1
|
Shi Y, Zhao J, Li M, Wei L, Shan Q, Wang M, Zhu M, Cen S, Zhang G, Wang J, Wang Y. Discovery and rational optimization of 2, 2'-((1H-indole-2,3-diyl) bis (thio))diacetamide as novel SARS-CoV-2 RdRp inhibitors. Bioorg Med Chem 2025; 123:118153. [PMID: 40132469 DOI: 10.1016/j.bmc.2025.118153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
The COVID-19 pandemic has significantly strained global health infrastructures while profoundly affecting the socio-economic landscape. RNA-dependent RNA polymerase (RdRp) plays a pivotal role in the replication and transcription of RNA viruses, making it a critical target for antiviral drug development. In this work, we describe the discovery, rational optimization, and synthesis of a novel series of non-nucleoside SARS-CoV-2 RdRp inhibitors featuring a 2,2'-((1H-indole-2,3-diyl)bis (thio))diacetamide core. The inhibitory activity of these compounds was evaluated, with most demonstrating a higher inhibitory effect than Remdesivir. Notably, the most potent candidates suppressed RNA synthesis dose-dependently and exhibited greater resistance to nsp14/nsp10 exonuclease-mediated proofreading compared to Remdesivir. Furthermore, 10b6 and 10b12 showed 1.6- to 2-fold lower EC50 values against coronavirus HCoV-OC43 than Remdesivir, highlighting their potential for further development as broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Yu Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jianyuan Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Min Li
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Liya Wei
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qi Shan
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Minghua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Mei Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Shan Cen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guoning Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Juxian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Yucheng Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Chen L, Han D, Gu C, Huang W. Biological Effects of Calceolarioside A as a Natural Compound: Anti-Ovarian Cancer, Anti-Tyrosinase, and Anti-HMG-CoA Reductase Potentials with Molecular Docking and Dynamics Simulation Studies. Mol Biotechnol 2025:10.1007/s12033-025-01369-w. [PMID: 39820851 DOI: 10.1007/s12033-025-01369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/05/2025] [Indexed: 01/19/2025]
Abstract
One kind of hydroxycinnamic acid is calceolarioside A. Plantago coronopus, Cassinopsis madagascariensis, and other organisms for whom data are available are known to have this naturally occurring compound. IC50 values of Calceolarioside A for ovarian cell lines (NIH-OVCAR-3, ES-2, UACC-1598, Hs832.Tc, TOV-21G, UWB1.289) were 24.42, 13.50, 9.31, 14.90, 20.07, and 16.18 µM, respectively. IC50 values were 19.83 and 73.48 µM for tyrosinase and HMG-CoA reductase enzymes. The chemical activities of Calceolarioside A against HMG-CoA reductase and tyrosinase were assessed by conducting the molecular docking study, MM/GBSA calculation, and molecular dynamics (MD) simulation. The anticancer activities of this compound were evaluated against some ovarian cancer cells, such as NIH-OVCAR-3, ES-2, UACC-1598, Hs832.Tc, TOV-21G, and UWB1.289 cell lines. The chemical activities of Calceolarioside A against some of the expressed surface receptor proteins (folate receptor, CD44, EGFR, Formyl Peptide Receptor-Like 1, M2 muscarinic receptor, and estrogen receptors) were investigated using computational methods. The results exhibited the interplay among atoms. The compound formed robust associations with both the enzymes and receptors. Calceolarioside A can hinder the functioning of these enzymes and the proliferation of malignant cells.
Collapse
Affiliation(s)
- Liqin Chen
- Department of Gynecology and Obstetrics Nantong, Haimen People's Hospital, Nantong, 226100, Jiangsu, China
| | - Dan Han
- Department of Physical Examination Center, Ezhou Central Hospital, Ezhou, 436000, Hubei, China
| | - ChunYan Gu
- Department of Gynecology and Obstetrics Nantong, Haimen People's Hospital, Nantong, 226100, Jiangsu, China
| | - Wei Huang
- Department of Gynecologic and Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, Hubei, China.
| |
Collapse
|
3
|
El Faydy M, Lakhrissi L, Dahaieh N, Ounine K, Tüzün B, Chahboun N, Boshaala A, AlObaid A, Warad I, Lakhrissi B, Zarrouk A. Synthesis, Biological Properties, and Molecular Docking Study of Novel 1,2,3-Triazole-8-quinolinol Hybrids. ACS OMEGA 2024; 9:25395-25409. [PMID: 38882066 PMCID: PMC11170742 DOI: 10.1021/acsomega.4c03906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
A new series of 1,2,3-triazole-8-quinolinol hybrids were synthesized in good yields using monosubstituted acetonitriles and 5-azidomethyl-8-quinolinol as the starting reagents via a one-step protocol. The structures of 1,2,3-triazole-8-quinolinol hybrids were characterized by nuclear magnetic resonance (1H and 13C NMR) spectroscopy and elemental analysis. Antibacterial activity in vitro of all the synthesized hybrids was investigated against Escherichia coli (E. coli), Xanthomonas fragariae (X. fragariae), Staphylococcus aureus (S. aureus), and Bacillus subtilis (B. subtilis) applying the methods of disk diffusion and minimal inhibition concentration (MIC). Hybrid 7 exhibited excellent antibacterial capacity, with an MIC value of 10 μg/mL against S. aureus and 20 μg/mL against B. subtilis, E. coli, and X. fragariae, which were comparable to those that of the standard antibiotic nitroxoline. A structure-activity relationship (SAR) study of 1,2,3-triazole-8-quinolinol hybrids showed that introducing electron-donating substituents in the 1,2,3-triazole ring at the 4-position is important for activity. Quantum chemical calculations have been undertaken to employ the Gaussian software in the B3LYP, HF, and M062X basis sets using 3-21g, 6-31g, and SDD levels to further explain linkages within the antibacterial findings. Furthermore, molecular docking investigations were also conducted to investigate the binding affinities as well as the interactions of some hybrids with the target proteins. An absorption, distribution, metabolism, excretion, and toxicity (ADME/T) investigation was carried out to scrutinize the viability of employing the 1,2,3-triazole-8-quinolinol hybrids as medicines.
Collapse
Affiliation(s)
- Mohamed El Faydy
- Laboratory of Organic Chemistry, Catalysis, and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, PO Box 133 Kenitra 14000, Morocco
| | - Loubna Lakhrissi
- Laboratory of Organic Chemistry, Catalysis, and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, PO Box 133 Kenitra 14000, Morocco
- Laboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, Mohammed V University, PO Box 1014 Agdal, Rabat 10500, Morocco
| | - Naoufel Dahaieh
- Laboratory of Nutrition, Health, and Environment, Department of Biology, Faculty of Sciences, Ibn Tofaïl University, PO Box 133, Kenitra 14000, Morocco
| | - Khadija Ounine
- Laboratory of Nutrition, Health, and Environment, Department of Biology, Faculty of Sciences, Ibn Tofaïl University, PO Box 133, Kenitra 14000, Morocco
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Nabila Chahboun
- Laboratory of Natural Resources and Sustainable Development, Faculty of Sciences, Ibn Tofail University, PO Box 242, Kenitra 14000, Morocco
- Institute of Nursing Professions and Health Techniques, Annex, Kenitra 14000, Morocco
- Laboratory of Materials, Nanotechnology, and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta PO Box 1014 Agdal, Rabat 10500, Morocco
| | - Ahmed Boshaala
- Libyan Authority for Scientific Research, P O Box 80045, Tripoli Libya
- Research Centre, Manchester Salt & Catalysis, unit C, 88-90 Chorlton Rd, Manchester M15 4AN, United Kingdom
| | - Abeer AlObaid
- Department of Chemistry, College of Science, King Saud University, P O Box 2455, Riyadh 11451, Saudi Arabia
| | - Ismail Warad
- Research Centre, Manchester Salt & Catalysis, unit C, 88-90 Chorlton Rd, Manchester M15 4AN, United Kingdom
- Department of Chemistry, AN-Najah National University, PO Box 7, Nablus 00970, Palestine
| | - Brahim Lakhrissi
- Laboratory of Organic Chemistry, Catalysis, and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, PO Box 133 Kenitra 14000, Morocco
| | - Abdelkader Zarrouk
- Laboratory of Materials, Nanotechnology, and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta PO Box 1014 Agdal, Rabat 10500, Morocco
- Research Centre, Manchester Salt & Catalysis, unit C, 88-90 Chorlton Rd, Manchester M15 4AN, United Kingdom
| |
Collapse
|
4
|
Poustforoosh A, Faramarz S, Negahdaripour M, Tüzün B, Hashemipour H. Investigation on the mechanisms by which the herbal remedies induce anti-prostate cancer activity: uncovering the most practical natural compound. J Biomol Struct Dyn 2024; 42:3349-3362. [PMID: 37194430 DOI: 10.1080/07391102.2023.2213344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
Prostate cancer (PCa) is one of the most reported cancers among men worldwide. Targeting the essential proteins associated with PCa could be a promising method for cancer treatment. Traditional and herbal remedies (HRs) are the most practical approaches for PCa treatment. Here, the proteins and enzymes associated with PCa were determined based on the information obtained from the DisGeNET database. The proteins with a gene-disease association (GDA) score greater than 0.7 and the genes that have a disease specificity index (DSI) = 1 were selected as the target proteins. 28 HRs with anti-PCa activity as a traditional treatment for PCa were chosen as potential bioactive compounds. More than 500 compound-protein complexes were screened to find the top-ranked bioactives. The results were further evaluated using the molecular dynamics (MD) simulation and binding free energy calculations. The outcomes revealed that procyanidin B2 3,3'-di-O-gallate (B2G2), the most active ingredient of grape seed extract (GSE), can act as an agonist for PTEN. PTEN has a key role in suppressing PCa cells by applying phosphatase activity and inhibiting cell proliferation. B2G2 exhibited a considerable binding affinity to PTEN (11.643 kcal/mol). The MD results indicated that B2G2 could stabilize the key residues of the phosphatase domain of PTEN and increase its activity. Based on the obtained results, the active ingredient of GSE, B2G2, could play an agonist role and effectively increase the phosphatase activity of PTEN. The grape seed extract is a useful nutrition that can be used in men's diets to inhibit PCa in their bodies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Faramarz
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Hassan Hashemipour
- Chemical Engineering Department, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
5
|
Han L, Zhao D, Li Y, Jin J, El-Kott AF, Al-Saeed FA, Eldib AM. Assessment of the Anti-Breast Cancer Effects of Urolithin with Molecular Docking Studies in the In Vitro Condition: Introducing a Novel Chemotherapeutic Drug. Mol Biotechnol 2024; 66:554-566. [PMID: 37280483 DOI: 10.1007/s12033-023-00766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023]
Abstract
A lot of research has been done on using natural items as diabetes treatment. The molecular docking study was conducted to evaluate the inhibitory activities of urolithin A against α-amylase, α-glucosidase, and aldose reductase. The molecular docking calculations indicated the probable interactions and the characteristics of these contacts at an atomic level. The results of the docking calculations showed the docking score of urolithin A against α-amylase was -5.169 kcal/mol. This value for α-glucosidase and aldose reductase was -3.657 kcal/mol and -7.635 kcal/mol, respectively. In general, the outcomes of the docking calculations revealed that urolithin A can construct several hydrogen bonds and hydrophobic contacts with the assessed enzymes and reduces their activities considerably. The properties of urolithin against common human breast cancer cell lines, i.e., SkBr3, MDA-MB-231, MCF-7, Hs578T, Evsa-T, BT-549, AU565 and 600MPE were evaluated. The IC50 of the urolithin was 400, 443, 392, 418, 397, 530, 566 and 551 against SkBr3, MDA-MB-231, MCF-7, Hs578T, Evsa-T, BT-549, AU565 and 600MPE, respectively. After doing the clinical trial studies, the recent molecule may be used as an anti-breast cancer supplement in humans. IC50 values of urolithin A on α-amylase, α-glucosidase, and aldose reductase enzymes were obtained at 16.14, 1.06 and 98.73 µM, respectively.
Collapse
Affiliation(s)
- Lu Han
- Department of General Surgery, Sijing Hospital of Songjiang District Shanghai, Shanghai, 201601, China
| | - Danbo Zhao
- Department of Oncology, Ezhou Central Hospital, Ezhou, 436000, Hubei, China
| | - Ya Li
- Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, 710061, China
| | - Jianwei Jin
- Department of Oncology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Kingdom of Saudi Arabia
- Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Fatimah A Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Kingdom of Saudi Arabia
| | - Ali M Eldib
- Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
- Alrayan Medical Colleges (AMC), Hejrah Street, P. O. Box 41411, Madinah, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Poustforoosh A, Faramarz S, Nematollahi MH, Mahmoodi M, Azadpour M. Structure-Based Drug Design for Targeting IRE1: An in Silico Approach for Treatment of Cancer. Drug Res (Stuttg) 2024; 74:81-88. [PMID: 38134918 DOI: 10.1055/a-2211-2218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
BACKGROUND Endoplasmic Reticulum (ER) stress and Unfolded Protein Response (UPR) play a key role in cancer progression. The aggregation of incorrectly folded proteins in the ER generates ER stress, which in turn activates the UPR as an adaptive mechanism to fix ER proteostasis. Inositol-requiring enzyme 1 (IRE1) is the most evolutionary conserved ER stress sensor, which plays a pro-tumoral role in various cancers. Targeting its' active sites is one of the most practical approaches for the treatment of cancers. OBJECTIVE In this study, we aimed to use the structure of 4μ8C as a template to produce newly designed compounds as IRE1 inhibitors. METHODS Various functional groups were added to the 4μ8C, and their binding affinity to the target sites was assessed by conducting a covalent molecular docking study. The potential of the designed compound for further in vitro and in vivo studies was evaluated using ADMET analysis. RESULTS Based on the obtained results, the addition of hydroxyl groups to 4μ8C enhanced the binding affinity of the designed compound to the target efficiently. Compound 17, which was constructed by the addition of one hydroxyl group to the structure of 4μ8C, can construct a strong covalent bond with Lys907. The outcomes of ADMET analysis indicated that compound 17 could be considered a drug-like molecule. CONCLUSION Our results revealed that designed compound 17 could inhibit IRE1 activity. Therefore, this designed compound is a remarkable inhibitor of IRE1 and introduces a promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Faramarz
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Mahmoodi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdiyeh Azadpour
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
7
|
Yuriy K, Kusdemir G, Volodymyr P, Tüzün B, Taslimi P, Karatas OF, Anastasia K, Maryna P, Sayın K. A biochemistry-oriented drug design: synthesis, anticancer activity, enzymes inhibition, molecular docking studies of novel 1,2,4-triazole derivatives. J Biomol Struct Dyn 2024; 42:1220-1236. [PMID: 37671856 DOI: 10.1080/07391102.2023.2253906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/28/2023] [Indexed: 09/07/2023]
Abstract
In this study, we researched the reactions of 5-(5-bromofuran-2-yl)-4-methyl-1,2,4-triazole-3-thiol and 5-thiophene-(3-ylmethyl)-4R-1,2,4-triazole-3-thiols with some halogen-containing compounds, a number of new compounds were synthesized (1.1-1.5 and 2.1-2.8). These compounds showed excellent to good inhibitory activities on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. For obtaining the effects of these compounds on AChE and BChE enzymes were determined spectrophotometrically according to Ellman. IC50 values of these enzymes were ranging between 1.63 and 17.68 nM for AChE and 8.71 and 84.02 nM for BChE. After, prostate cancer is the second leading cause of cancer-related mortality for men over the age of 65 in developed countries. Current treatment options remain limited in the treatment of advanced-stage prostate cancer leading to biochemical recurrence in almost 40% of the patients. Therefore, there is an urgent need for development of novel therapeutic tools for treatment of prostate cancer patients. In this study, we aimed at analyzing the potential of all compounds against prostate cancer cells. We found that, of the tested compounds, 2.1, 2.2 and 2.3 showed significant cytotoxic activities against PC3 prostate cancer cells, although their effect on the viability of normal prostate cells was limited. These findings suggest their selective targeting potential for prostate cancer cells and offer them as candidate therapeutic agents against prostate cancer. The inhibitory activities of some chemical compounds, such as (1.1-1.5 and 2.1-2.8) were assessed by performing the molecular docking study in the presence of AChE, BChE and prostate cancer protein. MM/GBSA methods are calculated binding free energy. Finally, ADME/T analysis was performed to examine the drug properties of the 13 studied molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Karpenko Yuriy
- Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Gulnur Kusdemir
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Parchenko Volodymyr
- Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Omer Faruk Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Khilkovets Anastasia
- Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Parchenko Maryna
- Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Koray Sayın
- Deparment of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
8
|
Li L, Zhu Y, Huang YG, Hou DZ, Ahmed Zaki MS, Sideeg AM, Mohammed H, El-Kott AF, Al-Saeed FA, Ling P. Therapeutic properties, biological effects, antiliver cancer, and anticolon cancer effects of some natural compounds: A biochemical approach. J Biochem Mol Toxicol 2024; 38:e23573. [PMID: 37934567 DOI: 10.1002/jbt.23573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/19/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Natural compounds, such as carotenoids, flavonoids, anthocyanins, or terpenoids, are physiologically active components found in plants (pigments), often known as phytochemicals or phytonutrients. The in vitro cytotoxic and anticolon cancer effects of biologically bavachin, bavachinin, artepillin C, and aromadendrin compounds against SW48, SNU-C1, COLO 205, RKO, LS411N, and SW1417 cancer cell lines were assessed. Results of enzymes and antibacterial, antifungal were in level of micromolar that is good impacts. These natural compounds may be antidiabetic, anticancer, and antibacterial candidates for drug design. IC50 results were obtained between 14-19 and 5-119 µM for α-amylase and α-glucosidase, respectively. Good inhibitor Bavachinin was detected for both enzymes (IC50 for α-amylase: 14.37 µM and IC50 for α-glucosidase: 5.27 µM). The chemical activities of aromadendrin, artepillin C, bavachin, and bavachinin against pancreatic α-amylase and α-glucosidase were assessed by conducting the molecular docking study. The chemical activities of aromadendrin, artepillin C, bavachin, and bavachinin against some of the expressed surface receptor proteins (CD44, CD47, CXCR4, EGFR, folate receptor, HER2, and endothelin receptor) in the mentioned cell lines were investigated using the molecular docking calculations. The results illustrated the atomic-level properties and potential interactions. These chemicals have high binding affinities to the enzymes and proteins, according to the docking scores. In addition, the compounds formed strong contacts with the enzymes and receptors. Thus, these compounds could be potential inhibitors for enzymes and cancer cells.
Collapse
Affiliation(s)
- Long Li
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yu Zhu
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying-Guang Huang
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - De-Zhi Hou
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | | | - Abulqasim M Sideeg
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Heitham Mohammed
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, College of Science, Damanhour University, Damanhour, Egypt
| | - Fatimah A Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ping Ling
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
9
|
Poustforoosh A, Faramarz S, Negahdaripour M, Tüzün B, Hashemipour H. Tracing the pathways and mechanisms involved in the anti-breast cancer activity of glycyrrhizin using bioinformatics tools and computational methods. J Biomol Struct Dyn 2024; 42:819-833. [PMID: 37042955 DOI: 10.1080/07391102.2023.2196347] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/22/2023] [Indexed: 04/13/2023]
Abstract
A complete investigation to understand the pathways that could be affected by glycyrrhizin (licorice), as anti-breast cancer (BC) agent, has not been performed to date. This study aims to investigate the pathways involved in the anti-cancer activity of glycyrrhizin against BC. For this purpose, the target genes of glycyrrhizin were obtained from the ChEMBL database. The BC-associated genes for three types of BC (breast carcinoma, malignant neoplasm of breast, and triple-negative breast neoplasms) were retrieved from DisGeNET. The target genes of glycyrrhizin and the BC-associated genes were compared, and the genes with disease specificity index (DSI) > 0.6 were selected for further evaluation using in silico methods. The protein-protein interaction (PPI) network was constructed, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed. The potential complexes were further evaluated using molecular dynamics (MD) simulation. The results revealed that among 80 common genes, ten genes had DSI greater than 0.6, which included POLK, TACR2, MC3R, TBXAS1, HH1R, SLCO4A1, NPY2R, ADRA2C, ADRA1A, and SLCO2B1. The binding affinity of glycyrrhizin to the cognate proteins and binding characteristics were assessed using molecular docking and binding free energy calculations (MM/GBSA). POLK, TBXAS1, and ADRA1A showed the highest binding affinity with -8.9, -9.3, and -9.6 kcal/mol, respectively. The final targets had an association with BC at several stages of tumor growth. By affecting these targets, glycyrrhizin could influence and control BC efficiently. MD simulation suggested the pathways triggered by the complex glycyrrhizin-ADRA1A were more likely to happen.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Faramarz
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Hassan Hashemipour
- Chemical Engineering Department, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
10
|
Zhang J, Feng J, Li Y, Wang J, Mo P, Luo C. Anticancer and Biological Effects of Some Natural Compounds and Theoretical Investigation of them Against RdRP of SARS-COV-2: In Silico and In Vitro Studies. Mol Biotechnol 2023; 65:1764-1776. [PMID: 36780057 PMCID: PMC9923641 DOI: 10.1007/s12033-023-00678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/18/2023] [Indexed: 02/14/2023]
Abstract
In this study, Skullcapflavone I and Skullcapflavone II molecules showed good inhibitory activities against α-glucosidase and sorbitol dehydrogenase enzymes with IC50 values of 102.66 ± 8.43 and 95.04 ± 11.52 nM for α-glucosidase and 38.42 ± 3.82 and 28.81 ± 3.26 µM for sorbitol dehydrogenase. The chemical activities of Skullcapflavone I and Skullcapflavone II against α-glucosidase and sorbitol dehydrogenase were assessed by conducting the molecular docking study. The anticancer activities of the compounds were examined against SW-626, SK-OV-3, OVCAR3, and Caov-3 cell lines. The chemical activities of Skullcapflavone I and Skullcapflavone II against some of the expressed surface receptor proteins (estrogen receptor, EGFR, androgen receptor, and GnRH receptor) in the mentioned cell lines were investigated using in silico calculations. Moreover, the activity of the compounds against RNA polymerase of SARS-COVE-2 was also assessed using the molecular modeling study. These compounds created strong contacts with the enzymes and receptors. The considerable binding affinity of the compounds to the enzymes and proteins showed their ability as inhibitors. Furthermore, even at modest dosages, these substances markedly reduced the viability of ovarian cancer cells. Additionally, the viability of ovarian cancer cells was significantly decreased by a 300 μM dosage of all compounds. Antiovarian cancer results of Skullcapflavone I on SK-OV-3, SW-626, OVCAR3, and Caov-3 were 63.14, 1.55, 19.42, and 52.04 µM, respectively. Also, cytotoxicity results of Skullcapflavone II on SK-OV-3, SW-626, OVCAR3, and Caov-3 were 5.18, 21.44, 33.87, and 72.66 µM, respectively.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Oncology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
- Department of Oncology, The First Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jingyu Feng
- Department of Oncology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Yang Li
- Department of Oncology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Jiguo Wang
- Department of Oncology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Panyan Mo
- Department of Oncology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Changguo Luo
- Department of Oncology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, China.
| |
Collapse
|
11
|
Mermer A, Tüzün B, Daştan SD, Koçyiğit ÜM, Çetin FN, Çevik Ö. Piperazin incorporated Schiff Base derivatives: Assessment of in vitro biological activities, metabolic enzyme inhibition properties, and molecular docking calculations. J Biochem Mol Toxicol 2023; 37:e23465. [PMID: 37462216 DOI: 10.1002/jbt.23465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 11/10/2023]
Abstract
The cytotoxic activities of the compounds were determined by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) method in human breast cancer (MCF-7), human cervical cancer (HeLa), and mouse fibroblast (L929) cell lines. The compounds MAAS-5 and four modified the supercoiled tertiary structure of pBR322 plasmid DNA. MAAS-5 showed the highest cytotoxic activity in HeLa, MCF-7, and L929 cells with IC50 values of 16.76 ± 3.22, 28.83 ± 5.61, and 2.18 ± 1.22 µM, respectively. MAAS-3 was found to have almost the lowest cytotoxic activities with the IC50 values of 93.17 ± 9.28, 181.07 ± 11.54, and 16.86 ± 6.42 µM in HeLa, MCF-7, and L929 cells respectively at 24 h. Moreover, the antiepileptic potentials of these compounds were investigated in this study. To this end, the effect of newly synthesized Schiff base derivatives on the enzyme activities of carbonic anhydrase I and II isozymes (human carbonic anhydrase [hCA] I and hCA II) was evaluated spectrophotometrically. The target compounds demonstrated high inhibitory activities compared with standard inhibitors with Ki values in the range of 4.54 ± 0.86-15.46 ± 8.65 nM for hCA I (Ki value for standard inhibitor = 12.08 ± 2.00 nM), 1.09 ± 0.32-29.94 ± 0.82 nM for hCA II (Ki value for standard inhibitor = 18.22 ± 4.90 nM). Finally, the activities of the compounds were compared with the Gaussian programme in the B3lyp, HF, M062X base sets with 6-31++G (d,p) levels. In addition, the activities of five compounds against various breast cancer proteins and hCA I and II were compared with molecular docking calculations. Also, absorption, distribution, metabolism, excretion, and toxicity analysis was performed to investigate the possibility of using five compounds as drug candidates.
Collapse
Affiliation(s)
- Arif Mermer
- Experimental Medicine Application & Research Center, Validebağ Research Park, University of Health Sciences, Istanbul, Türkiye
- Department of Biotechnology, University of Health Sciences, Istanbul, Türkiye
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ümit M Koçyiğit
- Department of Basic Pharmaceutical Sciences, Sivas Cumhuriyet University, Sivas, Turkey
| | - Feyza Nur Çetin
- Department of Basic Pharmaceutical Sciences, Sivas Cumhuriyet University, Sivas, Turkey
| | - Özge Çevik
- Department of Biochemistry, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
12
|
Manap S, Medetalibeyoğlu H, Kılıç A, Karataş OF, Tüzün B, Alkan M, Ortaakarsu AB, Atalay A, Beytur M, Yüksek H. Synthesis, molecular modeling investigation, molecular dynamic and ADME prediction of some novel Mannich bases derived from 1,2,4-triazole, and assessment of their anticancer activity. J Biomol Struct Dyn 2023; 42:11916-11930. [PMID: 37840297 DOI: 10.1080/07391102.2023.2265501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
A series of biologically active novel Mannich bases containing with a 1H-1,2,4-triazole-5-one ring were developed to evaluate the cytotoxic activity. For this purpose, the synthesized Schiff Bases (S1-5) were reacted with formaldehyde and morpholine, which is a secondary amine to yield novel N-Mannich bases (M1-5) via the Mannich reaction. The structures of the compounds (M1-5) were determined structurally employing 1H/13C-NMR, IR and elemental analysis. In this study, we evaluated the cytotoxic potential of the compounds (M1-5) on the human hypopharyngeal carcinoma FaDu cells. We found that the compound (M3) possesses a significant anticancer feature against FaDu cells that might be evaluated with further in vitro and in vivo studies to understand its anticancer potential better. Lastly, comparisons were made using molecular docking calculations to find the theoretical activities of the compounds (M1-5). The docking score parameter of the compound (M3) against the 2DO4 protein is -5.67, the docking score parameter against the 5JPZ protein is -5.72, and finally, the docking score parameter against the 2H80 protein is -5.50. Molecular dynamic calculations are made for 0-100 ns. The ADME/T calculations were performed to find the drug potential of the compounds (M1-5). The results suggest that our drug candidate compound exhibits strong potential for co-administration with the antigen structures, owing to the low rate of interactions that decreased over time.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sevda Manap
- Department of Chemistry, Kafkas University, Kars, Turkey
| | | | - Ahsen Kılıç
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Omer Faruk Karataş
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Burak Tüzün
- Plant and Animal Production Department, Sivas Technical Sciences Vocational School, Sivas Cumhuriyet University, Turkey
| | | | | | - Abdurrahman Atalay
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Murat Beytur
- Department of Chemistry, Kafkas University, Kars, Turkey
| | - Haydar Yüksek
- Department of Chemistry, Kafkas University, Kars, Turkey
| |
Collapse
|
13
|
Singothu S, Begum PJ, Maddi D, Devsani N, Bhandari V. Unveiling the potential of marine compounds as quorum sensing inhibitors targeting Pseudomonas aeruginosa's LasI: A computational study using molecular docking and molecular dynamics. J Cell Biochem 2023; 124:1573-1586. [PMID: 37642215 DOI: 10.1002/jcb.30465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Antimicrobial resistance (AMR) poses a significant threat to global public health, with multidrug-resistant Pseudomonas aeruginosa being a leading cause of mortality, accounting for 18%-61% of deaths annually. The quorum sensing (QS) systems of P. aeruginosa, particularly the LasI-LasR system, play a crucial role in promoting biofilm formation and expression of virulent genes, which contribute to the development of AMR. This study focuses on LasI, the mediator of biofilm formation for identifying its inhibitors from a marine compound database comprising of 32 000 compounds using molecular docking and molecular simulation techniques. The virtual screening and docking experiments demonstrated that the top 10 compounds exhibited favorable docking scores of <-7.19 kcal/mol compared to the reported inhibitor 3,5,7-Trihydroxyflavone with a docking score of -3.098 kcal/mol. Additionally, molecular mechanics/Poisson-Boltzmann generalized born surface area (MM-GBSA) analyses were conducted to assess these compounds' suitability for further investigation. Out of 10 compounds, five compounds demonstrated high MM-GBSA binding energy (<-35.33 kcal/mol) and were taken up for molecular dynamics simulations to evaluate the stability of the protein-ligand complex over a 100 ns period. Based on root mean square deviation, root mean square fluctuation, radius of gyration, and hydrogen bond interactions analysis, three marine compounds, namely MC-2 (CMNPD13419) and MC-3 (CMNPD1068), exhibited consistent stability throughout the simulation. Therefore, these compounds show potential as promising LasI inhibitors and warrant further validation through in vitro and in vivo experiments. By exploring the inhibitory effects of these marine compounds on P. aeruginosa's QS system, this research aims to contribute to the development of novel strategies to combat AMR.
Collapse
Affiliation(s)
- Siva Singothu
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pathan J Begum
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dhanashri Maddi
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Namrata Devsani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
14
|
Daoui O, Mali SN, Elkhattabi K, Elkhattabi S, Chtita S. Repositioning Cannabinoids and Terpenes as Novel EGFR-TKIs Candidates for Targeted Therapy Against Cancer: A virtual screening model using CADD and biophysical simulations. Heliyon 2023; 9:e15545. [PMID: 37128337 PMCID: PMC10148140 DOI: 10.1016/j.heliyon.2023.e15545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
This study examines the potential of Cannabis sativa L. plants to be repurposed as therapeutic agents for cancer treatment through designing of hybrid Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). A set of 50 phytochemicals was taken from Cannabinoids and Terpenes and subjected for screening using Semi-flexible and Flexible Molecular Docking methods, MM-GBSA free binding energy computations, and pharmacokinetic/pharmacodynamic (ADME-Tox) predictions. Nine promising phytochemicals, Cannabidiolic acid (CBDA), Cannabidiol (CBD), Tetrahydrocannabivarin (THCV), Dronabinol (Δ-9-THC), Delta-8-Tetrahydrocannabinol (Δ-8-THC), Cannabicyclol (CBL), Delta9-tetrahydrocannabinolic acid (THCA), Beta-Caryophyllene (BCP), and Gamma-Elemene (γ-Ele) were identified as potential EGFR-TKIs natural product candidates for cancer therapy. To further validate these findings, a set of Molecular Dynamics simulations were conducted over a 200 ns trajectory. This hybrid early drug discovery screening strategy has the potential to yield a new generation of EGFR-TKIs based on natural cannabis products, suitable for cancer therapy. In addition, the application of this computational strategy in the virtual screening of both natural and synthetic chemical libraries could support the discovery of a wide range of lead drug agents to address numerous diseases.
Collapse
Affiliation(s)
- Ossama Daoui
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, P.O. Box 72, Fez, Morocco
- Corresponding author.
| | - Suraj N. Mali
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, India, 835215
| | - Kaouakeb Elkhattabi
- Department of Fundamental Sciences, Faculty of Dental Medicine, Mohammed V University in Rabat, Morocco
| | - Souad Elkhattabi
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, P.O. Box 72, Fez, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca, Morocco
| |
Collapse
|
15
|
Modeling and affinity maturation of an anti-CD20 nanobody: a comprehensive in-silico investigation. Sci Rep 2023; 13:582. [PMID: 36631511 PMCID: PMC9834265 DOI: 10.1038/s41598-023-27926-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
B-cell Non-Hodgkin lymphomas are the malignancies of lymphocytes. CD20 is a membrane protein, which is highly expressed on the cell surface of the B-cells in NHL. Treatments using monoclonal antibodies (mAbs) have resulted in failure in some cases. Nanobodies (NBs), single-domain antibodies with low molecular weights and a high specificity in antigen recognition, could be practical alternatives for traditional mAbs with superior characteristics. To design an optimized NB as a candidate CD20 inhibitor with raised binding affinity to CD20, the structure of anti-CD20 NB was optimized to selectively target CD20. The 3D structure of the NB was constructed based on the optimal templates (6C5W and 5JQH), and the key residues were determined by applying a molecular docking study. After identifying the key residues, some mutations were introduced using a rational protocol to improve the binding affinity of the NB to CD20. The rational mutations were conducted using the experimental design (Taguchi method). Six residues (Ser27, Thr28, Phe29, Ile31, Asp99, and Asn100) were selected as the key residues, and five residues were targeted for rational mutation (Trp, Phe, His, Asp, and Tyr). Based on the mutations suggested by the experimental design, two optimized NB structures were constructed. NB2 showed a remarkable binding affinity to CD20 in docking studies with a binding energy of - 853 kcal/mol. The optimized NB was further evaluated using molecular dynamics simulation. The results revealed that CDR1 (complementarity determining regions1) and CDR3 are essential loops for recognizing the antigen. NB2 could be considered as a potential inhibitor of CD20, though experimental evaluations are needed to confirm it.
Collapse
|
16
|
Synthesis, Spectroscopic Characterization, Antibacterial Activity, and Computational Studies of Novel Pyridazinone Derivatives. Molecules 2023; 28:molecules28020678. [PMID: 36677736 PMCID: PMC9861222 DOI: 10.3390/molecules28020678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In this work, a novel series of pyridazinone derivatives (3-17) were synthesized and characterized by NMR (1H and 13C), FT-IR spectroscopies, and ESI-MS methods. All synthesized compounds were screened for their antibacterial activities against Staphylococcus aureus (Methicillin-resistant), Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, and Acinetobacter baumannii. Among the series, compounds 7 and 13 were found to be active against S. aureus (MRSA), P. aeruginosa, and A. baumannii with the lowest MIC value range of 3.74-8.92 µM. Afterwards, DFT calculations of B3LYP/6-31++G(d,p) level were carried out to investigate geometry structures, frontier molecular orbital, molecular electrostatic potential maps, and gap energies of the synthesized compounds. In addition, the activities of these compounds against various bacterial proteins were compared with molecular-docking calculations. Finally, ADMET studies were performed to investigate the possibility of using of the target compounds as drugs.
Collapse
|
17
|
Yang B, Yuan K, Lu M, El-Kott AF, Negm S, Sun QP, Yang L. Anti-cancer, Anti-collagenase and Anti-elastase Potentials of Some Natural Derivatives: In vitro and in silico Studies. J Oleo Sci 2023; 72:557-570. [PMID: 37121681 DOI: 10.5650/jos.ess22337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The anti-cancer activities of the compounds were evaluated against KYSE-150, KYSE-30, and KYSE-270 cell lines and also on investigated esophageal line HET 1 A as a standard. Modified inhibitory impact on enzymes of collagenase and elastase were used Thring and Moon methods, respectively. Among both compounds, both of them recorded impact on cancer cells being neutral against the control, both had IC50 lower than 100 µM and acted as a potential anticancer drug. The chemical activities of Skullcapflavone I and Skullcapflavone II against elastase and collagenase were investigated utilizing the molecular modeling study. IC50 values of Skullcapflavone I and Skullcapflavone II on collagenase enzyme were obtained 106.74 and 92.04 µM and for elastase enzyme were 186.70 and 123.52 µM, respectively. Anticancer effects of these compounds on KYSE 150, KYSE 30, and KYSE 270 esophageal cancer cell lines studied in this work. For Skullcapflavone I, IC50 values for these cell lines were obtained 14.25, 19.03, 25.10 µM, respectively. Also, for Skullcapflavone II were recorded 20.42, 34.17, 22.40 µM, respectively. The chemical activities of Skullcapflavone I and Skullcapflavone II against some of the expressed surface receptor proteins (CD44, EGFR, and PPARγ) in the mentioned cell lines were assessed using the molecular docking calculations. The calculations showed the possible interactions and their characteristics at an atomic level.
Collapse
Affiliation(s)
- Binfeng Yang
- Department of Medical Oncology, Suzhou Ninth People's Hospital·Suzhou Ninth Hospital Affiliated to Soochow University
| | - Kaisheng Yuan
- Department of Gastroenterology, People's Hospital of Hongze District
| | - Ming Lu
- Department of General Surgery-Gastrointestinal Surgery JiLin Central Hospital
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University
- Department of Zoology, College of Science, Damanhour University
| | - Sally Negm
- Department of Life Sciences, Faculty of Science and Art Mahail, King Khalid University
- Unit of Food Bacteriology, Central Laboratory of Food Hygiene, Ministry of Health
| | - Qiu Ping Sun
- Department of Chinese Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention
| | - Lu Yang
- Department of Chinese Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University
- Department of Comprehensive Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention
| |
Collapse
|
18
|
Chaube U, Patel BD, Bhatt HG. A hypothesis on designing strategy of effective RdRp inhibitors for the treatment of SARS-CoV-2. 3 Biotech 2023; 13:12. [PMID: 36532857 PMCID: PMC9755803 DOI: 10.1007/s13205-022-03430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Vaccines are used as one of the major weapons for the eradication of pandemic. However, the rise of different variants of the SARS-CoV-2 virus is creating doubts regarding the end of the pandemic. Hence, there is an urgent need to develop more drug candidates which can be useful for the treatment of COVID-19. In the present research for the scientific hypothesis, emphasis was given on the direct antiviral therapy available for the treatment of COVID-19. In lieu of this, the available molecular targets which include Severe Acute Respiratory Syndrome Chymotrypsin-like Protease (SARS-3CLpro), Papain-Like Cysteine Protease (PLpro), and RNA-Dependent RNA Polymerase (RdRp) were explored. As per the current scientific reports and literature, among all the available molecular targets, RNA-Dependent RNA Polymerase (RdRp) was found to be a crucial molecular target for the treatment of COVID-19. Most of the inhibitors which are reported against this target consisted of the free amine group and carbonyl group which might be playing an important role in the binding interaction with the RdRp protein. Among all the reported RdRp inhibitors, remdesivir, favipiravir, and molnupiravir were found to be the most promising drugs against COVID-19. Overall, the structural features of this RNA-Dependent RNA Polymerase (RdRp) inhibitors proved the importance of pyrrolo-triazine and pyrimidine scaffolds. Previous computational models of these drug molecules indicated that substitution with the polar functional group, hydrogen bond donor, and electronegative atoms on these scaffolds may increase the activity against the RdRp protein. Hence, in line with the proposed hypothesis, in the present research work for the evaluation of the hypothesis, new molecules were designed from the pyrrolo-triazine and pyrimidine scaffolds. Further, molecular docking and MD simulation studies were performed with these designed molecules. All these designed molecules (DM-1, DM-2, and DM-3) showed the results as per the proposed hypothesis. Among all the designed molecules, DM-1 showed promising results against the RdRp protein of SARS-CoV-2. In the future, these structural features can be used for the development of new RdRp inhibitors with improved activity. Also, in the future lead compound DM-1 can be explored against the RdRp protein for the treatment of COVID-19.
Collapse
Affiliation(s)
- Udit Chaube
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| | - Bhumika D. Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| | - Hardik G. Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| |
Collapse
|
19
|
TEGEGN G, MELAKU Y, ENDALE ANNİSA M, ESWARAMOORTHY R. Pharmacokinetics, drug-likeness, antibacterial and antioxidant activity of secondary metabolites from the roots extracts of Crinum abyssinicum and Calotropis procera and in silico molecular docking study. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.1107685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Crinum abyssinicum and Calotropis procera were traditionally used for the treatment of different diseases such as hypertension, diabetes, hepatitis B, skin infection, anticancer, asthma, fever, and diarrhea. The structures of the compounds were characterized by 1H NMR, 13C NMR, and DEPT-135 spectra. Compounds 1-3 were reported herein for the first time from the species of C. abyssinicum. The DCM/MeOH (1:1) and MeOH roots extracts of C. abyssinicum showed significant inhibitory activity against S. aureus and P. aeruginosa with a mean inhibition zone of 16.67 ± 1.20 and 16.33 ± 0.33 mm, respectively. Compounds 4 and 5 showed promising activity against E. coli with a mean inhibition zone of 17.7 0.8 and 17.7 1.2 mm, respectively. The results of DPPH activity showed the DCM: MeOH (1:1) and MeOH roots extracts of C. abyssinicum inhibited the DPPH radical by 52.86 0.24 % and 45.6 0.11 %, respectively, whereas compound 5 displayed 85.7 % of inhibition. The drug-likeness analysis showed that compounds 2-4 satisfy Lipinski’s rule of five with zero violations. Compounds 2, and 6 showed binding affinities of −6.0, and −6.7 kcal/mol against E. coli DNA gyrase B, respectively, while 3 and 5 showed −5.0 and −5.0 kcal/mol, respectively against human peroxiredoxin 5. Therefore, the in vitro antibacterial, radical scavenging activity along with the molecular docking analysis suggest the potential use of the extracts of C. abyssinicum and compounds 2, 5, 6, and 3, 5 can be considered as promising antibacterial agents and free radical scavengers, respectively.
Collapse
Affiliation(s)
| | - Yadessa MELAKU
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Milkyas ENDALE ANNİSA
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Rajalakshmanan ESWARAMOORTHY
- Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600 077, India
| |
Collapse
|
20
|
Shahzadi I, Zahoor AF, Tüzün B, Mansha A, Anjum MN, Rasul A, Irfan A, Kotwica-Mojzych K, Mojzych M. Repositioning of acefylline as anti-cancer drug: Synthesis, anticancer and computational studies of azomethines derived from acefylline tethered 4-amino-3-mercapto-1,2,4-triazole. PLoS One 2022; 17:e0278027. [PMID: 36520942 PMCID: PMC9754256 DOI: 10.1371/journal.pone.0278027] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022] Open
Abstract
Novel azomethines derived from acefylline tethered triazole hybrids (7a-k) have been synthesized and evaluated against human liver cancer cell line (Hep G2) using MTT assay. The synthesized series of azomethines exhibited promising efficacy against liver cancer cell line. Screening of the synthesized series identified compound 7d with the least cell viability value (11.71 ± 0.39%) as the most potent anticancer agent in contrast to the reference drug acefylline (cell viability = 80 ± 3.87%). In this study, the potentials of the novel agents (7a-k) to inhibit liver cancer proteins were assessed. Subsequently, the structure-activity relationship of the potential drug candidates was assessed via ADME/T molecular screening. The cytotoxic potential of these derivatives was also investigated by hemolysis and thrombolysis. Their hemolytic and thrombolytic studies showed that all of these drugs had very low cytotoxicity and moderate clot lysis activity. Compound 7g (0.26% hemolysis) and 7k (52.1% clot lysis) were the least toxic and moderate thrombolytic agents respectively.
Collapse
Affiliation(s)
- Irum Shahzadi
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| |
Collapse
|
21
|
Poustforoosh A, Farmarz S, Nematollahi MH, Hashemipour H, Pardakhty A. Construction of Bio-conjugated nano-vesicles using non-ionic surfactants for targeted drug delivery: A computational supported experimental study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Bastin A, Shiri H, Zanganeh S, Fooladi S, Momeni Moghaddam MA, Mehrabani M, Nematollahi MH. Iron Chelator or Iron Supplement Consumption in COVID-19? The Role of Iron with Severity Infection. Biol Trace Elem Res 2022; 200:4571-4581. [PMID: 34825316 PMCID: PMC8614629 DOI: 10.1007/s12011-021-03048-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022]
Abstract
Iron is a trace element that is used to replicate the virus and has a role in the vital functions of the body and the host's innate immune system. The mechanism of iron in COVID-19 severity is still not well understood. The aim of this study was to evaluate the association of the iron with COVID-19 severity. A case-control study was performed on 147 patients with a positive PCR test result and 39 normal individuals admitted to the Persian Gulf Martyrs Hospital in Bushehr, Iran. The iron profiles and related tests were measured along with hematological analytes. Hemoglobin (Hb), Fe, and saturated transferrin decreased in all the groups compared to the controls, but ferritin increased in the patient groups. After adjusting for age and sex, we found that increased ferritin levels augmented the odds ratio (OR) of the disease in the moderate (OR = 2.95, P = 0.007), severe (OR = 6.1, P < 0.001), and critical groups (OR = 8.34, P < 0.001). The decreased levels of Fe reduced the OR of the disease in the mild (OR = 0.96, P < 0.001), moderate (OR = 0.96, P < 0.001), severe (OR = 0.95, P < 0.001), and critical (OR = 0.98, P = 0.001) groups. Fe (AUC = 85.95, cutoff < 75.5 µg/dL, P < 0.001) and ferritin (AUC = 84.45, cutoff > 157.5 ng/dL, P < 0.001) have higher AUC for disease prognosis, but only ferritin (AUC = 74.89, cutoff > 261.5 ng/dL, P < 0.001) has higher AUC for disease severity assays. It could be concluded that the use of iron chelators to reduce iron intake can be considered a therapeutic goal. In addition, measuring Fe and ferritin is beneficial for the diagnosis of the disease and determining its severity.
Collapse
Affiliation(s)
- Alireza Bastin
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamidreza Shiri
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Sareh Zanganeh
- Bacteriology & Virology Department, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saba Fooladi
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Momeni Moghaddam
- Department of Nutrition and Biochemistry, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
23
|
Said MA, Riyadh SM, Al-Kaff NS, Nayl AA, Khalil KD, Bräse S, Gomha SM. Synthesis and greener pastures biological study of bis-thiadiazoles as potential Covid-19 drug candidates. ARAB J CHEM 2022; 15:104101. [PMID: 35845755 PMCID: PMC9272579 DOI: 10.1016/j.arabjc.2022.104101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/02/2022] [Indexed: 12/12/2022] Open
Abstract
A novel series of bis- (Abdelhamid et al., 2017, Banerjee et al., 2018, Bharanidharan et al., 2022)thiadiazoles was synthesized from the reaction of precursor dimethyl 2,2'-(1,2-diphenylethane-1,2-diylidene)-bis(hydrazine-1-carbodithioate) and hydrazonyl chlorides in ethanol under ultrasonic irradiation. Spectral tools (IR. NMR, MS, elemental analyses, molecular dynamic simulation, DFT and LUMO and HOMO) were used to elucidate the structure of the isolated products. Molecular docking for the precursor, 3 and ligands 6a-i to two COVID-19 important proteins Mpro and RdRp was compared with two approved drugs, Remdesivir and Ivermectin. The binding affinity varied between the ligands and the drugs. The highest recorded binding affinity of 6c with Mpro was (-9.2 kcal/mol), followed by 6b and 6a, (-8.9 and -8.5 kcal/mol), respectively. The lowest recorded binding affinity was (-7.0 kcal/mol) for 6 g. In comparison, the approved drugs showed binding affinity (-7.4 and -7.7 kcal/mol), for Remdesivir and Ivermectin, respectively, which are within the range of the binding affinity of our ligands. The binding affinity of the approved drug Ivermectin against RdRp recoded the highest (-8.6 kcal/mol), followed by 6a, 6 h, and 6i are the same have (-8.2 kcal/mol). The lowest reading was found for compound 3 ligand (-6.3 kcal/mol). On the other side, the amino acids also differed between the compounds studied in this project for both the viral proteins. The ligand 6a forms three H-bonds with Thr 319(A), Sr 255(A) and Arg 457(A), whereas Ivermectin forms three H-bonds with His 41(A), Gly143(A) and Gln 18(A) for viral Mpro. The RdRp amino acids residues could be divided into four groups based on the amino acids that interact with hydrogen or hydrophobic interactions. The first group contained 6d, 6b, 6 g, and Remdesivir with 1-4 hydrogen bonds and hydrophobic interactions 1 to 10. Group 2 is 6a and 6f exhibited 1 and 3 hydrogen bonds and 15 and 14 hydrophobic interactions. Group 3 has 6e and Ivermectin shows 4 and 3 hydrogen bonds, respectively and 11 hydrophobic interactions for both compounds. The last group contains ligands 3, 6c, 6 h, and 6i gave 1-3 hydrogen bonds and 6c and 3 recorded the highest number of hydrophobic interactions, 14 for both 6c and 6 h. Pro Tox-II estimated compounds' activities as Hepatoxic, Carcinogenic and Mutagenic, revealing that 6f-h were inactive in all five similar to that found with Remdesivir and Ivermectin. The drug-likeness prediction was carried out by studying physicochemical properties, lipophilicity, size, polarity, insolubility, unsaturation, and flexibility. Generally, some properties of the ligands were comparable to that of the standards used in this study, Remdesivir and Ivermectin.
Collapse
Affiliation(s)
- Musa A Said
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Sayed M Riyadh
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Nadia S Al-Kaff
- Department of Biology, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - A A Nayl
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Khaled D Khalil
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.,Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawrah, Yanbu 46423, Saudi Arabia
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany.,Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Director Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.,Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| |
Collapse
|
24
|
Yang X, Zhao Z, Zhao C, Li Y, El-Kott AF, Bani-Fwaz MZ. Anti-breast Adenocarcinoma and Anti-urease Anti-tyrosinase Properties of 5-Pentylresorcinol as Natural Compound with Molecular Docking Studies. J Oleo Sci 2022; 71:1031-1038. [PMID: 35781255 DOI: 10.5650/jos.ess22024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
5-Pentylresorcinol is a type of the group of resorcinol compounds that is resorcinol in that has hydrogen atom at position 5 is replaced by a pentyl group. It has a role as a lichen metabolite. This compound showed excellent to good inhibitory activities against studied these enzymes with IC50 values of 65.96 µM for urease and 34.81 µM for tyrosinase. Standard compounds for enzymes had IC50 values of 1.94±0.24 µM against urease and 84.36±5.17 µM against tyrosinase. The IC50 of 5-pentylresorcinol against MCF7 cell line was 165.72 µg/mL; against Hs 578Bst cell line was 102.14 µg/mL; against Hs 319.T cell line was 12.34 µg/mL; and against UACC-3133 cell line was 73.07 µg/mL, respectively. The chemical activities of 5-pentylresorcinol against urease and tyrosinase were evaluated using the molecular modeling study. The anti-cancer activity of 5-pentylresorcinol was also investigated by treating the compound on the BRCT repeat region from the breast cancer-associated protein (BRCA1), and their interactions were assessed utilizing the molecular docking calculations. The results revealed the probable interactions and their characteristics at an atomic level. The docking scores of 5-pentylresorcinol against urease, tyrosinase, and BRCA1 are -3.073, -5.262, and -3.238 (kcal/mol), respectively.
Collapse
Affiliation(s)
- Xiaopeng Yang
- Department of Thyroid and Breast Surgery, The First People's Hospital of Wenling
| | - Zhenyu Zhao
- Department of Oncology, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University
| | - Chenhui Zhao
- Department of General Surgery, The Second People's Hospital of Jiulongpo District
| | - Yan Li
- Department of General Surgery, Puren Hospital of Wuhan University of Science and Technology
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University.,Department of Zoology, College of Science, Damanhour University
| | | |
Collapse
|
25
|
Poustforoosh A, Hashemipour H, Tüzün B, Azadpour M, Faramarz S, Pardakhty A, Mehrabani M, Nematollahi MH. The Impact of D614G Mutation of SARS-COV-2 on the Efficacy of Anti-viral Drugs: A Comparative Molecular Docking and Molecular Dynamics Study. Curr Microbiol 2022; 79:241. [PMID: 35792936 PMCID: PMC9258457 DOI: 10.1007/s00284-022-02921-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 06/01/2022] [Indexed: 02/07/2023]
Abstract
D614G is one of the most reported mutations in the spike protein of SARS-COV-2 that has altered some crucial characteristics of coronaviruses, such as rate of infection and binding affinities. The binding affinity of different antiviral drugs was evaluated using rigid molecular docking. The reliability of the docking results was evaluated with the induced-fit docking method, and a better understanding of the drug-protein interactions was performed using molecular dynamics simulation. The results show that the D614G variant could change the binding affinity of antiviral drugs and spike protein remarkably. Although Cytarabine showed an appropriate interaction with the wild spike protein, Ribavirin and PMEG diphosphate exhibited a significant binding affinity to the mutated spike protein. The parameters of the ADME/T analysis showed that these drugs are suitable for further in-vitro and in-vivo investigation. D614G alteration affected the binding affinity of the RBD and its receptor on the cell surface.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Chemical Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hassan Hashemipour
- Chemical Engineering Department, Faculty of Engineering, Vali-e-Asr, University of Rafsanjan, Rafsanjan, Iran.
| | - Burak Tüzün
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mahdiyeh Azadpour
- Chemical Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sanaz Faramarz
- Department of Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Department of Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran. .,Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
26
|
Synthesis, structural confirmation, antibacterial properties and bio-informatics computational analyses of new pyrrole based on 8-hydroxyquinoline. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Synthesis, characterization, chemical and biological activities of 4-(4-methoxyphenethyl)-5- benzyl-2-hydroxy-2H-1,2,4-triazole-3(4H)-one phthalocyanine derivatives. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Poustforoosh A, Faramarz S, Nematollahi MH, Hashemipour H, Negahdaripour M, Pardakhty A. In silico SELEX screening and statistical analysis of newly designed 5mer peptide-aptamers as Bcl-xl inhibitors using the Taguchi method. Comput Biol Med 2022; 146:105632. [PMID: 35617726 DOI: 10.1016/j.compbiomed.2022.105632] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/03/2022]
Abstract
Drug development for cancer treatment is a complex process that requires special efforts. Targeting crucial proteins is the most essential purpose of drug design in cancers. Bcl-xl is an anti-apoptotic protein that binds to pro-apoptotic proteins and interrupts their signals. Pro-apoptotic Bcl-xl effectors are short BH3 sequences that form an alpha helix and bind to anti-apoptotic proteins to inhibit their activity. Computational systematic evolution of ligands by exponential enrichment (SELEX) is an exclusive approach for developing peptide aptamers as potential effectors. Here, the amino acids with a high tendency for constructing an alpha-helical structure were selected. Due to the enormous number of pentapeptides, Taguchi method was used to study a selected number of peptides. The binding affinity of the peptides to Bcl-xl was assessed using molecular docking, and after analysis of the obtained results, a final set of optimized peptides was arranged and constructed. For a better comparison, three chemical compounds with approved anti-Bcl-xl activity were selected for comparison with the top-ranked 5mer peptides. The optimized peptides showed considerable binding affinity to Bcl-xl. The molecular dynamics (MD) simulation indicated that the designed peptide (PO5) could create considerable interactions with the BH3 domain of Bcl-xl. The MM/GBSA calculations revealed that these interactions were even stronger than those created by chemical compounds. In silico SELEX is a novel approach to design and evaluate peptide-aptamers. The experimental design improves the SELEX process considerably. Finally, PO5 could be considered a potential inhibitor of Bcl-xl and a potential candidate for cancer treatment.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Chemical Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Sanaz Faramarz
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hassan Hashemipour
- Chemical Engineering Department, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
29
|
Al-Janabi IAS, Yavuz SÇ, Köprü S, Tapera M, Kekeçmuhammed H, Akkoç S, Tüzün B, Patat Ş, Sarıpınar E. Antiproliferative activity and molecular docking studies of new 4-oxothiazolidin-5-ylidene acetate derivatives containing guanylhydrazone moiety. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Synthesis, characterization and bioactivity of novel 8-hydroxyquinoline derivatives: Experimental, molecular docking, DFT and POM analyses. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Alici EH, Bilgiçli AT, Tüzün B, Günsel A, Arabaci G, Nilüfer Yarasir M. Alkyl chain modified metalophthalocyanines with enhanced antioxidant-antimicrobial properties by doping Ag+ and Pd2+ ions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Perceiving SARS-CoV-2 Mpro and PLpro dual inhibitors from pool of recognized antiviral compounds of endophytic microbes: an in silico simulation study. Struct Chem 2022; 33:1619-1643. [PMID: 35431517 PMCID: PMC8990578 DOI: 10.1007/s11224-022-01932-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/31/2022] [Indexed: 11/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) persists and shook the global population where the endgame to this pandemic is brought on by developing vaccines in record-breaking time. Nevertheless, these vaccines are far from perfect where their efficiency ranges from 65 to 90%; therefore, vaccines are not the one only solution to overcome this situation, and apart from administration of vaccines, the scientific community is at quest for finding alternative solutions to incumber SARS-CoV-2 infection. In this study, our research group is keen on identifying a bioactive molecule that is independent in its mode of action from existing vaccines which can potentially target the SARS-CoV-2 virus replicative efficacy. Papain-like protease (PLpro) and main protease (Mpro) are the most lucrative targets of COVIDs against which the drugs can be developed, as these proteases play a vital role in the replication and development of viral particles. Researchers have modelled a compound such as GRL0617 and X77 as an inhibitor of Mpro and PLpro, respectively, but use of these compounds has several limitations on hosts like toxicity and solubility. Under the current study by deploying rigorous computational assessments, pool of microbial secondary metabolites was screened and handpicked to search a structural or functional analogue of GRL0617 and X77, with an idea to identify a compound that can serve as dual inhibitor for both PLpro and Mpro. From the manually curated database of known antiviral compounds from fungal origin, we found cytonic acids A and B to potentially serve as dual inhibitor of PLpro and Mpro.
Collapse
|
33
|
Biswas M, Sawajan N, Rungrotmongkol T, Sanachai K, Ershadian M, Sukasem C. Pharmacogenetics and Precision Medicine Approaches for the Improvement of COVID-19 Therapies. Front Pharmacol 2022; 13:835136. [PMID: 35250581 PMCID: PMC8894812 DOI: 10.3389/fphar.2022.835136] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
Many drugs are being administered to tackle coronavirus disease 2019 (COVID-19) pandemic situations without establishing clinical effectiveness or tailoring safety. A repurposing strategy might be more effective and successful if pharmacogenetic interventions are being considered in future clinical studies/trials. Although it is very unlikely that there are almost no pharmacogenetic data for COVID-19 drugs, however, from inferring the pharmacokinetic (PK)/pharmacodynamic(PD) properties and some pharmacogenetic evidence in other diseases/clinical conditions, it is highly likely that pharmacogenetic associations are also feasible in at least some COVID-19 drugs. We strongly mandate to undertake a pharmacogenetic assessment for at least these drug-gene pairs (atazanavir-UGT1A1, ABCB1, SLCO1B1, APOA5; efavirenz-CYP2B6; nevirapine-HLA, CYP2B6, ABCB1; lopinavir-SLCO1B3, ABCC2; ribavirin-SLC28A2; tocilizumab-FCGR3A; ivermectin-ABCB1; oseltamivir-CES1, ABCB1; clopidogrel-CYP2C19, ABCB1, warfarin-CYP2C9, VKORC1; non-steroidal anti-inflammatory drugs (NSAIDs)-CYP2C9) in COVID-19 patients for advancing precision medicine. Molecular docking and computational studies are promising to achieve new therapeutics against SARS-CoV-2 infection. The current situation in the discovery of anti-SARS-CoV-2 agents at four important targets from in silico studies has been described and summarized in this review. Although natural occurring compounds from different herbs against SARS-CoV-2 infection are favorable, however, accurate experimental investigation of these compounds is warranted to provide insightful information. Moreover, clinical considerations of drug-drug interactions (DDIs) and drug-herb interactions (DHIs) of the existing repurposed drugs along with pharmacogenetic (e.g., efavirenz and CYP2B6) and herbogenetic (e.g., andrographolide and CYP2C9) interventions, collectively called multifactorial drug-gene interactions (DGIs), may further accelerate the development of precision COVID-19 therapies in the real-world clinical settings.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Nares Sawajan
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pathology, School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Kamonpan Sanachai
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Maliheh Ershadian
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics and Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
34
|
Wu Y, Gan D, Leng X, He W, Zhang X, Li C, Gu X, Hu Y, Du S, Han Y. Anti-ageing and Anti-lung Carcinoma Effects of Vulpinic Acid and Usnic Acid Compounds and Biological Investigations with Molecular Modeling Study. J Oleo Sci 2022; 71:247-255. [PMID: 35110467 DOI: 10.5650/jos.ess21276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Disorganization and breakdown of extracellular matrix proteins like fibronectin, collagen, and elastin are key characteristics of skin aging due to the increased activation of important proteolytic enzymes like elastases and collagenase enzymes. Also, inhibition of their enzymatic activities by natural molecules might be a promising factor to prevent extrinsic skin aging. All chemicals were obtained from Sigma-Aldrich unless otherwise stated. The assay employed was based on spectrophotometric methods reported in the literature. The collagenase and elastase inhibition assays of some phenolic compounds were performed according to the previous studies. These compounds showed excellent to good inhibitory activities of vulpinic acid against studied these enzymes with IC50 values of 195.36 µM for collagenase and 25.24 µM for elastase. The molecular docking calculations were conducted to investigate the chemical and biological activity of vulpinic acid and usnic acid against collagenase and elastase. The results indicated that these two compounds can interact with the essential residues of the enzymes and affect their activities. The calculations of binding free energies were also performed to obtain more details about the characteristics and free energies of the ligand-enzyme complexes. Additionally, both compounds exhibited the most potent inhibition in the three lung cancer cells, with an IC50 value of 21-68 µM, indicating that vulpinic acid is more potent than Doxorubicin, which exhibited an IC50 value of 21-29 µM.
Collapse
Affiliation(s)
- Yunhua Wu
- Southwest Medical University.,Thoracic surgery, Chendu Wenjiang District People's Hospital
| | - Dongmei Gan
- Thoracic surgery, Chendu Wenjiang District People's Hospital
| | | | - Wenwu He
- Thoracic surgery, Sichuan Cancer Hospital
| | - Xiuqiong Zhang
- Thoracic surgery, Chendu Wenjiang District People's Hospital
| | - Chong Li
- Thoracic surgery, Chendu Wenjiang District People's Hospital
| | - Xiaobo Gu
- Thoracic surgery, Chendu Wenjiang District People's Hospital
| | - Ying Hu
- Thoracic surgery, Chendu Wenjiang District People's Hospital
| | - Shijian Du
- Thoracic surgery, Chendu Wenjiang District People's Hospital
| | - Yongtao Han
- Southwest Medical University.,Thoracic surgery, Sichuan Cancer Hospital
| |
Collapse
|
35
|
Majumdar D, Tüzün B, Pal TK, Das S, Bankura K. Architectural View of Flexible Aliphatic –OH Group Coordinated Hemi-Directed Pb(II)-Salen Coordination Polymer: Synthesis, Crystal Structure, Spectroscopic Insights, Supramolecular Topographies, and DFT Perspective. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02194-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Kökbudak Z, Akkoç S, Karataş H, Tüzün B, Aslan G. In Silico
and
In Vitro
Antiproliferative Activity Assessment of New Schiff Bases. ChemistrySelect 2022. [DOI: 10.1002/slct.202103679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Senem Akkoç
- Department of Basic Pharmaceutical Science Suleyman Demirel University Isparta Turkey
| | - Halis Karataş
- Department of Chemistry Erciyes University Kayseri Turkey
| | - Burak Tüzün
- Plant and Animal Production Department Sivas Cumhuriyet University Sivas Turkey
| | - Güzin Aslan
- Department of Chemistry Erciyes University Kayseri Turkey
| |
Collapse
|
37
|
Li L, Song X, Ouyang M, El-kott AF, Bani-Fwaz MZ, Yu Z. Anti-HMG-CoA Reductase, Anti-diabetic, Anti-urease, Anti-tyrosinase and Anti-leukemia Cancer Potentials of Panicolin as a Natural Compound:<i>In vitro</i> and <i>in silico</i> Study. J Oleo Sci 2022; 71:1469-1480. [DOI: 10.5650/jos.ess22156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ling Li
- Department of Hematology, Inner Mongolia People’s Hospital
| | - Xiyue Song
- Department of Clinical Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science
| | - Meng Ouyang
- Department of Pharmacy, The First People’s Hospital of JiangXia District
| | | | | | - Zebing Yu
- Department of Pharmacy, Nanning Social Welfare Hospital
| |
Collapse
|
38
|
Poustforoosh A, Hashemipour H, Pardakhty A, Kalantari Pour M. Preparation of nano‐micelles of meloxicam for transdermal drug delivery and simulation of drug release: A computational supported experimental study. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alireza Poustforoosh
- Chemical Engineering Department, Faculty of Engineering Shahid Bahonar University of Kerman Kerman Iran
| | - Hassan Hashemipour
- Chemical Engineering Department, Faculty of Engineering Vali‐E‐Asr University of Rafsanjan Rafsanjan Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center Neuropharmacology Institute, Kerman University of Medical Sciences Kerman Iran
| | | |
Collapse
|
39
|
Khalilov AN, Tüzün B, Taslimi P, Tas A, Tuncbilek Z, Cakmak NK. Cytotoxic effect, spectroscopy, DFT, enzyme inhibition, and moleculer docking studies of some novel mesitylaminopropanols: Antidiabetic and anticholinergics and anticancer potentials. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
40
|
Patil SM, Maruthi KR, Bajpe SN, Vyshali VM, Sushmitha S, Akhila C, Ramu R. Comparative molecular docking and simulation analysis of molnupiravir and remdesivir with SARS-CoV-2 RNA dependent RNA polymerase (RdRp). Bioinformation 2021; 17:932-939. [PMID: 35655903 PMCID: PMC9148593 DOI: 10.6026/97320630017932] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Treatment of SARS-CoV-2 targeting its RNA dependent RNA polymerase (RdRp) is of current interest. Remdesivir has been approved for the treatment of COVID-19 around the world. However, the drug has been linked with pharmacological limitations like adverse effects and reduced efficiency. Nevertheless, recent advancements have depicted molnupiravir as an effective therapeutic agent to target the SARS-CoV-2 RdRp. The drug has cleared both in vitro and in vivo screening. It is in phase-III clinical trial. Nonetheless, there are no data on themolecular binding interaction of molnupiravir with RdRp. Therefore, it is of interest to report the binding interaction of molnupiravir using molecular docking. It is also of interest to show its stability during interaction using molecular dynamics and binding free energy calculations along with drug likeliness and pharmacokinetic properties in comparison with remdesivir.
Collapse
Affiliation(s)
- Shashank M Patil
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru-570015, Karnataka, India
| | - KR Maruthi
- Department of Biotechnology, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire-574240, Karnataka, India
| | - Shrisha Naik Bajpe
- Department of Biotechnology, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire-574240, Karnataka, India
| | - VM Vyshali
- Department of Biotechnology, BMS College for Women, Basavangudi, Bengaluru-560004, Karnataka, India
| | - S Sushmitha
- Department of Biotechnology, BMS College for Women, Basavangudi, Bengaluru-560004, Karnataka, India
| | - Chagalamari Akhila
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru-570015, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru-570015, Karnataka, India
| |
Collapse
|
41
|
Poustforoosh A, Faramarz S, Nematollahi MH, Hashemipour H, Tüzün B, Pardakhty A, Mehrabani M. 3D-QSAR, molecular docking, molecular dynamics, and ADME/T analysis of marketed and newly designed flavonoids as inhibitors of Bcl-2 family proteins for targeting U-87 glioblastoma. J Cell Biochem 2021; 123:390-405. [PMID: 34791695 DOI: 10.1002/jcb.30178] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Glioblastoma is the most common and destructive brain tumor with increasing complexity. Flavonoids are versatile natural compounds with the approved anticancer activity, which could be considered as a potential treatment for glioblastoma. A quantitative structure-activity relationship (QSAR) can provide adequate data for understanding the role of flavonoids structure against glioblastoma. The IC50 of various flavonoids for the U-87 cell line was used to prepare an adequate three-dimensional QSAR (3D-QSAR) model. The validation of the model was carried out using some statistical parameters such as R2 and Q2 . Based on the QSAR model, the activities of other marketed and newly designed flavonoids were predicted. Molecular docking study and molecular dynamics (MD) simulation were conducted for better recognition of the interactions between the most active compounds and Bcl-2 family proteins. Moreover, an AMDE/T analysis was performed for the most active flavonoids. A reliable 3D-QSAR was performed with R2 and Q2 of 0.91 and 0.82. The molecular docking study revealed that BCL-XL has a higher binding affinity with the most active compounds, and the MD simulation showed that some residues of the BH3 domain, such as Phe97, Tyr101, Arg102, and Phe105 create remarkable hydrophobic interactions with the ligands. ADME/T analysis also showed the potential of the active compounds for further investigation. 3D-QSAR study is a beneficial method to evaluate and design anticancer compounds. Considering the results of the molecular docking study, MD simulation, and ADME/T analysis, the designed compound 54 could be considered as a potential treatment for glioblastoma.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sanaz Faramarz
- Department of Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hassan Hashemipour
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Burak Tüzün
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical, Kerman, Iran
| |
Collapse
|
42
|
Zhang H, Jiang Q, Gong G, Li M, Alotaibi SH. Alpinetin: anti-human gastric cancer potential and urease inhibition activity in vitro. Arch Med Sci 2021; 19:1479-1486. [PMID: 37732032 PMCID: PMC10507754 DOI: 10.5114/aoms/138832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/10/2021] [Indexed: 09/22/2023] Open
Abstract
Introduction Alpinetin is the bioactive component of a traditional Chinese medicine. This compound, one of the main constituents of the seeds of Alpinia katsumadai Hayata, is a member of the flavonoids, with anti-inflammatory, antibacterial, and other significant therapeutic activities of important potency and low systemic toxicity. Material and methods In our study, the inhibitory effect of isoliquiritigenin on HMG-CoA reductase showed a lower value of IC50 = 21.86 ±1.44 μg/ml. A molecular docking study was performed as a complementary study to provide additional data about the biological activities of alpinetin in the presence of urease. The docking calculations revealed that alpinetin with a docking score of -5.097 (kcal/mol) has an acceptable binding affinity to the enzyme, and because of various hydrophobic contacts and hydrogen bonds created by this chemical compound, alpinetin could be considered as an adequate inhibitor of urease. Results In the cellular and molecular part of the study, the cells treated with alpinetin were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay for 48 h as regards the cytotoxicity and anti-human gastric carcinoma properties towards normal (human umbilical vein endothelial cells (HUVECs)) and gastric carcinoma cell lines, i.e. SNU-1, Hs 746T, and KATO III. The IC50 values of alpinetin were 426, 586, and 424 μg/ml against SNU-1, Hs 746T, and KATO III cell lines, respectively. The viability of the malignant gastric cell line decreased dose-dependently in the presence of alpinetin. Conclusions It seems that the anti-human gastric carcinoma effect of the investigated molecule is due to its antioxidant effects.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Gastroenterology, Inner Mongolia People’s Hospital, Hohhot city, Inner Mongolia, China
| | - Qian Jiang
- Department of Oncological Radiotherapy, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Guojin Gong
- Department of Gastrointestinal Surgery, Xichang People’s Hospital, Xichang City, Sichuan Province, China
| | - Mingzhen Li
- Department of Health Management Center, Xiang’an Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Saad H. Alotaibi
- Department of Chemistry, Turabah University College, Taif University, Taif, Saudi Arabia
| |
Collapse
|
43
|
Tenofovir, Another Inexpensive, Well-Known and Widely Available Old Drug Repurposed for SARS-COV-2 Infection. Pharmaceuticals (Basel) 2021; 14:ph14050454. [PMID: 34064831 PMCID: PMC8150375 DOI: 10.3390/ph14050454] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is spreading worldwide with different clinical manifestations. Age and comorbidities may explain severity in critical cases and people living with human immunodeficiency virus (HIV) might be at particularly high risk for severe progression. Nonetheless, current data, although sometimes contradictory, do not confirm higher morbidity, risk of more severe COVID-19 or higher mortality in HIV-infected people with complete access to antiretroviral therapy (ART). A possible protective role of ART has been hypothesized to explain these observations. Anti-viral drugs used to treat HIV infection have been repurposed for COVID-19 treatment; this is also based on previous studies on severe acute respiratory syndrome virus (SARS-CoV) and Middle East respiratory syndrome virus (MERS-CoV). Among them, lopinavir/ritonavir, an inhibitor of viral protease, was extensively used early in the pandemic but it was soon abandoned due to lack of effectiveness in clinical trials. However, remdesivir, a nucleotide analog that acts as reverse-transcriptase inhibitor, which was tested early during the pandemic because of its wide range of antiviral activity against several RNA viruses and its safety profile, is currently the only antiviral medication approved for COVID-19. Tenofovir, another nucleotide analog used extensively for HIV treatment and pre-exposure prophylaxis (PrEP), has also been hypothesized as effective in COVID-19. No data on tenofovir's efficacy in coronavirus infections other than COVID-19 are currently available, although information relating to SARS-CoV-2 infection is starting to come out. Here, we review the currently available evidence on tenofovir's efficacy against SARS-CoV-2.
Collapse
|