1
|
Moustouka C, Makhatadze GI. Quantitative detection of amyloid fibrils using fluorescence resonance energy transfer between engineered yellow and cyan proteins. Protein Sci 2025; 34:e70094. [PMID: 40099825 PMCID: PMC11915345 DOI: 10.1002/pro.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025]
Abstract
Over 20 human diseases are caused by or associated with amyloid formation. Developing diagnostic tools to understand the process of amyloid fibril formation is essential for creating therapeutic agents to combat these widespread and growing health problems. Here, we capitalize on our recent striking discovery that green fluorescent protein (GFP), one of the most-used proteins in molecular and cell biology, has a high intrinsic binding affinity to various structural intermediates along the fibrillation pathway, independent of amyloid sequence. Using engineered GFP with the fluorescence properties of Aquamarine and mCitrine, we developed a fluorescence resonance energy transfer (FRET)-based sensor to quantitatively monitor amyloid fibrils. The proof-of-principle characterization was performed on a test system consisting of PAPf39 fibrils.
Collapse
Affiliation(s)
- Caitlyn Moustouka
- Department of Biological SciencesRensselaer Polytechnic InstituteTroyNew YorkUSA
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNew YorkUSA
| | - George I. Makhatadze
- Department of Biological SciencesRensselaer Polytechnic InstituteTroyNew YorkUSA
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNew YorkUSA
- Department on Chemistry and Chemical BiologyRensselaer Polytechnic InstituteTroyNew YorkUSA
| |
Collapse
|
2
|
Litus EA, Shevelyova MP, Vologzhannikova AA, Deryusheva EI, Machulin AV, Nemashkalova EL, Permyakova ME, Sokolov AS, Alikova VD, Uversky VN, Permyakov SE. Binding of Pro-Inflammatory Proteins S100A8 or S100A9 to Amyloid-β Peptide Suppresses Its Fibrillation. Biomolecules 2025; 15:431. [PMID: 40149967 PMCID: PMC11939996 DOI: 10.3390/biom15030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Human serum albumin (HSA) is a natural depot of amyloid-β peptide (Aβ), a key player in Alzheimer's disease (AD). HSA and pro-inflammatory Ca2+-binding proteins S100A8 and S100A9 are involved in Aβ metabolism and its deposition in the brain, serving as probable triggers and therapeutic targets in AD, but their interplay with regard to Aβ binding/fibrillation is unclear. To this end, here we explore the in vitro binding of Ca2+-bound S100A8 or S100A9 to monomeric Aβ and the influence of the S100 proteins on Aβ fibrillation. The equilibrium dissociation constants of the complexes of dimeric S100A8/S100A9 with Aβ40/42 estimated by biolayer interferometry are 1-5 µM. S100A8 and S100A9 interfere with HSA binding to Aβ. Thioflavin T assay and electron microscopy data show that micromolar S100A8/S100A9 inhibit Aβ40 fibrillation, and the inhibitory effect of S100A8 exceeds that for HSA. The competition for Aβ between HSA and S100A8/S100A9 may contribute to the Aβ-HSA imbalance in the pro-inflammatory conditions in AD.
Collapse
Affiliation(s)
- Ekaterina A. Litus
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (E.L.N.); (M.E.P.); (A.S.S.); (V.D.A.); (S.E.P.)
| | - Marina P. Shevelyova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (E.L.N.); (M.E.P.); (A.S.S.); (V.D.A.); (S.E.P.)
| | - Alisa A. Vologzhannikova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (E.L.N.); (M.E.P.); (A.S.S.); (V.D.A.); (S.E.P.)
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (E.L.N.); (M.E.P.); (A.S.S.); (V.D.A.); (S.E.P.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, pr. Nauki, 5, Pushchino, 142290 Moscow, Russia;
| | - Ekaterina L. Nemashkalova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (E.L.N.); (M.E.P.); (A.S.S.); (V.D.A.); (S.E.P.)
| | - Maria E. Permyakova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (E.L.N.); (M.E.P.); (A.S.S.); (V.D.A.); (S.E.P.)
| | - Andrey S. Sokolov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (E.L.N.); (M.E.P.); (A.S.S.); (V.D.A.); (S.E.P.)
| | - Valeria D. Alikova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (E.L.N.); (M.E.P.); (A.S.S.); (V.D.A.); (S.E.P.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (E.L.N.); (M.E.P.); (A.S.S.); (V.D.A.); (S.E.P.)
| |
Collapse
|
3
|
Sitovskaya D, Zabrodskaya Y, Parshakov P, Sokolova T, Kudlay D, Starshinova A, Samochernykh K. Expression of Cytoskeletal Proteins (GFAP, Vimentin), Proapoptotic Protein (Caspase-3) and Protective Protein (S100) in the Epileptic Focus in Adults and Children with Drug-Resistant Temporal Lobe Epilepsy Associated with Focal Cortical Dysplasia. Int J Mol Sci 2023; 24:14490. [PMID: 37833937 PMCID: PMC10572279 DOI: 10.3390/ijms241914490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 10/15/2023] Open
Abstract
The European Commission of the International League Against Epilepsy (ILAE) has identified glial mechanisms of seizures and epileptogenesis as top research priorities. The aim of our study was to conduct a comparative analysis of the expression levels of cytoskeletal proteins (glial fibrillar acidic protein (GFAP) and vimentin), protective protein S100, and proapoptotic caspase-3 protein in patients with drug-resistant epilepsy (DRE) associated with focal cortical dysplasia (FCD). We aimed to investigate how the expression levels of these proteins depend on age (both in children and adults), gender, and disease duration, using immunohistochemistry. Nonparametric statistical methods were employed for data analysis. In the epileptic focus area of the cortex and white matter in patients with FCD-associated temporal lobe DRE, a higher level of expression of these proteins was observed. Age and gender differences were found for vimentin and S100. In the early stages of disease development, there was a compensatory sequential increase in the expression of cytoskeletal and protective proteins. In patients with DRE, depending on the disease duration, patterns of development of neurodegeneration were noted, which is accompanied by apoptosis of gliocytes. These results provide insights into epilepsy mechanisms and may contribute to improving diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Darya Sitovskaya
- Polenov Neurosurgical Institute—Branch of Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (Y.Z.); (T.S.); (A.S.); (K.S.)
- Department of Pathology with a Course of Forensic Medicine Named after D.D. Lochov, St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Yulia Zabrodskaya
- Polenov Neurosurgical Institute—Branch of Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (Y.Z.); (T.S.); (A.S.); (K.S.)
- Department of Pathology, Mechnikov North-West State Medical University, 191015 St. Petersburg, Russia
| | - Petr Parshakov
- International Laboratory of Intangible-Driven Economy, National Research University Higher School of Economics, 614070 Perm, Russia;
| | - Tatyana Sokolova
- Polenov Neurosurgical Institute—Branch of Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (Y.Z.); (T.S.); (A.S.); (K.S.)
| | - Dmitry Kudlay
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- NRC Institute of Immunology FMBA of Russia, 115552 Moscow, Russia
| | - Anna Starshinova
- Polenov Neurosurgical Institute—Branch of Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (Y.Z.); (T.S.); (A.S.); (K.S.)
| | - Konstantin Samochernykh
- Polenov Neurosurgical Institute—Branch of Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (Y.Z.); (T.S.); (A.S.); (K.S.)
| |
Collapse
|
4
|
Kazakov AS, Deryusheva EI, Rastrygina VA, Sokolov AS, Permyakova ME, Litus EA, Uversky VN, Permyakov EA, Permyakov SE. Interaction of S100A6 Protein with the Four-Helical Cytokines. Biomolecules 2023; 13:1345. [PMID: 37759746 PMCID: PMC10526228 DOI: 10.3390/biom13091345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
S100 is a family of over 20 structurally homologous, but functionally diverse regulatory (calcium/zinc)-binding proteins of vertebrates. The involvement of S100 proteins in numerous vital (patho)physiological processes is mediated by their interaction with various (intra/extra)cellular protein partners, including cell surface receptors. Furthermore, recent studies have revealed the ability of specific S100 proteins to modulate cell signaling via direct interaction with cytokines. Previously, we revealed the binding of ca. 71% of the four-helical cytokines via the S100P protein, due to the presence in its molecule of a cytokine-binding site overlapping with the binding site for the S100P receptor. Here, we show that another S100 protein, S100A6 (that has a pairwise sequence identity with S100P of 35%), specifically binds numerous four-helical cytokines. We have studied the affinity of the recombinant forms of 35 human four-helical cytokines from all structural families of this fold to Ca2+-loaded recombinant human S100A6, using surface plasmon resonance spectroscopy. S100A6 recognizes 26 of the cytokines from all families of this fold, with equilibrium dissociation constants from 0.3 nM to 12 µM. Overall, S100A6 interacts with ca. 73% of the four-helical cytokines studied to date, with a selectivity equivalent to that for the S100P protein, with the differences limited to the binding of interleukin-2 and oncostatin M. The molecular docking study evidences the presence in the S100A6 molecule of a cytokine-binding site, analogous to that found in S100P. The findings argue the presence in some of the promiscuous members of the S100 family of a site specific to a wide range of four-helical cytokines. This unique feature of the S100 proteins potentially allows them to modulate the activity of the numerous four-helical cytokines in the disorders accompanied by an excessive release of the cytokines.
Collapse
Affiliation(s)
- Alexey S. Kazakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Evgenia I. Deryusheva
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Victoria A. Rastrygina
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Andrey S. Sokolov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Maria E. Permyakova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Ekaterina A. Litus
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Vladimir N. Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
- Department of Molecular, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Eugene A. Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Sergei E. Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| |
Collapse
|
5
|
Shihora A, Elias RD, Hammond JA, Ghirlando R, Deshmukh L. ALS Variants of Annexin A11's Proline-Rich Domain Impair Its S100A6-Mediated Fibril Dissolution. ACS Chem Neurosci 2023; 14:2583-2589. [PMID: 37433222 PMCID: PMC10401653 DOI: 10.1021/acschemneuro.3c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023] Open
Abstract
Mutations in the proline-rich domain (PRD) of annexin A11 are linked to amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, and generate abundant neuronal A11 inclusions by an unknown mechanism. Here, we demonstrate that recombinant A11-PRD and its ALS-associated variants form liquidlike condensates that transform into β-sheet-rich amyloid fibrils. Surprisingly, these fibrils dissolved in the presence of S100A6, an A11 binding partner overexpressed in ALS. The ALS variants of A11-PRD showed longer fibrillization half-times and slower dissolution, even though their binding affinities for S100A6 were not significantly affected. These findings indicate a slower fibril-to-monomer exchange for these ALS variants, resulting in a decreased level of S100A6-mediated fibril dissolution. These ALS-A11 variants are thus more likely to remain aggregated despite their slower fibrillization.
Collapse
Affiliation(s)
- Aman Shihora
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Ruben D. Elias
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - John A. Hammond
- Scripps
Research Biophysics and Biochemistry Core, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Rodolfo Ghirlando
- Laboratory
of Molecular Biology, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Lalit Deshmukh
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Liang H, Li J, Zhang K. Pathogenic role of S100 proteins in psoriasis. Front Immunol 2023; 14:1191645. [PMID: 37346040 PMCID: PMC10279876 DOI: 10.3389/fimmu.2023.1191645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease. The histopathological features of psoriasis include excessive proliferation of keratinocytes and infiltration of immune cells. The S100 proteins are a group of EF-hand Ca2+-binding proteins, including S100A2, -A7, -A8/A9, -A12, -A15, which expression levels are markedly upregulated in psoriatic skin. These proteins exert numerous functions such as serving as intracellular Ca2+ sensors, transduction of Ca2+ signaling, response to extracellular stimuli, energy metabolism, and regulating cell proliferation and apoptosis. Evidence shows a crucial role of S100 proteins in the development and progress of inflammatory diseases, including psoriasis. S100 proteins can possibly be used as potential therapeutic target and diagnostic biomarkers. This review focuses on the pathogenic role of S100 proteins in psoriasis.
Collapse
Affiliation(s)
- Huifang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| | - Junqin Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| |
Collapse
|
7
|
Specific S100 Proteins Bind Tumor Necrosis Factor and Inhibit Its Activity. Int J Mol Sci 2022; 23:ijms232415956. [PMID: 36555597 PMCID: PMC9783754 DOI: 10.3390/ijms232415956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor necrosis factor (TNF) inhibitors (anti-TNFs) represent a cornerstone of the treatment of various immune-mediated inflammatory diseases and are among the most commercially successful therapeutic agents. Knowledge of TNF binding partners is critical for identification of the factors able to affect clinical efficacy of the anti-TNFs. Here, we report that among eighteen representatives of the multifunctional S100 protein family, only S100A11, S100A12 and S100A13 interact with the soluble form of TNF (sTNF) in vitro. The lowest equilibrium dissociation constants (Kd) for the complexes with monomeric sTNF determined using surface plasmon resonance spectroscopy range from 2 nM to 28 nM. The apparent Kd values for the complexes of multimeric sTNF with S100A11/A12 estimated from fluorimetric titrations are 0.1-0.3 µM. S100A12/A13 suppress the cytotoxic activity of sTNF against Huh-7 cells, as evidenced by the MTT assay. Structural modeling indicates that the sTNF-S100 interactions may interfere with the sTNF recognition by the therapeutic anti-TNFs. Bioinformatics analysis reveals dysregulation of TNF and S100A11/A12/A13 in numerous disorders. Overall, we have shown a novel potential regulatory role of the extracellular forms of specific S100 proteins that may affect the efficacy of anti-TNF treatment in various diseases.
Collapse
|
8
|
Harman JL, Reardon PN, Costello SM, Warren GD, Phillips SR, Connor PJ, Marqusee S, Harms MJ. Evolution avoids a pathological stabilizing interaction in the immune protein S100A9. Proc Natl Acad Sci U S A 2022; 119:e2208029119. [PMID: 36194634 PMCID: PMC9565474 DOI: 10.1073/pnas.2208029119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/07/2022] [Indexed: 01/03/2023] Open
Abstract
Stability constrains evolution. While much is known about constraints on destabilizing mutations, less is known about the constraints on stabilizing mutations. We recently identified a mutation in the innate immune protein S100A9 that provides insight into such constraints. When introduced into human S100A9, M63F simultaneously increases the stability of the protein and disrupts its natural ability to activate Toll-like receptor 4. Using chemical denaturation, we found that M63F stabilizes a calcium-bound conformation of hS100A9. We then used NMR to solve the structure of the mutant protein, revealing that the mutation distorts the hydrophobic binding surface of hS100A9, explaining its deleterious effect on function. Hydrogen-deuterium exchange (HDX) experiments revealed stabilization of the region around M63F in the structure, notably Phe37. In the structure of the M63F mutant, the Phe37 and Phe63 sidechains are in contact, plausibly forming an edge-face π-stack. Mutating Phe37 to Leu abolished the stabilizing effect of M63F as probed by both chemical denaturation and HDX. It also restored the biological activity of S100A9 disrupted by M63F. These findings reveal that Phe63 creates a molecular staple with Phe37 that stabilizes a nonfunctional conformation of the protein, thus disrupting function. Using a bioinformatic analysis, we found that S100A9 proteins from different organisms rarely have Phe at both positions 37 and 63, suggesting that avoiding a pathological stabilizing interaction indeed constrains S100A9 evolution. This work highlights an important evolutionary constraint on stabilizing mutations, namely, that they must avoid inappropriately stabilizing nonfunctional protein conformations.
Collapse
Affiliation(s)
- Joseph L. Harman
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Patrick N. Reardon
- College of Science, NMR Facility, Oregon State University, Corvallis, OR 97331
| | - Shawn M. Costello
- Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA 94720
| | - Gus D. Warren
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Sophia R. Phillips
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Patrick J. Connor
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720
| | - Michael J. Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
9
|
Kazakov AS, Deryusheva EI, Permyakova ME, Sokolov AS, Rastrygina VA, Uversky VN, Permyakov EA, Permyakov SE. Calcium-Bound S100P Protein Is a Promiscuous Binding Partner of the Four-Helical Cytokines. Int J Mol Sci 2022; 23:ijms231912000. [PMID: 36233301 PMCID: PMC9569990 DOI: 10.3390/ijms231912000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
S100 proteins are multifunctional calcium-binding proteins of vertebrates that act intracellularly, extracellularly, or both, and are engaged in the progression of many socially significant diseases. Their extracellular action is typically mediated by the recognition of specific receptor proteins. Recent studies indicate the ability of some S100 proteins to affect cytokine signaling through direct interaction with cytokines. S100P was shown to be the S100 protein most actively involved in interactions with some four-helical cytokines. To assess the selectivity of the S100P protein binding to four-helical cytokines, we have probed the interaction of Ca2+-bound recombinant human S100P with a panel of 32 four-helical human cytokines covering all structural families of this fold, using surface plasmon resonance spectroscopy. A total of 22 cytokines from all families of four-helical cytokines are S100P binders with the equilibrium dissociation constants, Kd, ranging from 1 nM to 3 µM (below the Kd value for the S100P complex with the V domain of its conventional receptor, receptor for advanced glycation end products, RAGE). Molecular docking and mutagenesis studies revealed the presence in the S100P molecule of a cytokine-binding site, which overlaps with the RAGE-binding site. Since S100 binding to four-helical cytokines inhibits their signaling in some cases, the revealed ability of the S100P protein to interact with ca. 71% of the four-helical cytokines indicates that S100P may serve as a poorly selective inhibitor of their action.
Collapse
Affiliation(s)
- Alexey S. Kazakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Maria E. Permyakova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Andrey S. Sokolov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Victoria A. Rastrygina
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Vladimir N. Uversky
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7740 (S.E.P.); Fax: +7-(4967)-33-05-22 (S.E.P.)
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7740 (S.E.P.); Fax: +7-(4967)-33-05-22 (S.E.P.)
| |
Collapse
|
10
|
Moysa A, Steczkiewicz K, Niedzialek D, Hammerschmid D, Zhukova L, Sobott F, Dadlez M. A model of full-length RAGE in complex with S100B. Structure 2021; 29:989-1002.e6. [PMID: 33887170 DOI: 10.1016/j.str.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/03/2021] [Accepted: 04/02/2021] [Indexed: 01/10/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is an immunoglobulin-type multiligand transmembrane protein expressed in numerous cell types, including the central nervous system cells. RAGE interaction with S100B, released during brain tissue damage, leads to RAGE upregulation and initialization of a spiral proinflammatory associated with different neural disorders. Here, we present the structural characterization of the hetero-oligomeric complex of the full-length RAGE with S100B, obtained by a combination of mass spectrometry-based methods and molecular modeling. We predict that RAGE functions as a tightly packed tetramer exposing a positively charged surface formed by V domains for S100B binding. Based on HDX results we demonstrate an allosteric coupling of the distal extracellular V domains and the transmembrane region, indicating a possible mechanism of signal transmission by RAGE across the membrane. Our model provides an insight into RAGE-ligand interactions, providing a basis for the rational design of the therapeutic modifiers of its activity.
Collapse
Affiliation(s)
- Alexander Moysa
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland.
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland.
| | - Dorota Niedzialek
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland
| | - Dietmar Hammerschmid
- Department of Chemistry, King's College London, 7 Trinity Street, SE1 1DB London, UK; Department of Chemistry, Biomolecular & Analytical Mass Spectrometry Group, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Lilia Zhukova
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Woodhouse Lane, LS2 9JT Leeds, UK; Department of Chemistry, Biomolecular & Analytical Mass Spectrometry Group, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Michal Dadlez
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland
| |
Collapse
|
11
|
Harman JL, Loes AN, Warren GD, Heaphy MC, Lampi KJ, Harms MJ. Evolution of multifunctionality through a pleiotropic substitution in the innate immune protein S100A9. eLife 2020; 9:e54100. [PMID: 32255429 PMCID: PMC7213983 DOI: 10.7554/elife.54100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Multifunctional proteins are evolutionary puzzles: how do proteins evolve to satisfy multiple functional constraints? S100A9 is one such multifunctional protein. It potently amplifies inflammation via Toll-like receptor four and is antimicrobial as part of a heterocomplex with S100A8. These two functions are seemingly regulated by proteolysis: S100A9 is readily degraded, while S100A8/S100A9 is resistant. We take an evolutionary biochemical approach to show that S100A9 evolved both functions and lost proteolytic resistance from a weakly proinflammatory, proteolytically resistant amniote ancestor. We identify a historical substitution that has pleiotropic effects on S100A9 proinflammatory activity and proteolytic resistance but has little effect on S100A8/S100A9 antimicrobial activity. We thus propose that mammals evolved S100A8/S100A9 antimicrobial and S100A9 proinflammatory activities concomitantly with a proteolytic 'timer' to selectively regulate S100A9. This highlights how the same mutation can have pleiotropic effects on one functional state of a protein but not another, thus facilitating the evolution of multifunctionality.
Collapse
Affiliation(s)
- Joseph L Harman
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Andrea N Loes
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Gus D Warren
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Maureen C Heaphy
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | | | - Michael J Harms
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| |
Collapse
|
12
|
Carvalho A, Lu J, Francis JD, Moore RE, Haley KP, Doster RS, Townsend SD, Johnson JG, Damo SM, Gaddy JA. S100A12 in Digestive Diseases and Health: A Scoping Review. Gastroenterol Res Pract 2020; 2020:2868373. [PMID: 32184815 PMCID: PMC7061133 DOI: 10.1155/2020/2868373] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/05/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Calgranulin proteins are an important class of molecules involved in innate immunity. These members of the S100 class of the EF-hand family of calcium-binding proteins have numerous cellular and antimicrobial functions. One protein in particular, S100A12 (also called EN-RAGE or calgranulin C), is highly abundant in neutrophils during acute inflammation and has been implicated in immune regulation. Structure-function analyses reveal that S100A12 has the capacity to bind calcium, zinc, and copper, processes that contribute to nutritional immunity against invading microbial pathogens. S100A12 is a ligand for the receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR4), and CD36, which promote cellular and immunological pathways to alter inflammation. We conducted a scoping review of the existing literature to define what is known about the association of S100A12 with digestive disease and health. Results suggest that S100A12 is implicated in gastroenteritis, necrotizing enterocolitis, gastritis, gastric cancer, Crohn's disease, irritable bowel syndrome, inflammatory bowel disease, and digestive tract cancers. Together, these results reveal S100A12 is an important molecule broadly associated with the pathogenesis of digestive diseases.
Collapse
Affiliation(s)
- Alexandre Carvalho
- Internal Medicine Program, St. Joseph Mercy Hospital, Ann Arbor, Michigan, USA
| | - Jacky Lu
- Department of Pathology, Microbiology, And Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jamisha D. Francis
- Department of Pathology, Microbiology, And Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Rebecca E. Moore
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Kathryn P. Haley
- Department of Biomedical Sciences, Grand Valley State University, Allendale, Michigan, USA
| | - Ryan S. Doster
- Department of Pathology, Microbiology, And Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremiah G. Johnson
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Steven M. Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee, USA
- Departments of Biochemistry and Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jennifer A. Gaddy
- Department of Pathology, Microbiology, And Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Simon MA, Ecsédi P, Kovács GM, Póti ÁL, Reményi A, Kardos J, Gógl G, Nyitray L. High-throughput competitive fluorescence polarization assay reveals functional redundancy in the S100 protein family. FEBS J 2020; 287:2834-2846. [PMID: 31837246 DOI: 10.1111/febs.15175] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/02/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022]
Abstract
The calcium-binding, vertebrate-specific S100 protein family consists of 20 paralogs in humans (referred as the S100ome), with several clinically important members. To explore their protein-protein interactions (PPIs) quantitatively, we have chosen an unbiased, high-throughput, competitive fluorescence polarization (FP) assay that revealed a partial functional redundancy when the complete S100ome (n = 20) was tested against numerous model partners (n = 13). Based on their specificity, the S100ome can be grouped into two distinct classes: promiscuous and orphan. In the first group, members bound to several ligands (> 4-5) with comparable high affinity, while in the second one, the paralogs bound only one partner weakly, or no ligand was identified. Our results demonstrate that FP assays are highly suitable for quantitative interaction profiling of selected protein families. Moreover, we provide evidence that PPI-based phenotypic characterization can complement or even exceed the information obtained from the sequence-based phylogenetic analysis of the S100ome, an evolutionary young protein family.
Collapse
Affiliation(s)
- Márton A Simon
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Péter Ecsédi
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám L Póti
- Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Reményi
- Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gergő Gógl
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Universite de Strasbourg, Illkirch, France
| | - László Nyitray
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
14
|
Gheibi N, Ghorbani M, Shariatifar H, Farasat A. In silico assessment of human Calprotectin subunits (S100A8/A9) in presence of sodium and calcium ions using Molecular Dynamics simulation approach. PLoS One 2019; 14:e0224095. [PMID: 31622441 PMCID: PMC6797115 DOI: 10.1371/journal.pone.0224095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022] Open
Abstract
Calprotectin is a heterodimeric protein complex which consists of two subunits including S100A8 and S100A9. This protein has a major role in different inflammatory disease and various types of cancers. In current study we aimed to evaluate the structural and thermodynamic changes of the subunits and the complex in presence of sodium and calcium ions using molecular dynamics (MD) simulation. Therefore, the residue interaction network (RIN) was visualized in Cytoscape program. In next step, to measure the binding free energy, the potential of mean force (PMF) method was performed. Finally, the molecular mechanics Poisson-Boltzmann surface area (MMPBSA) method was applied as an effective tool to calculate the molecular model affinities. The MD simulation results of the subunits represented their structural changes in presence of Ca2+. Moreover, the RIN and Hydrogen bond analysis demonstrated that cluster interactions between Calprotectin subunits in presence of Ca2+ were greater in comparison with Na+. Our findings indicated that the binding free energy of the subunits in presence of Ca2+ was significantly greater than Na+. The results revealed that Ca2+ has the ability to induce structural changes in subunits in comparison with Na+ which lead to create stronger interactions between. Hence, studying the physical characteristics of the human proteins could be considered as a powerful tool in theranostics and drug design purposes.
Collapse
Affiliation(s)
- Nematollah Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Ghorbani
- Department of Nanobiotechnology/ Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Hanifeh Shariatifar
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
15
|
Permyakov SE, Denesyuk AI, Denessiouk KA, Permyakova ME, Kazakov AS, Ismailov RG, Rastrygina VA, Sokolov AS, Permyakov EA. Monomeric state of S100P protein: Experimental and molecular dynamics study. Cell Calcium 2019; 80:152-159. [PMID: 31103949 DOI: 10.1016/j.ceca.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/13/2019] [Accepted: 04/27/2019] [Indexed: 02/05/2023]
Abstract
S100 proteins constitute a large subfamily of the EF-hand superfamily of calcium binding proteins. They possess one classical EF-hand Ca2+-binding domain and an atypical EF-hand domain. Most of the S100 proteins form stable symmetric homodimers. An analysis of literature data on S100 proteins showed that their physiological concentrations could be much lower than dissociation constants of their dimeric forms. It means that just monomeric forms of these proteins are important for their functioning. In the present work, thermal denaturation of apo-S100P protein monitored by intrinsic tyrosine fluorescence has been studied at various protein concentrations within the region from 0.04-10 μM. A transition from the dimeric to monomeric form results in a decrease in protein thermal stability shifting the mid-transition temperature from 85 to 75 °C. Monomeric S100P immobilized on the surface of a sensor chip of a surface plasmon resonance instrument forms calcium dependent 1 to 1 complexes with human interleukin-11 (equilibrium dissociation constant 1.2 nM). In contrast, immobilized interleukin-11 binds two molecules of dimeric S100P with dissociation constants of 32 nM and 288 nM. Since effective dissociation constant of dimeric S100P protein is very low (0.5 μM as evaluated from our data) the sensitivity of the existing physical methods does not allow carrying out a detailed study of S100P monomer properties. For this reason, we have used molecular dynamics methods to evaluate structural changes in S100P upon its transition from the dimeric to monomeric state. 80-ns molecular dynamics simulations of kinetics of formation of S100P, S100B and S100A11 monomers from the corresponding dimers have been carried out. It was found that during the transition from the homo-dimer to monomer form, the three S100 monomer structures undergo the following changes: (1) the helices in the four-helix bundles within each monomer rotate in order to shield the exposed non-polar residues; (2) almost all lost contacts at the dimer interface are substituted with equivalent and newly formed interactions inside each monomer, and new stabilizing interactions are formed; and (3) all monomers recreate functional hydrophobic cores. The results of the present study show that both dimeric and monomeric forms of S100 proteins can be functional.
Collapse
Affiliation(s)
- Sergei E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Pushchino, Moscow region 142290, Russia.
| | - Alexander I Denesyuk
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Pushchino, Moscow region 142290, Russia; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Konstantin A Denessiouk
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland; Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, Turku 20520, Finland
| | - Maria E Permyakova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Pushchino, Moscow region 142290, Russia
| | - Alixey S Kazakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Pushchino, Moscow region 142290, Russia
| | - Ramis G Ismailov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Pushchino, Moscow region 142290, Russia
| | - Victoria A Rastrygina
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Pushchino, Moscow region 142290, Russia
| | - Andrei S Sokolov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Pushchino, Moscow region 142290, Russia
| | - Eugene A Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Pushchino, Moscow region 142290, Russia.
| |
Collapse
|
16
|
Spratt DE, Barber KR, Marlatt NM, Ngo V, Macklin JA, Xiao Y, Konermann L, Duennwald ML, Shaw GS. A subset of calcium-binding S100 proteins show preferential heterodimerization. FEBS J 2019; 286:1859-1876. [PMID: 30719832 DOI: 10.1111/febs.14775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/19/2018] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
The assembly of proteins into dimers and oligomers is a necessary step for the proper function of transcription factors, muscle proteins, and proteases. In uncontrolled states, oligomerization can also contribute to illnesses such as Alzheimer's disease. The S100 protein family is a group of dimeric proteins that have important roles in enzyme regulation, cell membrane repair, and cell growth. Most S100 proteins have been examined in their homodimeric state, yet some of these important proteins are found in similar tissues implying that heterodimeric molecules can also be formed from the combination of two different S100 members. In this work, we have established co-expression methods in order to identify and quantify the distribution of homo- and heterodimers for four specific pairs of S100 proteins in their calcium-free states. The split GFP trap methodology was used in combination with other GFP variants to simultaneously quantify homo- and heterodimeric S100 proteins in vitro and in living cells. For the specific S100 proteins examined, NMR, mass spectrometry, and GFP trap experiments consistently show that S100A1:S100B, S100A1:S100P, and S100A11:S100B heterodimers are the predominant species formed compared to their corresponding homodimers. We expect the tools developed here will help establish the roles of S100 heterodimeric proteins and identify how heterodimerization might alter the specificity for S100 protein action in cells.
Collapse
Affiliation(s)
- Donald E Spratt
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Kathryn R Barber
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Nicole M Marlatt
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Vy Ngo
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Canada
| | - Jillian A Macklin
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Yiming Xiao
- Department of Chemistry, The University of Western Ontario, London, Canada
| | - Lars Konermann
- Department of Biochemistry, The University of Western Ontario, London, Canada.,Department of Chemistry, The University of Western Ontario, London, Canada
| | - Martin L Duennwald
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Canada
| | - Gary S Shaw
- Department of Biochemistry, The University of Western Ontario, London, Canada
| |
Collapse
|
17
|
S100A4 inhibits cell proliferation by interfering with the S100A1-RAGE V domain. PLoS One 2019; 14:e0212299. [PMID: 30779808 PMCID: PMC6380570 DOI: 10.1371/journal.pone.0212299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/30/2019] [Indexed: 01/28/2023] Open
Abstract
The Ca2+-dependent human S100A4 (Mts1) protein is part of the S100 family. Here, we studied the interactions of S100A4 with S100A1 using nuclear magnetic resonance (NMR) spectroscopy. We used the chemical shift perturbed residues from HSQC to model S100A4 and S100A1 complex with HADDOCK software. We observed that S100A1 and the RAGE V domain have an analogous binding area in S100A4. We discovered that S100A4 acts as an antagonist among the RAGE V domain and S100A1, which inhibits tumorigenesis and cell proliferation. We used a WST-1 assay to examine the bioactivity of S100A1 and S100A4. This study could possibly be beneficial for evaluating new proteins for the treatment of diseases.
Collapse
|
18
|
Cleary SP, Prell JS. Liberating Native Mass Spectrometry from Dependence on Volatile Salt Buffers by Use of Gábor Transform. Chemphyschem 2019; 20:519-523. [DOI: 10.1002/cphc.201900022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Sean P. Cleary
- Department of Chemistry and Biochemistry 1253 University of Oregon Eugene OR 97403-1253 USA
| | - James S. Prell
- Department of Chemistry and Biochemistry 1253 University of Oregon Eugene OR 97403-1253 USA
- Materials Science Institute 1252 University of Oregon Eugene OR 97403-1252 USA
| |
Collapse
|
19
|
Reviewing the Crystal Structure of S100Z and Other Members of the S100 Family: Implications in Calcium-Regulated Quaternary Structure. Methods Mol Biol 2019; 1929:487-499. [PMID: 30710292 DOI: 10.1007/978-1-4939-9030-6_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper takes the cue from the previously solved crystal structure of human apo-S100Z and compares it with that of the calcium-bound S100Z from zebrafish in order to stress, for this particular S100, the significant role of the presence of calcium in promoting supramolecular assemblies with likely biological meaning. This consideration is then expanded through a wider review on analogous situations concerning all other S100s for which there is crystallographic o biochemical evidence of how the presence of calcium promotes the formation of quaternary complexes.The paper also deals with some considerations on the quality of the crystals obtained for the solved members of this family and on the need for experimental phasing for solving some of the structures where the good general sequence homology among the members of the family would have suggested molecular replacement (MR) as the easiest way to solve them.These considerations, along with the PCA analysis carried out on all the known S100s, further demonstrate that calcium plays a fundamental role in triggering quaternary structure formation for several members of this family of proteins.
Collapse
|
20
|
Bresnick AR. S100 proteins as therapeutic targets. Biophys Rev 2018; 10:1617-1629. [PMID: 30382555 PMCID: PMC6297089 DOI: 10.1007/s12551-018-0471-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022] Open
Abstract
The human genome codes for 21 S100 protein family members, which exhibit cell- and tissue-specific expression patterns. Despite sharing a high degree of sequence and structural similarity, the S100 proteins bind a diverse range of protein targets and contribute to a broad array of intracellular and extracellular functions. Consequently, the S100 proteins regulate multiple cellular processes such as proliferation, migration and/or invasion, and differentiation, and play important roles in a variety of cancers, autoimmune diseases, and chronic inflammatory disorders. This review focuses on the development of S100 neutralizing antibodies and small molecule inhibitors and their potential therapeutic use in controlling disease progression and severity.
Collapse
Affiliation(s)
- Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
21
|
Ecsédi P, Billington N, Pálfy G, Gógl G, Kiss B, Bulyáki É, Bodor A, Sellers JR, Nyitray L. Multiple S100 protein isoforms and C-terminal phosphorylation contribute to the paralog-selective regulation of nonmuscle myosin 2 filaments. J Biol Chem 2018; 293:14850-14867. [PMID: 30087119 PMCID: PMC6153290 DOI: 10.1074/jbc.ra118.004277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/06/2018] [Indexed: 12/27/2022] Open
Abstract
Nonmuscle myosin 2 (NM2) has three paralogs in mammals, NM2A, NM2B, and NM2C, which have both unique and overlapping functions in cell migration, formation of cell-cell adhesions, and cell polarity. Their assembly into homo- and heterotypic bipolar filaments in living cells is primarily regulated by phosphorylation of the N-terminally bound regulatory light chain. Here, we present evidence that the equilibrium between these filaments and single NM2A and NM2B molecules can be controlled via S100 calcium-binding protein interactions and phosphorylation at the C-terminal end of the heavy chains. Furthermore, we show that in addition to S100A4, other members of the S100 family can also mediate disassembly of homotypic NM2A filaments. Importantly, these proteins can selectively remove NM2A molecules from heterotypic filaments. We also found that tail phosphorylation (at Ser-1956 and Ser-1975) of NM2B by casein kinase 2, as well as phosphomimetic substitutions at sites targeted by protein kinase C (PKC) and transient receptor potential cation channel subfamily M member 7 (TRPM7), down-regulates filament assembly in an additive fashion. Tail phosphorylation of NM2A had a comparatively minor effect on filament stability. S100 binding and tail phosphorylation therefore preferentially disassemble NM2A and NM2B, respectively. These two distinct mechanisms are likely to contribute to the temporal and spatial sorting of the two NM2 paralogs within heterotypic filaments. The existence of multiple NM2A-depolymerizing S100 paralogs offers the potential for diverse regulatory inputs modulating NM2A filament disassembly in cells and provides functional redundancy under both physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Neil Billington
- the Laboratory of Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Gyula Pálfy
- the Laboratory of Structural Chemistry and Biology, Institute of Chemistry, and
| | | | | | - Éva Bulyáki
- From the Department of Biochemistry
- the ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, 1117 Budapest, Hungary and
| | - Andrea Bodor
- the Laboratory of Structural Chemistry and Biology, Institute of Chemistry, and
| | - James R Sellers
- the Laboratory of Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
22
|
Tiburu EK, Issah I, Darko M, Armah-Sekum RE, Gyampo SOA, Amoateng NK, Kwofie SK, Awandare G. Investigating the Conformation of S100β Protein Under Physiological Parameters Using Computational Modeling: A Clue for Rational Drug Design. Open Biomed Eng J 2018; 12:36-50. [PMID: 30069254 PMCID: PMC6048829 DOI: 10.2174/1874120701812010036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/23/2018] [Accepted: 06/02/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Physiochemical factors such as temperature, pH and cofactors are well known parameters that confer conformational changes in a protein structure. With S100β protein being a metal binding brain-specific receptor for both extracellular and intracellular functions, a change in conformation due to the above-mentioned factors, can compromise their cellular functions and therefore result in several pathological conditions such as Alzheimer's disease, Ischemic stroke, as well as Myocardial Infarction. OBJECTIVE The studies conducted sought to elucidate the effect of these physiological factors on the conformational dynamics of S100β protein using computational modeling approaches. METHOD Temperature-dependent and protein-cofactor complexes molecular dynamics simulations were conducted by varying the temperature from 100 to 400K using GROMACS 5.0.3. Additionally, the conformational dynamics of the protein was studied by varying the pH at 5.0, 7.4 and 9.0 using Ambertools17. This was done by preparing the protein molecule, solvating and minimizing its energy level as well as heating it to the required temperature, equilibrating and simulating under desired conditions (NVT and NPT ensembles). RESULTS The results show that the protein misfolds as a function of increasing temperature with alpha helical content at 100K and 400K being 57.8% and 43.3%, respectively. However, the binding sites of the protein was not appreciably affected by temperature variations. The protein displayed high conformational instability in acidic medium (pH ~5.0). The binding sites of Ca2+, Mg2+ and Zn2+ were identified and each exhibited different groupings of the secondary structural elements (binding motifs). The secondary structure analysis revealed different conformational changes with the characteristic appearance of two beta hairpins in the presence of Zn2+and Mg2+. CONCLUSION High temperatures, different cofactors and acidic pH confer conformational changes to the S100β structure and these results may inform the design of novel drugs against the protein.
Collapse
Affiliation(s)
- Elvis K. Tiburu
- Department of Biomedical Engineering, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 25, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, P. O. Box LG 25, Legon, Ghana
| | - Ibrahim Issah
- Department of Biomedical Engineering, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 25, Legon, Ghana
| | - Mabel Darko
- Department of Biomedical Engineering, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 25, Legon, Ghana
| | - Robert E. Armah-Sekum
- Department of Biomedical Engineering, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 25, Legon, Ghana
| | - Stephen O. A. Gyampo
- Department of Biomedical Engineering, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 25, Legon, Ghana
| | - Nadia K. Amoateng
- Department of Biomedical Engineering, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 25, Legon, Ghana
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 25, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 25, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, P. O. Box LG 25, Legon, Ghana
| | - Gordon Awandare
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 25, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, P. O. Box LG 25, Legon, Ghana
| |
Collapse
|
23
|
EFhd2/Swiprosin-1 is a common genetic determinator for sensation-seeking/low anxiety and alcohol addiction. Mol Psychiatry 2018; 23:1303-1319. [PMID: 28397836 PMCID: PMC5984092 DOI: 10.1038/mp.2017.63] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 12/19/2022]
Abstract
In many societies, the majority of adults regularly consume alcohol. However, only a small proportion develops alcohol addiction. Individuals at risk often show a high sensation-seeking/low-anxiety behavioural phenotype. Here we asked which role EF hand domain containing 2 (EFhd2; Swiprosin-1) plays in the control of alcohol addiction-associated behaviours. EFhd2 knockout (KO) mice drink more alcohol than controls and spontaneously escalate their consumption. This coincided with a sensation-seeking and low-anxiety phenotype. A reversal of the behavioural phenotype with β-carboline, an anxiogenic inverse benzodiazepine receptor agonist, normalized alcohol preference in EFhd2 KO mice, demonstrating an EFhd2-driven relationship between personality traits and alcohol preference. These findings were confirmed in a human sample where we observed a positive association of the EFhd2 single-nucleotide polymorphism rs112146896 with lifetime drinking and a negative association with anxiety in healthy adolescents. The lack of EFhd2 reduced extracellular dopamine levels in the brain, but enhanced responses to alcohol. In confirmation, gene expression analysis revealed reduced tyrosine hydroxylase expression and the regulation of genes involved in cortex development, Eomes and Pax6, in EFhd2 KO cortices. These findings were corroborated in Xenopus tadpoles by EFhd2 knockdown. Magnetic resonance imaging (MRI) in mice showed that a lack of EFhd2 reduces cortical volume in adults. Moreover, human MRI confirmed the negative association between lifetime alcohol drinking and superior frontal gyrus volume. We propose that EFhd2 is a conserved resilience factor against alcohol consumption and its escalation, working through Pax6/Eomes. Reduced EFhd2 function induces high-risk personality traits of sensation-seeking/low anxiety associated with enhanced alcohol consumption, which may be related to cortex function.
Collapse
|
24
|
Khan MI, Su YK, Zou J, Yang LW, Chou RH, Yu C. S100B as an antagonist to block the interaction between S100A1 and the RAGE V domain. PLoS One 2018; 13:e0190545. [PMID: 29444082 PMCID: PMC5812564 DOI: 10.1371/journal.pone.0190545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/15/2017] [Indexed: 11/23/2022] Open
Abstract
Ca2+-binding human S100A1 protein is a type of S100 protein. S100A1 is a significant mediator during inflammation when Ca2+ binds to its EF-hand motifs. Receptors for advanced glycation end products (RAGE) correspond to 5 domains: the cytoplasmic, transmembrane, C2, C1, and V domains. The V domain of RAGE is one of the most important target proteins for S100A1. It binds to the hydrophobic surface and triggers signaling transduction cascades that induce cell growth, cell proliferation, and tumorigenesis. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the interaction between S100A1 and the RAGE V domain. We found that S100B could interact with S100A1 via NMR 1H-15N HSQC titrations. We used the HADDOCK program to generate the following two binary complexes based on the NMR titration results: S100A1-RAGE V domain and S100A1-S100B. After overlapping these two complex structures, we found that S100B plays a crucial role in blocking the interaction site between RAGE V domain and S100A1. A cell proliferation assay WST-1 also supported our results. This report could potentially be useful for new protein development for cancer treatment.
Collapse
Affiliation(s)
- Md. Imran Khan
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Yu-Kai Su
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Jinhao Zou
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Lee-Wei Yang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
- Physics Division, National Center for Theoretical Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Chin Yu
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| |
Collapse
|
25
|
Wheeler LC, Harms MJ. Human S100A5 binds Ca 2+ and Cu 2+ independently. BMC BIOPHYSICS 2017; 10:8. [PMID: 29201357 PMCID: PMC5700546 DOI: 10.1186/s13628-017-0040-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022]
Abstract
Background S100A5 is a calcium binding protein found in a small subset of amniote tissues. Little is known about the biological roles of S100A5, but it may be involved in inflammation and olfactory signaling. Previous work indicated that S100A5 displays antagonism between binding of Ca2+ and Cu2+ ions-one of the most commonly cited features of the protein. We set out to characterize the interplay between Ca2+ and Cu2+ binding by S100A5 using isothermal titration calorimetry (ITC), circular dichroism spectroscopy (CD), and analytical ultracentrifugation (AUC). Results We found that human S100A5 is capable of binding both Cu2+ and Ca2+ ions simultaneously. The wildtype protein was extremely aggregation-prone in the presence of Cu2+ and Ca2+. A Cys-free version of S100A5, however, was not prone to precipitation or oligomerization. Mutation of the cysteines does not disrupt the binding of either Ca2+ or Cu2+ to S100A5. In the Cys-free background, we measured Ca2+ and Cu2+ binding in the presence and absence of the other metal using ITC. Saturating concentrations of Ca2+ or Cu2+ do not disrupt the binding of one another. Ca2+ and Cu2+ binding induce structural changes in S100A5, which are measurable using CD spectroscopy. We show via sedimentation velocity AUC that the wildtype protein is prone to the formation of soluble oligomers, which are not present in Cys-free samples. Conclusions S100A5 can bind Ca2+ and Cu2+ ions simultaneously and independently. This observation is in direct contrast to previously-reported antagonism between binding of Cu2+ and Ca2+ ions. The previous result is likely due to metal-dependent aggregation. Little is known about the biology of S100A5, so an accurate understanding of the biochemistry is necessary to make informed biological hypotheses. Our observations suggest the possibility of independent biological functions for Cu2+ and Ca2+ binding by S100A5.
Collapse
Affiliation(s)
- Lucas C Wheeler
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, 97403 OR USA.,Insitute of Molecular Biology, University of Oregon, Eugene, 97403 OR USA
| | - Michael J Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, 97403 OR USA.,Insitute of Molecular Biology, University of Oregon, Eugene, 97403 OR USA
| |
Collapse
|
26
|
Jiang H, Hu H, Lin F, Lim YP, Hua Y, Tong X, Zhang S. S100P is Overexpressed in Squamous Cell and Adenosquamous Carcinoma Subtypes of Endometrial Cancer and Promotes Cancer Cell Proliferation and Invasion. Cancer Invest 2016; 34:477-488. [PMID: 27918216 DOI: 10.1080/07357907.2016.1212206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hongfei Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hang Hu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Lin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yoon Pin Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yunfen Hua
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Wheeler LC, Donor MT, Prell JS, Harms MJ. Multiple Evolutionary Origins of Ubiquitous Cu2+ and Zn2+ Binding in the S100 Protein Family. PLoS One 2016; 11:e0164740. [PMID: 27764152 PMCID: PMC5072561 DOI: 10.1371/journal.pone.0164740] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022] Open
Abstract
The S100 proteins are a large family of signaling proteins that play critical roles in biology and disease. Many S100 proteins bind Zn2+, Cu2+, and/or Mn2+ as part of their biological functions; however, the evolutionary origins of binding remain obscure. One key question is whether divalent transition metal binding is ancestral, or instead arose independently on multiple lineages. To tackle this question, we combined phylogenetics with biophysical characterization of modern S100 proteins. We demonstrate an earlier origin for established S100 subfamilies than previously believed, and reveal that transition metal binding is widely distributed across the tree. Using isothermal titration calorimetry, we found that Cu2+ and Zn2+ binding are common features of the family: the full breadth of human S100 paralogs-as well as two early-branching S100 proteins found in the tunicate Oikopleura dioica-bind these metals with μM affinity and stoichiometries ranging from 1:1 to 3:1 (metal:protein). While binding is consistent across the tree, structural responses to binding are quite variable. Further, mutational analysis and structural modeling revealed that transition metal binding occurs at different sites in different S100 proteins. This is consistent with multiple origins of transition metal binding over the evolution of this protein family. Our work reveals an evolutionary pattern in which the overall phenotype of binding is a constant feature of S100 proteins, even while the site and mechanism of binding is evolutionarily labile.
Collapse
Affiliation(s)
- Lucas C. Wheeler
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
- Institute for Molecular Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Micah T. Donor
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - James S. Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Michael J. Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
- Institute for Molecular Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
| |
Collapse
|
28
|
S100B raises the alert in subarachnoid hemorrhage. Rev Neurosci 2016; 27:745-759. [DOI: 10.1515/revneuro-2016-0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022]
Abstract
AbstractSubarachnoid hemorrhage (SAH) is a devastating disease with high mortality and mobility, the novel therapeutic strategies of which are essentially required. The calcium binding protein S100B has emerged as a brain injury biomarker that is implicated in pathogenic process of SAH. S100B is mainly expressed in astrocytes of the central nervous system and functions through initiating intracellular signaling or via interacting with cell surface receptor, such as the receptor of advanced glycation end products. The biological roles of S100B in neurons have been closely associated with its concentrations, resulting in either neuroprotection or neurotoxicity. The levels of S100B in the blood have been suggested as a biomarker to predict the progress or the prognosis of SAH. The role of S100B in the development of cerebral vasospasm and brain damage may result from the induction of oxidative stress and neuroinflammation after SAH. To get further insight into mechanisms underlying the role of S100B in SAH based on this review might help us to find novel therapeutic targets for SAH.
Collapse
|
29
|
Gheibi N, Asghari H, Chegini KG, Sahmani M, Moghadasi M. The role of calcium in the conformational changes of the recombinant S100A8/S100A91. Mol Biol 2016. [DOI: 10.1134/s0026893315060084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Umezaki Y, Ito M, Nakashima M, Mihara Y, Kurohama H, Yatsunami N, Yasuhi I. Low Expression of S100P Is Associated With Poor Prognosis in Patients With Clear Cell Adenocarcinoma of the Ovary. Int J Gynecol Cancer 2015; 25:1582-6. [PMID: 26397155 DOI: 10.1097/igc.0000000000000544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE The S100P protein stimulates cell proliferation and survival, thereby contributing to cancer progression. The purposes of this study were to evaluate S100P expression in ovarian clear cell adenocarcinoma and to determine whether S100P expression was correlated with the clinicopathological features or prognoses of patients with clear cell adenocarcinoma. METHODS We examined S100P expression in 30 ovarian clear cell adenocarcinoma specimens using immunohistochemistry analysis. The Kaplan-Meier method was used for analysis of overall survival, and comparisons were made based on the log-rank test. RESULTS Negative staining for nuclear S100P was associated with a poor prognosis as compared with that of positive staining for nuclear S100P in specimens from patients with clear cell adenocarcinoma. CONCLUSIONS These data suggested that S100P may serve as an independent prognostic factor and marker for acquired resistance to chemotherapeutic drugs in clear cell adenocarcinoma.
Collapse
Affiliation(s)
- Yasushi Umezaki
- *Department of Pathology, National Hospital Organization Nagasaki Medical Center; †Department of Tumour and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences; and ‡Department of Obstetrics and Gynecology, National Hospital Organization Nagasaki Medical Center, Nagasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Omotuyi O, Ueda H. Energetics and protomer communication in the dynamical structure of S100A13 in free and protein-bound states. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1091936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Oi Omotuyi
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Center for Drug Discovery and Therapeutic Innovation, Nagasaki University, Nagasaki, Japan
| | - H Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Center for Drug Discovery and Therapeutic Innovation, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
32
|
Abstract
Our understanding of mammalian olfactory coding has been impeded by the paucity of information about the odorant receptors (ORs) that respond to a given odorant ligand in awake, freely behaving animals. Identifying the ORs that respond in vivo to a given odorant ligand from among the ∼1100 ORs in mice is intrinsically challenging but critical for our understanding of olfactory coding at the periphery. Here, we report an in vivo assay that is based on a novel gene-targeted mouse strain, S100a5-tauGFP, in which a fluorescent reporter selectively marks olfactory sensory neurons that have been activated recently in vivo. Because each olfactory sensory neuron expresses a single OR gene, multiple ORs responding to a given odorant ligand can be identified simultaneously by capturing the population of activated olfactory sensory neurons and using expression profiling methods to screen the repertoire of mouse OR genes. We used this in vivo assay to re-identify known eugenol- and muscone-responsive mouse ORs. We identified additional ORs responsive to eugenol or muscone. Heterologous expression assays confirmed nine eugenol-responsive ORs (Olfr73, Olfr178, Olfr432, Olfr610, Olfr958, Olfr960, Olfr961, Olfr913, and Olfr1234) and four muscone-responsive ORs (Olfr74, Olfr235, Olfr816, and Olfr1440). We found that the human ortholog of Olfr235 and Olfr1440 responds to macrocyclic ketone and lactone musk odorants but not to polycyclic musk odorants or a macrocyclic diester musk odorant. This novel assay, called the Kentucky in vivo odorant ligand-receptor assay, should facilitate the in vivo identification of mouse ORs for a given odorant ligand of interest.
Collapse
|
33
|
Thomas CM, Fitzsimmons CM, Dunne DW, Timson DJ. Comparative biochemical analysis of three members of the Schistosoma mansoni TAL family: Differences in ion and drug binding properties. Biochimie 2015; 108:40-7. [PMID: 25447146 PMCID: PMC4300400 DOI: 10.1016/j.biochi.2014.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/21/2014] [Indexed: 01/03/2023]
Abstract
The tegumental allergen-like (TAL) proteins from Schistosoma mansoni are part of a family of calcium binding proteins found only in parasitic flatworms. These proteins have attracted interest as potential drug or vaccine targets, yet comparatively little is known about their biochemistry. Here, we compared the biochemical properties of three members of this family: SmTAL1 (Sm22.6), SmTAL2 (Sm21.7) and SmTAL3 (Sm20.8). Molecular modelling suggested that, despite similarities in domain organisation, there are differences in the three proteins' structures. SmTAL1 was predicted to have two functional calcium binding sites and SmTAL2 was predicted to have one. Despite the presence of two EF-hand-like structures in SmTAL3, neither was predicted to be functional. These predictions were confirmed by native gel electrophoresis, intrinsic fluorescence and differential scanning fluorimetry: both SmTAL1 and SmTAL2 are able to bind calcium ions reversibly, but SmTAL3 is not. SmTAL1 is also able to interact with manganese, strontium, iron(II) and nickel ions. SmTAL2 has a different ion binding profile interacting with cadmium, manganese, magnesium, strontium and barium ions in addition to calcium. All three proteins form dimers and, in contrast to some Fasciola hepatica proteins from the same family; dimerization is not affected by calcium ions. SmTAL1 interacts with the anti-schistosomal drug praziquantel and the calmodulin antagonists trifluoperazine, chlorpromazine and W7. SmTAL2 interacts only with W7. SmTAL3 interacts with the aforementioned calmodulin antagonists and thiamylal, but not praziquantel. Overall, these data suggest that the proteins have different biochemical properties and thus, most likely, different in vivo functions.
Collapse
Affiliation(s)
- Charlotte M Thomas
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK; Institute for Global Food Security, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | | | - David W Dunne
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - David J Timson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK; Institute for Global Food Security, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK.
| |
Collapse
|
34
|
Abstract
Our understanding of mammalian olfactory coding has been impeded by the paucity of information about the odorant receptors (ORs) that respond to a given odorant ligand in awake, freely behaving animals. Identifying the ORs that respond in vivo to a given odorant ligand from among the ∼1100 ORs in mice is intrinsically challenging but critical for our understanding of olfactory coding at the periphery. Here, we report an in vivo assay that is based on a novel gene-targeted mouse strain, S100a5-tauGFP, in which a fluorescent reporter selectively marks olfactory sensory neurons that have been activated recently in vivo. Because each olfactory sensory neuron expresses a single OR gene, multiple ORs responding to a given odorant ligand can be identified simultaneously by capturing the population of activated olfactory sensory neurons and using expression profiling methods to screen the repertoire of mouse OR genes. We used this in vivo assay to re-identify known eugenol- and muscone-responsive mouse ORs. We identified additional ORs responsive to eugenol or muscone. Heterologous expression assays confirmed nine eugenol-responsive ORs (Olfr73, Olfr178, Olfr432, Olfr610, Olfr958, Olfr960, Olfr961, Olfr913, and Olfr1234) and four muscone-responsive ORs (Olfr74, Olfr235, Olfr816, and Olfr1440). We found that the human ortholog of Olfr235 and Olfr1440 responds to macrocyclic ketone and lactone musk odorants but not to polycyclic musk odorants or a macrocyclic diester musk odorant. This novel assay, called the Kentucky in vivo odorant ligand-receptor assay, should facilitate the in vivo identification of mouse ORs for a given odorant ligand of interest.
Collapse
|
35
|
Reis RAG, Bortot LO, Caliri A. In silico assessment of S100A12 monomer and dimer structural dynamics: implications for the understanding of its metal-induced conformational changes. J Biol Inorg Chem 2014; 19:1113-20. [PMID: 24944024 DOI: 10.1007/s00775-014-1149-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/25/2014] [Indexed: 01/01/2023]
Abstract
Changes in the concentration of different ions modulate several cellular processes, such as Ca(2+) and Zn(2+) in inflammation. Upon activation of immune system effector cells, the intracellular Ca(2+) concentration rises propagating the activation signal, leading to degranulation and generation of reactive oxygen species, which increases the Zn(2+) intracellular concentration as a consequence of the cellular antioxidant machinery. In this context, S100A12 is of special interest because it is a pro-inflammatory protein expressed in neutrophils whose structure and function are modulated by both Ca(2+) and Zn(2+). The current hypothesis about its mechanism of action was built based on biochemical and crystallographic data. However, there are missing connections between molecular structure and the way in which many events are concatenated at the triggering and along the inflammatory process. In this work we use molecular dynamics simulations to describe how variations in Zn(2+) and Ca(2+) concentrations modulate the structural dynamics of the calcium-free S100A12 dimer and monomer, which was not considered a part of the mechanism of action before. Our results suggest that (i) Zn(2+) have a determinant role in the dimerization step, as well as in the unbinding of the Na(+) complexed to the N-terminal EF-hand; (ii) the N-terminal EF-hand domain is the first to bind Ca(2+), and not the C-terminal, as usually accepted; and that (iii) Ca(2+) modulates the structural dynamics of H-III.
Collapse
Affiliation(s)
- Renata Almeida Garcia Reis
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil,
| | | | | |
Collapse
|
36
|
Liu B, Liu Y, Yang G, Xu Z, Chen J. Ursolic acid induces neural regeneration after sciatic nerve injury. Neural Regen Res 2013; 8:2510-9. [PMID: 25206561 PMCID: PMC4145935 DOI: 10.3969/j.issn.1673-5374.2013.27.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
In this study, we aimed to explore the role of ursolic acid in the neural regeneration of the injured sciatic nerve. BALB/c mice were used to establish models of sciatic nerve injury through unilateral sciatic nerve complete transection and microscopic anastomosis at 0.5 cm below the ischial tube-rosity. The successfully generated model mice were treated with 10, 5, or 2.5 mg/kg ursolic acid via intraperitoneal injection. Enzyme-linked immunosorbent assay results showed that serum S100 protein expression level gradually increased at 1-4 weeks after sciatic nerve injury, and significantly decreased at 8 weeks. As such, ursolic acid has the capacity to significantly increase S100 protein expression levels. Real-time quantitative PCR showed that S100 mRNA expression in the L4-6 segments on the injury side was increased after ursolic acid treatment. In addition, the muscular mass index in the soleus muscle was also increased in mice treated with ursolic acid. Toluidine blue staining revealed that the quantity and average diameter of myelinated nerve fibers in the injured sciatic nerve were significantly increased after treatment with ursolic acid. 10 and 5 mg/kg of ursolic acid produced stronger effects than 2.5 mg/kg of ursolic acid. Our findings indicate that ursolic acid can dose-dependently increase S100 expression and promote neural regeneration in BALB/c mice following sciatic nerve injury.
Collapse
Affiliation(s)
- Biao Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Yan Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Guang Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Zemin Xu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
37
|
Wafer LN, Tzul FO, Pandharipande PP, Makhatadze GI. Novel interactions of the TRTK12 peptide with S100 protein family members: specificity and thermodynamic characterization. Biochemistry 2013; 52:5844-56. [PMID: 23899389 DOI: 10.1021/bi400788s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The S100 protein family consists of small, dimeric proteins that exert their biological functions in response to changing calcium concentrations. S100B is the best-studied member and has been shown to interact with more than 20 binding partners in a calcium-dependent manner. The TRTK12 peptide, derived from the consensus binding sequence for S100B, has previously been found to interact with S100A1 and has been proposed to be a general binding partner of the S100 family. To test this hypothesis and gain a better understanding of the specificity of binding for the S100 proteins, 16 members of the human S100 family were screened against this peptide and its alanine variants. Novel interactions were found with only two family members, S100P and S100A2, indicating that TRTK12 selectively interacts with a small subset of the S100 proteins. Substantial promiscuity was observed in the binding site of S100B thereby accommodating variations in the peptide sequence, while S100A1, S100A2, and S100P exhibited larger differences in the binding constants for the TRTK12 alanine variants. This suggests that single-point substitutions can be used to selectively modulate the affinity of TRTK12 peptides for individual S100 proteins. This study has important implications for the rational drug design of inhibitors for the S100 proteins, which are involved in a variety of cancers and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lucas N Wafer
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | | | | | |
Collapse
|
38
|
Kálmán-Szekeres Z, Olajos M, Ganzler K. Analytical aspects of biosimilarity issues of protein drugs. J Pharm Biomed Anal 2012; 69:185-95. [DOI: 10.1016/j.jpba.2012.04.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 02/07/2023]
|
39
|
Orr R, Kinkead R, Newman R, Anderson L, Hoey EM, Trudgett A, Timson DJ. FhCaBP4: a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains. Parasitol Res 2012; 111:1707-13. [DOI: 10.1007/s00436-012-3010-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/11/2012] [Indexed: 01/30/2023]
|
40
|
Yammani RR. S100 proteins in cartilage: role in arthritis. Biochim Biophys Acta Mol Basis Dis 2012; 1822:600-6. [PMID: 22266138 DOI: 10.1016/j.bbadis.2012.01.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 12/20/2011] [Accepted: 01/05/2012] [Indexed: 01/15/2023]
Abstract
S100 proteins are low molecular weight calcium binding proteins expressed in vertebrates. The family constitutes 21 known members that are expressed in several tissues and cell types and play a major role in various cellular functions. Uniquely, members of the S100 family have both intracellular and extracellular functions. Several members of the S100 family (S100A1, S100A2, S100A4, S1008, S100A9, S100A11, and S100B) have been identified in human articular cartilage, and their expression is upregulated in diseased tissue. These S100 proteins elicit a catabolic signaling pathway via receptor for advanced glycation end products (RAGE) in cartilage and may promote progression of arthritis. This review summarizes our current understanding of the role of S100 proteins in cartilage biology and in the development of arthritis.
Collapse
Affiliation(s)
- Raghunatha R Yammani
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| |
Collapse
|
41
|
Jiang H, Hu H, Tong X, Jiang Q, Zhu H, Zhang S. Calcium-binding protein S100P and cancer: mechanisms and clinical relevance. J Cancer Res Clin Oncol 2012; 138:1-9. [PMID: 21947242 DOI: 10.1007/s00432-011-1062-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022]
Abstract
S100P is a 95-amino-acid protein and a member of the S100 family. It was first purified from placenta. The promoter area of S100P has binding sites for SMAD, STAT/CREB and SP/KLF, key regulatory elements participating in transcriptional activation of the S100P gene. Increased levels of S100P have been observed in multiple tumor cell lines and breast, pancreas, lung and ovary carcinomas. S100P has been shown to mediate tumor growth, metastasis and invasion through the binding of Ca(2+) ions, receptor for advanced glycation end products, cytoskeletal protein ezrin, calcyclin-binding protein/Siah-1-interacting protein and cathepsin D. S100P could potentially serve as diagnostic marker, prognostic/predictive indicator and therapy target for different carcinomas.
Collapse
Affiliation(s)
- Hongfei Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, #3 East Qing Chun Road, Hangzhou, 310016, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
42
|
Kizawa K, Takahara H, Unno M, Heizmann CW. S100 and S100 fused-type protein families in epidermal maturation with special focus on S100A3 in mammalian hair cuticles. Biochimie 2011; 93:2038-47. [DOI: 10.1016/j.biochi.2011.05.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 05/25/2011] [Indexed: 12/29/2022]
|
43
|
The Crystal Structure of Zebrafish S100Z: Implications for Calcium-Promoted S100 Protein Oligomerisation. J Mol Biol 2011; 411:1072-82. [DOI: 10.1016/j.jmb.2011.06.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/27/2011] [Accepted: 06/29/2011] [Indexed: 11/20/2022]
|
44
|
Permyakov SE, Ismailov RG, Xue B, Denesyuk AI, Uversky VN, Permyakov EA. Intrinsic disorder in S100 proteins. MOLECULAR BIOSYSTEMS 2011; 7:2164-80. [PMID: 21528128 DOI: 10.1039/c0mb00305k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although the members of the largest subfamily of the EF-hand proteins, S100 proteins, are evolutionarily young, their functional diversity is extremely broad, partly due to their ability to adapt to various targets. This feature is a hallmark of intrinsically disordered proteins (IDPs), but none of the S100 proteins are recognized as IDPs. S100 are predicted to be enriched in intrinsic disorder, with 62% of them being predicted to be disordered by at least one of the predictors: 31% are recognized as 'molten globules' and 15% are shown to be in extended disordered form. The disorder level of predicted disordered S100 regions is conserved compared to that of more structured regions. The central disordered stretch corresponds to the major part of pseudo EF-hand loop, helix II, hinge region, and an initial part of helix III. It contains about half of known sites of enzymatic post-translational modifications (PTMs), confirming that this region can be flexible in vivo. Most of the internal residues missing in tertiary structures belong to the hinge. Both hinge and pseudo EF-hand loop correspond to the local maxima of the PONDR® VSL2 score and are shown to be evolutionary hotspots, leading to gain of new functional properties. The action of PTMs is shown to be destabilizing, in contrast with the effect of metal-binding or S100 dimerization. Formation of the S100 heterodimers relies on the interplay between the structural rigidity of one of the S100 monomers and the flexibility of another monomer. The ordered regions dominate in the S100 homodimerization sites. Target-binding sites generally consist of distant regions, drastically differing in their disorder level. The disordered region comprising most of the hinge and the N-terminal half of helix III is virtually not involved into dimerization, being intended solely for target recognition. The structural flexibility of this region is essential for recognition of diverse target proteins. At least 86% of multiple interactions of S100 proteins with binding partners are attributed to the S100 proteins predicted to be disordered. Overall, the intrinsic disorder is inherent to many S100 proteins and is vital for activity and functional diversity of the family.
Collapse
Affiliation(s)
- Sergei E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region 142290, Russia.
| | | | | | | | | | | |
Collapse
|
45
|
Mechanism of the Ca²+-dependent interaction between S100A4 and tail fragments of nonmuscle myosin heavy chain IIA. J Mol Biol 2010; 405:1004-26. [PMID: 21110983 PMCID: PMC3025356 DOI: 10.1016/j.jmb.2010.11.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 12/03/2022]
Abstract
The interaction between the calcium-binding protein S100A4 and the C-terminal fragments of nonmuscle myosin heavy chain IIA has been studied by equilibrium and kinetic methods. Using site-directed mutants, we conclude that Ca2+ binds to the EF2 domain of S100A4 with micromolar affinity and that the Kd value for Ca2+ is reduced by several orders of magnitude in the presence of myosin target fragments. The reduction in Kd results from a reduced dissociation rate constant (from 16 s− 1 to 0.3 s− 1 in the presence of coiled-coil fragments) and an increased association rate constant. Using peptide competition assays and NMR spectroscopy, we conclude that the minimal binding site on myosin heavy chain IIA corresponds to A1907-G1938; therefore, the site extends beyond the end of the coiled-coil region of myosin. Electron microscopy and turbidity assays were used to assess myosin fragment filament disassembly by S100A4. The latter assay demonstrated that S100A4 binds to the filaments and actively promotes disassembly rather than just binding to the myosin monomer and displacing the equilibrium. Quantitative modelling of these in vitro data suggests that S100A4 concentrations in the micromolar region could disassemble myosin filaments even at resting levels of cytoplasmic [Ca2+]. However, for Ca2+ transients to be effective in further promoting dissociation, the elevated Ca2+ signal must persist for tens of seconds. Fluorescence recovery after photobleaching of A431/SIP1 cells expressing green fluorescent protein–myosin IIA, immobilised on fibronectin micropatterns to control stress fibre location, yielded a recovery time constant of around 20 s, consistent with in vitro data.
Collapse
|