1
|
Issler T, Turner RJ, Prenner EJ. Membrane-Nanoparticle Interactions: The Impact of Membrane Lipids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404152. [PMID: 39212640 DOI: 10.1002/smll.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The growing field of nanotechnology presents opportunity for applications across many sectors. Nanostructures, such as nanoparticles, hold distinct properties based on their size, shape, and chemical modifications that allow them to be utilized in both highly specific as well as broad capacities. As the classification of nanoparticles becomes more well-defined and the list of applications grows, it is imperative that their toxicity be investigated. One such cellular system that is of importance are cellular membranes (biomembranes). Membranes present one of the first points of contact for nanoparticles at the cellular level. This review will address current studies aimed at defining the biomolecular interactions of nanoparticles at the level of the cell membrane, with a specific focus of the interactions of nanoparticles with prominent lipid systems.
Collapse
Affiliation(s)
- Travis Issler
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
2
|
Krawczyk-Wołoszyn K, Roczkowski D, Reich A, Żychowska M. Applying the Atomic Force Microscopy Technique in Medical Sciences-A Narrative Review. Biomedicines 2024; 12:2012. [PMID: 39335524 PMCID: PMC11429229 DOI: 10.3390/biomedicines12092012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Penetrating deep into the cells of the human body in real time has become increasingly possible with the implementation of modern technologies in medicine. Atomic force microscopy (AFM) enables the effective live imaging of cellular and molecular structures of biological samples (such as cells surfaces, components of biological membranes, cell nuclei, actin networks, proteins, and DNA) and provides three-dimensional surface visualization (in X-, Y-, and Z-planes). Furthermore, the AFM technique enables the study of the mechanical, electrical, and magnetic properties of cells and cell organelles and the measurements of interaction forces between biomolecules. The technique has found wide application in cancer research. With the use of AFM, it is not only possible to differentiate between healthy and cancerous cells, but also to distinguish between the stages of cancerous conditions. For many years, AFM has been an important tool for the study of neurodegenerative diseases associated with the deposition of peptide amyloid plaques. In recent years, a significant amount of research has been conducted on the application of AFM in the evaluation of connective tissue cell mechanics. This review aims to provide the spectrum of the most important applications of the AFM technique in medicine to date.
Collapse
Affiliation(s)
- Karolina Krawczyk-Wołoszyn
- Doctoral School, University of Rzeszow, 35-959 Rzeszów, Poland;
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszów, Poland;
| | - Damian Roczkowski
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszów, Poland;
| | - Adam Reich
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszów, Poland;
| | - Magdalena Żychowska
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszów, Poland;
| |
Collapse
|
3
|
Khakimzhan A, Izri Z, Thompson S, Dmytrenko O, Fischer P, Beisel C, Noireaux V. Cell-free expression with a quartz crystal microbalance enables rapid, dynamic, and label-free characterization of membrane-interacting proteins. Commun Biol 2024; 7:1005. [PMID: 39152195 PMCID: PMC11329788 DOI: 10.1038/s42003-024-06690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Integral and interacting membrane proteins (IIMPs) constitute a vast family of biomolecules that perform essential functions in all forms of life. However, characterizing their interactions with lipid bilayers remains limited due to challenges in purifying and reconstituting IIMPs in vitro or labeling IIMPs without disrupting their function in vivo. Here, we report cell-free transcription-translation in a quartz crystal microbalance with dissipation (TXTL-QCMD) to dynamically characterize interactions between diverse IIMPs and membranes without protein purification or labeling. As part of TXTL-QCMD, IIMPs are synthesized using cell-free transcription-translation (TXTL), and their interactions with supported lipid bilayers are measured using a quartz crystal microbalance with dissipation (QCMD). TXTL-QCMD reconstitutes known IIMP-membrane dependencies, including specific association with prokaryotic or eukaryotic membranes, and the multiple-IIMP dynamical pattern-forming association of the E. coli division-coordinating proteins MinCDE. Applying TXTL-QCMD to the recently discovered Zorya anti-phage system that is unamenable to labeling, we discovered that ZorA and ZorB integrate within the lipids found at the poles of bacteria while ZorE diffuses freely on the non-pole membrane. These efforts establish the potential of TXTL-QCMD to broadly characterize the large diversity of IIMPs.
Collapse
Affiliation(s)
- Aset Khakimzhan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ziane Izri
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Seth Thompson
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Oleg Dmytrenko
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Patrick Fischer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Chase Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
- Medical Faculty, University of Würzburg, 97080, Würzburg, Germany
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Pereda J, Milde Khatib C, Kezic S, Christensen MO, Yang S, Thyssen JP, Chu CY, Riethmüller C, Liao HS, Akhtar I, Ungar B, Guttman-Yassky E, Hædersdal M, Hwu ET. A Review of Atomic-Force Microscopy in Skin Barrier Function Assessment. J Invest Dermatol 2024:S0022-202X(24)00357-9. [PMID: 38888524 DOI: 10.1016/j.jid.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 06/20/2024]
Abstract
Skin barrier function (SBF) disorders are a class of pathologies that affect a significant portion of the world population. These disorders cause skin lesions with intense itch, impacting patients' physical and psychological well-being as well as their social functioning. It is in the interest of patients that their disorder be monitored closely while under treatment to evaluate the effectiveness of the ongoing therapy and any potential adverse reactions. Symptom-based assessment techniques are widely used by clinicians; however, they carry some limitations. Techniques to assess skin barrier impairment are critical for understanding the nature of the disease and for helping personalize treatment. This review recalls the anatomy of the skin barrier and describes an atomic-force microscopy approach to quantitatively monitor its disorders and their response to treatment. We review a panel of studies that show that this technique is highly relevant for SBF disorder research, and we aim to motivate its adoption into clinical settings.
Collapse
Affiliation(s)
- Jorge Pereda
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Casper Milde Khatib
- Department of Dermatology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Sanja Kezic
- Amsterdam UMC, Coronel Institute of Occupational Health, Amsterdam, The Netherlands
| | | | - Sara Yang
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Jacob P Thyssen
- Department of Dermatology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Hsien-Shun Liao
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Imtisal Akhtar
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Benjamin Ungar
- The Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma Guttman-Yassky
- The Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Merete Hædersdal
- Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - En-Te Hwu
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
5
|
V. D. dos Santos AC, Hondl N, Ramos-Garcia V, Kuligowski J, Lendl B, Ramer G. AFM-IR for Nanoscale Chemical Characterization in Life Sciences: Recent Developments and Future Directions. ACS MEASUREMENT SCIENCE AU 2023; 3:301-314. [PMID: 37868358 PMCID: PMC10588935 DOI: 10.1021/acsmeasuresciau.3c00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 10/24/2023]
Abstract
Despite the ubiquitous absorption of mid-infrared (IR) radiation by virtually all molecules that belong to the major biomolecules groups (proteins, lipids, carbohydrates, nucleic acids), the application of conventional IR microscopy to the life sciences remained somewhat limited, due to the restrictions on spatial resolution imposed by the diffraction limit (in the order of several micrometers). This issue is addressed by AFM-IR, a scanning probe-based technique that allows for chemical analysis at the nanoscale with resolutions down to 10 nm and thus has the potential to contribute to the investigation of nano and microscale biological processes. In this perspective, in addition to a concise description of the working principles and operating modes of AFM-IR, we present and evaluate the latest key applications of AFM-IR to the life sciences, summarizing what the technique has to offer to this field. Furthermore, we discuss the most relevant current limitations and point out potential future developments and areas for further application for fruitful interdisciplinary collaboration.
Collapse
Affiliation(s)
| | - Nikolaus Hondl
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Victoria Ramos-Garcia
- Health
Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Julia Kuligowski
- Health
Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Bernhard Lendl
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Georg Ramer
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
6
|
Dragon J, Hoaglund M, Badireddy AR, Nielsen G, Schlezinger J, Shukla A. Perfluoroalkyl Substances (PFAS) Affect Inflammation in Lung Cells and Tissues. Int J Mol Sci 2023; 24:8539. [PMID: 37239886 PMCID: PMC10218140 DOI: 10.3390/ijms24108539] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Adverse lung outcomes from exposure to per-and polyfluoroalkyl substances (PFAS) are known; however, the mechanism of action is poorly understood. To explore this, human bronchial epithelial cells were grown and exposed to varied concentrations of short-chain (perfluorobutanoic acid, perflurobutane sulfonic acid and GenX) or long-chain (PFOA and perfluorooctane sulfonic acid (PFOS)) PFAS, alone or in a mixture to identify cytotoxic concentrations. Non-cytotoxic concentrations of PFAS from this experiment were selected to assess NLRP3 inflammasome activation and priming. We found that PFOA and PFOS alone or in a mixture primed and activated the inflammasome compared with vehicle control. Atomic force microscopy showed that PFOA but not PFOS significantly altered the membrane properties of cells. RNA sequencing was performed on the lungs of mice that had consumed PFOA in drinking water for 14 weeks. Wild type (WT), PPARα knock-out (KO) and humanized PPARα (KI) were exposed to PFOA. We found that multiple inflammation- and immune-related genes were affected. Taken together, our study demonstrated that PFAS exposure could alter lung biology in a significant manner and may contribute to asthma/airway hyper-responsiveness.
Collapse
Affiliation(s)
- Julie Dragon
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (J.D.); (M.H.); (A.R.B.); (G.N.); (J.S.)
| | - Michael Hoaglund
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (J.D.); (M.H.); (A.R.B.); (G.N.); (J.S.)
| | - Appala Raju Badireddy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (J.D.); (M.H.); (A.R.B.); (G.N.); (J.S.)
| | - Greylin Nielsen
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Jennifer Schlezinger
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Arti Shukla
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (J.D.); (M.H.); (A.R.B.); (G.N.); (J.S.)
| |
Collapse
|
7
|
Page EF, Blake MJ, Foley GA, Calhoun TR. Monitoring membranes: The exploration of biological bilayers with second harmonic generation. CHEMICAL PHYSICS REVIEWS 2022; 3:041307. [PMID: 36536669 PMCID: PMC9756348 DOI: 10.1063/5.0120888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
Nature's seemingly controlled chaos in heterogeneous two-dimensional cell membranes stands in stark contrast to the precise, often homogeneous, environment in an experimentalist's flask or carefully designed material system. Yet cell membranes can play a direct role, or serve as inspiration, in all fields of biology, chemistry, physics, and engineering. Our understanding of these ubiquitous structures continues to evolve despite over a century of study largely driven by the application of new technologies. Here, we review the insight afforded by second harmonic generation (SHG), a nonlinear optical technique. From potential measurements to adsorption and diffusion on both model and living systems, SHG complements existing techniques while presenting a large exploratory space for new discoveries.
Collapse
Affiliation(s)
- Eleanor F. Page
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Marea J. Blake
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Grant A. Foley
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Tessa R. Calhoun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
8
|
Lee HW, Pati TK, Lee IJ, Lee JM, Kim BR, Kwak SY, Kim HM. In Vivo Simultaneous Imaging of Plasma Membrane and Lipid Droplets in Hepatic Steatosis using Red-Emissive Two-Photon Probes. Anal Chem 2022; 94:15100-15107. [PMID: 36265084 DOI: 10.1021/acs.analchem.2c03285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The plasma membrane, which is a phosphoglyceride bilayer at the outer edge of the cell, plays diverse and important roles in biological systems. Visualization of the plasma membrane in live samples is important for various applications in biological functions. We developed an amphiphilic two-photon (TP) fluorescent probe (THQ-Mem) to selectively monitor the plasma membrane in live samples. This probe exhibited red emission (620-700 nm), large TP absorption cross sections (δmax > 790 GM), and high selectivity to the plasma membrane. In cultured cells and in vivo hepatic tissue imaging, THQ-Mem showed bright TP-excited fluorescence (TPEF) and remarkable selectivity for the plasma membrane. Furthermore, simultaneous in vivo imaging with THQ-Mem and a TP lipid droplet probe could serve as an efficient tool to monitor morphological and physiological changes in the plasma membrane and lipid droplets.
Collapse
Affiliation(s)
- Hyo Won Lee
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Tanmay Kumar Pati
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - In-Jeong Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Korea
| | - Jeong-Mi Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Korea
| | - Bo Ra Kim
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Sun Young Kwak
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Hwan Myung Kim
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| |
Collapse
|
9
|
Subczynski WK, Widomska J, Raguz M, Pasenkiewicz-Gierula M. Molecular oxygen as a probe molecule in EPR spin-labeling studies of membrane structure and dynamics. OXYGEN (BASEL, SWITZERLAND) 2022; 2:295-316. [PMID: 36852103 PMCID: PMC9965258 DOI: 10.3390/oxygen2030021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular oxygen (O2) is the perfect probe molecule for membrane studies carried out using the saturation recovery EPR technique. O2 is a small, paramagnetic, hydrophobic enough molecule that easily partitions into a membrane's different phases and domains. In membrane studies, the saturation recovery EPR method requires two paramagnetic probes: a lipid-analog nitroxide spin label and an oxygen molecule. The experimentally derived parameters of this method are the spin-lattice relaxation times (T 1s) of spin labels and rates of bimolecular collisions between O2 and the nitroxide fragment. Thanks to the long T 1 of lipid spin labels (from 1 to 10 μs), the approach is very sensitive to changes of the local (around the nitroxide fragment) O2 diffusion-concentration product. Small variations in the lipid packing affect O2 solubility and O2 diffusion, which can be detected by the shortening of T 1 of spin labels. Using O2 as a probe molecule and a different lipid spin label inserted into specific phases of the membrane and membrane domains allows data about the lateral arrangement of lipid membranes to be obtained. Moreover, using a lipid spin label with the nitroxide fragment attached to its head group or a hydrocarbon chain at different positions also enables data about molecular dynamics and structure at different membrane depths to be obtained. Thus, the method can be used to investigate not only the lateral organization of the membrane (i.e., the presence of membrane domains and phases), but also the depth-dependent membrane structure and dynamics, and, hence, the membrane properties in three dimensions.
Collapse
Affiliation(s)
- Witold K. Subczynski
- Department of Biophysics, Medical College on Wisconsin, Milwaukee, United States
| | - Justyna Widomska
- Department of Biophysics, Medical University of Lublin, Lublin, Poland
| | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, Split, Croatia
| | | |
Collapse
|
10
|
Cai M, Wang H, Zhao G, Li H, Gao J, Wang H. Cell membrane sample preparation method of combined AFM and dSTORM analysis. BIOPHYSICS REPORTS 2022; 8:183-192. [PMID: 37288003 PMCID: PMC10185485 DOI: 10.52601/bpr.2022.220004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/06/2022] [Indexed: 11/05/2022] Open
Abstract
A major role of cell membranes is to provide an ideal environment for the constituent proteins to perform their biological functions. A deep understanding of the membrane proteins assembly process under physiological conditions is quite important to elucidate both the structure and the function of the cell membranes. Along these lines, in this work, a complete workflow of the cell membrane sample preparation and the correlated AFM and dSTORM imaging analysis methods are presented. A specially designed, angle-controlled sample preparation device was used to prepare the cell membrane samples. The correlated distributions of the specific membrane proteins with the topography of the cytoplasmic side of the cell membranes can be obtained by performing correlative AFM and dSTORM measurements. These methods are ideal for systematically studying the structure of the cell membranes. The proposed method of the sample characterization was not only limited to the measurement of the cell membrane but also can be applied for both biological tissue section analysis and detection.
Collapse
Affiliation(s)
- Mingjun Cai
- University of Science and Technology of China, Hefei 230027, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Huili Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Guanfang Zhao
- University of Science and Technology of China, Hefei 230027, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hongru Li
- University of Science and Technology of China, Hefei 230027, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hongda Wang
- University of Science and Technology of China, Hefei 230027, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong, China
| |
Collapse
|
11
|
Puthumadathil N, Krishnan R S, Nair GS, Mahendran KR. Assembly of alpha-helical transmembrane pores through an intermediate state. NANOSCALE 2022; 14:6507-6517. [PMID: 35420118 DOI: 10.1039/d2nr00556e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pore-forming alpha-helical proteins are well known for their dynamic assembly mechanism and it has been challenging to delineate the pore-forming structures in membranes. Previously, attempts have been made to elucidate their assembly mechanism and there is a large gap due to complex pathways by which these membrane-active pores impart their effect. Here we demonstrate a multi-step structural assembly pathway of alpha-helical peptide pores formed by a 37 amino acid synthetic peptide, pPorU, based on the natural porin from Corynebacterium urealyticum using single-channel electrical recordings. More specifically, we report detectable intermediate states during the membrane insertion and pore formation of pPorU. The fully assembled pore exhibited unusually large stable conductance, voltage-dependent gating, and functional blockage by cyclic sugars generally applicable to a range of transmembrane pores. Furthermore, we used rationally designed mutants to understand the role of specific amino acids in the assembly of these peptide pores. Mutant peptides that differ from wild-type peptides produced noisy and unstable intermediate states and low conductance pores, demonstrating sequence specificity in the pore-formation process supported by molecular dynamics simulations. We suggest that our study contributes to understanding the mechanism of action of naturally occurring alpha-helical pore-forming proteins and should be of broad interest to build peptide-based nanopore sensors.
Collapse
Affiliation(s)
- Neethu Puthumadathil
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Smrithi Krishnan R
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Greeshma S Nair
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.
| | - Kozhinjampara R Mahendran
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.
| |
Collapse
|
12
|
Benech JC, Romanelli G. Atomic force microscopy indentation for nanomechanical characterization of live pathological cardiovascular/heart tissue and cells. Micron 2022; 158:103287. [DOI: 10.1016/j.micron.2022.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 02/10/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
|
13
|
Shrestha R, Chen D, Frank P, Nissley DV, Turbyville TJ. Recapitulation of cell-like KRAS4b membrane dynamics on complex biomimetic membranes. iScience 2022; 25:103608. [PMID: 35106460 PMCID: PMC8786645 DOI: 10.1016/j.isci.2021.103608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the spatiotemporal distribution and dynamics of RAS on the plasma membrane (PM) is the key for elucidating the molecular mechanisms of the RAS signaling pathway. Single particle tracking (SPT) experiments show that in cells, KRAS diffuses in at least three interchanging states on the cellular PM; however, KRAS remains monomeric and always shows homogeneous diffusion on artificial membranes. Here, we show for the first time on a supported lipid bilayer composed of heterogeneous lipid components that we can recapitulate the three-state diffusion of KRAS seen in cells. The use of a biologically relevant eight-lipid system opens a new frontier in the biophysical studies of RAS and other membrane associated proteins on a biomimetic system that recapitulates the complexity of a cellular PM. KRAS4b shows homogeneous diffusion on simple 2-lipids bilayer KRAS4b shows a cell-like, three-state diffusion on a complex 8-lipid bilayer Phase separation in lipids favors the multi-state diffusion of KRAS4b The complex lipid composition favors RAS nanoclustering irrespective of nucleotide state
Collapse
Affiliation(s)
- Rebika Shrestha
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - De Chen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Peter Frank
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Thomas J Turbyville
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| |
Collapse
|
14
|
Vasan A, Orosco J, Magaram U, Duque M, Weiss C, Tufail Y, Chalasani SH, Friend J. Ultrasound Mediated Cellular Deflection Results in Cellular Depolarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101950. [PMID: 34747144 PMCID: PMC8805560 DOI: 10.1002/advs.202101950] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/16/2021] [Indexed: 05/29/2023]
Abstract
Ultrasound has been used to manipulate cells in both humans and animal models. While intramembrane cavitation and lipid clustering have been suggested as likely mechanisms, they lack experimental evidence. Here, high-speed digital holographic microscopy (kiloHertz order) is used to visualize the cellular membrane dynamics. It is shown that neuronal and fibroblast membranes deflect about 150 nm upon ultrasound stimulation. Next, a biomechanical model that predicts changes in membrane voltage after ultrasound exposure is developed. Finally, the model predictions are validated using whole-cell patch clamp electrophysiology on primary neurons. Collectively, it is shown that ultrasound stimulation directly defects the neuronal membrane leading to a change in membrane voltage and subsequent depolarization. The model is consistent with existing data and provides a mechanism for both ultrasound-evoked neurostimulation and sonogenetic control.
Collapse
Affiliation(s)
- Aditya Vasan
- Medically Advanced Devices LaboratoryDepartment of Mechanical and Aerospace EngineeringJacobs School of Engineering and Department of SurgerySchool of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Jeremy Orosco
- Medically Advanced Devices LaboratoryDepartment of Mechanical and Aerospace EngineeringJacobs School of Engineering and Department of SurgerySchool of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Uri Magaram
- Molecular Neurobiology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Marc Duque
- Molecular Neurobiology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Connor Weiss
- Molecular Neurobiology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Yusuf Tufail
- Molecular Neurobiology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - James Friend
- Medically Advanced Devices LaboratoryDepartment of Mechanical and Aerospace EngineeringJacobs School of Engineering and Department of SurgerySchool of MedicineUniversity of California San DiegoLa JollaCA92093USA
| |
Collapse
|
15
|
Navikas V, Leitao SM, Grussmayer KS, Descloux A, Drake B, Yserentant K, Werther P, Herten DP, Wombacher R, Radenovic A, Fantner GE. Correlative 3D microscopy of single cells using super-resolution and scanning ion-conductance microscopy. Nat Commun 2021; 12:4565. [PMID: 34315910 PMCID: PMC8316521 DOI: 10.1038/s41467-021-24901-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
High-resolution live-cell imaging is necessary to study complex biological phenomena. Modern fluorescence microscopy methods are increasingly combined with complementary, label-free techniques to put the fluorescence information into the cellular context. The most common high-resolution imaging approaches used in combination with fluorescence imaging are electron microscopy and atomic-force microscopy (AFM), originally developed for solid-state material characterization. AFM routinely resolves atomic steps, however on soft biological samples, the forces between the tip and the sample deform the fragile membrane, thereby distorting the otherwise high axial resolution of the technique. Here we present scanning ion-conductance microscopy (SICM) as an alternative approach for topographical imaging of soft biological samples, preserving high axial resolution on cells. SICM is complemented with live-cell compatible super-resolution optical fluctuation imaging (SOFI). To demonstrate the capabilities of our method we show correlative 3D cellular maps with SOFI implementation in both 2D and 3D with self-blinking dyes for two-color high-order SOFI imaging. Finally, we employ correlative SICM/SOFI microscopy for visualizing actin dynamics in live COS-7 cells with subdiffraction-resolution.
Collapse
Affiliation(s)
- Vytautas Navikas
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Swiss Federal InstSIitute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Samuel M Leitao
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Kristin S Grussmayer
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Swiss Federal InstSIitute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Grussmayer Lab, Department of Bionanoscience, Faculty of Applied Science and Kavli Institute for Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Adrien Descloux
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Swiss Federal InstSIitute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Barney Drake
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Klaus Yserentant
- College of Medical and Dental Sciences, Medical School & School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Philipp Werther
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Dirk-Peter Herten
- College of Medical and Dental Sciences, Medical School & School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Richard Wombacher
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Swiss Federal InstSIitute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| | - Georg E Fantner
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
16
|
Fake It 'Till You Make It-The Pursuit of Suitable Membrane Mimetics for Membrane Protein Biophysics. Int J Mol Sci 2020; 22:ijms22010050. [PMID: 33374526 PMCID: PMC7793082 DOI: 10.3390/ijms22010050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins evolved to reside in the hydrophobic lipid bilayers of cellular membranes. Therefore, membrane proteins bridge the different aqueous compartments separated by the membrane, and furthermore, dynamically interact with their surrounding lipid environment. The latter not only stabilizes membrane proteins, but directly impacts their folding, structure and function. In order to be characterized with biophysical and structural biological methods, membrane proteins are typically extracted and subsequently purified from their native lipid environment. This approach requires that lipid membranes are replaced by suitable surrogates, which ideally closely mimic the native bilayer, in order to maintain the membrane proteins structural and functional integrity. In this review, we survey the currently available membrane mimetic environments ranging from detergent micelles to bicelles, nanodiscs, lipidic-cubic phase (LCP), liposomes, and polymersomes. We discuss their respective advantages and disadvantages as well as their suitability for downstream biophysical and structural characterization. Finally, we take a look at ongoing methodological developments, which aim for direct in-situ characterization of membrane proteins within native membranes instead of relying on membrane mimetics.
Collapse
|
17
|
Abstract
Transmembrane proteins involved in metabolic redox reactions and photosynthesis catalyse a plethora of key energy-conversion processes and are thus of great interest for bioelectrocatalysis-based applications. The development of membrane protein modified electrodes has made it possible to efficiently exchange electrons between proteins and electrodes, allowing mechanistic studies and potentially applications in biofuels generation and energy conversion. Here, we summarise the most common electrode modification and their characterisation techniques for membrane proteins involved in biofuels conversion and semi-artificial photosynthesis. We discuss the challenges of applications of membrane protein modified electrodes for bioelectrocatalysis and comment on emerging methods and future directions, including recent advances in membrane protein reconstitution strategies and the development of microbial electrosynthesis and whole-cell semi-artificial photosynthesis.
Collapse
|
18
|
Abstract
Photosynthetic membranes are typically densely packed with proteins, and this is crucial for their function in efficient trapping of light energy. Despite being crowded with protein, the membranes are fluid systems in which proteins and smaller molecules can diffuse. Fluidity is also crucial for photosynthetic function, as it is essential for biogenesis, electron transport, and protein redistribution for functional regulation. All photosynthetic membranes seem to maintain a delicate balance between crowding, order, and fluidity. How does this work in phototrophic bacteria? In this review, we focus on two types of intensively studied bacterial photosynthetic membranes: the chromatophore membranes of purple bacteria and the thylakoid membranes of cyanobacteria. Both systems are distinct from the plasma membrane, and both have a distinctive protein composition that reflects their specialized roles. Chromatophores are formed from plasma membrane invaginations, while thylakoid membranes appear to be an independent intracellular membrane system. We discuss the techniques that can be applied to study the organization and dynamics of these membrane systems, including electron microscopy techniques, atomic force microscopy, and many variants of fluorescence microscopy. We go on to discuss the insights that havebeen acquired from these techniques, and the role of membrane dynamics in the physiology of photosynthetic membranes. Membrane dynamics on multiple timescales are crucial for membrane function, from electron transport on timescales of microseconds to milliseconds to regulation and biogenesis on timescales of minutes to hours. We emphasize the open questions that remain in the field.
Collapse
Affiliation(s)
- Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
19
|
Drolle E, Ngo W, Leonenko Z, Subbaraman L, Jones L. Nanoscale Characteristics of Ocular Lipid Thin Films Using Kelvin Probe Force Microscopy. Transl Vis Sci Technol 2020; 9:41. [PMID: 32832246 PMCID: PMC7414624 DOI: 10.1167/tvst.9.7.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/05/2020] [Indexed: 02/02/2023] Open
Abstract
Purpose To describe the use of Kelvin probe force microscopy (KPFM) to investigate the electrical surface potential of human meibum and to demonstrate successful use of this instrument on both human meibum and a meibum model system (six-lipid stock [6LS]) to elucidate nanoscale surface chemistry and self-assembly characteristics. Materials and Methods 6LS and meibum were analyzed in this study. Mica-supported thin films were created using the Langmuir-Blodgett trough. Topography and electrical surface potential were quantified using simultaneous atomic force microscopy/KPFM imaging. Results Both lipid mixtures formed thin film patches on the surface of the mica substrate, with large aggregates resting atop. The 6LS had aggregate heights ranging from 41 to 153 nm. The range in surface potential was 33.0 to 125.9 mV. The meibum thin films at P = 5 mN/m had aggregates of 170 to 459 nm in height and surface potential ranging from 15.9 to 76.1 mV, while thin films at P = 10 mN/m showed an aggregate size range of 147 to 407 nm and a surface potential range of 11.5 to 255.1 mV. Conclusions This study showed imaging of the differences in electrical surface potential of meibum via KPFM and showed similarities in nanoscale topography. 6LS was also successfully analyzed, showing the capabilities of this method for use in both in vitro and ex vivo ocular research. Translational Relevance This study describes the use of KPFM for the study of ocular surface lipids for the first time and outlines possibilities for future studies to be carried out using this concept.
Collapse
Affiliation(s)
- Elizabeth Drolle
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - William Ngo
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Zoya Leonenko
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada.,Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Lakshman Subbaraman
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, Ontario, Canada.,Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada.,Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
20
|
Sankaran J, Wohland T. Fluorescence strategies for mapping cell membrane dynamics and structures. APL Bioeng 2020; 4:020901. [PMID: 32478279 PMCID: PMC7228782 DOI: 10.1063/1.5143945] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
Fluorescence spectroscopy has been a cornerstone of research in membrane dynamics and organization. Technological advances in fluorescence spectroscopy went hand in hand with discovery of various physicochemical properties of membranes at nanometric spatial and microsecond timescales. In this perspective, we discuss the various challenges associated with quantification of physicochemical properties of membranes and how various modes of fluorescence spectroscopy have overcome these challenges to shed light on the structure and organization of membranes. Finally, we discuss newer measurement strategies and data analysis tools to investigate the structure, dynamics, and organization of membranes.
Collapse
|
21
|
Liu Y, Li L, Chen X, Wang Y, Liu MN, Yan J, Cao L, Wang L, Wang ZB. Atomic force acoustic microscopy reveals the influence of substrate stiffness and topography on cell behavior. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2329-2337. [PMID: 31886109 PMCID: PMC6902897 DOI: 10.3762/bjnano.10.223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/24/2019] [Indexed: 05/15/2023]
Abstract
The stiffness and the topography of the substrate at the cell-substrate interface are two key properties influencing cell behavior. In this paper, atomic force acoustic microscopy (AFAM) is used to investigate the influence of substrate stiffness and substrate topography on the responses of L929 fibroblasts. This combined nondestructive technique is able to characterize materials at high lateral resolution. To produce substrates of tunable stiffness and topography, we imprint nanostripe patterns on undeveloped and developed SU-8 photoresist films using electron-beam lithography (EBL). Elastic deformations of the substrate surfaces and the cells are revealed by AFAM. Our results show that AFAM is capable of imaging surface elastic deformations. By immunofluorescence experiments, we find that the L929 cells significantly elongate on the patterned stiffness substrate, whereas the elasticity of the pattern has only little effect on the spreading of the L929 cells. The influence of the topography pattern on the cell alignment and morphology is even more pronounced leading to an arrangement of the cells along the nanostripe pattern. Our method is useful for the quantitative characterization of cell-substrate interactions and provides guidance for the tissue regeneration therapy in biomedicine.
Collapse
Affiliation(s)
- Yan Liu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Computer Department, Changchun Medical College, Changchun 130031, China
| | - Li Li
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Xing Chen
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Ying Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Meng-Nan Liu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Jin Yan
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Liang Cao
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Lu Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Zuo-Bin Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, UK
| |
Collapse
|
22
|
Polydopamine layered poly (ether imide) ultrafiltration membranes tailored with silver nanoparticles designed for better permeability, selectivity and antifouling. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Zhou J, Roberts OS, Goldwasser SM, Lei X, Bokka S, Chase GG. A customized instrument with laser interferometry for measuring electrospun mat thickness. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:075110. [PMID: 31370503 DOI: 10.1063/1.5100137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Thickness is an important characteristic parameter of electrospun submicron of fiber mats and membranes. The thickness of the mats directly influences performance properties such as permeability and is necessary when determining volumetric parameters such as porosity. Typical electrospun mats are very thin (less than 1 mm) and highly compressive due to the small diameter fibers, both of which make accurate measurements difficult when using conventional methods. An accurate measure of the thickness is desired for characterizing and comparing membrane performances. In this work, a thickness measurement instrument using laser interferometry has been designed to measure electrospun fiber mat thickness. A small disk is used to apply a small (reproducible) force applied across a reasonably small area of the fiber mat. A traversing pin moves to contact the disk and completes an electrical circuit to stop movement and determine the location of the disk relative to a reference plane. The fiber mat thickness is determined by measuring the difference in locations of the disk with and without the fiber mat between the disk and the reference plane. The prototype is simple to operate and user-friendly. Precision and accuracy of the prototype are discussed.
Collapse
Affiliation(s)
- Jianyu Zhou
- Department of Chemical and Biomolecular Engineering, The University of Akron, 185 E. Mill St., Akron, Ohio 44325-3906, USA
| | - O Steven Roberts
- Department of Chemical and Biomolecular Engineering, The University of Akron, 185 E. Mill St., Akron, Ohio 44325-3906, USA
| | - Samuel M Goldwasser
- Laser Teaching Center, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794-0001, USA
| | - Xia Lei
- Department of Chemical and Biomolecular Engineering, The University of Akron, 185 E. Mill St., Akron, Ohio 44325-3906, USA
| | - Sreevalli Bokka
- Department of Chemical and Biomolecular Engineering, The University of Akron, 185 E. Mill St., Akron, Ohio 44325-3906, USA
| | - George G Chase
- Department of Chemical and Biomolecular Engineering, The University of Akron, 185 E. Mill St., Akron, Ohio 44325-3906, USA
| |
Collapse
|
24
|
Abstract
Atomic force microscopy (AFM) is a form of contact microscopy that uses a very sharp tip to scan the surface of a sample. It provides a 3D image of the surface structure and in the force mode it can also be used to test the mechanical properties of the sample. AFM has been successfully applied to study the molecular mechanism of pore-forming proteins on model membranes. It gives information about both the structural reorganization of the membrane surface and the changes in the force required for membrane piercing upon incubation with this special type of proteins. Here we describe robust protocols to investigate the effect of pore-forming proteins in supported lipid bilayers .
Collapse
Affiliation(s)
- Joseph D Unsay
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
25
|
Kurniawan J, Ventrici de Souza JF, Dang AT, Liu GY, Kuhl TL. Preparation and Characterization of Solid-Supported Lipid Bilayers Formed by Langmuir-Blodgett Deposition: A Tutorial. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15622-15639. [PMID: 30465730 DOI: 10.1021/acs.langmuir.8b03504] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The structure, phase behavior, and properties of cellular membranes are derived from their composition, which includes phospholipids, sphingolipids, sterols, and proteins with various levels of glycosylation. Because of the intricate nature of cellular membranes, a plethora of in vitro studies have been carried out with model membrane systems that capture particular properties such as fluidity, permeability, and protein binding but vastly simplify the membrane composition in order to focus in detail on a specialized property or function. Supported lipid bilayers (SLB) are widely used as archetypes for cellular membranes, and this instructional review primarily focuses on the preparation and characterization of SLB systems formed by Langmuir deposition methods. Typical characterization methods, which take advantage of the planar orientation of SLBs, are illustrated, and references that go into more depth are included. This invited instructional review is written so that nonexperts can quickly gain in-depth knowledge regarding the preparation and characterization of SLBs. In addition, this work goes beyond traditional instructional reviews to provide expert readers with new results that cover a wider range of SLB systems than those previously reported in the literature. The quality of an SLB is frequently not well described, and details such as topological defects can influence the results and conclusions of an individual study. This article quantifies and compares the quality of SLBs fabricated from a variety of gel and fluid compositions, in correlation with preparation techniques and parameters, to generate general rules of thumb to guide the construction of designed SLB systems.
Collapse
|
26
|
Arnal RD, Zhao Y, Mitra AK, Spence JCH, Millane RP. The phase problem for two-dimensional crystals. II. Simulations. Acta Crystallogr A Found Adv 2018; 74:537-544. [DOI: 10.1107/s2053273318008707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/13/2018] [Indexed: 11/10/2022] Open
Abstract
Phasing of diffraction data from two-dimensional crystals using only minimal molecular envelope information is investigated by simulation. Two-dimensional crystals are an attractive target for studying membrane proteins using X-ray free-electron lasers, particularly for dynamic studies at room temperature. Simulations using an iterative projection algorithm show that phasing is feasible with fairly minimal molecular envelope information, supporting recent uniqueness results for this problem [Arnal & Millane (2017).Acta Cryst.A73, 438–448]. The effects of noise and likely requirements for structure determination using X-ray free-electron laser sources are investigated.
Collapse
|
27
|
Mari SA, Wegmann S, Tepper K, Hyman BT, Mandelkow EM, Mandelkow E, Müller DJ. Reversible Cation-Selective Attachment and Self-Assembly of Human Tau on Supported Brain Lipid Membranes. NANO LETTERS 2018; 18:3271-3281. [PMID: 29644863 PMCID: PMC6588182 DOI: 10.1021/acs.nanolett.8b01085] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Misfolding and aggregation of the neuronal, microtubule-associated protein tau is involved in the pathogenesis of Alzheimer's disease and tauopathies. It has been proposed that neuronal membranes could play a role in tau release, internalization, and aggregation and that tau aggregates could exert toxicity via membrane permeabilization. Whether and how tau interacts with lipid membranes remains a matter of discussion. Here, we characterize the interaction of full-length human tau (htau40) with supported lipid membranes (SLMs) made from brain total lipid extract by time-lapse high-resolution atomic force microscopy (AFM). We observe that tau attaches to brain lipid membranes where it self-assembles in a cation-dependent manner. Sodium triggers the attachment, self-assembly, and growth, whereas potassium inhibits these processes. Moreover, tau assemblies are stable in the presence of sodium and lithium but disassemble in the presence of potassium and rubidium. Whereas the pseudorepeat domains (R1-R4) of htau40 promote the sodium-dependent attachment to the membrane and stabilize the tau assemblies, the N-terminal region promotes tau self-assembly and growth.
Collapse
Affiliation(s)
- Stefania A. Mari
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Susanne Wegmann
- Department of Neurology, Alzheimer’s Disease Research Laboratory, Harvard Medical School, Massachusetts General Hospital, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Katharina Tepper
- Department of Neurology, Alzheimer’s Disease Research Laboratory, Harvard Medical School, Massachusetts General Hospital, 114 16th Street, Charlestown, Massachusetts 02129, United States
- German Center for Neurodegenerative Diseases (DZNE) and CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Bradley T. Hyman
- Department of Neurology, Alzheimer’s Disease Research Laboratory, Harvard Medical School, Massachusetts General Hospital, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Eva-Maria Mandelkow
- German Center for Neurodegenerative Diseases (DZNE) and CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
- Max-Planck-Institute for Neurological Research Cologne, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE) and CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
- Max-Planck-Institute for Neurological Research Cologne, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Daniel J. Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- Corresponding Author. Phone: 0041-61-387-3307
| |
Collapse
|
28
|
Franz J, Grünebaum J, Schäfer M, Mulac D, Rehfeldt F, Langer K, Kramer A, Riethmüller C. Rhombic organization of microvilli domains found in a cell model of the human intestine. PLoS One 2018; 13:e0189970. [PMID: 29320535 PMCID: PMC5761853 DOI: 10.1371/journal.pone.0189970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/05/2017] [Indexed: 01/22/2023] Open
Abstract
Symmetry is rarely found on cellular surfaces. An exception is the brush border of microvilli, which are essential for the proper function of transport epithelia. In a healthy intestine, they appear densely packed as a 2D-hexagonal lattice. For in vitro testing of intestinal transport the cell line Caco-2 has been established. As reported by electron microscopy, their microvilli arrange primarily in clusters developing secondly into a 2D-hexagonal lattice. Here, atomic force microscopy (AFM) was employed under aqueous buffer conditions on Caco-2 cells, which were cultivated on permeable filter membranes for optimum differentiation. For analysis, the exact position of each microvillus was detected by computer vision; subsequent Fourier transformation yielded the type of 2D-lattice. It was confirmed, that Caco-2 cells can build a hexagonal lattice of microvilli and form clusters. Moreover, a second type of arrangement was discovered, namely a rhombic lattice, which appeared at sub-maximal densities of microvilli with (29 ± 4) microvilli / μm2. Altogether, the findings indicate the existence of a yet undescribed pattern in cellular organization.
Collapse
Affiliation(s)
- Jonas Franz
- Faculty of Physics, Georg-August-Universität, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Theoretical Neurophysics, Göttingen, Germany
| | - Jonas Grünebaum
- Institute for Pharmaceutical Technology and Biopharmacy, University of Münster, Münster, Germany
| | - Marcus Schäfer
- nanoAnalytics GmbH, Centre for Nanotechnology, Münster, Germany
| | - Dennis Mulac
- Institute for Pharmaceutical Technology and Biopharmacy, University of Münster, Münster, Germany
| | - Florian Rehfeldt
- Third Institute of Physics—Biophysics, Georg-August-Universität, Göttingen, Germany
| | - Klaus Langer
- Institute for Pharmaceutical Technology and Biopharmacy, University of Münster, Münster, Germany
| | - Armin Kramer
- Serend-ip GmbH, Centre for Nanotechnology, Münster, Germany
| | | |
Collapse
|
29
|
Arnal RD, Millane RP. The phase problem for two-dimensional crystals. I. Theory. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES 2017; 73:438-448. [PMID: 29072197 DOI: 10.1107/s2053273317013687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/24/2017] [Indexed: 11/10/2022]
Abstract
Properties of the phase problem for two-dimensional crystals are examined. This problem is relevant to protein structure determination using diffraction from two-dimensional crystals that has been proposed using new X-ray free-electron laser sources. The problem is shown to be better determined than for conventional three-dimensional crystallography, but there are still a large number of solutions in the absence of additional a priori information. Molecular envelope information reduces the size of the solution set, and for an envelope that deviates sufficiently from the unit cell a unique solution is possible. The effects of various molecular surface features and incomplete data on uniqueness and prospects for ab initio phasing are assessed. Simulations of phase retrieval for two-dimensional crystal data are described in the second paper in this series.
Collapse
Affiliation(s)
- Romain D Arnal
- Computational Imaging Group, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
| | - Rick P Millane
- Computational Imaging Group, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
30
|
The structure and function of cell membranes studied by atomic force microscopy. Semin Cell Dev Biol 2017; 73:31-44. [PMID: 28723581 DOI: 10.1016/j.semcdb.2017.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
Abstract
The cell membrane, involved in almost all communications of cells and surrounding matrix, is one of the most complicated components of cells. Lack of suitable methods for the detection of cell membranes in vivo has sparked debates on the biochemical composition and structure of cell membranes over half a century. The development of single molecule techniques, such as AFM, SMFS, and TREC, provides a versatile platform for imaging and manipulating cell membranes in biological relevant environments. Here, we discuss the latest developments in AFM and the progress made in cell membrane research. In particular, we highlight novel structure models and dynamic processes, including the mechanical properties of the cell membranes.
Collapse
|
31
|
Almonte L, Colchero J. True non-contact atomic force microscopy imaging of heterogeneous biological samples in liquids: topography and material contrast. NANOSCALE 2017; 9:2903-2915. [PMID: 28181615 DOI: 10.1039/c6nr07967a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The present work analyses how the tip-sample interaction signals critically determine the operation of an Atomic Force Microscope (AFM) set-up immersed in liquid. On heterogeneous samples, the conservative tip-sample interaction may vary significantly from point to point - in particular from attractive to repulsive - rendering correct feedback very challenging. Lipid membranes prepared on a mica substrate are analyzed as reference samples which are locally heterogeneous (material contrast). The AFM set-up is operated dynamically at low oscillation amplitude and all available experimental data signals - the normal force, as well as the amplitude and frequency - are recorded simultaneously. From the analysis of how the dissipation (oscillation amplitude) and the conservative interaction (normal force and resonance frequency) vary with the tip-sample distance we conclude that dissipation is the only appropriate feedback source for stable and correct topographic imaging. The normal force and phase then carry information about the sample composition ("chemical contrast"). Dynamic AFM allows imaging in a non-contact regime where essentially no forces are applied, rendering dynamic AFM a truly non-invasive technique.
Collapse
Affiliation(s)
- Lisa Almonte
- Centro de Investigación en Óptica y Nanofísica (CIOyN), Departamento Física, Facultad de Química (Campus Espinardo), Universidad de Murcia, E-30100 Murcia, Spain.
| | - Jaime Colchero
- Centro de Investigación en Óptica y Nanofísica (CIOyN), Departamento Física, Facultad de Química (Campus Espinardo), Universidad de Murcia, E-30100 Murcia, Spain.
| |
Collapse
|
32
|
Morphological changes of the red blood cells treated with metal oxide nanoparticles. Toxicol In Vitro 2016; 37:34-40. [PMID: 27592198 DOI: 10.1016/j.tiv.2016.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 07/01/2016] [Accepted: 08/30/2016] [Indexed: 01/07/2023]
Abstract
The toxic effect of Al2O3, SiО2 and ZrО2 nanoparticles on red blood cells of Wistar rats was studied in vitro using the atomic force microscopy and the fluorescence analysis. Transformation of discocytes into echinocytes and spherocytes caused by the metal oxide nanoparticles was revealed. It was shown that only extremely high concentration of the nanoparticles (2mg/ml) allows correct estimating of their effect on the cell morphology. Besides, it was found out that the microviscosity changes of red blood cell membranes treated with nanoparticles began long before morphological modifications of the cells. On the contrary, the negatively charged ZrO2 and SiO2 nanoparticles did not affect ghost microviscosity up to concentrations of 1μg/ml and 0.1mg/ml, correspondingly. In its turn, the positively charged Al2O3 nanoparticles induced structural changes in the lipid bilayer of the red blood cells already at a concentration of 0.05μg/ml. A decrease in microviscosity of the erythrocyte ghosts treated with Al2O3 and SiO2 nanoparticles was shown. It was detected that the interaction of ZrO2 nanoparticles with the cells led to an increase in the membrane microviscosity and cracking of swollen erythrocytes.
Collapse
|
33
|
Pluhackova K, Kirsch SA, Han J, Sun L, Jiang Z, Unruh T, Böckmann RA. A Critical Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers. J Phys Chem B 2016; 120:3888-903. [DOI: 10.1021/acs.jpcb.6b01870] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kristyna Pluhackova
- Computational
Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Sonja A. Kirsch
- Computational
Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Jing Han
- Computational
Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Liping Sun
- Computational
Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Zhenyan Jiang
- Computational
Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Tobias Unruh
- Lehrstuhl
für Kristallografie und Strukturphysik, Department Physik, Friedrich-Alexander-University of Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - Rainer A. Böckmann
- Computational
Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
34
|
Singh L, Nag TC, Kashyap S. Ultrastructural changes of mitochondria in human retinoblastoma: correlation with tumor differentiation and invasiveness. Tumour Biol 2015; 37:5797-803. [PMID: 26434937 DOI: 10.1007/s13277-015-4120-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/20/2015] [Indexed: 01/28/2023] Open
Abstract
Retinoblastoma still represents a challenge for pediatric tumors. Mitochondria have been implicated in tumor progression, cell differentiation, and apoptotic pathways. Electron microscopy allows the study of mitochondrial morphology and it is still debated in human retinoblastoma. Demographic, clinical, and histopathological parameters were recorded in 17 enucleated retinoblastoma specimens. Hematoxylin and eosin staining was performed to study tumor characteristics and the extent of invasion in ocular structures. The aim of this study was to describe and analyze the mitochondrial morphology in human retinoblastoma by transmission electron microscopy (TEM). There was a male preponderance in our study. Ages ranged from 2 to 78 months. Histopathological analysis revealed that 15 (88.2 %) tumors were poorly differentiated retinoblastomas. Massive choroidal invasion was the most frequent histopathological high-risk factor among the others. Histopathological high-risk factors were found in 7/17 (41.1 %) cases. Tumor samples of all patients were examined by means of TEM. All cases showed tumor cells with high nucleocytoplasmic ratio. Poorly differentiated retinoblastoma cases showed fewer mitochondria, scant cytoplasm, disorganized organelles (mitochondria), and necrosis, whereas well-differentiated retinoblastomas had larger number of mitochondria and more organized organelles. However, there was no significant difference in mitochondrial changes between invasive and noninvasive tumors. Our study observed that cristolysis and swollen mitochondria were more frequent in retinoblastoma tumors. Understanding the structural and functional characteristics of mitochondria in retinoblastoma might be essential for the design of future therapeutic strategies. The authors have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Lata Singh
- Department of Ocular Pathology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Kashyap
- Department of Ocular Pathology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
35
|
Unsay JD, Cosentino K, García-Sáez AJ. Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers. J Vis Exp 2015:e52867. [PMID: 26273958 PMCID: PMC4545161 DOI: 10.3791/52867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Atomic force microscopy (AFM) is a versatile, high-resolution imaging technique that allows visualization of biological membranes. It has sufficient magnification to examine membrane substructures and even individual molecules. AFM can act as a force probe to measure interactions and mechanical properties of membranes. Supported lipid bilayers are conventionally used as membrane models in AFM studies. In this protocol, we demonstrate how to prepare supported bilayers and characterize their structure and mechanical properties using AFM. These include bilayer thickness and breakthrough force. The information provided by AFM imaging and force spectroscopy help define mechanical and chemical properties of membranes. These properties play an important role in cellular processes such as maintaining cell hemostasis from environmental stress, bringing membrane proteins together, and stabilizing protein complexes.
Collapse
Affiliation(s)
- Joseph D Unsay
- Interfaculty Institute for Biochemistry; Max Planck Institute for Intelligent Systems; German Cancer Research Center;
| | - Katia Cosentino
- Interfaculty Institute for Biochemistry; Max Planck Institute for Intelligent Systems
| | - Ana J García-Sáez
- Interfaculty Institute for Biochemistry; Max Planck Institute for Intelligent Systems
| |
Collapse
|
36
|
Hagedorn S, Drolle E, Lorentz H, Srinivasan S, Leonenko Z, Jones L. Atomic force microscopy and Langmuir-Blodgett monolayer technique to assess contact lens deposits and human meibum extracts. JOURNAL OF OPTOMETRY 2015; 8:187-199. [PMID: 25620317 PMCID: PMC4502087 DOI: 10.1016/j.optom.2014.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/01/2014] [Accepted: 12/09/2014] [Indexed: 06/04/2023]
Abstract
PURPOSE The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). METHODS Meibum study: Meibum was collected from all participants and studied via Langmuir-Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. RESULTS Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. CONCLUSIONS MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity.
Collapse
Affiliation(s)
- Sarah Hagedorn
- School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Elizabeth Drolle
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1; Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Holly Lorentz
- School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1; Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
| | - Sruthi Srinivasan
- School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.
| | - Zoya Leonenko
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1; Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1; Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Lyndon Jones
- School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1; Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1; Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
37
|
Abstract
All biological membranes consist of a complex composite of macromolecules and macromolecular assemblies, of which the fluid lipid-bilayer component is a core element with regard to cell encapsulation and barrier properties. The fluid lipid bilayer also supports the functional machinery of receptors, channels and pumps that are associated with the membrane. This bilayer is stabilized by weak physical and colloidal forces, and its nature is that of a self-assembled system of amphiphiles in water. Being only approximately 5 nm in thickness and still encapsulating a cell that is three orders of magnitude larger in diameter, the lipid bilayer as a material has very unusual physical properties, both in terms of structure and dynamics. Although the lipid bilayer is a fluid, it has a distinct and structured trans-bilayer profile, and in the plane of the bilayer the various molecular components, viz different lipid species and membrane proteins, have the capacity to organize laterally in terms of differentiated domains on different length and time scales. These elements of small-scale structure and order are crucial for the functioning of the membrane. It has turned out to be difficult to quantitatively study the small-scale structure of biological membranes. A major part of the insight into membrane micro- and nano-domains and the concepts used to describe them have hence come from studies of simple lipid bilayers as models of membranes, by use of a wide range of theoretical, experimental and simulational approaches. Many questions remain to be answered as to which extent the result from model studies can carry over to real biological membranes.
Collapse
|
38
|
Microscopical characterizations of nanofiltration membranes for the removal of nickel ions from aqueous solution. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-014-0290-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Hsu SH, Lo YY, Liu TH, Pan YJ, Huang YT, Sun YJ, Hung CC, Tseng FG, Yang CW, Pan RL. Substrate-induced changes in domain interaction of vacuolar H⁺-pyrophosphatase. J Biol Chem 2015; 290:1197-209. [PMID: 25451931 DOI: 10.1074/jbc.m114.568139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Single molecule atomic force microscopy (smAFM) was employed to unfold transmembrane domain interactions of a unique vacuolar H(+)-pyrophosphatase (EC 3.6.1.1) from Vigna radiata. H(+)-Pyrophosphatase is a membrane-embedded homodimeric protein containing a single type of polypeptide and links PPi hydrolysis to proton translocation. Each subunit consists of 16 transmembrane domains with both ends facing the lumen side. In this investigation, H(+)-pyrophosphatase was reconstituted into the lipid bilayer in the same orientation for efficient fishing out of the membrane by smAFM. The reconstituted H(+)-pyrophosphatase in the lipid bilayer showed an authentically dimeric structure, and the size of each monomer was ∼4 nm in length, ∼2 nm in width, and ∼1 nm in protrusion height. Upon extracting the H(+)-pyrophosphatase out of the membrane, force-distance curves containing 10 peaks were obtained and assigned to distinct domains. In the presence of pyrophosphate, phosphate, and imidodiphosphate, the numbers of interaction curves were altered to 7, 8, and 10, respectively, concomitantly with significant modification in force strength. The substrate-binding residues were further replaced to verify these domain changes upon substrate binding. A working model is accordingly proposed to show the interactions between transmembrane domains of H(+)-pyrophosphatase in the presence and absence of substrate and its analog.
Collapse
Affiliation(s)
- Shen-Hsing Hsu
- From the Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33333
| | - Yueh-Yu Lo
- From the Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33333
| | - Tseng-Huang Liu
- the Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, and
| | - Yih-Jiuan Pan
- the Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, and
| | - Yun-Tzu Huang
- the Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, and
| | - Yuh-Ju Sun
- the Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, and
| | - Cheng-Chieh Hung
- From the Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33333
| | - Fan-Gang Tseng
- Department of Engineering and System Science, College of Nuclear Science, National Tsing Hua University, Hsin Chu 30013, Taiwan
| | - Chih-Wei Yang
- From the Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33333,
| | - Rong-Long Pan
- the Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, and
| |
Collapse
|
40
|
Bosshart PD, Engel A, Fotiadis D. High-resolution atomic force microscopy imaging of rhodopsin in rod outer segment disk membranes. Methods Mol Biol 2015; 1271:189-203. [PMID: 25697525 DOI: 10.1007/978-1-4939-2330-4_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Atomic force microscopy (AFM) is a powerful imaging technique that allows recording topographical information of membrane proteins under near-physiological conditions. Remarkable results have been obtained on membrane proteins that were reconstituted into lipid bilayers. High-resolution AFM imaging of native disk membranes from vertebrate rod outer segments has unveiled the higher-order oligomeric state of the G protein-coupled receptor rhodopsin, which is highly expressed in disk membranes. Based on AFM imaging, it has been demonstrated that rhodopsin assembles in rows of dimers and paracrystals and that the rhodopsin dimer is the fundamental building block of higher-order structures.
Collapse
Affiliation(s)
- Patrick D Bosshart
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, CH-3012, Switzerland
| | | | | |
Collapse
|
41
|
Liu Y, Xu L, Song Y, Fu X, Zou J, Hu X, Jiang Z, Zhao X. Investigation of antifouling universality of polyvinyl formal (PVF) membranes utilizing atomic force microscope (AFM) force curves. RSC Adv 2015. [DOI: 10.1039/c5ra05380c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adhesion force between proteins and PVF/F127 membranes with different ratios are measured by AFM force curves with well calibrated cantilevers.
Collapse
Affiliation(s)
- Yunqiang Liu
- State Key Laboratory of Precision Measuring Technology and Instruments
- Tianjin University
- Tianjin 300072
- China
| | - Linyan Xu
- State Key Laboratory of Precision Measuring Technology and Instruments
- Tianjin University
- Tianjin 300072
- China
| | - Yunpeng Song
- State Key Laboratory of Precision Measuring Technology and Instruments
- Tianjin University
- Tianjin 300072
- China
| | - Xing Fu
- State Key Laboratory of Precision Measuring Technology and Instruments
- Tianjin University
- Tianjin 300072
- China
| | - Jing Zou
- State Key Laboratory of Precision Measuring Technology and Instruments
- Tianjin University
- Tianjin 300072
- China
| | - Xiaotang Hu
- State Key Laboratory of Precision Measuring Technology and Instruments
- Tianjin University
- Tianjin 300072
- China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- College of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xueting Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education
- College of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
42
|
Ionic strength and composition govern the elasticity of biological membranes. A study of model DMPC bilayers by force- and transmission IR spectroscopy. Chem Phys Lipids 2014; 186:17-29. [PMID: 25447291 DOI: 10.1016/j.chemphyslip.2014.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/05/2014] [Accepted: 11/11/2014] [Indexed: 12/15/2022]
Abstract
Infrared (IR) spectroscopy was used to quantify the ion mixture effect of seawater (SW), particularly the contribution of Mg(2+) and Ca(2+) as dominant divalent cations, on the thermotropic phase behaviour of 1,2-dimyristoyl-sn-glycero-3-posphocholine (DMPC) bilayers. The changed character of the main transition at 24 °C from sharp to gradual in films and the 1 °C shift of the main transition temperature in dispersions reflect the interactions of lipid headgroups with the ions in SW. Force spectroscopy was used to quantify the nanomechanical hardness of a DMPC supported lipid bilayer (SLB). Considering the electrostatic and ion binding equilibrium contributions while systematically probing the SLB in various salt solutions, we showed that ionic strength had a decisive influence on its nanomechanics. The mechanical hardness of DMPC SLBs in the liquid crystalline phase linearly increases with the increasing fraction of all ion-bound lipids in a series of monovalent salt solutions. It also linearly increases in the gel phase but almost three times faster (the corresponding slopes are 4.9 nN/100 mM and 13.32 nN/100 mM, respectively). We also showed that in the presence of divalent ions (Ca(2+) and Mg(2+)) the bilayer mechanical hardness was unproportionally increased, and that was accompanied with the decrease of Na(+) ion and increase of Cl(-) ion bound lipids. The underlying process is a cooperative and competitive ion binding in both the gel and the liquid crystalline phase. Bilayer hardness thus turned out to be very sensitive to ionic strength as well as to ionic composition of the surrounding medium. In particular, the indicated correlation helped us to emphasize the colligative properties of SW as a naturally occurring complex ion mixture.
Collapse
|
43
|
Whited AM, Park PSH. Nanodomain organization of rhodopsin in native human and murine rod outer segment disc membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:26-34. [PMID: 25305340 DOI: 10.1016/j.bbamem.2014.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 01/31/2023]
Abstract
Biological membranes display distinct domains that organize membrane proteins and signaling molecules to facilitate efficient and reliable signaling. The organization of rhodopsin, a G protein-coupled receptor, in native rod outer segment disc membranes was investigated by atomic force microscopy. Atomic force microscopy revealed that rhodopsin is arranged into domains of variable size, which we refer to herein as nanodomains, in native membranes. Quantitative analysis of 150 disc membranes revealed that the physical properties of nanodomains are conserved in humans and mice and that the properties of individual disc membranes can be variable. Examining the variable properties of disc membranes revealed some of the factors contributing to the size of rod outer segment discs and the formation of nanodomains in the membrane. The diameter of rod outer segment discs was dependent on the number of rhodopsin molecules incorporated into the membrane but independent of the spatial density of rhodopsin. The number of nanodomains present in a single disc was also dependent on the number of rhodopsin molecules incorporated into the membrane. The size of the nanodomains was largely independent of the number or spatial density of rhodopsin in the membrane.
Collapse
Affiliation(s)
- Allison M Whited
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
44
|
Mashaghi A, Mashaghi S, Reviakine I, Heeren RMA, Sandoghdar V, Bonn M. Label-free characterization of biomembranes: from structure to dynamics. Chem Soc Rev 2014; 43:887-900. [PMID: 24253187 DOI: 10.1039/c3cs60243e] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We review recent progress in the study of the structure and dynamics of phospholipid membranes and associated proteins, using novel label-free analytical tools. We describe these techniques and illustrate them with examples highlighting current capabilities and limitations. Recent advances in applying such techniques to biological and model membranes for biophysical studies and biosensing applications are presented, and future prospects are discussed.
Collapse
Affiliation(s)
- Alireza Mashaghi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|
45
|
Santacroce M, Daniele F, Cremona A, Scaccabarozzi D, Castagna M, Orsini F. Imaging of Xenopus laevis oocyte plasma membrane in physiological-like conditions by atomic force microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1358-1363. [PMID: 23745574 DOI: 10.1017/s1431927613001682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Xenopus laevis oocytes are an interesting model for the study of many developmental mechanisms because of their dimensions and the ease with which they can be manipulated. In addition, they are widely employed systems for the expression and functional study of heterologous proteins, which can be expressed with high efficiency on their plasma membrane. Here we applied atomic force microscopy (AFM) to the study of the plasma membrane of X. laevis oocytes. In particular, we developed and optimized a new sample preparation protocol, based on the purification of plasma membranes by ultracentrifugation on a sucrose gradient, to perform a high-resolution AFM imaging of X. laevis oocyte plasma membrane in physiological-like conditions. Reproducible AFM topographs allowed visualization and dimensional characterization of membrane patches, whose height corresponds to a single lipid bilayer, as well as the presence of nanometer structures embedded in the plasma membrane and identified as native membrane proteins. The described method appears to be an applicable tool for performing high-resolution AFM imaging of X. laevis oocyte plasma membrane in a physiological-like environment, thus opening promising perspectives for studying in situ cloned membrane proteins of relevant biomedical/pharmacological interest expressed in this biological system.
Collapse
Affiliation(s)
- Massimo Santacroce
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Trentacoste 2, 20134 Milano, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Yang CW, Ding RF, Lai SH, Liao HS, Lai WC, Huang KY, Chang CS, Hwang IS. Torsional resonance mode atomic force microscopy in liquid with Lorentz force actuation. NANOTECHNOLOGY 2013; 24:305702. [PMID: 23807471 DOI: 10.1088/0957-4484/24/30/305702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this work, we present a design based on Lorentz force induction to excite pure torsional resonances of different types of cantilevers in air as well as in water. To demonstrate the atomic force microscopy imaging capability, the phase-modulation torsional resonance mode is employed to resolve fine features of purple membranes in a buffer solution. Most importantly, force-versus-distance curves using a relatively stiff cantilever can clearly detect the characteristic oscillatory profiles of hydration layers at a water-mica interface, indicating the high force sensitivity of the torsional mode. The high resonance frequencies and high quality-factors for the torsional mode may be of great potential for high-speed and high-sensitivity imaging in aqueous environment.
Collapse
Affiliation(s)
- Chih-Wen Yang
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Laurent J, Steinberger A, Bellon L. Functionalized AFM probes for force spectroscopy: eigenmode shapes and stiffness calibration through thermal noise measurements. NANOTECHNOLOGY 2013; 24:225504. [PMID: 23644764 DOI: 10.1088/0957-4484/24/22/225504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The functionalization of an atomic force microscope (AFM) cantilever with a colloidal bead is a widely used technique when the geometry between the probe and the sample must be controlled, particularly in force spectroscopy. But some questions remain: how does a bead glued at the end of a cantilever influence its mechanical response? And more importantly for quantitative measurements, can we still determine the stiffness of the AFM probe with traditional techniques?In this paper, the influence of the colloidal mass loading on the eigenmode shape and resonant frequency is investigated by measuring the thermal noise on rectangular AFM microcantilevers with and without beads attached at their extremities. The experiments are performed with a home-made ultra-sensitive AFM, based on differential interferometry. The focused beam from the interferometer probes the cantilever at different positions and the spatial shapes of the modes are determined up to the fifth resonance, without external excitation. The results clearly demonstrate that the first eigenmode is almost unchanged by mass loading. However the oscillation behavior of higher resonances presents a marked difference: with a particle glued at its extremity, the nodes of the modes are displaced towards the free end of the cantilever. These results are compared to an analytical model taking into account the mass and inertial moment of the load in an Euler-Bernoulli framework, where the normalization of the eigenmodes is explicitly worked out in order to allow a quantitative prediction of the thermal noise amplitude of each mode. A good agreement between the experimental results and the analytical model is demonstrated, allowing a clean calibration of the probe stiffness.
Collapse
Affiliation(s)
- Justine Laurent
- Université de Lyon, Laboratoire de Physique, École Normale Supérieure de Lyon, CNRS, 46 allée d'Italie, F-69007, Lyon, France
| | | | | |
Collapse
|
48
|
Marasini C, Jacchetti E, Moretti M, Canale C, Moran O, Vassalli M. Visualization of single proteins from stripped native cell membranes: A protocol for high-resolution atomic force microscopy. Microsc Res Tech 2013; 76:723-32. [DOI: 10.1002/jemt.22223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/08/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Carlotta Marasini
- Istituto di Biofisica; Consiglio Nazionale delle Ricerche; Genova; 16149; Italy
| | | | - Manola Moretti
- Nanophysics Dipartimento; Istituto Italiano di Tecnologia; Morego; Genova; 16163; Italy
| | - Claudio Canale
- Nanophysics Dipartimento; Istituto Italiano di Tecnologia; Morego; Genova; 16163; Italy
| | - Oscar Moran
- Istituto di Biofisica; Consiglio Nazionale delle Ricerche; Genova; 16149; Italy
| | - Massimo Vassalli
- Istituto di Biofisica; Consiglio Nazionale delle Ricerche; Genova; 16149; Italy
| |
Collapse
|
49
|
Li JJ, Yip CM. Super-resolved FT-IR spectroscopy: Strategies, challenges, and opportunities for membrane biophysics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2272-82. [PMID: 23500349 DOI: 10.1016/j.bbamem.2013.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/25/2013] [Indexed: 01/16/2023]
Abstract
Direct correlation of molecular conformation with local structure is critical to studies of protein- and peptide-membrane interactions, particularly in the context of membrane-facilitated aggregation, and disruption or disordering. Infrared spectroscopy has long been a mainstay for determining molecular conformation, following folding dynamics, and characterizing reactions. While tremendous advances have been made in improving the spectral and temporal resolution of infrared spectroscopy, it has only been with the introduction of scanned-probe techniques that exploit the raster-scanning tip as either a source, scattering tool, or measurement probe that researchers have been able to obtain sub-diffraction limit IR spectra. This review will examine the history of correlated scanned-probe IR spectroscopies, from their inception to their use in studies of molecular aggregates, membrane domains, and cellular structures. The challenges and opportunities that these platforms present for examining dynamic phenomena will be discussed. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.
Collapse
Affiliation(s)
- Jessica J Li
- Department of Chemical Engineering and Applied Chemistry, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada M5S 3E1
| | | |
Collapse
|
50
|
Hadiji-Abbes N, Martin M, Benzina W, Karray-Hakim H, Gergely C, Gargouri A, Mokdad-Gargouri R. Extraction and purification of hepatitis B virus-like M particles from a recombinant Saccharomyces cerevisiae strain using alumina powder. J Virol Methods 2013; 187:132-7. [DOI: 10.1016/j.jviromet.2012.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 09/18/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|