1
|
William VU, Magpantay HD. Arsenic and Microorganisms: Genes, Molecular Mechanisms, and Recent Advances in Microbial Arsenic Bioremediation. Microorganisms 2023; 12:74. [PMID: 38257901 PMCID: PMC10820871 DOI: 10.3390/microorganisms12010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Throughout history, cases of arsenic poisoning have been reported worldwide, and the highly toxic effects of arsenic to humans, plants, and animals are well documented. Continued anthropogenic activities related to arsenic contamination in soil and water, as well as its persistency and lethality, have allowed arsenic to remain a pollutant of high interest and concern. Constant scrutiny has eventually resulted in new and better techniques to mitigate it. Among these, microbial remediation has emerged as one of the most important due to its reliability, safety, and sustainability. Over the years, numerous microorganisms have been successfully shown to remove arsenic from various environmental matrices. This review provides an overview of the interactions between microorganisms and arsenic, the different mechanisms utilized by microorganisms to detoxify arsenic, as well as current trends in the field of microbial-based bioremediation of arsenic. While the potential of microbial bioremediation of arsenic is notable, further studies focusing on the field-scale applicability of this technology is warranted.
Collapse
Affiliation(s)
| | - Hilbert D. Magpantay
- Department of Chemistry, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines;
| |
Collapse
|
2
|
Afolabi OK, Wusu AD, Ogunrinola OO, Abam EO, Babayemi DO, Dosumu OA, Onunkwor OB, Balogun EA, Odukoya OO, Ademuyiwa O. Paraoxonase 1 activity in subchronic low-level inorganic arsenic exposure through drinking water. ENVIRONMENTAL TOXICOLOGY 2016; 31:154-162. [PMID: 25082665 DOI: 10.1002/tox.22030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/12/2014] [Accepted: 07/13/2014] [Indexed: 06/03/2023]
Abstract
Epidemiological evidences indicate close association between inorganic arsenic exposure via drinking water and cardiovascular diseases. While the exact mechanism of this arsenic-mediated increase in cardiovascular risk factors remains enigmatic, epidemiological studies indicate a role for paraoxonase 1 (PON1) in cardiovascular diseases. To investigate the association between inorganic arsenic exposure and cardiovascular diseases, rats were exposed to sodium arsenite (trivalent; 50, 100, and 150 ppm As) and sodium arsenate (pentavalent; 100, 150, and 200 ppm As) in their drinking water for 12 weeks. PON1 activity towards paraoxon (PONase) and phenylacetate (AREase) in plasma, lipoproteins, hepatic, and brain microsomal fractions were determined. Inhibition of PONase and AREase in plasma and HDL characterized the effects of the two arsenicals. While the trivalent arsenite inhibited PONase by 33% (plasma) and 46% (HDL), respectively, the pentavalent arsenate inhibited the enzyme by 41 and 34%, respectively. AREase activity was inhibited by 52 and 48% by arsenite, whereas the inhibition amounted to 72 and 67%, respectively by arsenate. The pattern of inhibition in plasma and HDL indicates that arsenite induced a dose-dependent inhibition of PONase whereas arsenate induced a dose-dependent inhibition of AREase. In the VLDL + LDL, arsenate inhibited PONase and AREase while arsenite inhibited PONase. In the hepatic and brain microsomal fractions, only the PONase enzyme was inhibited by the two arsenicals. The inhibition was more pronounced in the hepatic microsomes where a 70% inhibition was observed at the highest dose of pentavalent arsenic. Microsomal cholesterol was increased by the two arsenicals resulting in increased cholesterol/phospholipid ratios. Our findings indicate that decreased PON1 activity observed in arsenic exposure may be an incipient biochemical event in the cardiovascular effects of arsenic. Modulation of PON1 activity by arsenic may also be mediated through changes in membrane fluidity brought about by changes in the concentration of cholesterol in the microsomes.
Collapse
Affiliation(s)
- Olusegun K Afolabi
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - Adedoja D Wusu
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
- Department of Biochemistry, Lagos State University, Ojoo, Nigeria
| | - Olufunmilayo O Ogunrinola
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
- Department of Biochemistry, Lagos State University, Ojoo, Nigeria
| | - Esther O Abam
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - David O Babayemi
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Oluwatosin A Dosumu
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Okechukwu B Onunkwor
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Elizabeth A Balogun
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
- Department of Biochemistry, University of Ilorin, Nigeria
| | - Olusegun O Odukoya
- Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Oladipo Ademuyiwa
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
3
|
Afolabi OK, Wusu AD, Ogunrinola OO, Abam EO, Babayemi DO, Dosumu OA, Onunkwor OB, Balogun EA, Odukoya OO, Ademuyiwa O. Arsenic-induced dyslipidemia in male albino rats: comparison between trivalent and pentavalent inorganic arsenic in drinking water. BMC Pharmacol Toxicol 2015; 16:15. [PMID: 26044777 PMCID: PMC4455335 DOI: 10.1186/s40360-015-0015-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2015] [Indexed: 01/05/2023] Open
Abstract
Background Recent epidemiological evidences indicate close association between inorganic arsenic exposure via drinking water and cardiovascular diseases. However, the exact mechanism of this arsenic-mediated increase in cardiovascular risk factors remains enigmatic. Methods In order to investigate the effects of inorganic arsenic exposure on lipid metabolism, male albino rats were exposed to 50, 100 and 150 ppm arsenic as sodium arsenite and 100, 150 and 200 ppm arsenic as sodium arsenate respectively in their drinking water for 12 weeks. Results Dyslipidemia induced by the two arsenicals exhibited different patterns. Hypocholesterolemia characterised the effect of arsenite at all the doses, but arsenate induced hypercholesterolemia at the 150 ppm As dose. Hypertriglyceridemia was the hallmark of arsenate effect whereas plasma free fatty acids (FFAs) was increased by the two arsenicals. Reverse cholesterol transport was inhibited by the two arsenicals as evidenced by decreased HDL cholesterol concentrations whereas hepatic cholesterol was increased by arsenite (100 ppm As), but decreased by arsenite (150 ppm As) and arsenate (100 ppm As) respectively. Brain cholesterol and triglyceride were decreased by the two arsenicals; arsenate decreased the renal content of cholesterol, but increased renal content of triglyceride. Arsenite, on the other hand, increased the renal contents of the two lipids. The two arsenicals induced phospholipidosis in the spleen. Arsenite (150 ppm As) and arsenate (100 ppm As) inhibited hepatic HMG CoA reductase. At other doses of the two arsenicals, hepatic activity of the enzyme was up-regulated. The two arsenicals however up-regulated the activity of the brain enzyme. We observed positive associations between tissue arsenic levels and plasma FFA and negative associations between tissue arsenic levels and HDL cholesterol. Conclusion Our findings indicate that even though sub-chronic exposure to arsenite and arsenate through drinking water produced different patterns of dyslipidemia, our study identified two common denominators of dyslipidemia namely: inhibition of reverse cholesterol transport and increase in plasma FFA. These two denominators (in addition to other individual perturbations of lipid metabolism induced by each arsenical), suggest that in contrast to strengthening a dose-dependent effect phenomenon, the two forms of inorganic arsenic induced lipotoxic and non-lipotoxic dyslipidemia at “low” or “medium” doses and these might be responsible for the cardiovascular and other disease endpoints of inorganic arsenic exposure through drinking water.
Collapse
Affiliation(s)
- Olusegun K Afolabi
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria. .,Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria.
| | - Adedoja D Wusu
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria. .,Department of Biochemistry, Lagos State University, Ojoo, Lagos, Nigeria.
| | - Olabisi O Ogunrinola
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria. .,Department of Biochemistry, Lagos State University, Ojoo, Lagos, Nigeria.
| | - Esther O Abam
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria. .,Biochemistry Unit, Department of Chemical Sciences, Bells University of Technology, Ota, Nigeria.
| | - David O Babayemi
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Oluwatosin A Dosumu
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Okechukwu B Onunkwor
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Elizabeth A Balogun
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria. .,Department of Biochemistry, University of Ilorin, Ilorin, Nigeria.
| | - Olusegun O Odukoya
- Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Oladipo Ademuyiwa
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| |
Collapse
|
4
|
Zhang W, Xu F, Han J, Sun Q, Yang K. Comparative cytotoxicity and accumulation of Roxarsone and its photodegradates in freshwater Protozoan Tetrahymenathermophila. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:171-178. [PMID: 25577319 DOI: 10.1016/j.jhazmat.2015.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/30/2014] [Accepted: 01/01/2015] [Indexed: 06/04/2023]
Abstract
Roxarsone (ROX) remains to be as an organoarsenical feed additive used widely in developing countries. However, most of the ROX is excreted unchanged in manure, which could be readily photodegraded into inorganic arsenic derivatives. In this study, the comparative cytotoxicity and arsenic accumulation were evaluated after the exposure of Tetrahymenathermophila (T. thermophila) cell model to ROX and its photodegradates. The cytotoxic effects were estimated according to the relevant cell growth curves, morphologies and MTT assays. The 36 h median effective concentrations for ROX and its photodegradates at various photolysis times (10, 20, and 30 min) are 39.0, 2.08, 1.88, and 1.82 mg (total arsenic) L(-1), respectively. In parallel, the cellular arsenic uptakes were determined by hydride generation-atomic fluorescence spectrometry. Phospholipid layer as basic membrane structure was mimicked to assess the correlation between membrane permeability and cytotoxicity. The biocompatibility of ROX was dependent on its tendency to interact with cell membrane while the cytotoxicity was induced by the trans-membrane of the inorganic arsenic species present in the photodegradates of ROX. Furthermore, the photodegradates of ROX-associated alterations of intracellular protein profiles were analyzed using a proteomic approach. Overall, the significance was clarified that the control of arsenic emission caused by the application of ROX needs to be imposed.
Collapse
Affiliation(s)
- Wenzhong Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fang Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jingjing Han
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qun Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Huang LX, Yao LX, He ZH, Zhou CM, Li GL, Yang BM, Li YF. Uptake of arsenic species by turnip (Brassica rapa L.) and lettuce (Lactuca sativa L.) treated with roxarsone and its metabolites in chicken manure. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30:1546-55. [PMID: 23859781 DOI: 10.1080/19440049.2013.812809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Roxarsone is an organoarsenic feed additive that can be metabolised to other higher toxic arsenic (As) species in animal manure such as arsenate, arsenite, monomethylarsonic acid, dimethylarsinic acid, 3-amino-4-hydroxyphenylarsonic acid and other unknown As species. The accumulation, transport and distribution of As species in turnip (Brassica rapa L.) and lettuce (Lactuca sativa L.) amended with roxarsone and its metabolites in chicken manure were investigated. Results showed arsenite was the predominant As form, followed by arsenate in turnip and lettuce plants, and a low content of dimethylarsinic acid was detected only in lettuce roots. Compared with the control plants treated with chicken manure without roxarsone and its metabolites, the treatments containing roxarsone and its metabolites increased arsenite content by 2.0-3.2% in turnip shoots, by 6.6-6.7% in lettuce shoots, by 11-44% in turnip tubers and by 18-20% in lettuce roots at two growth stages. The enhanced proportion of arsenate content in turnip shoots, turnip tubers and lettuce roots was 4.3-14%, 20-35% and 70%, respectively, while dimethylarsinic acid content in lettuce roots increased 2.4 times. Results showed that the occurrence of dimethylarsinic acid in lettuce roots might be converted from the inorganic As species and the uptake of both inorganic and organic As compounds in turnip and lettuce plants would be enhanced by roxarsone and its metabolites in chicken manure. The pathway of roxarsone metabolites introduced into the human body via roxarsone → animal → manure → soil → crop was indicated.
Collapse
Affiliation(s)
- Lian Xi Huang
- a Institute of Agricultural Resources and Environment , Guangdong Academy of Agricultural Sciences , Guangzhou , China
| | | | | | | | | | | | | |
Collapse
|
6
|
Differential toxicity and gene expression in Caco-2 cells exposed to arsenic species. Toxicol Lett 2013; 218:70-80. [PMID: 23353816 DOI: 10.1016/j.toxlet.2013.01.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 01/12/2013] [Accepted: 01/15/2013] [Indexed: 12/17/2022]
Abstract
Inorganic arsenic [As(V)+As(III)] and its metabolites, especially the trivalent forms [monomethylarsonous acid, MMA(III), and dimethylarsinous acid, DMA(III)], are considered the forms of arsenic with the highest degree of toxicity, linked to certain types of cancer and other pathologies. The gastrointestinal mucosa is exposed to these forms of arsenic, but it is not known what toxic effect these species may have on it. The aim of the present work was to evaluate the toxicity and some mechanisms of action of inorganic arsenic and its metabolites [monomethylarsonic acid, MMA(V), dimethylarsinic acid, DMA(V), MMA(III) and DMA(III)] in intestinal epithelial cells, using the Caco-2 human cell line as a model. The results show that the pentavalent forms do not produce toxic effects on the intestinal monolayer, but the trivalent species have a different degree of toxicity. As(III) induces death mainly by necrosis, whereas only apoptotic cells are detected after exposure to MMA(III), and for DMA(III) the percentages of apoptosis and necrosis are similar. The three forms produce reactive oxygen species, accompanied by a reduction in intracellular GSH and lipid peroxidation, the latter being especially notable in the dimethylated form. They also alter the enzyme activity of glutathione peroxidase and catalase and induce expression of stress proteins and metallothioneins. The results indicate that the trivalent forms of arsenic can affect cell viability of intestinal cells by mechanisms related to the induction of oxidative stress. Further studies are needed to evaluate how the effects observed in this study affect the structure and functionality of the intestinal epithelium.
Collapse
|
7
|
Yao L, Huang L, He Z, Zhou C, Li G. Occurrence of arsenic impurities in organoarsenics and animal feeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:320-324. [PMID: 23259671 DOI: 10.1021/jf3045022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Organoarsenics are widely used as excellent feed additives in animal production in the world. Roxarsone (ROX) and arsanilic acid (ASA) are two organoarsenics permitted to be used in China. We collected 146 animal feed samples to investigate the appearance of ROX, ASA, and potential metabolites, including 3-amino-4-hydroxyphenylarsonic acid (3-A-HPA), 4-hydroxyphenylarsonic acid (4-HPA), As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in feeds. The stability of ROX in both ROX additives and animal feeds was also examined. The results show that 25.4% of the 146 animal feeds contained organoarsenics, with average contents of ROX and ASA as 7.0 and 21.2 mg of As/kg, respectively. Unexpectedly, As(III) and MMA frequently occurred as As impurities in feeds bearing organoarsenics, with higher contents than organoarsenics in some samples. 3-A-HPA, 4-HPA, and DMA were not detected in all samples. ROX and As impurities in both ROX additives and feeds stayed unchanged in the shelf life. It suggests that As impurities in animal feeds bearing organoarsenics should generate from the use of organoarsenics containing As impurities. This constitutes the first report of As impurities in organoarsenics.
Collapse
Affiliation(s)
- Lixian Yao
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China.
| | | | | | | | | |
Collapse
|
8
|
Cheng K, Choi K, Kim J, Sung IH, Chung DS. Sensitive arsenic analysis by carrier-mediated counter-transport single drop microextraction coupled with capillary electrophoresis. Microchem J 2013. [DOI: 10.1016/j.microc.2012.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Suwalsky M, Fierro P, Villena F, Aguilar LF, Sotomayor CP, Jemiola-Rzeminska M, Strzalka K, Gul-Hinc S, Ronowska A, Szutowicz A. Human erythrocytes and neuroblastoma cells are in vitro affected by sodium orthovanadate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2260-70. [PMID: 22546530 DOI: 10.1016/j.bbamem.2012.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/29/2012] [Accepted: 04/16/2012] [Indexed: 11/25/2022]
Abstract
Research on biological influence of vanadium has gained major importance because it exerts potent toxic, mutagenic, and genotoxic effects on a wide variety of biological systems. However, hematological toxicity is one of the less studied effects. The lack of information on this issue prompted us to study the structural effects induced on the human erythrocyte membrane by vanadium (V). Sodium orthovanadate was incubated with intact erythrocytes, isolated unsealed human erythrocyte membranes (IUM) and molecular models of the erythrocyte membrane. The latter consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. This report presents evidence in order that orthovanadate interacted with red cell membranes as follows: a) in scanning electron microscopy (SEM) studies it was observed that morphological changes on human erythrocytes were induced; b) fluorescence spectroscopy experiments in isolated unsealed human erythrocyte membranes (IUM) showed that an increase in the molecular dynamics and/or water content at the shallow depth of the lipids glycerol backbone at concentrations as low as 50μM was produced; c) X-ray diffraction studies showed that orthovanadate 0.25-1mM range induced increasing structural perturbation to DMPE; d) somewhat similar effects were observed by differential scanning calorimetry (DSC) with the exception of the fact that DMPC pretransition was shown to be affected; and e) fluorescence spectroscopy experiments performed in DMPC large unilamellar vesicles (LUV) showed that at very low concentrations induced changes in DPH fluorescence anisotropy at 18°C. Additional experiments were performed in mice cholinergic neuroblastoma SN56 cells; a statistically significant decrease of cell viability was observed on orthovanadate in low or moderate concentrations.
Collapse
Affiliation(s)
- M Suwalsky
- Faculty of Chemical Sciences, University of Concepción, Concepción, Chile.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nielsen CH. Major intrinsic proteins in biomimetic membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 679:127-42. [PMID: 20666229 DOI: 10.1007/978-1-4419-6315-4_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Biological membranes define the structural and functional boundaries in living cells and their organelles. The integrity of the cell depends on its ability to separate inside from outside and yet at the same time allow massive transport of matter in and out the cell. Nature has elegantly met this challenge by developing membranes in the form of lipid bilayers in which specialized transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create a membrane based sensor and/or separation device? In the development of a biomimetic sensor/separation technology, a unique class of membrane transport proteins is especially interesting-the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 10(9) molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other permeants such as carbon dioxide, nitric oxide, ammonia, hydrogen peroxide and the metalloids antimonite, arsenite, silicic and boric acid depending on the effective restriction mechanism of the protein. The flux properties of MIPs thus lead to the question ifMIPs can be used in separation devices or as sensor devices based on, e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to both electrolytes and non-electrolytes. The feasibility of a biomimetic MIP device thus depends on the relative transport contribution from both protein and biomimetic support matrix. Also the biomimetic matrix must be encapsulated in order to protect it and make it sufficiently stable in a final application. Here, I specifically discuss the feasibility of developing osmotic biomimetic MIP membranes, but the technical issues are of general concern in the design ofbiomimetic membranes capable of supporting selective transmembrane fluxes.
Collapse
Affiliation(s)
- Claus Hélix Nielsen
- Quantrum Protein Center, Department of Physics, Technical University of Denmark, DK-2800 Lyngby.
| |
Collapse
|
11
|
Yao L, Li G, Dang Z, Yang B, He Z, Zhou C. Uptake and transport of roxarsone and its metabolites in water spinach as affected by phosphate supply. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:947-951. [PMID: 20821525 DOI: 10.1002/etc.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Roxarsone (ROX) is widely used as a feed additive in intensive animal production. While an animal is fed with ROX, the As compounds in the manure primarily occur as ROX and its metabolites, including arsenate (As[V]), arsenite (As[III]), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Animal manure is commonly land applied with phosphorous fertilizers in China. A pot experiment was conducted to investigate the phytoavailability of ROX, As(V), As(III), MMA, and DMA in water spinach (Ipomoea aquatica), with the soil amended with 0, 0.25, 0.50, 1.0, and 2.0 g PO(4)/kg, respectively, plus 2% (w/w manure/soil) chicken manure (CM) bearing ROX and its metabolites. The results indicate that this species of water spinach cannot accumulate ROX and MMA at detectable levels, but As(V), As(III), and DMA were present in all plant samples. Increased phosphorous decreased the shoot As(V) and As(III) in water spinach but did not affect the root As(V). The shoot DMA and root As(III) and DMA were decreased/increased and then increased/decreased by elevated phosphorous. The total phosphorous content (P) in plant tissue did not correlate with the total As or the three As species in tissues. Arsenate, As(III), and DMA were more easily accumulated in the roots, and phosphate considerably inhibited their upward transport. Dimethylarsinic acid had higher transport efficiency than As(V) and As(III), but As(III) was dominant in tissues. Conclusively, phosphate had multiple effects on the accumulation and transport of ROX metabolites, which depended on their levels. However, proper utilization of phosphate fertilizer can decrease the accumulation of ROX metabolites in water spinach when treated with CM containing ROX and its metabolites.
Collapse
Affiliation(s)
- Lixian Yao
- Soil and Fertilizer Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
12
|
Thorsen M, Perrone GG, Kristiansson E, Traini M, Ye T, Dawes IW, Nerman O, Tamás MJ. Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae. BMC Genomics 2009; 10:105. [PMID: 19284616 PMCID: PMC2660369 DOI: 10.1186/1471-2164-10-105] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 03/12/2009] [Indexed: 11/10/2022] Open
Abstract
Background Arsenic and cadmium are widely distributed in nature and pose serious threats to the environment and human health. Exposure to these nonessential toxic metals may result in a variety of human diseases including cancer. However, arsenic and cadmium toxicity targets and the cellular systems contributing to tolerance acquisition are not fully known. Results To gain insight into metal action and cellular tolerance mechanisms, we carried out genome-wide screening of the Saccharomyces cerevisiae haploid and homozygous diploid deletion mutant collections and scored for reduced growth in the presence of arsenite or cadmium. Processes found to be required for tolerance to both metals included sulphur and glutathione biosynthesis, environmental sensing, mRNA synthesis and transcription, and vacuolar/endosomal transport and sorting. We also identified metal-specific defence processes. Arsenite-specific defence functions were related to cell cycle regulation, lipid and fatty acid metabolism, mitochondrial biogenesis, and the cytoskeleton whereas cadmium-specific defence functions were mainly related to sugar/carbohydrate metabolism, and metal-ion homeostasis and transport. Molecular evidence indicated that the cytoskeleton is targeted by arsenite and that phosphorylation of the Snf1p kinase is required for cadmium tolerance. Conclusion This study has pin-pointed core functions that protect cells from arsenite and cadmium toxicity. It also emphasizes the existence of both common and specific defence systems. Since many of the yeast genes that confer tolerance to these agents have homologues in humans, similar biological processes may act in yeast and humans to prevent metal toxicity and carcinogenesis.
Collapse
Affiliation(s)
- Michael Thorsen
- Department of Cell and Molecular Biology/Microbiology, University of Gothenburg, S-405 30 Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|