1
|
Mansur AAP, Carvalho SM, Lobato ZIP, Leite MF, Krambrock K, Mansur HS. Bioengineering stimuli-responsive organic-inorganic nanoarchitetures based on carboxymethylcellulose-poly-l-lysine nanoplexes: Unlocking the potential for bioimaging and multimodal chemodynamic-magnetothermal therapy of brain cancer cells. Int J Biol Macromol 2025; 290:138985. [PMID: 39706409 DOI: 10.1016/j.ijbiomac.2024.138985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Regrettably, glioblastoma multiforme (GBM) remains the deadliest form of brain cancer, where the early diagnosis plays a pivotal role in the patient's therapy and prognosis. Hence, we report for the first time the design, synthesis, and characterization of new hybrid organic-inorganic stimuli-responsive nanoplexes (NPX) for bioimaging and killing brain cancer cells (GBM, U-87). These nanoplexes were built through coupling two nanoconjugates, produced using a facile, sustainable, green aqueous colloidal process ("bottom-up"). One nanocomponent was based on cationic epsilon-poly-l-lysine polypeptide (εPL) conjugated with ZnS quantum dots (QDs) acting as chemical ligand and cell-penetrating peptide (CPP) for bioimaging of cancer cells (QD@εPL). The second nanocomponent was based on anionic carboxymethylcellulose (CMC) polysaccharide surrounding superparamagnetic magnetite "nanozymes" (MNZ) behaving as a capping macromolecular shell (MNZ@CMC) for killing cancer cells through chemodynamic therapy (CDT) and magnetohyperthermia (MHT). The results demonstrated the effective production of supramolecular aqueous colloidal nanoplexes (QD@εPL_MNZ@CMC, NPX) integrated into single nanoplatforms, mainly electrostatically stabilized by εPL/CMC biomolecules with anticancer activity against U-87 cells using 2D and 3D spheroid models. They displayed nanotheranostics (i.e., diagnosis and therapy) behavior credited to the photonic activity of QD@εPL with luminescent intracellular bioimaging, amalgamated with a dual-mode killing effect of GBM cancer cells through CDT by nanozyme-induced biocatalysis and as "nanoheaters" by magnetically-responsive hyperthermia therapy.
Collapse
Affiliation(s)
- Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil
| | - Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil
| | - Zélia I P Lobato
- Department of Preventive Veterinary Medicine School of Veterinary, Federal University of Minas Gerais, UFMG, Brazil
| | - M Fátima Leite
- Department of Physiology and Biophysics, Institute of Biological Sciences-ICB, Federal University of Minas Gerais - UFMG, Brazil
| | - Klaus Krambrock
- Departament of Physics, Federal University of Minas Gerais - UFMG, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil.
| |
Collapse
|
2
|
Denieva Z, Kuzmin PI, Galimzyanov TR, Datta SAK, Rein A, Batishchev OV. Human Immunodeficiency Virus Type 1 Gag Polyprotein Modulates Membrane Physical Properties like a Surfactant: Potential Implications for Virus Assembly. ACS Infect Dis 2024; 10:2870-2885. [PMID: 38917054 PMCID: PMC11320576 DOI: 10.1021/acsinfecdis.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Human immunodeficiency virus (HIV) assembly at an infected cell's plasma membrane requires membrane deformation to organize the near-spherical shape of an immature virus. While the cellular expression of HIV Gag is sufficient to initiate budding of virus-like particles, how Gag generates membrane curvature is not fully understood. Using highly curved lipid nanotubes, we have investigated the physicochemical basis of the membrane activity of recombinant nonmyristoylated Gag-Δp6. Gag protein, upon adsorption onto the membrane, resulted in the shape changes of both charged and uncharged nanotubes. This shape change was more pronounced in the presence of charged lipids, especially phosphatidylinositol bisphosphate (PI(4,5)P2). We found that Gag modified the interfacial tension of phospholipid bilayer membranes, as judged by comparison with the effects of amphipathic peptides and nonionic detergent. Bioinformatic analysis demonstrated that a region of the capsid and SP1 domains junction of Gag is structurally similar to the amphipathic peptide magainin-1. This region accounts for integral changes in the physical properties of the membrane upon Gag adsorption, as we showed with the synthetic CA-SP1 junction peptide. Phenomenologically, membrane-adsorbed Gag could diminish the energetic cost of increasing the membrane area in a way similar to foam formation. We propose that Gag acts as a surface-active substance at the HIV budding site that softens the membrane at the place of Gag adsorption, lowering the energy for membrane bending. Finally, our experimental data and theoretical considerations give a lipid-centric view and common mechanism by which proteins could bend membranes, despite not having intrinsic curvature in their molecular surfaces or assemblies.
Collapse
Affiliation(s)
- Zaret
G. Denieva
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Leninsky pr., 31, bld. 4, 119071 Moscow, Russia
| | - Peter I. Kuzmin
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Leninsky pr., 31, bld. 4, 119071 Moscow, Russia
| | - Timur R. Galimzyanov
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Leninsky pr., 31, bld. 4, 119071 Moscow, Russia
| | - Siddhartha A. K. Datta
- Retroviral
Assembly Section, HIV Dynamics and Replication Program, Center for
Cancer Research, National Cancer Institute,
National Institutes of Health, Frederick, Maryland 21702-1201, United States
| | - Alan Rein
- Retroviral
Assembly Section, HIV Dynamics and Replication Program, Center for
Cancer Research, National Cancer Institute,
National Institutes of Health, Frederick, Maryland 21702-1201, United States
| | - Oleg V. Batishchev
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Leninsky pr., 31, bld. 4, 119071 Moscow, Russia
| |
Collapse
|
3
|
Liu Y, Pierre CJ, Joshi S, Sun L, Li Y, Guan J, Favor JDL, Holmes C. Cell-Specific Impacts of Surface Coating Composition on Extracellular Vesicle Secretion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29737-29759. [PMID: 38805212 DOI: 10.1021/acsami.4c03213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Biomaterial properties have recently been shown to modulate extracellular vesicle (EV) secretion and cargo; however, the effects of substrate composition on EV production remain underexplored. This study investigates the impacts of surface coatings composed of collagen I (COLI), fibronectin (FN), and poly l-lysine (PLL) on EV secretion for applications in therapeutic EV production and to further understanding of how changes in the extracellular matrix microenvironment affect EVs. EV secretion from primary bone marrow-derived mesenchymal stromal cells (BMSCs), primary adipose-derived stem cells (ASCs), HEK293 cells, NIH3T3 cells, and RAW264.7 cells was characterized on the different coatings. Expression of EV biogenesis genes and cellular adhesion genes was also analyzed. COLI coatings significantly decreased EV secretion in RAW264.7 cells, with associated decreases in cell viability and changes in EV biogenesis-related and cell adhesion genes at day 4. FN coatings increased EV secretion in NIH3T3 cells, while PLL coatings increased EV secretion in ASCs. Surface coatings had significant effects on the capacity of EVs derived from RAW264.7 and NIH3T3 cells to impact in vitro macrophage proliferation. Overall, surface coatings had different cell-specific effects on EV secretion and in vitro functional capacity, thus highlighting the potential of substrate coatings to further the development of clinical EV production systems.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| | - Clifford J Pierre
- Department of Health, Nutrition, and Food Science, College of Education, Health and Human Sciences, Florida State University, 1114 West Call Street, Tallahasee, Florida 32306, United States
| | - Sailesti Joshi
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| | - Li Sun
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahasee, Florida 32306-4300, United States
| | - Yan Li
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| | - Jingjiao Guan
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| | - Justin D La Favor
- Department of Health, Nutrition, and Food Science, College of Education, Health and Human Sciences, Florida State University, 1114 West Call Street, Tallahasee, Florida 32306, United States
| | - Christina Holmes
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| |
Collapse
|
4
|
Mansur AAP, Carvalho SC, Dorneles EMS, Lage AP, Lobato ZIP, Mansur HS. Bio-functionalized nanocolloids of ZnS quantum dot/amine-rich polypeptides for bioimaging cancer cells with antibacterial activity: " seeing is believing". RSC Adv 2023; 13:34378-34390. [PMID: 38024978 PMCID: PMC10665648 DOI: 10.1039/d3ra06711d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023] Open
Abstract
Among almost 200 types of cancers, glioma is considered one of the most common forms of malignant tumors located in the central nervous system (CNS). Glioblastoma (GBM), one of the deadliest types of brain cancer, remains one of the challenges faced by oncologists. Thus, smartly designed nanomaterials biofunctionalized with polypeptides can offer disruptive strategies relying on the earliest possible diagnosis ("seeing is believing") combined with more efficient therapies for fighting cancer cells. To worsen this scenario, bacteria infections very often pose a serious challenge to cancer-immunodeficient patients under chemotherapy. Thus, in this research, we report for the first time the design and synthesis of novel nanoconjugates composed of photoluminescent ZnS quantum dots (ZnS QDs), which were directly surface biofunctionalized with epsilon-poly-l-lysine (εPL), acting as an amine-rich cell-penetrating peptide (CPP) and antimicrobial peptide agent (AMP). These nanoconjugates (named ZnS@CPP-AMP) were produced through a one-step facile, eco-friendly, and biocompatible colloidal aqueous process to be applied as a proof of concept as nanoprobes for bioimaging GBM cancer cells (U87-MG) associated with synergic antibacterial activity. They were characterized regarding their physicochemical and optical properties associated with the biological activity. The results demonstrated that chemically stable aqueous colloidal nanoconjugates were effectively formed, resembling core-shell (inorganic, ZnS, organic, εPL) nanostructures with positively surface-charged features due to the cationic nature of the amine-rich polypeptide. More importantly, they demonstrated photoluminescent activity, cytocompatibility in vitro, and no significant intracellular reactive oxygen species (ROS) generation. These ZnS@CPP-AMP nanocolloids behaved as fluorescent nanoprobes for bioimaging GBM cancer cells, where the polycationic nature of the εPL biomolecule may have enhanced the cellular uptake. Additionally, they displayed mild antibacterial growth inhibition due to electrostatic interactions with bacterial membranes. Thus, it can be envisioned that these novel photoluminescent colloidal nanoconjugates offer novel nanoplatforms that can be specifically targeted with biomolecules for bioimaging to diagnose highly lethal cancers, such as GBM, and as an adjuvant in antibacterial therapy.
Collapse
Affiliation(s)
- Alexandra A P Mansur
- Department of Metallurgical and Materials Engineering, Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Federal University of Minas Gerais, UFMG Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233 31.270-901 Belo Horizonte MG Brazil +55-31-34091843 +55-31-34091843
| | - Sandhra C Carvalho
- Department of Metallurgical and Materials Engineering, Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Federal University of Minas Gerais, UFMG Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233 31.270-901 Belo Horizonte MG Brazil +55-31-34091843 +55-31-34091843
| | - Elaine M S Dorneles
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, UFLA Brazil
| | - Andrey P Lage
- Departamento de Medicina Veterinária Preventiva, Federal University of Minas Gerais, UFMG Brazil
| | - Zelia I P Lobato
- Departamento de Medicina Veterinária Preventiva, Federal University of Minas Gerais, UFMG Brazil
| | - Herman S Mansur
- Department of Metallurgical and Materials Engineering, Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Federal University of Minas Gerais, UFMG Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233 31.270-901 Belo Horizonte MG Brazil +55-31-34091843 +55-31-34091843
| |
Collapse
|
5
|
Gostaviceanu A, Gavrilaş S, Copolovici L, Copolovici DM. Membrane-Active Peptides and Their Potential Biomedical Application. Pharmaceutics 2023; 15:2091. [PMID: 37631305 PMCID: PMC10459175 DOI: 10.3390/pharmaceutics15082091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Membrane-active peptides (MAPs) possess unique properties that make them valuable tools for studying membrane structure and function and promising candidates for therapeutic applications. This review paper provides an overview of the fundamental aspects of MAPs, focusing on their membrane interaction mechanisms and potential applications. MAPs exhibit various structural features, including amphipathic structures and specific amino acid residues, enabling selective interaction with multiple membranes. Their mechanisms of action involve disrupting lipid bilayers through different pathways, depending on peptide properties and membrane composition. The therapeutic potential of MAPs is significant. They have demonstrated antimicrobial activity against bacteria and fungi, making them promising alternatives to conventional antibiotics. MAPs can selectively target cancer cells and induce apoptosis, opening new avenues in cancer therapeutics. Additionally, MAPs serve as drug delivery vectors, facilitating the transport of therapeutic cargoes across cell membranes. They represent a fascinating class of biomolecules with significant potential in basic research and clinical applications. Understanding their mechanisms of action and designing peptides with enhanced selectivity and efficacy will further expand their utility in diverse fields. Exploring MAPs holds promise for developing novel therapeutic strategies against infections, cancer, and drug delivery challenges.
Collapse
Affiliation(s)
- Andreea Gostaviceanu
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Biomedical Sciences Doctoral School, University of Oradea, University St., No. 1, 410087 Oradea, Romania
| | - Simona Gavrilaş
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
| | - Dana Maria Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
| |
Collapse
|
6
|
Sriwidodo, Umar AK, Wathoni N, Zothantluanga JH, Das S, Luckanagul JA. Liposome-polymer complex for drug delivery system and vaccine stabilization. Heliyon 2022; 8:e08934. [PMID: 35243059 PMCID: PMC8861389 DOI: 10.1016/j.heliyon.2022.e08934] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
Liposomes have been used extensively as micro- and nanocarriers for hydrophobic or hydrophilic molecules. However, conventional liposomes are biodegradable and quickly eliminated, making it difficult to be used for delivery in specific routes, such as the oral and systemic routes. One way to overcome this problem is through complexation with polymers, which is referred to as a liposome complex. The use of polymers can increase the stability of liposome with regard to pH, chemicals, enzymes, and the immune system. In some cases, specific polymers can condition the properties of liposomes to be explicitly used in drug delivery, such as targeted delivery and controlled release. These properties are influenced by the type of polymer, crosslinker, interaction, and bond in the complexation process. Therefore, it is crucial to study and review these parameters for the development of more optimal forms and properties of the liposome complex. This article discusses the use of natural and synthetic polymers, ways of interaction between polymers and liposomes (on the surface, incorporation in lamellar chains, and within liposomes), types of bonds, evaluation standards, and their effects on the stability and pharmacokinetic profile of the liposome complex, drugs, and vaccines. This article concludes that both natural and synthetic polymers can be used in modifying the structure and physicochemical properties of liposomes to specify their use in targeted delivery, controlled release, and stabilizing drugs and vaccines.
Collapse
Affiliation(s)
- Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Abd. Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Department of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Sanjoy Das
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Claro B, González-Freire E, Calvelo M, Bessa LJ, Goormaghtigh E, Amorín M, Granja JR, Garcia-Fandiño R, Bastos M. Membrane targeting antimicrobial cyclic peptide nanotubes - an experimental and computational study. Colloids Surf B Biointerfaces 2020; 196:111349. [PMID: 32992285 DOI: 10.1016/j.colsurfb.2020.111349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
The search of new antibiotics, particularly with new mechanisms of action, is nowadays a very important public health issue, due to the worldwide increase of resistant pathogens. Within this effort, much research has been done on antimicrobial peptides, because having the membrane as a target, they represent a new antibiotic paradigm. Among these, cyclic peptides (CPs) made of sequences of D- and L-amino acids have emerged as a new class of potential antimicrobial peptides, due to their expected higher resistance to protease degradation. These CPs are planar structures that can form Self-assembled Cyclic Peptide Nanotubes (SCPNs), in particular in the presence of lipid membranes. Aiming at understanding their mechanism of action, we used biophysical experimental techniques (DSC and ATR-FTIR) together with Coarse-grained molecular dynamics (CG-MD) simulations, to characterize the interaction of these CPs with model membranes of different electrostatic charges' contents. DSC results revealed that the CPs show a strong interaction with negatively charged membranes, with differences in the strength of interactions depending on peptide and on membrane charge content, at odds with no or mild interactions with zwitterionic membranes. ATR-FTIR suggested that the peptides self-assemble at the membrane surface, adopting mainly a β-structure. The experiments with polarized light showed that in most cases they lie parallel to the membrane surface, but other forms and orientations are also apparent, depending on peptide structure and lipid:peptide ratio. The nanotube formation and orientation, as well as the dependence on membrane charge were also confirmed by the CG-MD simulations. These provide detail on the position and interactions, in agreement with the experimental results. Based on the findings reported here, we could proceed to the design and synthesis of a second-generation CPs, based on CP2 (soluble peptide), with increased activity and reduced toxicity.
Collapse
Affiliation(s)
- Bárbara Claro
- CIQUP, Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Eva González-Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Martin Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Lucinda J Bessa
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Erik Goormaghtigh
- Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, ULB, Brussels, Belgium
| | - Manuel Amorín
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan R Granja
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rebeca Garcia-Fandiño
- CIQUP, Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Margarida Bastos
- CIQUP, Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
8
|
Trichet M, Lappano R, Belnou M, Salazar Vazquez LS, Alves I, Ravault D, Sagan S, Khemtemourian L, Maggiolini M, Jacquot Y. Interaction of the Anti-Proliferative GPER Inverse Agonist ERα17p with the Breast Cancer Cell Plasma Membrane: From Biophysics to Biology. Cells 2020; 9:E447. [PMID: 32075246 PMCID: PMC7072814 DOI: 10.3390/cells9020447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 01/02/2023] Open
Abstract
The peptide ERα17p, which corresponds to the 295-311 fragment of the hinge/AF2 domains of the human estrogen receptor α (ERα), exerts apoptosis in breast cancer cells through a mechanism involving the G protein-coupled estrogen-dependent receptor GPER. Besides this receptor-mediated mechanism, we have detected a direct interaction (Kd value in the micromolar range) of this peptide with lipid vesicles mimicking the plasma membrane of eukaryotes. The reversible and not reversible pools of interacting peptide may correspond to soluble and aggregated membrane-interacting peptide populations, respectively. By using circular dichroism (CD) spectroscopy, we have shown that the interaction of the peptide with this membrane model was associated with its folding into β sheet. A slight leakage of the 5(6)-fluorescein was also observed, indicating lipid bilayer permeability. When the peptide was incubated with living breast cancer cells at the active concentration of 10 μM, aggregates were detected at the plasma membrane under the form of spheres. This insoluble pool of peptide, which seems to result from a fibrillation process, is internalized in micrometric vacuoles under the form of fibrils, without evidence of cytotoxicity, at least at the microscopic level. This study provides new information on the interaction of ERα17p with breast cancer cell membranes as well as on its mechanism of action, with respect to direct membrane effects.
Collapse
Affiliation(s)
- Michaël Trichet
- Institut de Biologie Paris-Seine (IBPS), Service de Microscopie éLectronique (IBPS-SME), Sorbonne Université, CNRS, 75005 Paris, France;
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Mathilde Belnou
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, Ecole Normale Supérieure, PSL University, 75005 Paris, France; (M.B.); (L.S.S.V.); (D.R.); (S.S.); (L.K.)
| | - Lilian Shadai Salazar Vazquez
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, Ecole Normale Supérieure, PSL University, 75005 Paris, France; (M.B.); (L.S.S.V.); (D.R.); (S.S.); (L.K.)
| | - Isabel Alves
- Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN), CNRS UMR 5248, Université de Bordeaux, Institut Polytechnique Bordeaux, 33600 Pessac, France;
| | - Delphine Ravault
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, Ecole Normale Supérieure, PSL University, 75005 Paris, France; (M.B.); (L.S.S.V.); (D.R.); (S.S.); (L.K.)
| | - Sandrine Sagan
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, Ecole Normale Supérieure, PSL University, 75005 Paris, France; (M.B.); (L.S.S.V.); (D.R.); (S.S.); (L.K.)
| | - Lucie Khemtemourian
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, Ecole Normale Supérieure, PSL University, 75005 Paris, France; (M.B.); (L.S.S.V.); (D.R.); (S.S.); (L.K.)
- Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN), CNRS UMR 5248, Université de Bordeaux, Institut Polytechnique Bordeaux, 33600 Pessac, France;
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Yves Jacquot
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, Ecole Normale Supérieure, PSL University, 75005 Paris, France; (M.B.); (L.S.S.V.); (D.R.); (S.S.); (L.K.)
- Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), CNRS UMR 8038, U1268 INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, 75006 Paris, France
| |
Collapse
|
9
|
Mansouri N, Jalal R, Akhlaghinia B, Abnous K, Jahanshahi R. Design and synthesis of aptamer AS1411-conjugated EG@TiO2@Fe2O3nanoparticles as a drug delivery platform for tumor-targeted therapy. NEW J CHEM 2020. [DOI: 10.1039/c9nj06445a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AS1411@GMBS@EG@TiO2@Fe2O3nanoparticle is an effective and safe pH-responsive sustained release system for targeted drug delivery into nucleolin-positive cells.
Collapse
Affiliation(s)
- Nahid Mansouri
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Razieh Jalal
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Batool Akhlaghinia
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Khalil Abnous
- Pharmaceutical Research Center
- School of Pharmacy
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Roya Jahanshahi
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| |
Collapse
|
10
|
Gorman A, Hossain KR, Cornelius F, Clarke RJ. Penetration of phospholipid membranes by poly-l-lysine depends on cholesterol and phospholipid composition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183128. [PMID: 31734310 DOI: 10.1016/j.bbamem.2019.183128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
Clusters of positively-charged basic amino acid residues, particularly lysine, are known to promote the interaction of many peripheral membrane proteins with the cytoplasmic surface of the plasma membrane via electrostatic interactions. In this work, cholesterol's effects on the interaction between lysine residues and membranes have been studied. Using poly-l-lysine (PLL) and vesicles as models to mimic the interaction between lysine-rich protein domains and the plasma membrane, light scattering measurements indicated cholesterol enhanced the electrostatic interaction through indirectly affecting the negatively charged phospholipid dioleoylphosphatidylserine, DOPS. Addition of PLL to lipid vesicles containing DOPS showed an initial increase in static light scattering (SLS), attributed to binding of PLL to the vesicle surface, followed by a slower continuously declining SLS signal, which, from comparison with fluorescent dye leakage studies could be attributed to vesicle lysis. Although electrostatic interactions between PLL and the membrane were not necessary for penetration to occur, cholesterol promoted membrane disruption of negatively charged vesicles, possibly by increasing the electrostatic interactions between PLL and the membrane. In contrast, cholesterol lowered the susceptibility of uncharged vesicles (formed using dioleoylphosphatidylcholine, DOPC) to PLL penetration. This can be explained by the absence of electrostatic interactions and cholesterol's known ability to increase membrane thickness and mechanical strength. Thus, the ability of cationic peptides to penetrate membranes including cholesterol is likely to depend on the membrane's PS:PC ratio.
Collapse
Affiliation(s)
- Amy Gorman
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | | | - Flemming Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Ronald J Clarke
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| |
Collapse
|
11
|
Szyk-Warszyńska L, Raszka K, Warszyński P. Interactions of Casein and Polypeptides in Multilayer Films Studied by FTIR and Molecular Dynamics. Polymers (Basel) 2019; 11:polym11050920. [PMID: 31130626 PMCID: PMC6572437 DOI: 10.3390/polym11050920] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Multilayer films containing α- and β-casein and polypeptides, poly-L-lysine (PLL), and poly-L-arginine (PLArg) were formed by the layer-by-layer technique and Fourier Transform InfraRed spectroscopy with Attenuated Total Reflection (FTIR-ATR) and FTIR/Grazing Angle analyzed their infrared spectra. We investigated the changes of conformations of casein and polypeptides in the complexes formed during the build-up of the films. To elucidate the differences in the mechanism of complex formation leading to various growths of (PLL/casein)n and (PLArg/casein)n films, we performed the molecular dynamics simulations of the systems consisting of short PLL and PLArg chains and the representative peptide chains—casein fragments, which consists of several aminoacid sequences. The results of the simulation indicated the preferential formation of hydrogen bonds of poly-L-arginine with phosphoserine and glutamic acid residues of caseins. FTIR spectra confirmed those, which revealed greater conformational changes during the formation of casein complex with poly-L-arginine than with poly-L-lysine resulting from stronger interactions, which was also reflected in the bigger growth of (PLArg/casein)n films with the number of deposited layers.
Collapse
Affiliation(s)
- Lilianna Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, ul. Niezapomianjek 8, 30-239 Krakow, Poland.
| | - Katarzyna Raszka
- Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, ul. Niezapomianjek 8, 30-239 Krakow, Poland.
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, ul. Niezapomianjek 8, 30-239 Krakow, Poland.
| |
Collapse
|
12
|
Molotkovsky RJ, Galimzyanov TR, Ermakov YA. Polypeptides on the Surface of Lipid Membranes. Theoretical Analysis of Electrokinetic Data. COLLOID JOURNAL 2019. [DOI: 10.1134/s1061933x19020108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Effect of Cholesterol on the Dipole Potential of Lipid Membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:135-154. [DOI: 10.1007/978-3-030-04278-3_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Interaction of N-terminal peptide analogues of the Na+,K+-ATPase with membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018. [DOI: 10.1016/j.bbamem.2018.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
McGeachy AC, Caudill ER, Liang D, Cui Q, Pedersen JA, Geiger FM. Counting charges on membrane-bound peptides. Chem Sci 2018; 9:4285-4298. [PMID: 29780560 PMCID: PMC5944241 DOI: 10.1039/c8sc00804c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/02/2018] [Indexed: 01/27/2023] Open
Abstract
Quantifying the number of charges on peptides bound to interfaces requires reliable estimates of (i) surface coverage and (ii) surface charge, both of which are notoriously difficult parameters to obtain, especially at solid/water interfaces. Here, we report the thermodynamics and electrostatics governing the interactions of l-lysine and l-arginine octamers (Lys8 and Arg8) with supported lipid bilayers prepared.
Quantifying the number of charges on peptides bound to interfaces requires reliable estimates of (i) surface coverage and (ii) surface charge, both of which are notoriously difficult parameters to obtain, especially at solid/water interfaces. Here, we report the thermodynamics and electrostatics governing the interactions of l-lysine and l-arginine octamers (Lys8 and Arg8) with supported lipid bilayers prepared from a 9 : 1 mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt) (DMPG) from second harmonic generation (SHG) spectroscopy, quartz crystal microbalance with dissipation monitoring (QCM-D) and nanoplasmonic sensing (NPS) mass measurements, and atomistic simulations. The combined SHG/QCM-D/NPS approach provides interfacial charge density estimates from mean field theory for the attached peptides that are smaller by a factor of approximately two (0.12 ± 0.03 C m–2 for Lys8 and 0.10 ± 0.02 C m–2 for Arg8) relative to poly-l-lysine and poly-l-arginine. These results, along with atomistic simulations, indicate that the surface charge density of the supported lipid bilayer is neutralized by the attached cationic peptides. Moreover, the number of charges associated with each attached peptide is commensurate with those found in solution; that is, Lys8 and Arg8 are fully ionized when attached to the bilayer. Computer simulations indicate Lys8 is more likely than Arg8 to “stand-up” on the surface, interacting with lipid headgroups through one or two sidechains while Arg8 is more likely to assume a “buried” conformation, interacting with the bilayer through up to six sidechains. Analysis of electrostatic potential and charge distribution from atomistic simulations suggests that the Gouy–Chapman model, which is widely used for mapping surface potential to surface charge, is semi-quantitatively valid; despite considerable orientational preference of interfacial water, the apparent dielectric constant for the interfacial solvent is about 30, due to the thermal fluctuation of the lipid–water interface.
Collapse
Affiliation(s)
- Alicia C McGeachy
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60660 , USA .
| | - Emily R Caudill
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , WI 53706 , USA
| | - Dongyue Liang
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , WI 53706 , USA
| | - Qiang Cui
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , WI 53706 , USA.,Department of Chemistry , Boston University , 590 Commonwealth Ave. , Boston , MA 02215 , USA
| | - Joel A Pedersen
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , WI 53706 , USA.,Environmental Chemistry and Technology Program , University of Wisconsin-Madison , 660 North Park Street , Madison , WI 53706 , USA.,Department of Soil Science , University of Wisconsin-Madison , 1525 Observatory Drive , Madison , WI 53706 , USA.,Department of Civil & Environmental Engineering , University of Wisconsin-Madison , 1415 Engineering Drive , Madison , WI 53706 , USA
| | - Franz M Geiger
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60660 , USA .
| |
Collapse
|
16
|
Via MA, Del Pópolo MG, Wilke N. Negative Dipole Potentials and Carboxylic Polar Head Groups Foster the Insertion of Cell-Penetrating Peptides into Lipid Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3102-3111. [PMID: 29394073 DOI: 10.1021/acs.langmuir.7b04038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cell-penetrating peptides (CPPs) are polycationic sequences of amino acids recognized as some of the most effective vehicles for delivering membrane-impermeable cargos into cells. CPPs can traverse cell membranes by direct translocation, and assessing the role of lipids on the membrane permeation process is important to convene a complete model of the CPP translocation. In this work, we focus on the biophysical basis of peptide-fatty acid interactions, analyzing how the acid-base and electrostatic properties of the lipids determine the CPP adsorption and incorporation into a Langmuir monolayer, focusing thus on the first two stages of the direct translocation mechanism. We sense the binding and insertion of the peptide into the lipid structure by measuring the changes in the surface pressure, the surface potential, and the reflectivity of the interface. We show that, beyond the presence of anionic moieties, negative dipole potentials and carboxylic polar head groups significantly promote the insertion of the peptide into the monolayer. On the basis of our results, we propose the appearance of stable CPP-lipid complexes whose kinetics of formation depends on the length of the lipids' hydrocarbon chains.
Collapse
Affiliation(s)
- Matías A Via
- CONICET & Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza , Argentina
- Instituto de Histologı́a y Embriologı́a de Mendoza (IHEM-CONICET) & Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina
| | - Mario G Del Pópolo
- CONICET & Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza , Argentina
| | | |
Collapse
|
17
|
Gonzalez-Paredes A, Torres D, Alonso MJ. Polyarginine nanocapsules: A versatile nanocarrier with potential in transmucosal drug delivery. Int J Pharm 2017; 529:474-485. [PMID: 28684364 DOI: 10.1016/j.ijpharm.2017.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 01/03/2023]
Abstract
The objective of this work was to investigate the potential utility of nanocapsules composed of an oily core decorated with a single polyarginine (PARG), or double PARG/polyacrylic acid (PAA) layer as oral peptide delivery carrier. A step-by-step formulation optimization process was designed, which involved the study of the influence of the surfactants, oils and polymer shells (PARG of different molecular weight and PAA) on the nanocapsules physicochemical properties, peptide loading efficiency, stability in simulated intestinal fluids (SIF) and capacity to enhance the permeability of the intestinal epithelium. Despite the lipophilic nature of the nanocapsules, it was possible to achieve a moderate loading of the hydrophilic model peptide salmon calcitonin and control its release in SIF, by adjusting the formulation conditions. Finally, studies in the Caco-2 epithelial cell line showed the capacity of the nanocapsules to reduce the transepithelial electric resistance of the monolayer, without compromising their viability. Overall, these properties suggest the capacity of polyarginine nanocapsules for enhancing the transport of peptides across epithelia.
Collapse
Affiliation(s)
- Ana Gonzalez-Paredes
- Dept. Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Spain; Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Spain
| | - Dolores Torres
- Dept. Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Spain
| | - María José Alonso
- Dept. Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Spain; Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Spain.
| |
Collapse
|
18
|
Hädicke A, Blume A. Binding of cationic model peptides (KX) 4 K to anionic lipid bilayers: Lipid headgroup size influences secondary structure of bound peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:415-424. [DOI: 10.1016/j.bbamem.2016.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/07/2016] [Accepted: 12/23/2016] [Indexed: 01/04/2023]
|
19
|
Weeks CA, Aden B, Zhang J, Singh A, Hickey RD, Kilbey SM, Nyberg SL, Janorkar AV. Effect of amine content and chemistry on long-term, three-dimensional hepatocyte spheroid culture atop aminated elastin-like polypeptide coatings. J Biomed Mater Res A 2016; 105:377-388. [PMID: 27648820 DOI: 10.1002/jbm.a.35910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 01/22/2023]
Abstract
Culture conditions that induce hepatic spheroidal aggregates sustain liver cells with metabolism that mimics in vivo hepatocytes. Here we present an array of elastin-like polypeptide conjugate coating materials (Aminated-ELPs) that are biocompatible, have spheroid-forming capacity, can be coated atop traditional culture surfaces, and maintain structural integrity while ensuring adherence of spheroids over long culture period. The Aminated-ELPs were synthesized either by direct conjugation of ELP and various polyelectrolytes or by conjugating both ELP and various small electrolytes to the reactive polymer poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA). Spheroid morphology, cellular metabolic function, and liver-specific gene expression over the long-term, 20-day culture period were assessed through optical microscopy, measurement of total protein content and albumin and urea production, and quantitative real-time (qRT) PCR. We found that the amine content of the Aminated-ELP coatings dictated the initial hepatocyte attachment, but not the subsequent hepatocyte spheroid formation and their continued attachment. A lower amine content was generally found to sustain higher albumin production by the spheroids. Out of the 19 Aminated-ELP coatings tested, we found that the lysine-containing substrates comprising ELP-polylysine or ELP-PVDMA-butanediamine proved to consistently culture productive spheroidal hepatocytes. We suggest that the incorporation of lysine functional groups in Aminated-ELP rendered more biocompatible surfaces, increasing spheroid attachment and leading to increased liver-specific function. Taken together, the Aminated-ELP array presented here has the potential to create in vitro hepatocyte culture models that mimic in vivo liver functionality and thus, lead to better understanding of liver pathophysiology and superior screening methods for drug efficacy and toxicity. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 377-388, 2017.
Collapse
Affiliation(s)
- C Andrew Weeks
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi, 39216
| | - Bethany Aden
- Departments of Chemistry & Chemical and Biomolecular Engineering, University of Tennessee, 322 Buehler Hall, 1420 Circle Drive, Knoxville, Tennessee, 37996
| | - Junlin Zhang
- Department of Surgery, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi, 39216
| | - Anisha Singh
- Department of Surgery, Mayo Clinic, 200 1st St SW, Rochester, Minnesota, 55905
| | - Raymond D Hickey
- Department of Surgery, Mayo Clinic, 200 1st St SW, Rochester, Minnesota, 55905
| | - S Michael Kilbey
- Departments of Chemistry & Chemical and Biomolecular Engineering, University of Tennessee, 322 Buehler Hall, 1420 Circle Drive, Knoxville, Tennessee, 37996
| | - Scott L Nyberg
- Department of Surgery, Mayo Clinic, 200 1st St SW, Rochester, Minnesota, 55905
| | - Amol V Janorkar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi, 39216
| |
Collapse
|
20
|
Kampmann AL, Grabe T, Jaworski C, Weberskirch R. Synthesis of well-defined core–shell nanoparticles based on bifunctional poly(2-oxazoline) macromonomer surfactants and a microemulsion polymerization process. RSC Adv 2016. [DOI: 10.1039/c6ra22896h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Surface-functional nanoparticles have been fabricated by utilizing bifunctional poly(2-oxazoline) macromonomers as surfactants in a microemulsion process.
Collapse
Affiliation(s)
| | - Tobias Grabe
- Faculty of Chemistry and Chemical Biology
- D-44227 Dortmund
- Germany
| | - Carolin Jaworski
- Faculty of Chemistry and Chemical Biology
- D-44227 Dortmund
- Germany
| | - Ralf Weberskirch
- Faculty of Chemistry and Chemical Biology
- D-44227 Dortmund
- Germany
| |
Collapse
|
21
|
Pelassa I, Fiumara F. Differential Occurrence of Interactions and Interaction Domains in Proteins Containing Homopolymeric Amino Acid Repeats. Front Genet 2015; 6:345. [PMID: 26734058 PMCID: PMC4683181 DOI: 10.3389/fgene.2015.00345] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/20/2015] [Indexed: 12/13/2022] Open
Abstract
Homopolymeric amino acids repeats (AARs), which are widespread in proteomes, have often been viewed simply as spacers between protein domains, or even as "junk" sequences with no obvious function but with a potential to cause harm upon expansion as in genetic diseases associated with polyglutamine or polyalanine expansions, including Huntington disease and cleidocranial dysplasia. A growing body of evidence indicates however that at least some AARs can form organized, functional protein structures, and can regulate protein function. In particular, certain AARs can mediate protein-protein interactions, either through homotypic AAR-AAR contacts or through heterotypic contacts with other protein domains. It is still unclear however, whether AARs may have a generalized, proteome-wide role in shaping protein-protein interaction networks. Therefore, we have undertaken here a bioinformatics screening of the human proteome and interactome in search of quantitative evidence of such a role. We first identified the sets of proteins that contain repeats of any one of the 20 amino acids, as well as control sets of proteins chosen at random in the proteome. We then analyzed the connectivity between the proteins of the AAR-containing protein sets and we compared it with that observed in the corresponding control networks. We find evidence for different degrees of connectivity in the different AAR-containing protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate, polyproline, and other AARs show significantly increased levels of connectivity, whereas networks containing polyleucine and other hydrophobic repeats show lower degrees of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid, and -lipid interaction domains are significantly enriched in specific AAR protein groups. These findings support the notion of a generalized, combinatorial role of AARs, together with conventional protein interaction domains, in shaping the interaction networks of the human proteome, and define proteome-wide knowledge that may guide the informed biological exploration of the role of AARs in protein interactions.
Collapse
Affiliation(s)
- Ilaria Pelassa
- Department of Neuroscience, University of Torino Torino, Italy
| | - Ferdinando Fiumara
- Department of Neuroscience, University of TorinoTorino, Italy; National Institute of Neuroscience (INN)Torino, Italy
| |
Collapse
|
22
|
Hädicke A, Blume A. Binding of Short Cationic Peptides (KX)4K to Negatively Charged DPPG Monolayers: Competition between Electrostatic and Hydrophobic Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12203-12214. [PMID: 26479457 DOI: 10.1021/acs.langmuir.5b02882] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The influence of the peptide sequence on the binding of short cationic peptides composed of five lysines alternating with uncharged amino acids within the series (KX)4K to negatively charged monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) was investigated by adsorption experiments in combination with epifluorescence microscopy. To evaluate the impact of electrostatic and hydrophobic contributions, different uncharged amino acids X with increasing hydrophobicity, where X = G (glycine), A (alanine), Abu (α-aminobutyric acid), V (valine), or L (leucine) were introduced into the peptide sequence to tune the peptide hydrophobicity. The adsorption kinetics of these peptides to a DPPG monolayer always showed two superimposed processes, one leading to an increase and another to a decrease of the surface pressure Π. Thus, the plots of the change in Π after peptide binding vs initial surface pressure of the monolayer showed an unusual behavior with maxima and negative changes in Π at high initial Π values. Epifluorescence microscopy confirmed that electrostatic binding of the peptides with a concomitant decrease in Π leads to a condensation of the lipid monolayer and the formation of liquid-condensed (LC) domains even at Π values where the monolayer is supposedly in the liquid-expanded (LE) state. An increase in hydrophobicity of the amino acid X was found to counteract the condensation and an increase in Π upon peptide binding is observed at low Π values, also concomitant with the formation of LC-domains. Compression of monolayers after peptide adsorption at low surface pressure for 4 h leads to a change of the isotherms compared to pure DPPG isotherms. The phase transition of DPPG from LE to LC state is smeared out or is shifted to higher surface pressure. Considerable changes in the shapes of LC-domains were observed after peptide binding. Growth of the LC-domains was hindered in most cases and regular domain patterns were formed. Binding of (KL)4K leads to a decrease in line tension and the formation of extended filaments protruding from initially circular domains.
Collapse
Affiliation(s)
- André Hädicke
- Institute of Chemistry, MLU Halle-Wittenberg , von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| | - Alfred Blume
- Institute of Chemistry, MLU Halle-Wittenberg , von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| |
Collapse
|
23
|
Hegab HM, ElMekawy A, Barclay TG, Michelmore A, Zou L, Saint CP, Ginic-Markovic M. Fine-Tuning the Surface of Forward Osmosis Membranes via Grafting Graphene Oxide: Performance Patterns and Biofouling Propensity. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18004-18016. [PMID: 26214126 DOI: 10.1021/acsami.5b04818] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Graphene oxide (GO) nanosheets were attached to the polyamide selective layer of thin film composite (TFC) forward osmosis (FO) membranes through a poly L-Lysine (PLL) intermediary using either layer-by-layer or hybrid (H) grafting strategies. Fourier transform infrared spectroscopy, zeta potential, and thermogravimetric analysis confirmed the successful attachment of GO/PLL, the surface modification enhancing both the hydrophilicity and smoothness of the membrane's surface demonstrated by water contact angle, atomic force microscopy, and transmission electron microscopy. The biofouling resistance of the FO membranes determined using an adenosine triphosphate bioluminescence test showed a 99% reduction in surviving bacteria for GO/PLL-H modified membranes compared to pristine membrane. This antibiofouling property of the GO/PLL-H modified membrane was reflected in reduced flux decline compared to all other samples when filtering brackish water under biofouling conditions. Further, the high density and tightly bound GO nanosheets using the hybrid modification reduced the reverse solute flux compared to the pristine, which reflects improved membrane selectivity. These results illustrate that the GO/PLL-H modification is a valuable addition to improve the performance of FO TFC membranes.
Collapse
Affiliation(s)
- Hanaa M Hegab
- †Centre for Water Management and Reuse, University of South Australia, Adelaide SA 5095, Australia
- ‡Institute of Advanced Technology and New Materials, City of Scientific Research and Technological Applications, Borg Elarab, Alexandria, Egypt
| | - Ahmed ElMekawy
- §Genetic Engineering and Biotechnology Research Institute, University of Sadat City (USC), Sadat City, Egypt
- ∥School of Chemical Engineering, University of Adelaide, Adelaide SA 5095, Australia
| | - Thomas G Barclay
- ⊥Mawson Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - Andrew Michelmore
- ⊥Mawson Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - Linda Zou
- †Centre for Water Management and Reuse, University of South Australia, Adelaide SA 5095, Australia
- #Department of Chemical and Environmental Engineering, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Christopher P Saint
- †Centre for Water Management and Reuse, University of South Australia, Adelaide SA 5095, Australia
| | | |
Collapse
|
24
|
Ivashkov OV, Sybachin AV, Efimova AA, Pergushov DV, Orlov VN, Schmalz H, Yaroslavov AA. The Influence of the Chain Length of Polycations on their Complexation with Anionic Liposomes. Chemphyschem 2015; 16:2849-2853. [DOI: 10.1002/cphc.201500474] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Indexed: 11/07/2022]
|
25
|
Delivery of nucleic acids and nanomaterials by cell-penetrating peptides: opportunities and challenges. BIOMED RESEARCH INTERNATIONAL 2015; 2015:834079. [PMID: 25883975 PMCID: PMC4391616 DOI: 10.1155/2015/834079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 12/20/2022]
Abstract
Many viral and nonviral systems have been developed to aid delivery of biologically active molecules into cells. Among these, cell-penetrating peptides (CPPs) have received increasing attention in the past two decades for biomedical applications. In this review, we focus on opportunities and challenges associated with CPP delivery of nucleic acids and nanomaterials. We first describe the nature of versatile CPPs and their interactions with various types of cargoes. We then discuss in vivo and in vitro delivery of nucleic acids and nanomaterials by CPPs. Studies on the mechanisms of cellular entry and limitations in the methods used are detailed.
Collapse
|
26
|
Marukovich NI, Nesterenko AM, Ermakov YA. Structural factors of lysine and polylysine interaction with lipid membranes. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2015. [DOI: 10.1134/s1990747814060038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Novotná P, Goncharova I, Urbanová M. Mutual structural effect of bilirubin and model membranes by vibrational circular dichroism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:831-41. [DOI: 10.1016/j.bbamem.2013.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 12/07/2013] [Accepted: 12/09/2013] [Indexed: 12/20/2022]
|
28
|
Miyazaki K, Morimoto Y, Nishiyama N, Satoh H, Tanaka M, Shinomiya N, Ito K. Preconditioning methods influence tumor property in an orthotopic bladder urothelial carcinoma rat model. Mol Clin Oncol 2013; 2:65-70. [PMID: 24649309 DOI: 10.3892/mco.2013.214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/11/2013] [Indexed: 11/06/2022] Open
Abstract
Urothelial carcinoma (UC) is an extremely common type of cancer that occurs in the bladder. It has a particularly high rate of recurrence. Therefore, preclinical studies using animal models are essential to determine effective forms of treatment. In the present study, in order to establish an orthotopic bladder UC animal model with clinical relevance, the effects of preconditioning methods on properties of the developed tumor were evaluated. The bladder cavity was pretreated with phosphate-buffered saline (PBS), acid-base, trypsin (TRY) or poly (L-lysine) (PLL) and then rat UC cells (AY-27) (4×106 cells) were inoculated. The results demonstrated that, two weeks later, the tumorigenic rate (88%) and tumor count (2.3 per rat) were not significantly different among the preconditioning methods, whereas tumor volume and invasion depth into bladder tissue were significantly different. Average tumor volumes were >50 mm3 in the PBS and acid-base-treated groups and <10 mm3 in the TRY- and PLL-treated groups. The percentage of invasive tumors (T2 or more advanced stage) was ∼75% of total tumors in the PBS- and acid-base-treated groups, whereas the percentages were reduced in the TRY- and PLL-treated groups (58 and 32%, respectively). Non-invasive tumors (Ta or T1) accounted for 54% of tumors in the PLL-treated group, which was 2-5-fold higher than the percentages in the remaining groups. Properties of the developed tumor in the rat orthotopic UC model were different depending on preconditioning methods. Therefore, different animal models suitable for a discrete preclinical examination may be established by using the appropriate preconditioning condition.
Collapse
Affiliation(s)
- Kozo Miyazaki
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033; ; Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama 359-8513
| | - Yuji Morimoto
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama 359-8513
| | - Nobuhiro Nishiyama
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033
| | - Hiroyuki Satoh
- Department of Urology, Tokyo Metropolitan Children's Medical Center, Tokyo 183-8561
| | - Masamitsu Tanaka
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama 359-8513
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama 359-8513
| | - Keiichi Ito
- Department of Urology, National Defense Medical College, Saitama 359-8513, Japan
| |
Collapse
|
29
|
Guzmán F, Marshall S, Ojeda C, Albericio F, Carvajal-Rondanelli P. Inhibitory effect of short cationic homopeptides against gram-positive bacteria. J Pept Sci 2013; 19:792-800. [PMID: 24243601 DOI: 10.1002/psc.2578] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/25/2013] [Accepted: 10/01/2013] [Indexed: 01/26/2023]
Abstract
In the selection or design of antimicrobial peptides, the key role played by cationic amino acids and chain length on the inhibitory potency and specificity is not clear. A fundamental study was conducted using chemically synthesized homopeptides of L-Lys and L-Arg ranging from 7 to 14 residues. Their effect on growth inhibition was evaluated over a wide range of Gram-positive bacteria at different levels of concentration. Interestingly, at lower concentrations (10 μM), Lys homopeptides with odd number of residues, especially with 11 residues, showed a broader inhibitory activity than those with even number of residues. At higher peptide concentrations (>20 μM), the inhibitory activity of Lys homopeptides was directly related to the number of residues in the chain. In contrast, Arg homopeptides, at lower concentrations, did not exhibit a defined pattern of bacterial inhibition related to the number of residues; however, at higher concentrations (>20 μM), the inhibitory effects were more pronounced. Lys homopeptides at concentrations up to 300 μM showed a remarkably lower toxicity against CHSE-214 cells. Arg homopeptides exhibited negligible cytotoxicity up to chain length of 11 residues at concentrations lower than 100 μM, but an abrupt increase in toxicity resulted when the peptide chain length reached 12 amino acid residues and higher concentrations. All synthesized homopeptides displayed characteristic polyproline II helix conformation in both buffer and liposomes, as shown by CD spectroscopy. This result suggests that short Lys homopeptides with an odd number of residues (9 and 11) have a broad spectrum of activity against Gram-positive bacterial cells compared with Arg homopeptides, which in turn showed a considerably higher selectivity toward those cells. By investigating the differences between Lys and Arg homopeptides, this study contributes to the understanding of their mechanism of growth inhibition and selectivity. Thus, it provides further guidelines for a rational design of short antimicrobial peptides.
Collapse
Affiliation(s)
- Fanny Guzmán
- Núcleo de Biotecnología de Curauma, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Valparaíso, Chile and Fraunhofer Chile Research Foundation, Santiago, Chile
| | | | | | | | | |
Collapse
|
30
|
Ivanova VP, Kovaleva ZV, Anokhina VV, Krivchenko AI. The effect of a collagen tripeptide fragment (GER) on fibroblast adhesion and spreading depends on properties of an adhesive surface. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s1990519x13010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Kim K, Lee JW, Shin KS. Polyethylenimine-capped Ag nanoparticle film as a platform for detecting charged dye molecules by surface-enhanced Raman scattering and metal-enhanced fluorescence. ACS APPLIED MATERIALS & INTERFACES 2012; 4:5498-5504. [PMID: 23043369 DOI: 10.1021/am3014168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Many drugs are charged molecules and are weak bases or acids having counterions. Their binding to biological surfaces is generally difficult to assess by vibrational spectroscopy. In this work, we demonstrated the potential of surface-enhanced Raman scattering (SERS) conducted using a polyethylenimine (PEI)-capped Ag nanoparticle film for the quantification of an electrostatic adsorption process of charged drug molecules, by using charged dye molecules such as sulforhodamine B (SRB) and rhodamine-123 (R123) as model drugs. It was possible to detect small-sized anions such as SCN(-) at 1 × 10(-9) M by SERS because of the cationic property of PEI. We were subsequently able to detect a prototype anionic dye molecule, SRB, by SERS at a subnanomolar concentration. On the other hand, it was difficult to detect cationic dyes such as R123 because of the electrostatically repulsive interaction with PEI. Nonetheless, we found that even R123 could be detected at subnanomolar concentrations by SERS by depositing an anionic polyelectrolyte such as poly(sodium 4-styrenesulfonate) (PSS) and poly(acrylic acid) (PAA) onto the PEI-capped Ag nanoparticles. Another noteworthy point is that a subnanomolar detection limit can also be achieved by carefully monitoring the fluorescence background in the measured SERS spectra. This was possible because charged dyes were not in contact with Ag but formed ion pairs with either PEI or PSS (PAA), allowing metal-enhanced fluorescence (MEF). The PEI-capped Ag nanoparticle film can thus serve as a useful indicator to detect charged drug molecules by SERS and MEF.
Collapse
Affiliation(s)
- Kwan Kim
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea.
| | | | | |
Collapse
|
32
|
García-Uriostegui L, Burillo G, Concheiro A, Alvarez-Lorenzo C. Immobilization of liposomes on temperature-responsive polymer networks cross-linked with poly-L-lysine and grafted onto polypropylene. Des Monomers Polym 2012. [DOI: 10.1080/15685551.2012.725215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Lorena García-Uriostegui
- a Instituto de Ciencias Nucleares, UNAM, Ciudad universitaria , Circuito Exterior, DF , 04510 , México
| | - Guillermina Burillo
- a Instituto de Ciencias Nucleares, UNAM, Ciudad universitaria , Circuito Exterior, DF , 04510 , México
| | - Angel Concheiro
- b Departamento de Farmacia y Tecnología Farmacéutica , Universidad de Santiago Compostela , 15782- , Santiago de Compostela , Spain
| | - Carmen Alvarez-Lorenzo
- b Departamento de Farmacia y Tecnología Farmacéutica , Universidad de Santiago Compostela , 15782- , Santiago de Compostela , Spain
| |
Collapse
|
33
|
Takechi Y, Tanaka H, Kitayama H, Yoshii H, Tanaka M, Saito H. Comparative study on the interaction of cell-penetrating polycationic polymers with lipid membranes. Chem Phys Lipids 2011; 165:51-8. [PMID: 22108318 DOI: 10.1016/j.chemphyslip.2011.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 01/25/2023]
Abstract
Cell-penetrating peptides are arginine- and lysine-rich cationic peptides that can readily enter cells not only by themselves but also carrying other macromolecular cargos. In fact, we have reported that polycationic polymer such as poly-l-lysine (PLL) and poly-l-arginine (PLA) translocate through negatively charged phospholipid liposome membranes. In this work, we made a comparative study of the interaction of PLL or PLA with lipid membranes consisting of negatively charged phospholipids to understand the role of basic amino acid residue (i.e. arginine and lysine) in the membrane-penetrating activity of polypeptides. PLA and PLL translocated into giant unilamellar vesicle composed of soybean phospholipids. ζ-potential and turbidity measurements demonstrated the electrostatic binding of PLL and PLA to large unilamellar vesicle (LUV). Fluorescence studies using membrane probes revealed that the binding of PLA and PLL to LUV affects the hydration and packing of the membrane interface region, in which the membrane insertion of PLA appeared to be greater than PLL. Differential scanning calorimetry showed that the enthalpy of the gel to liquid-crystalline phase transition for dipalmitoyl phosphatidylglycerol vesicle was greatly reduced by binding of PLL and PLA, in which the reduction is much larger in PLA than in PLL. Circular dichroism measurements in 2,2,2-trifluoroethanol/water mixture or in the presence of LUV indicated that the propensity of PLA to form α-helical structure is greater than PLL. Consistently, attenuated total reflection-Fourier transform infrared spectroscopy revealed that there is greater α-helical structure in PLA bound to LUV compared to PLL, which has much less ordered structure. Furthermore, isothermal titration calorimetry measurements demonstrated that the contribution of enthalpy to the energetics of binding to LUV is two-fold larger in PLA than in PLL. These results suggest that the stronger interaction of arginine residue with negatively charged phospholipid membranes compared to lysine residue appears to facilitate the conformational change in cationic polypeptide and its insertion into lipid membrane interior.
Collapse
Affiliation(s)
- Yuki Takechi
- Institute of Health Biosciences, The University of Tokushima Graduate School of Pharmaceutical Sciences, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Zhou Z, Zheng A, Zhong J. Interactions of biocidal guanidine hydrochloride polymer analogs with model membranes: a comparative biophysical study. Acta Biochim Biophys Sin (Shanghai) 2011; 43:729-37. [PMID: 21807631 DOI: 10.1093/abbs/gmr067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Four synthesized biocidal guanidine hydrochloride polymers with different alkyl chain length, including polyhexamethylene guanidine hydrochloride and its three new analogs, were used to investigate their interactions with phospholipids vesicles mimicking bacterial membrane. Characterization was conducted by using fluorescence dye leakage, isothermal titration calorimetry, and differential scanning calorimetry. The results showed that the gradually lengthened alkyl chain of the polymer increased the biocidal activity, accompanied with the increased dye leakage rate and the increased binding constant and energy change value of polymer-membrane interaction. The polymer-membrane interaction induced the change of pretransition and main phase transition (decreased temperature and increased width) of phospholipids vesicles, suggesting the conformational change in the phospholipids headgroups and disordering in the hydrophobic regions of lipid membranes. The above information revealed that the membrane disruption actions of guanidine hydrochloride polymers are the results of the polymer's strong binding to the phospholipids membrane and the subsequent perturbations of the polar headgroups and hydrophobic core region of the phospholipids membrane. The alkyl chain structure significantly affects the binding constant and energy change value of the polymer-membrane interactions and the perturbation extent of the phospholipids membrane, which lead to the different biocidal activity of the polymer analogs. This work provides important information about the membrane disruption action mechanism of biocidal guanidine hydrochloride polymers.
Collapse
Affiliation(s)
- Zhongxin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai
| | | | | |
Collapse
|
35
|
Takechi Y, Yoshii H, Tanaka M, Kawakami T, Aimoto S, Saito H. Physicochemical mechanism for the enhanced ability of lipid membrane penetration of polyarginine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7099-7107. [PMID: 21526829 DOI: 10.1021/la200917y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Arginine-rich, cell-penetrating peptides (e.g., Tat-peptide, penetratin, and polyarginine) are used to carry therapeutic molecules such as oligonucleotides, DNA, peptides, and proteins across cell membranes. Two types of processes are being considered to cross the cell membranes: one is an endocytic pathway, and another is an energy-independent, nonendocytic pathway. However, the latter is still not known in detail. Here, we studied the effects of the chain length of polyarginine on its interaction with an anionic phospholipid large unilamellar vesicle (LUV) or a giant vesicle using poly-l-arginine composed of 69 (PLA69), 293 (PLA293), or 554 (PLA554) arginine residues, together with octaarginine (R8). ζ-potential measurements confirmed that polyarginine binds to LUV via electrostatic interactions. Circular dichroism analysis demonstrated that the transition from the random coil to the α-helix structure upon binding to LUV occurred for PLA293 and PLA554, whereas no structural change was observed for PLA69 and R8. Fluorescence studies using membrane probes revealed that the binding of polyarginine to LUV affects the hydration and packing of the membrane interface region, in which the degree of membrane insertion is greater for the longer polyarginine. Isothermal titration calorimetry measurements demonstrated that although the binding affinity (i.e., the Gibbs free energy of binding) per arginine residue is similar among all polyarginines the contribution of enthalpy to the energetics of binding of polyarginine increases with increasing polymer chain length. In addition, confocal laser scanning microscopy showed that all polyarginines penetrate across giant vesicle membranes, and the order of the amount of membrane penetration is R8 ≈ PLA69 < PLA293 ≈ PLA554. These results suggest that the formation of α-helical structure upon lipid binding drives the insertion of polyarginine into the membrane interior, which appears to enhance the membrane penetration of polyarginine.
Collapse
Affiliation(s)
- Yuki Takechi
- Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770-8505, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Gupta A, Mandal D, Ahmadibeni Y, Parang K, Bothun G. Hydrophobicity drives the cellular uptake of short cationic peptide ligands. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2011; 40:727-736. [PMID: 21409455 DOI: 10.1007/s00249-011-0685-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/02/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
Short cationic linear peptide analogs (LPAs, prepared as Arg-C( n )-Arg-C( n )-Lys, where C( n ) represents an alkyl linkage with n = 4, 7 or 11) were synthesized and tested in human breast carcinoma BT-20 and CCRF-CEM leukemia cells for their application as targeting ligands. With constant LPA charge (+4), increasing the alkyl linkage increases the hydrophobic/hydrophilic balance and provides a systematic means of examining combined electrostatic and hydrophobic peptide-membrane interactions. Fluorescently conjugated LPA-C(11) (F-LPA-C(11)) demonstrated significant uptake, whereas there was negligible uptake of the shorter LPAs. By varying temperature (4°C and 37°C) and cell type, the results suggest that LPA-C(11) internalization is nonendocytic and nonspecific. The effect of LPA binding on the phase behavior, structure, and permeability of model membranes composed of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine (DPPC/DPPS, 85/15) was studied using differential scanning calorimetry (DSC), cryogenic transmission electron microscopy (cryo-TEM), and fluorescence leakage studies to gain insight into the LPA uptake mechanism. While all LPAs led to phase separation, LPA-C(11), possessing the longest alkyl linkage, was able to penetrate into the bilayer and caused holes to form, which led to membrane disintegration. This was confirmed by rapid and complete dye release by LPA-C(11). We propose that LPA-C(11) achieves uptake by anchoring to the membrane via hydrophobicity and forming transient membrane voids. LPAs may be advantageous as drug transporter ligands because they are small, water soluble, and easy to prepare.
Collapse
Affiliation(s)
- Anju Gupta
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | |
Collapse
|
37
|
Montenegro J, Fin A, Matile S. Comprehensive screening of octopus amphiphiles as DNA activators in lipid bilayers: implications on transport, sensing and cellular uptake. Org Biomol Chem 2011; 9:2641-7. [DOI: 10.1039/c0ob00948b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Falconer RJ, Collins BM. Survey of the year 2009: applications of isothermal titration calorimetry. J Mol Recognit 2010; 24:1-16. [DOI: 10.1002/jmr.1073] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Sikor M, Sabin J, Keyvanloo A, Schneider MF, Thewalt JL, Bailey AE, Frisken BJ. Interaction of a charged polymer with zwitterionic lipid vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:4095-4102. [PMID: 20163081 DOI: 10.1021/la902831n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The interaction between polyethylenimine (PEI) and phospholipid bilayers plays an important role in several biophysical applications such as DNA transfection of target cells. Despite considerable investigation into the nature of the interaction between PEI and phospholipid bilayers, the physical process remains poorly understood. In this paper, we study the impact of PEI on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) vesicles as a function of salt concentration using several techniques including dynamic (DLS) and static (SLS) light scattering, differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). At low salt concentration, vesicles aggregate, leading to the formation of stable clusters whose final size depends on the PEI concentration. At high salt concentration the system does not aggregate; DSC and NMR data reveal that the PEI penetrates into the bilayer, and SLS measurements are consistent with PEI crossing the bilayer. The transfectional ability of PEI is discussed in terms of these results.
Collapse
Affiliation(s)
- Martin Sikor
- Institut für Physik, Universität Augsburg, 86159 Augsburg, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Grouffaud S, Whisson SC, Birch PR, van West P. Towards an understanding on how RxLR-effector proteins are translocated from oomycetes into host cells. FUNGAL BIOL REV 2010. [DOI: 10.1016/j.fbr.2010.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|