1
|
Bradfield C, Voo L, Bhaduri A, Ramesh KT. Validation of a computational biomechanical mouse brain model for rotational head acceleration. Biomech Model Mechanobiol 2024; 23:1347-1367. [PMID: 38662175 DOI: 10.1007/s10237-024-01843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/17/2024] [Indexed: 04/26/2024]
Abstract
Recent mouse brain injury experiments examine diffuse axonal injury resulting from accelerative head rotations. Evaluating brain deformation during these events would provide valuable information on tissue level thresholds for brain injury, but there are many challenges to imaging the brain's mechanical response during dynamic loading events, such as a blunt head impact. To address this shortcoming, we present an experimentally validated computational biomechanics model of the mouse brain that predicts tissue deformation, given the motion of the mouse head during laboratory experiments. First, we developed a finite element model of the mouse brain that computes tissue strains, given the same head rotations as previously conducted in situ hemicephalic mouse brain experiments. Second, we calibrated the model using a single brain segment, and then validated the model based on the spatial and temporal strain responses of other regions. The result is a computational tool that will provide researchers with the ability to predict brain tissue strains that occur during mouse laboratory experiments, and to link the experiments to the resulting neuropathology, such as diffuse axonal injury.
Collapse
Affiliation(s)
- Connor Bradfield
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street.
| | - Liming Voo
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| | - Anindya Bhaduri
- Department of Civil Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| | - K T Ramesh
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| |
Collapse
|
2
|
Pillai EK, Franze K. Mechanics in the nervous system: From development to disease. Neuron 2024; 112:342-361. [PMID: 37967561 DOI: 10.1016/j.neuron.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023]
Abstract
Physical forces are ubiquitous in biological processes across scales and diverse contexts. This review highlights the significance of mechanical forces in nervous system development, homeostasis, and disease. We provide an overview of mechanical signals present in the nervous system and delve into mechanotransduction mechanisms translating these mechanical cues into biochemical signals. During development, mechanical cues regulate a plethora of processes, including cell proliferation, differentiation, migration, network formation, and cortex folding. Forces then continue exerting their influence on physiological processes, such as neuronal activity, glial cell function, and the interplay between these different cell types. Notably, changes in tissue mechanics manifest in neurodegenerative diseases and brain tumors, potentially offering new diagnostic and therapeutic target opportunities. Understanding the role of cellular forces and tissue mechanics in nervous system physiology and pathology adds a new facet to neurobiology, shedding new light on many processes that remain incompletely understood.
Collapse
Affiliation(s)
- Eva K Pillai
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Institute of Medical Physics and Microtissue Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Kussmaulallee 1, 91054 Erlangen, Germany.
| |
Collapse
|
3
|
Zhang C, Ji S. Sex Differences in Axonal Dynamic Responses Under Realistic Tension Using Finite Element Models. J Neurotrauma 2023; 40:2217-2232. [PMID: 37335051 DOI: 10.1089/neu.2022.0512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Existing axonal finite element models do not consider sex morphological differences or the fidelity in dynamic input. To facilitate a systematic investigation into the micromechanics of diffuse axonal injury, we develop a parameterized modeling approach for automatic and efficient generation of sex-specific axonal models according to specified geometrical parameters. Baseline female and male axonal models in the corpus callosum with random microtubule (MT) gap configurations are generated for model calibration and evaluation. They are then used to simulate a realistic tensile loading consisting of both a loading and a recovery phase (to return to an initial undeformed state) generated from dynamic corpus callosum fiber strain in a real-world head impact simulation. We find that MT gaps and the dynamic recovery phase are both critical to successfully reproduce MT undulation as observed experimentally, which has not been reported before. This strengthens confidence in model dynamic responses. A statistical approach is further employed to aggregate axonal responses from a large sample of random MT gap configurations for both female and male axonal models (n = 10,000 each). We find that peak strains in MTs and the Ranvier node and associated neurofilament failures in female axons are substantially higher than those in male axons because there are fewer MTs in the former and also because of the random nature of MT gap locations. Despite limitations in various model assumptions as a result of limited experimental data currently available, these findings highlight the need to systematically characterize MT gap configurations and to ensure a realistic model input for axonal dynamic simulations. Finally, this study may offer fresh and improved insight into the biomechanical basis of sex differences in brain injury, and sets the stage for more systematic investigations at the microscale in the future, both numerically and experimentally.
Collapse
Affiliation(s)
- Chaokai Zhang
- Department of Biomedical Engineering and Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Songbai Ji
- Department of Biomedical Engineering and Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
4
|
Chavoshnejad P, Vallejo L, Zhang S, Guo Y, Dai W, Zhang T, Razavi MJ. Mechanical hierarchy in the formation and modulation of cortical folding patterns. Sci Rep 2023; 13:13177. [PMID: 37580340 PMCID: PMC10425471 DOI: 10.1038/s41598-023-40086-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
The important mechanical parameters and their hierarchy in the growth and folding of the human brain have not been thoroughly understood. In this study, we developed a multiscale mechanical model to investigate how the interplay between initial geometrical undulations, differential tangential growth in the cortical plate, and axonal connectivity form and regulate the folding patterns of the human brain in a hierarchical order. To do so, different growth scenarios with bilayer spherical models that features initial undulations on the cortex and uniform or heterogeneous distribution of axonal fibers in the white matter were developed, statistically analyzed, and validated by the imaging observations. The results showed that the differential tangential growth is the inducer of cortical folding, and in a hierarchal order, high-amplitude initial undulations on the surface and axonal fibers in the substrate regulate the folding patterns and determine the location of gyri and sulci. The locations with dense axonal fibers after folding settle in gyri rather than sulci. The statistical results also indicated that there is a strong correlation between the location of positive (outward) and negative (inward) initial undulations and the locations of gyri and sulci after folding, respectively. In addition, the locations of 3-hinge gyral folds are strongly correlated with the initial positive undulations and locations of dense axonal fibers. As another finding, it was revealed that there is a correlation between the density of axonal fibers and local gyrification index, which has been observed in imaging studies but not yet fundamentally explained. This study is the first step in understanding the linkage between abnormal gyrification (surface morphology) and disruption in connectivity that has been observed in some brain disorders such as Autism Spectrum Disorder. Moreover, the findings of the study directly contribute to the concept of the regularity and variability of folding patterns in individual human brains.
Collapse
Affiliation(s)
- Poorya Chavoshnejad
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Liam Vallejo
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Songyao Zhang
- Brain Decoding Research Center and School of Automation, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Yanchen Guo
- Department of Computer Science, Binghamton University, Binghamton, NY, USA
| | - Weiying Dai
- Department of Computer Science, Binghamton University, Binghamton, NY, USA
| | - Tuo Zhang
- Brain Decoding Research Center and School of Automation, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Mir Jalil Razavi
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA.
| |
Collapse
|
5
|
Breau MA, Trembleau A. Chemical and mechanical control of axon fasciculation and defasciculation. Semin Cell Dev Biol 2023; 140:72-81. [PMID: 35810068 DOI: 10.1016/j.semcdb.2022.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023]
Abstract
Neural networks are constructed through the development of robust axonal projections from individual neurons, which ultimately establish connections with their targets. In most animals, developing axons assemble in bundles to navigate collectively across various areas within the central nervous system or the periphery, before they separate from these bundles in order to find their specific targets. These processes, called fasciculation and defasciculation respectively, were thought for many years to be controlled chemically: while guidance cues may attract or repulse axonal growth cones, adhesion molecules expressed at the surface of axons mediate their fasciculation. Recently, an additional non-chemical parameter, the mechanical longitudinal tension of axons, turned out to play a role in axon fasciculation and defasciculation, through zippering and unzippering of axon shafts. In this review, we present an integrated view of the currently known chemical and mechanical control of axon:axon dynamic interactions. We highlight the facts that the decision to cross or not to cross another axon depends on a combination of chemical, mechanical and geometrical parameters, and that the decision to fasciculate/defasciculate through zippering/unzippering relies on the balance between axon:axon adhesion and their mechanical tension. Finally, we speculate about possible functional implications of zippering-dependent axon shaft fasciculation, in the collective migration of axons, and in the sorting of subpopulations of axons.
Collapse
Affiliation(s)
- Marie Anne Breau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR 7622), Institut de Biologie Paris Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Alain Trembleau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France.
| |
Collapse
|
6
|
Ghose A, Pullarkat P. The role of mechanics in axonal stability and development. Semin Cell Dev Biol 2023; 140:22-34. [PMID: 35786351 PMCID: PMC7615100 DOI: 10.1016/j.semcdb.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 01/28/2023]
Abstract
Much of the focus of neuronal cell biology has been devoted to growth cone guidance, synaptogenesis, synaptic activity, plasticity, etc. The axonal shaft too has received much attention, mainly for its astounding ability to transmit action potentials and the transport of material over long distances. For these functions, the axonal cytoskeleton and membrane have been often assumed to play static structural roles. Recent experiments have changed this view by revealing an ultrastructure much richer in features than previously perceived and one that seems to be maintained at a dynamic steady state. The role of mechanics in this is only beginning to be broadly appreciated and appears to involve passive and active modes of coupling different biopolymer filaments, filament turnover dynamics and membrane biophysics. Axons, being unique cellular processes in terms of high aspect ratios and often extreme lengths, also exhibit unique passive mechanical properties that might have evolved to stabilize them under mechanical stress. In this review, we summarize the experiments that have exposed some of these features. It is our view that axonal mechanics deserves much more attention not only due to its significance in the development and maintenance of the nervous system but also due to the susceptibility of axons to injury and neurodegeneration.
Collapse
Affiliation(s)
- Aurnab Ghose
- Indian Institute of Science Education and Research, Pune 411 008, India.
| | - Pramod Pullarkat
- Raman Research Institute, C. V. Raman Avenue, Bengaluru 560 080, India.
| |
Collapse
|
7
|
Van Essen DC. Biomechanical models and mechanisms of cellular morphogenesis and cerebral cortical expansion and folding. Semin Cell Dev Biol 2023; 140:90-104. [PMID: 35840524 PMCID: PMC9942585 DOI: 10.1016/j.semcdb.2022.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 01/28/2023]
Abstract
Morphogenesis of the nervous system involves a highly complex spatio-temporal pattern of physical forces (mainly tension and pressure) acting on cells and tissues that are pliable but have an intricately organized cytoskeletal infrastructure. This review begins by covering basic principles of biomechanics and the core cytoskeletal toolkit used to regulate the shapes of cells and tissues during embryogenesis and neural development. It illustrates how the principle of 'tensegrity' provides a useful conceptual framework for understanding how cells dynamically respond to forces that are generated internally or applied externally. The latter part of the review builds on this foundation in considering the development of mammalian cerebral cortex. The main focus is on cortical expansion and folding - processes that take place over an extended period of prenatal and postnatal development. Cortical expansion and folding are likely to involve many complementary mechanisms, some related to regulating cell proliferation and migration and others related to specific types and patterns of mechanical tension and pressure. Three distinct multi-mechanism models are evaluated in relation to a set of 18 key experimental observations and findings. The Composite Tension Plus (CT+) model is introduced as an updated version of a previous multi-component Differential Expansion Sandwich Plus (DES+) model (Van Essen, 2020); the new CT+ model includes 10 distinct mechanisms and has the greatest explanatory power among published models to date. Much needs to be done in order to validate specific mechanistic components and to assess their relative importance in different species, and important directions for future research are suggested.
Collapse
|
8
|
Wang LM, Kuhl E. Mechanics of axon growth and damage: A systematic review of computational models. Semin Cell Dev Biol 2023; 140:13-21. [PMID: 35474150 DOI: 10.1016/j.semcdb.2022.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 01/28/2023]
Abstract
Normal axon development depends on the action of mechanical forces both generated within the cytoskeleton and outside the cell, but forces of large magnitude or rate cause damage instead. Computational models aid scientists in studying the role of mechanical forces in axon growth and damage. These studies use simulations to evaluate how different sources of force generation within the cytoskeleton interact with each other to regulate axon elongation and retraction. Furthermore, mathematical models can help optimize externally applied tension to promote axon growth without causing damage. Finally, scientists also use simulations of axon damage to investigate how forces are distributed among different components of the axon and how the tissue surrounding an axon influences its susceptibility to injury. In this review, we discuss how computational studies complement experimental studies in the areas of axon growth, regeneration, and damage.
Collapse
Affiliation(s)
- Lucy M Wang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Ellen Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Chai Z, Gu S, Lykotrafitis G. Dynamics of the axon plasma membrane skeleton. SOFT MATTER 2023; 19:2514-2528. [PMID: 36939651 DOI: 10.1039/d2sm01602h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It was recently revealed via super-resolution microscopy experiments that the axon plasma membrane skeleton (APMS) comprises a series of periodically arranged azimuthal actin rings connected via longitudinal spectrin filaments forming an orthotropic network. The common perception is that APMS enhances structural stability of the axon but its impact on axon deformation is unknown. To investigate the response of the APMS to extension, we introduce a coarse-grain molecular dynamics model consisting of actin particles forming rings and chains of particles representing spectrin tetramers with repeats than can unfold. We observe that the shape of force-extension curve is initially linear and the force level depends on the extension rate. Even during the initial deformation stage, unfolding of spectrin repeats occurs, but the saw-tooth shape of the corresponding force-extension curve observed in the case of one spectrin tetramer does not appear in the case of the entire APMS. The reason is that spectrin unfolding is not synchronized across filaments during extension. If actin-spectrin associations remain intact, the force-extension response reaches a perfectly plastic region because of increased spectrin unfolding frequency. However, when actin-spectrin links dissociate, which can happen at moderate and high extension rates, APMS softens and the resistance force decreases linearly as the axon elongates until it reaches a point where the APMS is completely severed. Furthermore, when the ring-to-ring distance is maintained fixed under stretch, the resistance force relaxes exponentially as a function of time due to additional unfolding of spectrin tetramers following the Kelvin-Voigt representation of the Zener model.
Collapse
Affiliation(s)
- Zhaojie Chai
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Shiju Gu
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
10
|
Wang LM, Goodman MB, Kuhl E. Image-based axon model highlights heterogeneity in initiation of damage. Biophys J 2023; 122:9-19. [PMID: 36461640 PMCID: PMC9822833 DOI: 10.1016/j.bpj.2022.11.2946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/29/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Head injury simulations predict the occurrence of traumatic brain injury by placing a threshold on the calculated strains for axon tracts within the brain. However, a current roadblock to accurate injury prediction is the selection of an appropriate axon damage threshold. While several computational studies have used models of the axon cytoskeleton to investigate damage initiation, these models all employ an idealized, homogeneous axonal geometry. This homogeneous geometry with regularly spaced microtubules, evenly distributed throughout the model, overestimates axon strength because, in reality, the axon cytoskeleton is heterogeneous. In the heterogeneous cytoskeleton, the weakest cross section determines the initiation of failure, but these weak spots are not present in a homogeneous model. Addressing one source of heterogeneity in the axon cytoskeleton, we present a new semiautomated image analysis pipeline for using serial-section transmission electron micrographs to reconstruct the microtubule geometry of an axon. The image analysis procedure locates microtubules within the images, traces them throughout the image stack, and reconstructs the microtubule structure as a finite element mesh. We demonstrate the image analysis approach using a C. elegans touch receptor neuron due to the availability of high-quality serial-section transmission electron micrograph data sets. The results of the analysis highlight the heterogeneity of the microtubule structure in the spatial variation of both microtubule number and length. Simulations comparing this image-based geometry with homogeneous geometries show that structural heterogeneity in the image-based model creates significant spatial variation in deformation. The homogeneous geometries, on the other hand, deform more uniformly. Since no single homogeneous model can replicate the mechanical behavior of the image-based model, our results argue that heterogeneity in axon microtubule geometry should be considered in determining accurate axon failure thresholds.
Collapse
Affiliation(s)
- Lucy M Wang
- Department of Mechanical Engineering, Stanford University, Stanford, California.
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California
| | - Ellen Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, California
| |
Collapse
|
11
|
Zhang H, Zhang K, Li M, Shao Y, Feng XQ. Force-Regulated State Transitions of Growing Axons. PHYSICAL REVIEW LETTERS 2022; 129:128101. [PMID: 36179209 DOI: 10.1103/physrevlett.129.128101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Growing axons are one-dimensional active structures that are important for wiring the brain and repairing nerves. However, the biophysical mechanisms underlying the complex kinetics of growing axons remain elusive. Here, we develop a theoretical framework to recapitulate force-regulated states and their transitions in growing axons. We demonstrate a unique negative feedback mechanism that defines four distinct kinetic states in a growing axon, whose transitional boundaries depend on the interplay between cytoskeletal dynamics and axon-substrate adhesion. A phase diagram for axonal growth is formulated based on two dimensionless numbers.
Collapse
Affiliation(s)
- Huanxin Zhang
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Kaixuan Zhang
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Min Li
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Leterrier C, Pullarkat PA. Mechanical role of the submembrane spectrin scaffold in red blood cells and neurons. J Cell Sci 2022; 135:276327. [PMID: 35972759 DOI: 10.1242/jcs.259356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spectrins are large, evolutionarily well-conserved proteins that form highly organized scaffolds on the inner surface of eukaryotic cells. Their organization in different cell types or cellular compartments helps cells withstand mechanical challenges with unique strategies depending on the cell type. This Review discusses our understanding of the mechanical properties of spectrins, their very distinct organization in red blood cells and neurons as two examples, and the contribution of the scaffolds they form to the mechanical properties of these cells.
Collapse
Affiliation(s)
- Christophe Leterrier
- Aix Marseille Université, CNRS, INP UMR 7051, NeuroCyto, Marseille 13005, France
| | | |
Collapse
|
13
|
Abstract
The establishment of a functioning neuronal network is a crucial step in neural development. During this process, neurons extend neurites-axons and dendrites-to meet other neurons and interconnect. Therefore, these neurites need to migrate, grow, branch and find the correct path to their target by processing sensory cues from their environment. These processes rely on many coupled biophysical effects including elasticity, viscosity, growth, active forces, chemical signaling, adhesion and cellular transport. Mathematical models offer a direct way to test hypotheses and understand the underlying mechanisms responsible for neuron development. Here, we critically review the main models of neurite growth and morphogenesis from a mathematical viewpoint. We present different models for growth, guidance and morphogenesis, with a particular emphasis on mechanics and mechanisms, and on simple mathematical models that can be partially treated analytically.
Collapse
Affiliation(s)
- Hadrien Oliveri
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
| |
Collapse
|
14
|
Pan X, Zhou Y, Hotulainen P, Meunier FA, Wang T. The axonal radial contractility: Structural basis underlying a new form of neural plasticity. Bioessays 2021; 43:e2100033. [PMID: 34145916 DOI: 10.1002/bies.202100033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022]
Abstract
Axons are the longest cellular structure reaching over a meter in the case of human motor axons. They have a relatively small diameter and contain several cytoskeletal elements that mediate both material and information exchange within neurons. Recently, a novel type of axonal plasticity, termed axonal radial contractility, has been unveiled. It is represented by dynamic and transient diameter changes of the axon shaft to accommodate the passages of large organelles. Mechanisms underpinning this plasticity are not fully understood. Here, we first summarised recent evidence of the functional relevance for axon radial contractility, then discussed the underlying structural basis, reviewing nanoscopic evidence of the subtle changes. Two models are proposed to explain how actomyosin rings are organised. Possible roles of non-muscle myosin II (NM-II) in axon degeneration are discussed. Finally, we discuss the concept of periodic functional nanodomains, which could sense extracellular cues and coordinate the axonal responses. Also see the video abstract here: https://youtu.be/ojCnrJ8RCRc.
Collapse
Affiliation(s)
- Xiaorong Pan
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Yimin Zhou
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Tong Wang
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| |
Collapse
|
15
|
Raj V, Jagadish C, Gautam V. Understanding, engineering, and modulating the growth of neural networks: An interdisciplinary approach. BIOPHYSICS REVIEWS 2021; 2:021303. [PMID: 38505122 PMCID: PMC10903502 DOI: 10.1063/5.0043014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/25/2021] [Indexed: 03/21/2024]
Abstract
A deeper understanding of the brain and its function remains one of the most significant scientific challenges. It not only is required to find cures for a plethora of brain-related diseases and injuries but also opens up possibilities for achieving technological wonders, such as brain-machine interface and highly energy-efficient computing devices. Central to the brain's function is its basic functioning unit (i.e., the neuron). There has been a tremendous effort to understand the underlying mechanisms of neuronal growth on both biochemical and biophysical levels. In the past decade, this increased understanding has led to the possibility of controlling and modulating neuronal growth in vitro through external chemical and physical methods. We provide a detailed overview of the most fundamental aspects of neuronal growth and discuss how researchers are using interdisciplinary ideas to engineer neuronal networks in vitro. We first discuss the biochemical and biophysical mechanisms of neuronal growth as we stress the fact that the biochemical or biophysical processes during neuronal growth are not independent of each other but, rather, are complementary. Next, we discuss how utilizing these fundamental mechanisms can enable control over neuronal growth for advanced neuroengineering and biomedical applications. At the end of this review, we discuss some of the open questions and our perspectives on the challenges and possibilities related to controlling and engineering the growth of neuronal networks, specifically in relation to the materials, substrates, model systems, modulation techniques, data science, and artificial intelligence.
Collapse
Affiliation(s)
- Vidur Raj
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | | | - Vini Gautam
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
16
|
Abstract
Brain structures change shape dramatically during development. Elucidating the mechanisms of morphogenesis provides insights relevant to understanding brain function in health and disease. The tension-based morphogenesis (TBM) hypothesis posits that mechanical tension along axons, dendrites, and glial processes contributes to many aspects of central nervous system morphogenesis. Since TBM was proposed in 1997, extensive evidence supports a role for tension in diverse cellular phenomena, but tension’s role in cortical folding has been controversial. An extensively revised version of the TBM model for cerebral cortex addresses limitations of the original model, incorporates new features, and can be tested by many experimental approaches. For cerebellar cortex, a revised model accounts for many aspects of its development and adult architecture. Mechanical tension along the length of axons, dendrites, and glial processes has been proposed as a major contributor to morphogenesis throughout the nervous system [D. C. Van Essen, Nature 385, 313–318 (1997)]. Tension-based morphogenesis (TBM) is a conceptually simple and general hypothesis based on physical forces that help shape all living things. Moreover, if each axon and dendrite strive to shorten while preserving connectivity, aggregate wiring length would remain low. TBM can explain key aspects of how the cerebral and cerebellar cortices remain thin, expand in surface area, and acquire their distinctive folds. This article reviews progress since 1997 relevant to TBM and other candidate morphogenetic mechanisms. At a cellular level, studies of diverse cell types in vitro and in vivo demonstrate that tension plays a major role in many developmental events. At a tissue level, I propose a differential expansion sandwich plus (DES+) revision to the original TBM model for cerebral cortical expansion and folding. It invokes tangential tension and “sulcal zipping” forces along the outer cortical margin as well as tension in the white matter core, together competing against radially biased tension in the cortical gray matter. Evidence for and against the DES+ model is discussed, and experiments are proposed to address key tenets of the DES+ model. For cerebellar cortex, a cerebellar multilayer sandwich (CMS) model is proposed that can account for many distinctive features, including its unique, accordion-like folding in the adult, and experiments are proposed to address its specific tenets.
Collapse
|
17
|
Manipulation of Axonal Outgrowth via Exogenous Low Forces. Int J Mol Sci 2020; 21:ijms21218009. [PMID: 33126477 PMCID: PMC7663625 DOI: 10.3390/ijms21218009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Neurons are mechanosensitive cells. The role of mechanical force in the process of neurite initiation, elongation and sprouting; nerve fasciculation; and neuron maturation continues to attract considerable interest among scientists. Force is an endogenous signal that stimulates all these processes in vivo. The axon is able to sense force, generate force and, ultimately, transduce the force in a signal for growth. This opens up fascinating scenarios. How are forces generated and sensed in vivo? Which molecular mechanisms are responsible for this mechanotransduction signal? Can we exploit exogenously applied forces to mimic and control this process? How can these extremely low forces be generated in vivo in a non-invasive manner? Can these methodologies for force generation be used in regenerative therapies? This review addresses these questions, providing a general overview of current knowledge on the applications of exogenous forces to manipulate axonal outgrowth, with a special focus on forces whose magnitude is similar to those generated in vivo. We also review the principal methodologies for applying these forces, providing new inspiration and insights into the potential of this approach for future regenerative therapies.
Collapse
|
18
|
Abstract
The brain is our most complex organ. During development, neurons extend axons, which may grow over long distances along well-defined pathways to connect to distant targets. Our current understanding of axon pathfinding is largely based on chemical signaling by attractive and repulsive guidance cues. These cues instruct motile growth cones, the leading tips of growing axons, where to turn and where to stop. However, it is not chemical signals that cause motion-motion is driven by forces. Yet our current understanding of the mechanical regulation of axon growth is very limited. In this review, I discuss the origin of the cellular forces controlling axon growth and pathfinding, and how mechanical signals encountered by growing axons may be integrated with chemical signals. This mechanochemical cross talk is an important but often overlooked aspect of cell motility that has major implications for many physiological and pathological processes involving neuronal growth.
Collapse
Affiliation(s)
- Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
| |
Collapse
|
19
|
|
20
|
Sousa SC, Sousa MM. The cytoskeleton as a modulator of tension driven axon elongation. Dev Neurobiol 2020; 81:300-309. [PMID: 32302060 DOI: 10.1002/dneu.22747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/11/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Throughout development, neurons are capable of integrating external and internal signals leading to the morphological changes required for neuronal polarization and axon growth. The first phase of axon elongation occurs during neuronal polarization. At this stage, membrane remodeling and cytoskeleton dynamics are crucial for the growth cone to advance and guide axon elongation. When a target is recognized, the growth cone collapses to form the presynaptic terminal. Once a synapse is established, the growth of the organism results in an increased distance between the neuronal cell bodies and their targets. In this second phase of axon elongation, growth cone-independent molecular mechanisms and cytoskeleton changes must occur to enable axon growth to accompany the increase in body size. While the field has mainly focused on growth-cone mediated axon elongation during development, tension driven axon growth remains largely unexplored. In this review, we will discuss in a critical perspective the current knowledge on the mechanisms guiding axon growth following synaptogenesis, with a particular focus on the putative role played by the axonal cytoskeleton.
Collapse
Affiliation(s)
- Sara C Sousa
- Nerve Regeneration group, Instituto de Biologia Molecular e Celular - IBMC and i3S, Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal.,Doctoral Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar-ICBAS, University of Porto, Porto, Portugal
| | - Mónica M Sousa
- Nerve Regeneration group, Instituto de Biologia Molecular e Celular - IBMC and i3S, Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal
| |
Collapse
|
21
|
Obenaus AM, Mollica MY, Sniadecki NJ. (De)form and Function: Measuring Cellular Forces with Deformable Materials and Deformable Structures. Adv Healthc Mater 2020; 9:e1901454. [PMID: 31951099 PMCID: PMC7274881 DOI: 10.1002/adhm.201901454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/04/2019] [Indexed: 12/29/2022]
Abstract
The ability for biological cells to produce mechanical forces is important for the development, function, and homeostasis of tissue. The measurement of cellular forces is not a straightforward task because individual cells are microscopic in size and the forces they produce are at the nanonewton scale. Consequently, studies in cell mechanics rely on advanced biomaterials or flexible structures that permit one to infer these forces by the deformation they impart on the material or structure. Herein, the scientific progression on the use of deformable materials and deformable structures to measure cellular forces are reviewed. The findings and insights made possible with these approaches in the field of cell mechanics are summarized.
Collapse
Affiliation(s)
- Ava M Obenaus
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Molly Y Mollica
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
22
|
Montanino A, Saeedimasine M, Villa A, Kleiven S. Localized Axolemma Deformations Suggest Mechanoporation as Axonal Injury Trigger. Front Neurol 2020; 11:25. [PMID: 32082244 PMCID: PMC7005088 DOI: 10.3389/fneur.2020.00025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injuries are a leading cause of morbidity and mortality worldwide. With almost 50% of traumatic brain injuries being related to axonal damage, understanding the nature of cellular level impairment is crucial. Experimental observations have so far led to the formulation of conflicting theories regarding the cellular primary injury mechanism. Disruption of the axolemma, or alternatively cytoskeletal damage has been suggested mainly as injury trigger. However, mechanoporation thresholds of generic membranes seem not to overlap with the axonal injury deformation range and microtubules appear too stiff and too weakly connected to undergo mechanical breaking. Here, we aim to shed a light on the mechanism of primary axonal injury, bridging finite element and molecular dynamics simulations. Despite the necessary level of approximation, our models can accurately describe the mechanical behavior of the unmyelinated axon and its membrane. More importantly, they give access to quantities that would be inaccessible with an experimental approach. We show that in a typical injury scenario, the axonal cortex sustains deformations large enough to entail pore formation in the adjoining lipid bilayer. The observed axonal deformation of 10–12% agree well with the thresholds proposed in the literature for axonal injury and, above all, allow us to provide quantitative evidences that do not exclude pore formation in the membrane as a result of trauma. Our findings bring to an increased knowledge of axonal injury mechanism that will have positive implications for the prevention and treatment of brain injuries.
Collapse
Affiliation(s)
- Annaclaudia Montanino
- Division of Neuronic Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Marzieh Saeedimasine
- Department of Biosciences and Nutrition, Karolinska Institutet (KI), Stockholm, Sweden
| | - Alessandra Villa
- Department of Biosciences and Nutrition, Karolinska Institutet (KI), Stockholm, Sweden
| | - Svein Kleiven
- Division of Neuronic Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden
| |
Collapse
|
23
|
Saito K, Okamoto M, Watanabe Y, Noguchi N, Nagasaka A, Nishina Y, Shinoda T, Sakakibara A, Miyata T. Dorsal-to-Ventral Cortical Expansion Is Physically Primed by Ventral Streaming of Early Embryonic Preplate Neurons. Cell Rep 2019; 29:1555-1567.e5. [DOI: 10.1016/j.celrep.2019.09.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 09/25/2019] [Indexed: 01/08/2023] Open
|
24
|
Montanino A, Saeedimasine M, Villa A, Kleiven S. Axons Embedded in a Tissue May Withstand Larger Deformations Than Isolated Axons Before Mechanoporation Occurs. J Biomech Eng 2019; 141:1031141. [DOI: 10.1115/1.4044953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 12/29/2022]
Abstract
Abstract
Diffuse axonal injury (DAI) is the pathological consequence of traumatic brain injury (TBI) that most of all requires a multiscale approach in order to be, first, understood and then possibly prevented. While in fact the mechanical insult usually happens at the head (or macro) level, the consequences affect structures at the cellular (or microlevel). The quest for axonal injury tolerances has so far been addressed both with experimental and computational approaches. On one hand, the experimental approach presents challenges connected to both temporal and spatial resolution in the identification of a clear axonal injury trigger after the application of a mechanical load. On the other hand, computational approaches usually consider axons as homogeneous entities and therefore are unable to make inferences about their viability, which is thought to depend on subcellular damages. Here, we propose a computational multiscale approach to investigate the onset of axonal injury in two typical experimental scenarios. We simulated single-cell and tissue stretch injury using a composite finite element axonal model in isolation and embedded in a matrix, respectively. Inferences on axonal damage are based on the comparison between axolemma strains and previously established mechanoporation thresholds. Our results show that, axons embedded in a tissue could withstand higher deformations than isolated axons before mechanoporation occurred and this is exacerbated by the increase in strain rate from 1/s to 10/s.
Collapse
Affiliation(s)
- Annaclaudia Montanino
- Division of Neuronic Engineering, Royal Institute of Technology (KTH), Huddinge SE-14152, Sweden
| | - Marzieh Saeedimasine
- Department of Biosciences and Nutrition, Karolinska Institutet (KI), Huddinge SE-14152, Sweden
| | - Alessandra Villa
- Department of Biosciences and Nutrition, Karolinska Institutet (KI), Huddinge SE-14152, Sweden
| | - Svein Kleiven
- Division of Neuronic Engineering, Royal Institute of Technology (KTH), Huddinge SE-14152, Sweden
| |
Collapse
|
25
|
Fan A, Joy MSH, Saif T. A connected cytoskeleton network generates axonal tension in embryonic Drosophila. LAB ON A CHIP 2019; 19:3133-3139. [PMID: 31435630 DOI: 10.1039/c9lc00243j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Axons of neurons are contractile, i.e., they actively maintain a rest tension. However, the spatial origin of this contractility along the axon and the role of the cytoskeleton in generating tension and sustaining rigidity are unknown. Here, using a microfluidic platform, we exposed a small segment of the axons of embryonic Drosophila motor neurons to specific cytoskeletal disruption drugs. We observed that a local actomyosin disruption led to a total loss in axonal tension, with the stiffness of the axon remaining unchanged. A local disruption of microtubules led to a local reduction in bending stiffness, while tension remained unchanged. These observations demonstrated that contractile forces are generated and transferred along the entire length of the axon in a serial fashion. Thus, a local force disruption results in a collapse of tension of the entire axon. This mechanism potentially provides a pathway for rapid tension regulation to facilitate physiological processes that are influenced by axonal tension.
Collapse
Affiliation(s)
- Anthony Fan
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | | | | |
Collapse
|
26
|
Montanino A, Deryckere A, Famaey N, Seuntjens E, Kleiven S. Mechanical characterization of squid giant axon membrane sheath and influence of the collagenous endoneurium on its properties. Sci Rep 2019; 9:8969. [PMID: 31222074 PMCID: PMC6586665 DOI: 10.1038/s41598-019-45446-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/07/2019] [Indexed: 12/15/2022] Open
Abstract
To understand traumas to the nervous system, the relation between mechanical load and functional impairment needs to be explained. Cellular-level computational models are being used to capture the mechanism behind mechanically-induced injuries and possibly predict these events. However, uncertainties in the material properties used in computational models undermine the validity of their predictions. For this reason, in this study the squid giant axon was used as a model to provide a description of the axonal mechanical behavior in a large strain and high strain rate regime [Formula: see text], which is relevant for injury investigations. More importantly, squid giant axon membrane sheaths were isolated and tested under dynamic uniaxial tension and relaxation. From the lumen outward, the membrane sheath presents: an axolemma, a layer of Schwann cells followed by the basement membrane and a prominent layer of loose connective tissue consisting of fibroblasts and collagen. Our results highlight the load-bearing role of this enwrapping structure and provide a constitutive description that could in turn be used in computational models. Furthermore, tests performed on collagen-depleted membrane sheaths reveal both the substantial contribution of the endoneurium to the total sheath's response and an interesting increase in material nonlinearity when the collagen in this connective layer is digested. All in all, our results provide useful insights for modelling the axonal mechanical response and in turn will lead to a better understanding of the relationship between mechanical insult and electrophysiological outcome.
Collapse
Affiliation(s)
- Annaclaudia Montanino
- Division of Neuronic Engineering, Royal Institute of Technology (KTH), Huddinge, Sweden.
| | - Astrid Deryckere
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Nele Famaey
- Biomechanics section, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Svein Kleiven
- Division of Neuronic Engineering, Royal Institute of Technology (KTH), Huddinge, Sweden
| |
Collapse
|
27
|
Levis M, Kumar N, Apakian E, Moreno C, Hernandez U, Olivares A, Ontiveros F, Zartman JJ. Microfluidics on the fly: Inexpensive rapid fabrication of thermally laminated microfluidic devices for live imaging and multimodal perturbations of multicellular systems. BIOMICROFLUIDICS 2019; 13:024111. [PMID: 31065310 PMCID: PMC6486393 DOI: 10.1063/1.5086671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/08/2019] [Indexed: 05/06/2023]
Abstract
Microfluidic devices provide a platform for analyzing both natural and synthetic multicellular systems. Currently, substantial capital investment and expertise are required for creating microfluidic devices using standard soft-lithography. These requirements present barriers to entry for many nontraditional users of microfluidics, including developmental biology laboratories. Therefore, fabrication methodologies that enable rapid device iteration and work "out-of-the-box" can accelerate the integration of microfluidics with developmental biology. Here, we have created and characterized low-cost hybrid polyethylene terephthalate laminate (PETL) microfluidic devices that are suitable for cell and micro-organ culture assays. These devices were validated with mammalian cell lines and the Drosophila wing imaginal disc as a model micro-organ. First, we developed and tested PETLs that are compatible with both long-term cultures and high-resolution imaging of cells and organs. Further, we achieved spatiotemporal control of chemical gradients across the wing discs with a multilayered microfluidic device. Finally, we created a multilayered device that enables controllable mechanical loading of micro-organs. This mechanical actuation assay was used to characterize the response of larval wing discs at different developmental stages. Interestingly, increased deformation of the older wing discs for the same mechanical loading suggests that the compliance of the organ is increased in preparation for subsequent morphogenesis. Together, these results demonstrate the applicability of hybrid PETL devices for biochemical and mechanobiology studies on micro-organs and provide new insights into the mechanics of organ development.
Collapse
Affiliation(s)
- Megan Levis
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Emily Apakian
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Cesar Moreno
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Ulises Hernandez
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Ana Olivares
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Fernando Ontiveros
- Biology Department, St. John Fisher College, Rochester, New York 14618, USA
| | - Jeremiah J. Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
28
|
Fouquet C, Trembleau A. Preparation and Manipulation of Olfactory Epithelium Explant Cultures for Measurement of the Mechanical Tension of Individual Axons Using the Biomembrane Force Probe. Bio Protoc 2019; 9:e3213. [PMID: 31131294 DOI: 10.21769/bioprotoc.3213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this paper, we describe a protocol allowing measurement of the mechanical tension of individual axons grown ex vivo from neural tissue explants. This protocol was developed with primary cultures of olfactory epithelium explants from embryonic (E13.5) mice. It includes a detailed description of explant dissection and culture, as well as the main steps of the procedure for axon tension measurement using the previously established Biomembrane Force Probe.
Collapse
Affiliation(s)
- Coralie Fouquet
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Laboratoire Neuroscience Paris Seine, F-75005 Paris, France
| | - Alain Trembleau
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Laboratoire Neuroscience Paris Seine, F-75005 Paris, France
| |
Collapse
|
29
|
de Rooij R, Kuhl E, Miller KE. Modeling the Axon as an Active Partner with the Growth Cone in Axonal Elongation. Biophys J 2018; 115:1783-1795. [PMID: 30309611 DOI: 10.1016/j.bpj.2018.08.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/14/2018] [Accepted: 08/30/2018] [Indexed: 12/30/2022] Open
Abstract
Forces generated by the growth cone are vital for the proper development of the axon and thus brain function. Although recent experiments show that forces are generated along the axon, it is unknown whether the axon plays a direct role in controlling growth cone advance. Here, we use analytic and finite element modeling of microtubule dynamics and the activity of the molecular motors myosin and dynein to investigate mechanical force balance along the length of the axon and its effects on axonal outgrowth. Our modeling indicates that the paradoxical effects of stabilizing microtubules and the consequences of microtubule disassembly on axonal outgrowth can be explained by changes in the passive and active mechanical properties of axons. Our findings suggest that a full understanding of growth cone motility requires a consideration of the mechanical contributions of the axon. Our study not only has potential applications during neurodevelopment but might also help identify strategies to manipulate and promote axonal regrowth to treat neurodegeneration.
Collapse
Affiliation(s)
- Rijk de Rooij
- Department of Mechanical Engineering, Stanford University, Stanford, California
| | - Ellen Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, California
| | - Kyle E Miller
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
30
|
Costa AR, Pinto-Costa R, Sousa SC, Sousa MM. The Regulation of Axon Diameter: From Axonal Circumferential Contractility to Activity-Dependent Axon Swelling. Front Mol Neurosci 2018; 11:319. [PMID: 30233318 PMCID: PMC6131297 DOI: 10.3389/fnmol.2018.00319] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/17/2018] [Indexed: 01/08/2023] Open
Abstract
In the adult nervous system axon caliber varies widely amongst different tracts. When considering a given axon, its diameter can further fluctuate in space and time, according to processes including the distribution of organelles and activity-dependent mechanisms. In addition, evidence is emerging supporting that in axons circumferential tension/contractility is present. Axonal diameter is generically regarded as being regulated by neurofilaments. When neurofilaments are absent or low, microtubule-dependent mechanisms can also contribute to the regulation of axon caliber. Despite this knowledge, the fine-tune mechanisms controlling diameter and circumferential tension throughout the lifetime of an axon, remain largely elusive. Recent data supports the role of the actin-spectrin-based membrane periodic skeleton and of non-muscle myosin II in the control of axon diameter. However, the cytoskeletal arrangement that underlies circumferential axonal contraction and expansion is still to be discovered. Here, we discuss in a critical viewpoint the existing knowledge on the regulation of axon diameter, with a specific focus on the possible role played by the axonal actin cytoskeleton.
Collapse
Affiliation(s)
- Ana Rita Costa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal
| | - Rita Pinto-Costa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Sara Castro Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal
| | - Mónica Mendes Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal
| |
Collapse
|
31
|
Montanino A, Kleiven S. Utilizing a Structural Mechanics Approach to Assess the Primary Effects of Injury Loads Onto the Axon and Its Components. Front Neurol 2018; 9:643. [PMID: 30127763 PMCID: PMC6087765 DOI: 10.3389/fneur.2018.00643] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/17/2018] [Indexed: 12/03/2022] Open
Abstract
Diffuse axonal injury (DAI) occurs as a result of the transmission of rapid dynamic loads from the head to the brain and specifically to its neurons. Despite being one of the most common and most deleterious types of traumatic brain injury (TBI), the inherent cell injury mechanism is yet to be understood. Experimental observations have led to the formulation of different hypotheses, such as mechanoporation of the axolemma and microtubules (MTs) breakage. With the goal of singling out the mechanical aspect of DAI and to resolve the ambiguity behind its injury mechanism, a composite finite element (FE) model of a representative volume of an axon was developed. Once calibrated and validated against published experimental data, the axonal model was used to simulate injury scenarios. The resulting strain distributions along its components were then studied in dependence of strain rate and of typical modeling choices such as the applied MT constraints and tau proteins failure. Results show that oversimplifying the MT bundle kinematic entails a systematic attenuation (cf = 2.33) of the computed maximum MT strain. Nevertheless, altogether, results support the hypothesis of axolemma mechanoporation as a cell-injury trigger. Moreover, for the first time the interconnection between the axolemma and the MT bundle is shown to play a role in damage localization. The proposed FE axonal model is a valuable tool to understand the axonal injury mechanism from a mechanical perspective and could be used in turn for the definition of well-informed injury criteria at the tissue and organ level.
Collapse
Affiliation(s)
- Annaclaudia Montanino
- Division of Neuronic Engineering, Royal Institute of Technology (KTH), Huddinge, Sweden
| | - Svein Kleiven
- Division of Neuronic Engineering, Royal Institute of Technology (KTH), Huddinge, Sweden
| |
Collapse
|
32
|
Mutalik SP, Joseph J, Pullarkat PA, Ghose A. Cytoskeletal Mechanisms of Axonal Contractility. Biophys J 2018; 115:713-724. [PMID: 30054033 DOI: 10.1016/j.bpj.2018.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/13/2018] [Accepted: 07/06/2018] [Indexed: 11/18/2022] Open
Abstract
Mechanotransduction is likely to be an important mechanism of signaling in thin, elongated cells such as neurons. Maintenance of prestress or rest tension may facilitate mechanotransduction in these cells. In recent years, functional roles for mechanical tension in neuronal development and physiology are beginning to emerge, but the cellular mechanisms regulating neurite tension remain poorly understood. Active contraction of neurites is a potential mechanism of tension regulation. In this study, we have explored cytoskeletal mechanisms mediating active contractility of neuronal axons. We have developed a simple assay in which we evaluate contraction of curved axons upon trypsin-mediated detachment. We show that curved axons undergo contraction and straighten upon deadhesion. Axonal straightening was found to be actively driven by actomyosin contractility, whereas microtubules may subserve a secondary role. We find that although axons show a monotonous decrease in length upon contraction, subcellularly, the cytoskeleton shows a heterogeneous contractile response. Further, using an assay for spontaneous development of tension without trypsin-induced deadhesion, we show that axons are intrinsically contractile. These experiments, using novel experimental approaches, implicate the axonal cytoskeleton in tension homeostasis. Our data suggest that although globally, the axon behaves as a mechanical continuum, locally, the cytoskeleton is remodeled heterogeneously.
Collapse
Affiliation(s)
- Sampada P Mutalik
- Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Joby Joseph
- Center for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | | - Aurnab Ghose
- Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India.
| |
Collapse
|
33
|
de Rooij R, Kuhl E. Physical Biology of Axonal Damage. Front Cell Neurosci 2018; 12:144. [PMID: 29928193 PMCID: PMC5997835 DOI: 10.3389/fncel.2018.00144] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/09/2018] [Indexed: 11/29/2022] Open
Abstract
Excessive physical impacts to the head have direct implications on the structural integrity at the axonal level. Increasing evidence suggests that tau, an intrinsically disordered protein that stabilizes axonal microtubules, plays a critical role in the physical biology of axonal injury. However, the precise mechanisms of axonal damage remain incompletely understood. Here we propose a biophysical model of the axon to correlate the dynamic behavior of individual tau proteins under external physical forces to the evolution of axonal damage. To propagate damage across the scales, we adopt a consistent three-step strategy: First, we characterize the axonal response to external stretches and stretch rates for varying tau crosslink bond strengths using a discrete axonal damage model. Then, for each combination of stretch rates and bond strengths, we average the axonal force-stretch response of n = 10 discrete simulations, from which we derive and calibrate a homogenized constitutive model. Finally, we embed this homogenized model into a continuum axonal damage model of [1-d]-type in which d is a scalar damage parameter that is driven by the axonal stretch and stretch rate. We demonstrate that axonal damage emerges naturally from the interplay of physical forces and biological crosslinking. Our study reveals an emergent feature of the crosslink dynamics: With increasing loading rate, the axonal failure stretch increases, but axonal damage evolves earlier in time. For a wide range of physical stretch rates, from 0.1 to 10 /s, and biological bond strengths, from 1 to 100 pN, our model predicts a relatively narrow window of critical damage stretch thresholds, from 1.01 to 1.30, which agrees well with experimental observations. Our biophysical damage model can help explain the development and progression of axonal damage across the scales and will provide useful guidelines to identify critical damage level thresholds in response to excessive physical forces.
Collapse
Affiliation(s)
- Rijk de Rooij
- Department of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, United States
| | - Ellen Kuhl
- Department of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
34
|
Gangatharan G, Schneider-Maunoury S, Breau MA. Role of mechanical cues in shaping neuronal morphology and connectivity. Biol Cell 2018; 110:125-136. [PMID: 29698566 DOI: 10.1111/boc.201800003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023]
Abstract
Neuronal circuits, the functional building blocks of the nervous system, assemble during development through a series of dynamic processes including the migration of neurons to their final position, the growth and navigation of axons and their synaptic connection with target cells. While the role of chemical cues in guiding neuronal migration and axonal development has been extensively analysed, the contribution of mechanical inputs, such as forces and stiffness, has received far less attention. In this article, we review the in vitro and more recent in vivo studies supporting the notion that mechanical signals are critical for multiple aspects of neuronal circuit assembly, from the emergence of axons to the formation of functional synapses. By combining live imaging approaches with tools designed to measure and manipulate the mechanical environment of neurons, the emerging field of neuromechanics will add a new paradigm in our understanding of neuronal development and potentially inspire novel regenerative therapies.
Collapse
Affiliation(s)
- Girisaran Gangatharan
- Sorbonne Université, CNRS UMR 7622, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine (LBD-IBPS), INSERM, Paris, 75005, France
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR 7622, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine (LBD-IBPS), INSERM, Paris, 75005, France
| | - Marie Anne Breau
- Sorbonne Université, CNRS UMR 7622, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine (LBD-IBPS), INSERM, Paris, 75005, France.,Sorbonne Université, CNRS UMR 8237, Laboratoire Jean Perrin, Paris, 75005, France
| |
Collapse
|
35
|
Breau MA, Schneider-Maunoury S. [Stretch-induced axon growth: a universal, yet poorly explored process]. Biol Aujourdhui 2018; 211:215-222. [PMID: 29412131 DOI: 10.1051/jbio/2017028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Indexed: 12/21/2022]
Abstract
The growth of axons is a key step in neuronal circuit assembly. The axon starts elongating with the migration of its growth cone in response to molecular signals present in the surrounding embryonic tissues. Following the formation of a synapse between the axon and the target cell, the distance which separates the cell body from the synapse continues to increase to accommodate the growth of the organism. This second phase of elongation, which is universal and crucial since it contributes to an important proportion of the final axon size, has been historically referred to as "stretch-induced axon growth". It is indeed likely to result from a mechanical tension generated by the growth of the body, but the underlying mechanisms remain poorly characterized. This article reviews the experimental studies of this process, mainly analysed on cultured neurons so far. The recent development of in vivo imaging techniques and tools to probe and perturb mechanical forces within embryos will shed new light on this universal mode of axonal growth. This knowledge may inspire the design of novel tissue engineering strategies dedicated to brain and spinal cord repair.
Collapse
Affiliation(s)
- Marie Anne Breau
- Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, CNRS UMR7622, INSERM U1156, 75005 Paris, France - Sorbonne Universités, UPMC Université Paris 06, 75005 Paris, France
| | - Sylvie Schneider-Maunoury
- Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, CNRS UMR7622, INSERM U1156, 75005 Paris, France - Sorbonne Universités, UPMC Université Paris 06, 75005 Paris, France
| |
Collapse
|
36
|
Coupled circumferential and axial tension driven by actin and myosin influences in vivo axon diameter. Sci Rep 2017; 7:14188. [PMID: 29079766 PMCID: PMC5660205 DOI: 10.1038/s41598-017-13830-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/29/2017] [Indexed: 01/07/2023] Open
Abstract
It has long been known that neuronal axons are contractile. They actively maintain rest tension along the longitudinal direction both in vitro and in vivo. Here we show evidence that embryonic drosophila axons also actively maintain contractility/tension along the circumferential direction. We used confocal microscopy and spatial light interference microscopy to monitor axonal diameter along their length. We observed a decrease in diameter when microtubules are disrupted and an increase in diameter when actin filaments or myosin II are disrupted. Interestingly, active diameter reduction occurred consistently when axons were subjected to manipulations known to increase axial tension, suggesting that tension can be coupled in the axial and circumferential direction. This is further supported by the remarkably similar time constants for diameter reduction and rest tension increase of slackened axons. We infer that the actomyosin-driven circumferential contraction/hoop tension applies a squeezing force on the microtubule bundle of the axons. This hoop tension is balanced by the restoring force of the microtubule bundle. Therefore, axonal diameter increased when actin/myosin disrupting drugs relaxed the hoop tension and decreased when microtubule disrupting drug relaxed the restoring force. Circumferential tension thus can regulate axonal diameter and volume, as well as potentially microtubules alignment, inter-tubular spacing, and, by extension, axonal transport.
Collapse
|
37
|
Kollimada S, Balakrishnan S, Malhi CK, Raju SR, Suma MS, Das S, Ananthasuresh GK. A micro-mechanical device for in-situ stretching of single cells cultured on it. JOURNAL OF MICRO-BIO ROBOTICS 2017. [DOI: 10.1007/s12213-017-0102-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Mechanism of Axonal Contractility in Embryonic Drosophila Motor Neurons In Vivo. Biophys J 2017; 111:1519-1527. [PMID: 27705774 PMCID: PMC5052456 DOI: 10.1016/j.bpj.2016.08.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 11/24/2022] Open
Abstract
Several in vitro and limited in vivo experiments have shown that neurons maintain a rest tension along their axons intrinsically. They grow in response to stretch but contract in response to loss of tension. This contraction eventually leads to the restoration of the rest tension in axons. However, the mechanism by which axons maintain tension in vivo remains elusive. The objective of this work is to elucidate the key cytoskeletal components responsible for generating tension in axons. Toward this goal, in vivo experiments were conducted on single axons of embryonic Drosophila motor neurons in the presence of various drugs. Each axon was slackened mechanically by bringing the neuromuscular junction toward the central nervous system multiple times. In the absence of any drug, axons shortened and restored the straight configuration within 2–4 min of slackening. The total shortening was ∼40% of the original length. The recovery rate in each cycle, but not the recovery magnitude, was dependent on the axon’s prior contraction history. For example, the contraction time of a previously slackened axon may be twice its first-time contraction. This recovery was significantly hampered with the depletion of ATP, inhibition of myosin motors, and disruption of actin filaments. The disruption of microtubules did not affect the recovery magnitude, but, on the contrary, led to an enhanced recovery rate compared to control cases. These results suggest that the actomyosin machinery is the major active element in axonal contraction, whereas microtubules contribute as resistive/dissipative elements.
Collapse
|
39
|
Šmít D, Fouquet C, Pincet F, Zapotocky M, Trembleau A. Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering. eLife 2017; 6:19907. [PMID: 28422009 PMCID: PMC5478281 DOI: 10.7554/elife.19907] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 04/04/2017] [Indexed: 01/16/2023] Open
Abstract
While axon fasciculation plays a key role in the development of neural networks, very little is known about its dynamics and the underlying biophysical mechanisms. In a model system composed of neurons grown ex vivo from explants of embryonic mouse olfactory epithelia, we observed that axons dynamically interact with each other through their shafts, leading to zippering and unzippering behavior that regulates their fasciculation. Taking advantage of this new preparation suitable for studying such interactions, we carried out a detailed biophysical analysis of zippering, occurring either spontaneously or induced by micromanipulations and pharmacological treatments. We show that zippering arises from the competition of axon-axon adhesion and mechanical tension in the axons, and provide the first quantification of the force of axon-axon adhesion. Furthermore, we introduce a biophysical model of the zippering dynamics, and we quantitatively relate the individual zipper properties to global characteristics of the developing axon network. Our study uncovers a new role of mechanical tension in neural development: the regulation of axon fasciculation.
Collapse
Affiliation(s)
- Daniel Šmít
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Coralie Fouquet
- Neuroscience Paris Seine - Institute of Biology Paris Seine, Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
| | - Frédéric Pincet
- Laboratoire de Physique Statistique, Ecole Normale Superieure, PSL Research University, Paris, France
| | - Martin Zapotocky
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Alain Trembleau
- Neuroscience Paris Seine - Institute of Biology Paris Seine, Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
| |
Collapse
|
40
|
de Rooij R, Miller KE, Kuhl E. Modeling molecular mechanisms in the axon. COMPUTATIONAL MECHANICS 2017; 59:523-537. [PMID: 28603326 PMCID: PMC5464742 DOI: 10.1007/s00466-016-1359-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Axons are living systems that display highly dynamic changes in stiffness, viscosity, and internal stress. However, the mechanistic origin of these phenomenological properties remains elusive. Here we establish a computational mechanics model that interprets cellular-level characteristics as emergent properties from molecular-level events. We create an axon model of discrete microtubules, which are connected to neighboring microtubules via discrete crosslinking mechanisms that obey a set of simple rules. We explore two types of mechanisms: passive and active crosslinking. Our passive and active simulations suggest that the stiffness and viscosity of the axon increase linearly with the crosslink density, and that both are highly sensitive to the crosslink detachment and reattachment times. Our model explains how active crosslinking with dynein motors generates internal stresses and actively drives axon elongation. We anticipate that our model will allow us to probe a wide variety of molecular phenomena-both in isolation and in interaction-to explore emergent cellular-level features under physiological and pathological conditions.
Collapse
Affiliation(s)
- R de Rooij
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - K E Miller
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - E Kuhl
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
41
|
Ahmadzadeh H, Smith DH, Shenoy VB. Mechanical Effects of Dynamic Binding between Tau Proteins on Microtubules during Axonal Injury. Biophys J 2016; 109:2328-37. [PMID: 26636944 DOI: 10.1016/j.bpj.2015.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/17/2015] [Accepted: 09/11/2015] [Indexed: 10/22/2022] Open
Abstract
The viscoelastic nature of axons plays a key role in their selective vulnerability to damage in traumatic brain injury (TBI). Experimental studies have shown that although axons can tolerate 100% strain under slow loading rates, even strain as small as 5% can rupture microtubules (MTs) during the fast loading velocities relevant to TBI. Here, we developed a computational model to examine rate-dependent behavior related to dynamic interactions between MTs and the MT-associated protein tau under varying strains and strain rates. In the model, inverted pairs of tau proteins can dynamically cross-link parallel MTs via the respective MT-binding domain of each tau. The model also incorporates realistic thermodynamic breaking and reformation of the bonds between the connected tau proteins as they respond to mechanical stretch. With simulated stretch of the axon, the model shows that despite the highly dynamic nature of binding and unbinding events, under fast loading rates relevant to TBI, large tensile forces can be transmitted to the MTs that can lead to mechanical rupture of the MT cylinder, in agreement with experimental observations and as inferred in human TBI. In contrast, at slow loading rates, the progressive breaking and reformation of the bonds between the tau proteins facilitate the extension of axons up to ∼100% strain without any microstructural damage. The model also predicts that under fast loading rates, individual MTs detach from MT bundles via sequential breaking of the tau-tau bonds. Finally, the model demonstrates that longer MTs are more susceptible to mechanical rupture, whereas short MTs are more prone to detachment from the MT bundle, leading to disintegration of the axonal MT ultrastructure. Notably, the predictions from the model are in excellent agreement with the findings of the recent in vitro mechanical testing of micropatterned neuronal cultures.
Collapse
Affiliation(s)
- Hossein Ahmadzadeh
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Douglas H Smith
- Penn Center for Brain Injury and Repair and Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
42
|
Substrate Deformation Predicts Neuronal Growth Cone Advance. Biophys J 2016; 109:1358-71. [PMID: 26445437 DOI: 10.1016/j.bpj.2015.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/23/2022] Open
Abstract
Although pulling forces have been observed in axonal growth for several decades, their underlying mechanisms, absolute magnitudes, and exact roles are not well understood. In this study, using two different experimental approaches, we quantified retrograde traction force in Aplysia californica neuronal growth cones as they develop over time in response to a new adhesion substrate. In the first approach, we developed a novel method, to our knowledge, for measuring traction forces using an atomic force microscope (AFM) with a cantilever that was modified with an Aplysia cell adhesion molecule (apCAM)-coated microbead. In the second approach, we used force-calibrated glass microneedles coated with apCAM ligands to guide growth cone advance. The traction force exerted by the growth cone was measured by monitoring the microneedle deflection using an optical microscope. Both approaches showed that Aplysia growth cones can develop traction forces in the 10(0)-10(2) nN range during adhesion-mediated advance. Moreover, our results suggest that the level of traction force is directly correlated to the stiffness of the microneedle, which is consistent with a reinforcement mechanism previously observed in other cell types. Interestingly, the absolute level of traction force did not correlate with growth cone advance toward the adhesion site, but the amount of microneedle deflection did. In cases of adhesion-mediated growth cone advance, the mean needle deflection was 1.05 ± 0.07 μm. By contrast, the mean deflection was significantly lower (0.48 ± 0.06 μm) when the growth cones did not advance. Our data support a hypothesis that adhesion complexes, which can undergo micron-scale elastic deformation, regulate the coupling between the retrogradely flowing actin cytoskeleton and apCAM substrates, stimulating growth cone advance if sufficiently abundant.
Collapse
|
43
|
Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury. Sci Rep 2016; 6:30550. [PMID: 27480807 PMCID: PMC4969749 DOI: 10.1038/srep30550] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022] Open
Abstract
In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression.
Collapse
|
44
|
Tay A, Schweizer FE, Di Carlo D. Micro- and nano-technologies to probe the mechano-biology of the brain. LAB ON A CHIP 2016; 16:1962-1977. [PMID: 27161943 DOI: 10.1039/c6lc00349d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biomechanical forces have been demonstrated to influence a plethora of neuronal functions across scales including gene expression, mechano-sensitive ion channels, neurite outgrowth and folding of the cortices in the brain. However, the detailed roles biomechanical forces may play in brain development and disorders has seen limited study, partly due to a lack of effective methods to probe the mechano-biology of the brain. Current techniques to apply biomechanical forces on neurons often suffer from low throughput and poor spatiotemporal resolution. On the other hand, newly developed micro- and nano-technologies can overcome these aforementioned limitations and offer advantages such as lower cost and possibility of non-invasive control of neuronal circuits. This review compares the range of conventional, micro- and nano-technological techniques that have been developed and how they have been or can be used to understand the effect of biomechanical forces on neuronal development and homeostasis.
Collapse
Affiliation(s)
- Andy Tay
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA and Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
| | - Felix E Schweizer
- Department of Neurobiology, University of California, Los Angeles, CA 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA and California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
45
|
Xie Y, Zhou Y, Lin Y, Wang L, Xi W. Development of a Microforce Sensor and Its Array Platform for Robotic Cell Microinjection Force Measurement. SENSORS 2016; 16:s16040483. [PMID: 27058545 PMCID: PMC4850997 DOI: 10.3390/s16040483] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 11/16/2022]
Abstract
Robot-assisted cell microinjection, which is precise and can enable a high throughput, is attracting interest from researchers. Conventional probe-type cell microforce sensors have some real-time injection force measurement limitations, which prevent their integration in a cell microinjection robot. In this paper, a novel supported-beam based cell micro-force sensor with a piezoelectric polyvinylidine fluoride film used as the sensing element is described, which was designed to solve the real-time force-sensing problem during a robotic microinjection manipulation, and theoretical mechanical and electrical models of the sensor function are derived. Furthermore, an array based cell-holding device with a trapezoidal microstructure is micro-fabricated, which serves to improve the force sensing speed and cell manipulation rates. Tests confirmed that the sensor showed good repeatability and a linearity of 1.82%. Finally, robot-assisted zebrafish embryo microinjection experiments were conducted. These results demonstrated the effectiveness of the sensor working with the robotic cell manipulation system. Moreover, the sensing structure, theoretical model, and fabrication method established in this study are not scale dependent. Smaller cells, e.g., mouse oocytes, could also be manipulated with this approach.
Collapse
Affiliation(s)
- Yu Xie
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yunlei Zhou
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yuzi Lin
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, China.
| | - Lingyun Wang
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, China.
| | - Wenming Xi
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
46
|
Nguyen H, Dayan P, Pujic Z, Cooper-White J, Goodhill GJ. A mathematical model explains saturating axon guidance responses to molecular gradients. eLife 2016; 5:e12248. [PMID: 26830461 PMCID: PMC4755759 DOI: 10.7554/elife.12248] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/18/2015] [Indexed: 11/13/2022] Open
Abstract
Correct wiring is crucial for the proper functioning of the nervous system. Molecular gradients provide critical signals to guide growth cones, which are the motile tips of developing axons, to their targets. However, in vitro, growth cones trace highly stochastic trajectories, and exactly how molecular gradients bias their movement is unclear. Here, we introduce a mathematical model based on persistence, bias, and noise to describe this behaviour, constrained directly by measurements of the detailed statistics of growth cone movements in both attractive and repulsive gradients in a microfluidic device. This model provides a mathematical explanation for why average axon turning angles in gradients in vitro saturate very rapidly with time at relatively small values. This work introduces the most accurate predictive model of growth cone trajectories to date, and deepens our understanding of axon guidance events both in vitro and in vivo.
Collapse
Affiliation(s)
- Huyen Nguyen
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia.,School of Mathematics and Physics, The University of Queensland, St. Lucia, Australia
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
| | - Zac Pujic
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia
| | - Justin Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia.,School of Mathematics and Physics, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
47
|
O'Toole M, Lamoureux P, Miller KE. Measurement of subcellular force generation in neurons. Biophys J 2016; 108:1027-37. [PMID: 25762315 DOI: 10.1016/j.bpj.2015.01.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/19/2015] [Accepted: 01/23/2015] [Indexed: 11/24/2022] Open
Abstract
Forces are important for neuronal outgrowth during the initial wiring of the nervous system and after trauma, yet subcellular force generation over the microtubule-rich region at the rear of the growth cone and along the axon has never, to our knowledge, been directly measured. Because previous studies have indicated microtubule polymerization and the microtubule-associated proteins Kinesin-1 and dynein all generate forces that push microtubules forward, a major question is whether the net forces in these regions are contractile or expansive. A challenge in addressing this is that measuring local subcellular force generation is difficult. Here we develop an analytical mathematical model that describes the relationship between unequal subcellular forces arranged in series within the neuron and the net overall tension measured externally. Using force-calibrated towing needles to measure and apply forces, in combination with docked mitochondria to monitor subcellular strain, we then directly measure force generation over the rear of the growth cone and along the axon of chick sensory neurons. We find the rear of the growth cone generates 2.0 nN of contractile force, the axon generates 0.6 nN of contractile force, and that the net overall tension generated by the neuron is 1.3 nN. This work suggests that the forward bulk flow of the cytoskeletal framework that occurs during axonal elongation and growth-cone pauses arises because strong contractile forces in the rear of the growth cone pull material forward.
Collapse
Affiliation(s)
- Matthew O'Toole
- Department of Mathematics, Kettering University, Flint, Michigan
| | - Phillip Lamoureux
- Department of Zoology, Michigan State University, East Lansing, Michigan
| | - Kyle E Miller
- Department of Zoology, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
48
|
Gárate F, Betz T, Pertusa M, Bernal R. Time-resolved neurite mechanics by thermal fluctuation assessments. Phys Biol 2015; 12:066020. [PMID: 26717293 DOI: 10.1088/1478-3975/12/6/066020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the absence of simple noninvasive measurements, the knowledge of temporal and spatial variations of axons mechanics remains scarce. By extending thermal fluctuation spectroscopy (TFS) to long protrusions, we determine the transverse amplitude thermal fluctuation spectra that allow direct and simultaneous access to three key mechanics parameters: axial tension, bending flexural rigidity and plasma membrane tension. To test our model, we use PC12 cell protrusions-a well-know biophysical model of axons-in order to simplify the biological system under scope. For instance, axial and plasma membrane tension are found in the range of nano Newton and tens of pico Newtons per micron respectively. Furthermore, our results shows that the TFS technique is capable to distinguish quasi-identical protrusions. Another advantage of our approach is the time resolved nature of the measurements. Indeed, in the case of long term experiments on PC12 protrusions, TFS has revealed large temporal, correlated variations of the protrusion mechanics, displaying extraordinary feedback control over the axial tension in order to maintain a constant tension value.
Collapse
Affiliation(s)
- Fernanda Gárate
- Departamento de Física and SMAT-C, Universidad de Santiago de Chile, 9170124 Santiago, Chile
| | | | | | | |
Collapse
|
49
|
Polackwich RJ, Koch D, McAllister R, Geller HM, Urbach JS. Traction force and tension fluctuations in growing axons. Front Cell Neurosci 2015; 9:417. [PMID: 26578882 PMCID: PMC4624864 DOI: 10.3389/fncel.2015.00417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/02/2015] [Indexed: 01/07/2023] Open
Abstract
Actively generated mechanical forces play a central role in axon growth and guidance, but the mechanisms that underly force generation and regulation in growing axons remain poorly understood. We report measurements of the dynamics of traction stresses from growth cones of actively advancing axons from postnatal rat DRG neurons. By tracking the movement of the growth cone and analyzing the traction stress field from a reference frame that moves with it, we are able to show that there is a clear and consistent average stress field that underlies the complex spatial stresses present at any one time. The average stress field has strong maxima on the sides of the growth cone, directed inward toward the growth cone neck. This pattern represents a contractile stress contained within the growth cone, and a net force that is balanced by the axon tension. Using high time-resolution measurements of the growth cone traction stresses, we show that the stress field is composed of fluctuating local stress peaks, with a large number peaks that live for a short time, a population of peaks whose lifetime distribution follows an exponential decay, and a small number of very long-lived peaks. We show that the high time-resolution data also reveal that the tension appears to vary randomly over short time scales, roughly consistent with the lifetime of the stress peaks, suggesting that the tension fluctuations originate from stochastic adhesion dynamics.
Collapse
Affiliation(s)
- Robert J Polackwich
- Department of Physics and The Institute for Soft Matter Synthesis and Metrology, Georgetown University Washington, DC, USA
| | - Daniel Koch
- Department of Physics and The Institute for Soft Matter Synthesis and Metrology, Georgetown University Washington, DC, USA
| | - Ryan McAllister
- Department of Physics and The Institute for Soft Matter Synthesis and Metrology, Georgetown University Washington, DC, USA
| | - Herbert M Geller
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health Bethesda, MD, USA
| | - Jeffrey S Urbach
- Department of Physics and The Institute for Soft Matter Synthesis and Metrology, Georgetown University Washington, DC, USA
| |
Collapse
|
50
|
Athamneh AIM, Suter DM. Quantifying mechanical force in axonal growth and guidance. Front Cell Neurosci 2015; 9:359. [PMID: 26441530 PMCID: PMC4584967 DOI: 10.3389/fncel.2015.00359] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/27/2015] [Indexed: 11/17/2022] Open
Abstract
Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connections. However, much of the details about the exact role of force in these fundamental processes remain unknown. In this review, we highlight: (1) standing questions concerning the role of mechanical force in axonal growth and guidance; and (2) different experimental techniques used to quantify forces in axons and growth cones. We believe that satisfying answers to these questions will require quantitative information about the relationship between elongation, forces, cytoskeletal dynamics, axonal transport, signaling, substrate adhesion, and stiffness contributing to directional growth advance. Furthermore, we address why a wide range of force values have been reported in the literature, and what these values mean in the context of neuronal mechanics. We hope that this review will provide a guide for those interested in studying the role of force in development and regeneration of neuronal networks.
Collapse
Affiliation(s)
- Ahmad I M Athamneh
- Bindley Bioscience Center, Birck Nanotechnology Center, Department of Biological Sciences, Purdue University West Lafayette, IN, USA
| | - Daniel M Suter
- Bindley Bioscience Center, Birck Nanotechnology Center, Department of Biological Sciences, Purdue University West Lafayette, IN, USA
| |
Collapse
|