ACVR1 mutations have been implicated in the pathogenesis of this currently incurable disease, the impacts of bone morphogenetic protein (BMP) signaling on more than 60% of H3K27M DIPG carrying ACVR1 wild-type remain unknown. Here we show that BMP ligands exert potent tumor-suppressive effects against H3.3K27M and ACVR1 WT DIPG in a SMAD-dependent manner. Specifically, clinical data revealed that many DIPG tumors have exploited the capacity of CHRDL1 to hijack BMP ligands. We discovered that activation of BMP signaling promotes the exit of DIPG tumor cells from 'prolonged stem-cell-like' state to differentiation by epigenetically regulating CXXC5, which acts as a tumor suppressor and positive regulator of BMP signaling. Beyond showing how BMP signaling impacts DIPG, our study also identified the potent antitumor efficacy of Dacinostat for DIPG. Thus, our study delineates context-dependent features of the BMP signaling pathway in a DIPG subtype.
Collapse
Affiliation(s)
- Ye Sun
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Cheng Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dan Wang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Zhou
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuning Guo
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujie Han
- Department of Pathophysiology, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Tang
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China
| | - Yanqiu Shao
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shaobo Shan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiangfeng C Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujie Tang
- Department of Pathophysiology, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Beijing Key Laboratory of Brain Tumor, Beijing, China.
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
49
|
Wu X, Gong Q, Chen Y, Liu Y, Song M, Li F, Li P, Lai J. Full-length transcriptome and analysis of bmp-related genes in Platypharodon extremus. Heliyon 2022; 8:e10783. [PMID: 36276739 PMCID: PMC9582708 DOI: 10.1016/j.heliyon.2022.e10783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/31/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
Platypharodon extremus is an endemic species on the Qinghai–Tibet Plateau. As a secondary protected species in China, the basic genomic information of this species has not yet been reported. Here, through third-generation sequencing, the full-length transcriptome of P. extremus was obtained. We identified 323,290 CCS sequences, and a total of 50,083 unigenes were extracted after correction with second-generation sequencing data and the removal of redundant reads. A total of 50,067 transcripts were annotated with the various databases. Based on the sequence information, three members in the bone morphogenetic proteins (bmps) family and their receptors, were identified. We found that the special structures of these proteins (zinc-dependent metalloproteinase domain, CUB domains, EGF-like domains and TGF-β domain) are highly conserved in fish and that they are closely evolutionarily related to the bmps and bmp receptors of Cyprinidae fishes. This is the first study to sequence the full-length transcriptome of P. extremus, which will help us to further understand its biology.
Collapse
|
50
|
Maruyama H, Sakai S, Ieda M. Endothelin-1 Alters BMP Signaling to Promote Proliferation of Pulmonary Artery Smooth Muscle Cells. Can J Physiol Pharmacol 2022; 100:1018-1027. [PMID: 36037530 DOI: 10.1139/cjpp-2022-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by abnormal outgrowth of pulmonary artery smooth muscle cells (PASMCs) of the media. Abundant expression of endothelin-1 (ET-1) and activated p38 mitogen-activated protein kinase (p38MAPK) has been observed in PAH patients. p38MAPK has been implicated in cell proliferation. An unspecified disturbance in bone morphogenetic protein (BMP) signaling may be involved in the development of PAH. Type I receptors (BMPR1A and BMPR1B) and type II receptors (BMPR2) transduce signals via two distinct pathways, i.e., canonical and non-canonical pathways, activating Smad1/5/8 and p38MAPK, respectively. BMPR1B expression was previously reported to be enhanced in the PASMCs of patients with idiopathic PAH. BMP15 binds specifically to BMPR1B. We assessed the effects of ET-1 on BMP receptor expression and cell proliferation. BMP2 increased BMPR1B expression in human PASMCs after pretreatment with ET-1 in vitro. Although BMP2 alone did not affect PASMC proliferation, BMP2 treatment after ET-1 pretreatment significantly accelerated PASMC proliferation. PH-797804, a selective p38MAPK inhibitor, abrogated this proliferation. Similarly, after ET-1 pretreatment, BMP15 significantly accelerated the proliferation of PASMCs, whereas stimulation with BMP15 alone did not. In conclusion, in PASMCs, ET-1 exposure under pathological conditions alters BMP signaling to activate p38MAPK, resulting in cell proliferation.
Collapse
Affiliation(s)
- Hidekazu Maruyama
- National Hospital Organisation Kasumigaura Medical Center Internal Medicine, Cardiology, Tsuchiura, Japan;
| | - Satoshi Sakai
- University of Tsukuba Faculty of Medicine, Tsukuba, Ibaraki, Japan;
| | - Masaki Ieda
- University of Tsukuba Faculty of Medicine, Tsukuba, Ibaraki, Japan;
| |
Collapse
|