1
|
Yan Z, Ding N, Lin S, Zhang S, Xiao Y, Xie Y, Zhang S. Polysaccharide Based Self-Driven Tubular Micro/Nanomotors as a Comprehensive Platform for Quercetin Loading and Anti-inflammatory Function. Biomacromolecules 2024; 25:6840-6854. [PMID: 39315891 DOI: 10.1021/acs.biomac.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Quercetin (QR) is a natural flavonoid with strong anti-inflammatory properties, but it suffers from poor water solubility and bioavailability. Micro/nanomotors (NMs) are tiny devices that convert external energy or chemical fuels into an autonomous motion. They are characterized by their small size, rapid movement, and self-assembly capabilities, which can enhance the delivery of bioactive ingredients. The study synthesized natural polysaccharide-based nanotubes (NTs) using a layer-by-layer self-assembly method and combined with urease (Ure), glucose oxidase (GOx), and Fe3O4 to create three types of NMs. These NMs were well-dispersed and biocompatible. In vitro experiments showed that NMs-Fe3O4 has excellent photothermal conversion properties and potential for use in photothermal therapy. Cellular inflammation model results demonstrated that QR-loaded NMs were not only structurally stable but also improved bioavailability and effectively inhibited the release of inflammatory mediators such as IL-1β and IL-6, providing a safe and advanced carrier system for the effective use of bioactive components in food.
Collapse
Affiliation(s)
- Zhiyu Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Ni Ding
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Siqi Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yingchen Xiao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yuxin Xie
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Simin Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
2
|
Tyagi S, Higerd-Rusli GP, Akin EJ, Baker CA, Liu S, Dib-Hajj FB, Waxman SG, Dib-Hajj SD. Real-time imaging of axonal membrane protein life cycles. Nat Protoc 2024; 19:2771-2802. [PMID: 38831222 PMCID: PMC11721981 DOI: 10.1038/s41596-024-00997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/12/2024] [Indexed: 06/05/2024]
Abstract
The construction of neuronal membranes is a dynamic process involving the biogenesis, vesicular packaging, transport, insertion and recycling of membrane proteins. Optical imaging is well suited for the study of protein spatial organization and transport. However, various shortcomings of existing imaging techniques have prevented the study of specific types of proteins and cellular processes. Here we describe strategies for protein tagging and labeling, cell culture and microscopy that enable the real-time imaging of axonal membrane protein trafficking and subcellular distribution as they progress through some stages of their life cycle. First, we describe a process for engineering membrane proteins with extracellular self-labeling tags (either HaloTag or SNAPTag), which can be labeled with fluorescent ligands of various colors and cell permeability, providing flexibility for investigating the trafficking and spatiotemporal regulation of multiple membrane proteins in neuronal compartments. Next, we detail the dissection, transfection and culture of dorsal root ganglion sensory neurons in microfluidic chambers, which physically compartmentalizes cell bodies and distal axons. Finally, we describe four labeling and imaging procedures that utilize these enzymatically tagged proteins, flexible fluorescent labels and compartmentalized neuronal cultures to study axonal membrane protein anterograde and retrograde transport, the cotransport of multiple proteins, protein subcellular localization, exocytosis and endocytosis. Additionally, we generated open-source software for analyzing the imaging data in a high throughput manner. The experimental and analysis workflows provide an approach for studying the dynamics of neuronal membrane protein homeostasis, addressing longstanding challenges in this area. The protocol requires 5-7 days and expertise in cell culture and microscopy.
Collapse
Affiliation(s)
- Sidharth Tyagi
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
- Center for Neuroscience and Regeneration Research, West Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Grant P Higerd-Rusli
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
- Center for Neuroscience and Regeneration Research, West Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Elizabeth J Akin
- Center for Neuroscience and Regeneration Research, West Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Christopher A Baker
- Center for Neuroscience and Regeneration Research, West Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Shujun Liu
- Center for Neuroscience and Regeneration Research, West Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Fadia B Dib-Hajj
- Center for Neuroscience and Regeneration Research, West Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Center for Neuroscience and Regeneration Research, West Haven, CT, USA.
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA.
| | - Sulayman D Dib-Hajj
- Center for Neuroscience and Regeneration Research, West Haven, CT, USA.
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
3
|
Park JG, Jeon H, Hwang KY, Cha SS, Han RT, Cho H, Lee IG. Cargo specificity, regulation, and therapeutic potential of cytoplasmic dynein. Exp Mol Med 2024; 56:827-835. [PMID: 38556551 PMCID: PMC11059388 DOI: 10.1038/s12276-024-01200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 04/02/2024] Open
Abstract
Intracellular retrograde transport in eukaryotic cells relies exclusively on the molecular motor cytoplasmic dynein 1. Unlike its counterpart, kinesin, dynein has a single isoform, which raises questions about its cargo specificity and regulatory mechanisms. The precision of dynein-mediated cargo transport is governed by a multitude of factors, including temperature, phosphorylation, the microtubule track, and interactions with a family of activating adaptor proteins. Activating adaptors are of particular importance because they not only activate the unidirectional motility of the motor but also connect a diverse array of cargoes with the dynein motor. Therefore, it is unsurprising that dysregulation of the dynein-activating adaptor transport machinery can lead to diseases such as spinal muscular atrophy, lower extremity, and dominant. Here, we discuss dynein motor motility within cells and in in vitro, and we present several methodologies employed to track the motion of the motor. We highlight several newly identified activating adaptors and their roles in regulating dynein. Finally, we explore the potential therapeutic applications of manipulating dynein transport to address diseases linked to dynein malfunction.
Collapse
Affiliation(s)
- Jin-Gyeong Park
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Hanul Jeon
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Rafael T Han
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul, 02447, South Korea
| | - Hyesung Cho
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Biological Chemistry, University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
4
|
Sen A, Chowdhury D, Kunwar A. Coordination, cooperation, competition, crowding and congestion of molecular motors: Theoretical models and computer simulations. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:563-650. [PMID: 38960486 DOI: 10.1016/bs.apcsb.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Cytoskeletal motor proteins are biological nanomachines that convert chemical energy into mechanical work to carry out various functions such as cell division, cell motility, cargo transport, muscle contraction, beating of cilia and flagella, and ciliogenesis. Most of these processes are driven by the collective operation of several motors in the crowded viscous intracellular environment. Imaging and manipulation of the motors with powerful experimental probes have been complemented by mathematical analysis and computer simulations of the corresponding theoretical models. In this article, we illustrate some of the key theoretical approaches used to understand how coordination, cooperation and competition of multiple motors in the crowded intra-cellular environment drive the processes that are essential for biological function of a cell. In spite of the focus on theory, experimentalists will also find this article as an useful summary of the progress made so far in understanding multiple motor systems.
Collapse
Affiliation(s)
- Aritra Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Debashish Chowdhury
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
5
|
Sundararajan N, Guha S, Muhuri S, Mitra MK. Theoretical analysis of cargo transport by catch bonded motors in optical trapping assays. SOFT MATTER 2024; 20:566-577. [PMID: 38126708 DOI: 10.1039/d3sm01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Dynein motors exhibit catch bonding, where the unbinding rate of the motors from microtubule filaments decreases with increasing opposing load. The implications of this catch bond on the transport properties of dynein-driven cargo are yet to be fully understood. In this context, optical trapping assays constitute an important means of accurately measuring the forces generated by molecular motor proteins. We investigate, using theory and stochastic simulations, the transport properties of cargo transported by catch bonded dynein molecular motors - both singly and in teams - in a harmonic potential, which mimics the variable force experienced by cargo in an optical trap. We estimate the biologically relevant measures of first passage time - the time during which the cargo remains bound to the microtubule and detachment force - the force at which the cargo unbinds from the microtubule, using both two-dimensional and one-dimensional force balance frameworks. Our results suggest that even for cargo transported by a single motor, catch bonding may play a role depending on the force scale which marks the onset of the catch bond. By comparing with experimental measurements on single dynein-driven transport, we estimate realistic bounds of this catch bond force scale. Generically, catch bonding results in increased persistent motion, and can also generate non-monotonic behaviour of first passage times. For cargo transported by multiple motors, emergent collective effects due to catch bonding can result in non-trivial re-entrant phenomena wherein average first passage times and detachment forces exhibit non-monotonic behaviour as a function of the stall force and the motor velocity.
Collapse
Affiliation(s)
- Naren Sundararajan
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India.
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Sougata Guha
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India.
- INFN Napoli, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy
| | - Sudipto Muhuri
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India.
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Mithun K Mitra
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India.
- INFN Napoli, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy
| |
Collapse
|
6
|
Chang C, Zheng T, Nettesheim G, Song H, Cho C, Crespi S, Shubeita G. On the use of thermal forces to probe kinesin's response to force. Front Mol Biosci 2023; 10:1260914. [PMID: 38028555 PMCID: PMC10644364 DOI: 10.3389/fmolb.2023.1260914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023] Open
Abstract
The stepping dynamics of cytoskeletal motor proteins determines the dynamics of cargo transport. In its native cellular environment, a molecular motor is subject to forces from several sources including thermal forces and forces ensuing from the interaction with other motors bound to the same cargo. Understanding how the individual motors respond to these forces can allow us to predict how they move their cargo when part of a team. Here, using simulation, we show that details of how the kinesin motor responds to small assisting forces-which, at the moment, are not experimentally constrained-can lead to significant changes in cargo dynamics. Using different models of the force-dependent detachment probability of the kinesin motor leads to different predictions on the run-length of the cargo they carry. These differences emerge from the thermal forces acting on the cargo and transmitted to the motor through the motor tail that tethers the motor head to the microtubule. We show that these differences appear for cargo carried by individual motors or motor teams, and use our findings to propose the use of thermal forces as a probe of kinesin's response to force in this otherwise inaccessible force regime.
Collapse
Affiliation(s)
- Chuan Chang
- Physics Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Tiantian Zheng
- Physics Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Guilherme Nettesheim
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Hayoung Song
- Physics Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Changhyun Cho
- Physics Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Samuele Crespi
- Physics Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - George Shubeita
- Physics Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Rangan KJ, Reck-Peterson SL. RNA recoding in cephalopods tailors microtubule motor protein function. Cell 2023; 186:2531-2543.e11. [PMID: 37295401 PMCID: PMC10467349 DOI: 10.1016/j.cell.2023.04.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/05/2023] [Accepted: 04/24/2023] [Indexed: 06/12/2023]
Abstract
RNA editing is a widespread epigenetic process that can alter the amino acid sequence of proteins, termed "recoding." In cephalopods, most transcripts are recoded, and recoding is hypothesized to be an adaptive strategy to generate phenotypic plasticity. However, how animals use RNA recoding dynamically is largely unexplored. We investigated the function of cephalopod RNA recoding in the microtubule motor proteins kinesin and dynein. We found that squid rapidly employ RNA recoding in response to changes in ocean temperature, and kinesin variants generated in cold seawater displayed enhanced motile properties in single-molecule experiments conducted in the cold. We also identified tissue-specific recoded squid kinesin variants that displayed distinct motile properties. Finally, we showed that cephalopod recoding sites can guide the discovery of functional substitutions in non-cephalopod kinesin and dynein. Thus, RNA recoding is a dynamic mechanism that generates phenotypic plasticity in cephalopods and can inform the characterization of conserved non-cephalopod proteins.
Collapse
Affiliation(s)
- Kavita J Rangan
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Samara L Reck-Peterson
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Li T, Chen Q, Zhang Q, Feng T, Zhang J, Lin Y, Yang P, He S, Zhang H. Transcriptomic Analysis on the Effects of Altered Water Temperature Regime on the Fish Ovarian Development of Coreius guichenoti under the Impact of River Damming. BIOLOGY 2022; 11:1829. [PMID: 36552338 PMCID: PMC9775624 DOI: 10.3390/biology11121829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Field investigation indicated that the reduction in fish spawning was associated with the alteration in water temperatures, even a 2-3 °C monthly difference due to reservoir operations. However, the physiological mechanism that influences the development of fish ovary (DFO) remains unclear. Thus, experiments of Coreius guichenoti were conducted at three different temperatures, optimal temperature (~20 °C, N) for fish spawning, lower (~17 °C, L), and higher (~23 °C, H), to reveal the effects of altered water temperature on the DFO. Comparisons were made between the L and N (LvsN) conditions and H and N (HvsN) conditions. Transcriptomic analysis differentially expressed transcripts (DETs) related to heat stress were observed only in LvsN conditions, indicating that the DFO showed a stronger response to changes in LvsN than in HvsN conditions. Upregulation of DETs of vitellogenin receptors in N temperature showed that normal temperature was conducive to vitellogenin entry into the oocytes. Other temperature-sensitive DETs, including microtubule, kinesin, dynein, and actin, were closely associated with cell division and material transport. LvsN significantly impacted cell division and nutrient accumulation in the yolk, whereas HvsN only influenced cell division. Our results highlight the impact of altered water temperature on the DFO, thereby providing insights for future reservoir operations regarding river damming and climate change and establishing fish conservation measures.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
- College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
- Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Qiuwen Chen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Qi Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
- College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Tao Feng
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Jianyun Zhang
- Yangtze Institute for Conservation and Green Development, Nanjing 210029, China
| | - Yuqing Lin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Peisi Yang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Shufeng He
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Hui Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| |
Collapse
|
9
|
AlZaben F, Chuong JN, Abrams MB, Brem RB. Joint effects of genes underlying a temperature specialization tradeoff in yeast. PLoS Genet 2021; 17:e1009793. [PMID: 34520469 PMCID: PMC8462698 DOI: 10.1371/journal.pgen.1009793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/24/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
A central goal of evolutionary genetics is to understand, at the molecular level, how organisms adapt to their environments. For a given trait, the answer often involves the acquisition of variants at unlinked sites across the genome. Genomic methods have achieved landmark successes in pinpointing these adaptive loci. To figure out how a suite of adaptive alleles work together, and to what extent they can reconstitute the phenotype of interest, requires their transfer into an exogenous background. We studied the joint effect of adaptive, gain-of-function thermotolerance alleles at eight unlinked genes from Saccharomyces cerevisiae, when introduced into a thermosensitive sister species, S. paradoxus. Although the loci damped each other’s beneficial impact (that is, they were subject to negative epistasis), most boosted high-temperature growth alone and in combination, and none was deleterious. The complete set of eight genes was sufficient to confer ~15% of the S. cerevisiae thermotolerance phenotype in the S. paradoxus background. The same loci also contributed to a heretofore unknown advantage in cold growth by S. paradoxus. Together, our data establish temperature resistance in yeasts as a model case of a genetically complex evolutionary tradeoff, which can be partly reconstituted from the sequential assembly of unlinked underlying loci. Organisms adapt to threats in the environment by acquiring DNA sequence variants that tweak traits to improve fitness. Experimental studies of this process have proven to be a particular challenge when they involve manipulation of a suite of genes, all on different chromosomes. We set out to understand how so many loci could work together to confer a trait. We used as a model system eight genes that govern the ability of the unicellular yeast Saccharomyces cerevisiae to grow at high temperature. We introduced these variant loci stepwise into a non-thermotolerant sister species, and found that the more S. cerevisiae alleles we added, the better the phenotype. We saw no evidence for toxic interactions between the genes as they were combined. We also used the eight-fold transgenic to dissect the biological mechanism of thermotolerance. And we discovered a tradeoff: the same alleles that boosted growth at high temperature eroded the organism’s ability to deal with cold conditions. These results serve as a case study of modular construction of a trait from nature, by assembling the genes together in one genome.
Collapse
Affiliation(s)
- Faisal AlZaben
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Julie N. Chuong
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Melanie B. Abrams
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Rachel B. Brem
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Seifert A, Drechsler H, Japtok J, Korten T, Diez S, Hermann A. The ALS-Associated FUS (P525L) Variant Does Not Directly Interfere with Microtubule-Dependent Kinesin-1 Motility. Int J Mol Sci 2021; 22:2422. [PMID: 33670886 PMCID: PMC7957795 DOI: 10.3390/ijms22052422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Deficient intracellular transport is a common pathological hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Mutations in the fused-in-sarcoma (FUS) gene are one of the most common genetic causes for familial ALS. Motor neurons carrying a mutation in the nuclear localization sequence of FUS (P525L) show impaired axonal transport of several organelles, suggesting that mislocalized cytoplasmic FUS might directly interfere with the transport machinery. To test this hypothesis, we studied the effect of FUS on kinesin-1 motility in vitro. Using a modified microtubule gliding motility assay on surfaces coated with kinesin-1 motor proteins, we showed that neither recombinant wildtype and P525L FUS variants nor lysates from isogenic ALS-patient-specific iPSC-derived spinal motor neurons expressing those FUS variants significantly affected gliding velocities. We hence conclude that during ALS pathogenesis the initial negative effect of FUS (P525L) on axonal transport is an indirect nature and requires additional factors or mechanisms.
Collapse
Affiliation(s)
- Anne Seifert
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (A.S.); (J.J.)
- German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany
- B CUBE—Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; (H.D.); (T.K.)
| | - Hauke Drechsler
- B CUBE—Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; (H.D.); (T.K.)
| | - Julia Japtok
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (A.S.); (J.J.)
| | - Till Korten
- B CUBE—Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; (H.D.); (T.K.)
| | - Stefan Diez
- B CUBE—Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; (H.D.); (T.K.)
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (A.S.); (J.J.)
- German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center, University of Rostock, 18147 Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center, University of Rostock, 18147 Rostock, Germany
| |
Collapse
|
11
|
Yadav S, Kunwar A. Temperature-Dependent Activity of Motor Proteins: Energetics and Their Implications for Collective Behavior. Front Cell Dev Biol 2021; 9:610899. [PMID: 33732692 PMCID: PMC7959718 DOI: 10.3389/fcell.2021.610899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
Molecular motor proteins are an extremely important component of the cellular transport system that harness chemical energy derived from ATP hydrolysis to carry out directed mechanical motion inside the cells. Transport properties of these motors such as processivity, velocity, and their load dependence have been well established through single-molecule experiments. Temperature dependent biophysical properties of molecular motors are now being probed using single-molecule experiments. Additionally, the temperature dependent biochemical properties of motors (ATPase activity) are probed to understand the underlying mechanisms and their possible implications on the enzymatic activity of motor proteins. These experiments in turn have revealed their activation energies and how they compare with the thermal energy available from the surrounding medium. In this review, we summarize such temperature dependent biophysical and biochemical properties of linear and rotary motor proteins and their implications for collective function during intracellular transport and cellular movement, respectively.
Collapse
Affiliation(s)
- Saumya Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
12
|
Azizi A, Herrmann A, Wan Y, Buse SJ, Keller PJ, Goldstein RE, Harris WA. Nuclear crowding and nonlinear diffusion during interkinetic nuclear migration in the zebrafish retina. eLife 2020; 9:58635. [PMID: 33021471 PMCID: PMC7538155 DOI: 10.7554/elife.58635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
An important question in early neural development is the origin of stochastic nuclear movement between apical and basal surfaces of neuroepithelia during interkinetic nuclear migration. Tracking of nuclear subpopulations has shown evidence of diffusion - mean squared displacements growing linearly in time - and suggested crowding from cell division at the apical surface drives basalward motion. Yet, this hypothesis has not yet been tested, and the forces involved not quantified. We employ long-term, rapid light-sheet and two-photon imaging of early zebrafish retinogenesis to track entire populations of nuclei within the tissue. The time-varying concentration profiles show clear evidence of crowding as nuclei reach close-packing and are quantitatively described by a nonlinear diffusion model. Considerations of nuclear motion constrained inside the enveloping cell membrane show that concentration-dependent stochastic forces inside cells, compatible in magnitude to those found in cytoskeletal transport, can explain the observed magnitude of the diffusion constant.
Collapse
Affiliation(s)
- Afnan Azizi
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Anne Herrmann
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Yinan Wan
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, United States
| | - Salvador Jrp Buse
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Philipp J Keller
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, United States
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Kushwaha VS, Peterman EJG. The temperature dependence of kinesin motor-protein mechanochemistry. Biochem Biophys Res Commun 2020; 529:812-818. [PMID: 32620235 DOI: 10.1016/j.bbrc.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/03/2020] [Indexed: 11/27/2022]
Abstract
Biophysical studies of the mechanochemical cycle of kinesin motors are essential for understanding the mechanism of energy conversion. Here, we report a systematic study of the impact of temperature on velocity and run length of homodimeric Drosophila kinesin-1, homodimeric C. elegans OSM-3 and heterodimeric C. elegans kinesin-II motor proteins using in vitro single-molecule motility assays. Under saturated ATP conditions, kinesin-1 and OSM-3 are fast and processive motors compared to kinesin-II. From in vitro motility assays employing single-molecule fluorescence microscopy, we extracted single-motor velocities and run lengths in a temperature range from 15 °C to 35 °C. Both parameters showed a non-Arrhenius temperature dependence for all three motors, which could be quantitatively modeled using a simplified, two-state kinetic model of the mechanochemistry of the three motors, providing new insights in the temperature dependence of their mechanochemistry.
Collapse
Affiliation(s)
- Vandana S Kushwaha
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit, 1081 HV, Amsterdam, the Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Doval F, Chiba K, McKenney RJ, Ori-McKenney KM, Vershinin MD. Temperature-dependent activity of kinesins is regulable. Biochem Biophys Res Commun 2020; 528:528-530. [PMID: 32507595 DOI: 10.1016/j.bbrc.2020.05.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
Abstract
Cytoskeletal transport in cells is driven by enzymes whose activity shows sensitive, typically Arrhenius, dependence on temperature. Often, the duration and outcome of cargo transport is determined by the relative success of kinesin vs. dynein motors, which can simultaneously bind to individual cargos and move in opposite direction on microtubules. The question of how kinesin and dynein activity remain coupled over the large temperature ranges experienced by some cells is one of clear biological relevance. We report a break in the Arrhenius behavior of both kinesin-1 and kinesin-3 enzymatic activity at 4.7 °C and 10.5 °C, respectively. Further, we report that this transition temperature significantly changes as a function of chemical background: addition of 200 mM TMAO increases transition temperatures by ∼6 °C in all cases. Our results show that Arrhenius trend breaks are common to all cytoskeletal motors and open a broad question of how such activity transitions are regulated in vivo. STATEMENT OF SIGNIFICANCE: Many cytoskeletal motors studied to date follow Arrhenius kinetics, at least from room temperature up to mammalian body temperature. However the thermal dynamic range is typically finite, and breaks in Arrhenius trends are commonly observed at biologically relevant temperatures. Here we report that the thermal dynamic range of kinesins is also limited and moreover that the location of the Arrhenius break for kinesins can shift significantly based on chemical backgrounds. This implies that the balance of multiple motor cargo transport along the cytoskeleton is far more tunable as a function of temperature than previously appreciated.
Collapse
Affiliation(s)
- F Doval
- Department of Physics & Astronomy, University of Utah, Salt Lake City, UT, 84112, USA
| | - K Chiba
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - R J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - K M Ori-McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - M D Vershinin
- Department of Physics & Astronomy, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
15
|
Bhagwat AR, Le Sage V, Nturibi E, Kulej K, Jones J, Guo M, Tae Kim E, Garcia BA, Weitzman MD, Shroff H, Lakdawala SS. Quantitative live cell imaging reveals influenza virus manipulation of Rab11A transport through reduced dynein association. Nat Commun 2020; 11:23. [PMID: 31911620 PMCID: PMC6946661 DOI: 10.1038/s41467-019-13838-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/20/2019] [Indexed: 11/10/2022] Open
Abstract
Assembly of infectious influenza A viruses (IAV) is a complex process involving transport from the nucleus to the plasma membrane. Rab11A-containing recycling endosomes have been identified as a platform for intracellular transport of viral RNA (vRNA). Here, using high spatiotemporal resolution light-sheet microscopy (~1.4 volumes/second, 330 nm isotropic resolution), we quantify Rab11A and vRNA movement in live cells during IAV infection and report that IAV infection decreases speed and increases arrest of Rab11A. Unexpectedly, infection with respiratory syncytial virus alters Rab11A motion in a manner opposite to IAV, suggesting that Rab11A is a common host component that is differentially manipulated by respiratory RNA viruses. Using two-color imaging we demonstrate co-transport of Rab11A and IAV vRNA in infected cells and provide direct evidence that vRNA-associated Rab11A have altered transport. The mechanism of altered Rab11A movement is likely related to a decrease in dynein motors bound to Rab11A vesicles during IAV infection.
Collapse
Affiliation(s)
- Amar R Bhagwat
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Eric Nturibi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Katarzyna Kulej
- The Children's Hospital of Philadelphia Research Institute, 3501 Civic Center Dr., Philadelphia, PA, 19104, USA
| | - Jennifer Jones
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Min Guo
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 13 South Drive, Building 13, Bethesda, MD, 20892, USA
| | - Eui Tae Kim
- The Children's Hospital of Philadelphia Research Institute, 3501 Civic Center Dr., Philadelphia, PA, 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, 3400, Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Matthew D Weitzman
- The Children's Hospital of Philadelphia Research Institute, 3501 Civic Center Dr., Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, 3400, Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 13 South Drive, Building 13, Bethesda, MD, 20892, USA
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
16
|
Abraham Z, Hawley E, Hayosh D, Webster-Wood VA, Akkus O. Kinesin and Dynein Mechanics: Measurement Methods and Research Applications. J Biomech Eng 2019; 140:2654261. [PMID: 28901373 DOI: 10.1115/1.4037886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Indexed: 11/08/2022]
Abstract
Motor proteins play critical roles in the normal function of cells and proper development of organisms. Among motor proteins, failings in the normal function of two types of proteins, kinesin and dynein, have been shown to lead many pathologies, including neurodegenerative diseases and cancers. As such, it is critical to researchers to understand the underlying mechanics and behaviors of these proteins, not only to shed light on how failures may lead to disease, but also to guide research toward novel treatment and nano-engineering solutions. To this end, many experimental techniques have been developed to measure the force and motility capabilities of these proteins. This review will (a) discuss such techniques, specifically microscopy, atomic force microscopy (AFM), optical trapping, and magnetic tweezers, and (b) the resulting nanomechanical properties of motor protein functions such as stalling force, velocity, and dependence on adenosine triphosophate (ATP) concentrations will be comparatively discussed. Additionally, this review will highlight the clinical importance of these proteins. Furthermore, as the understanding of the structure and function of motor proteins improves, novel applications are emerging in the field. Specifically, researchers have begun to modify the structure of existing proteins, thereby engineering novel elements to alter and improve native motor protein function, or even allow the motor proteins to perform entirely new tasks as parts of nanomachines. Kinesin and dynein are vital elements for the proper function of cells. While many exciting experiments have shed light on their function, mechanics, and applications, additional research is needed to completely understand their behavior.
Collapse
Affiliation(s)
- Zachary Abraham
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Emma Hawley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Daniel Hayosh
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Victoria A Webster-Wood
- Mem. ASME Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 e-mail:
| | - Ozan Akkus
- Mem. ASME Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
17
|
Bate TE, Jarvis EJ, Varney ME, Wu KT. Collective dynamics of microtubule-based 3D active fluids from single microtubules. SOFT MATTER 2019; 15:5006-5016. [PMID: 31165127 DOI: 10.1039/c9sm00123a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Self-organization of kinesin-driven, microtubule-based 3D active fluids relies on the collective dynamics of single microtubules. However, the connection between macroscopic fluid flows and microscopic motion of microtubules remains unclear. In this work, the motion of single microtubules was characterized by means of 2D gliding assays and compared with the flows of 3D active fluids. While the scales of the two systems differ by ∼1000×, both were driven by processive, non-processive or an equal mixture of both molecular motor proteins. To search for the dynamic correlation between both systems, the motor activities were tuned by varying temperature and ATP concentration, and the changes in both systems were compared. Motor processivity played an important role in active fluid flows but only when the fluids were nearly motionless; otherwise, flows were dominated by hydrodynamic resistance controlled by sample size. Furthermore, while the motors' thermal reaction led active fluids to flow faster with increasing temperature, such temperature dependence could be reversed by introducing temperature-varying depletants, emphasizing the potential role of the depletant in designing an active fluid's temperature response. The temperature response of active fluids was nearly immediate (⪅10 s). Such a characteristic enables active fluids to be controlled with a temperature switch. Overall, this work not only clarifies the role of temperature in active fluid activity, but also sheds light on the underlying principles of the relationship between the collective dynamics of active fluids and the dynamics of their constituent single microtubules.
Collapse
Affiliation(s)
- Teagan E Bate
- Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA.
| | | | | | | |
Collapse
|
18
|
Hayashi S, Yonekura S. Thermal stimulation at 39°C facilitates the fusion and elongation of C2C12 myoblasts. Anim Sci J 2019; 90:1008-1017. [DOI: 10.1111/asj.13227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/11/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Satoko Hayashi
- Graduate School of Science and Technology Shinshu University Kamiina Japan
| | - Shinichi Yonekura
- Graduate School of Science and Technology Shinshu University Kamiina Japan
- Department of Interdisciplinary Genome Sciences and Cell Metabolism Institute for Biomedical Sciences Interdisciplinary Cluster for Cutting Edge Research, Shinshu University Kamiina Japan
| |
Collapse
|
19
|
Osunbayo O, Miles CE, Doval F, Reddy BJN, Keener JP, Vershinin MD. Complex nearly immotile behaviour of enzymatically driven cargos. SOFT MATTER 2019; 15:1847-1852. [PMID: 30698601 DOI: 10.1039/c8sm01893f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a minimal microtubule-based motile system displaying signatures of unconventional diffusion. The system consists of a single model cargo driven by an ensemble of N340K NCD motors along a single microtubule. Despite the absence of cytosolic or cytoskeleton complexity, the system shows complex behavior, characterized by sub-diffusive motion for short time lag scales and linear mean squared displacement dependence for longer time lags. The latter is also shown to have non-Gaussian character and cannot be ascribed to a canonical diffusion process. We use single particle tracking and analysis at varying temperatures and motor concentrations to identify the origin of these behaviors as enzymatic activity of mutant NCD. Our results show that signatures of non-Gaussian diffusivities can arise as a result of an active process and suggest that some immotility of cargos observed in cells may reflect the ensemble workings of mechanochemical enzymes and need not always reflect the properties of the cytoskeletal network or the cytosol.
Collapse
Affiliation(s)
- O Osunbayo
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
20
|
Lee JS, Eom K, Polucha C, Lee J. Standard-unit measurement of cellular viability using dynamic light scattering optical coherence microscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:5227-5239. [PMID: 30460124 PMCID: PMC6238897 DOI: 10.1364/boe.9.005227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/04/2018] [Accepted: 09/19/2018] [Indexed: 05/24/2023]
Abstract
Dynamic light scattering optical coherence microscopy (DLS-OCM) integrates DLS, which measures diffusion or flow of particles by analyzing fluctuations in light scattered by the particles, and OCM, which achieves single-cell resolution by combining coherence and confocal gating, integratively enabling cellular-resolution 3D mapping of the diffusion coefficient, and flow velocity. The diffusion coefficient mapping has a potential for the non-destructive measurement of cellular viability in the standard unit but has not been validated yet. Here, we present DLS-OCM imaging of intra-cellular motility (ICM) as a surrogate of cellular viability. For this purpose, we have simultaneously obtained and compared ICM-contrast DLS-OCM images and calcium fluorescence-contrast images of retinal ganglion cells, and then characterized the responses of the measured ICM to a change in cellular viability induced by environmental conditions such as temperature and pH. The diffusion-coefficient-represented ICM exhibits consistent changes with the manipulated cellular viability.
Collapse
Affiliation(s)
- Julia S. Lee
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kyungsik Eom
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Collin Polucha
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Jonghwan Lee
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| |
Collapse
|
21
|
Enhanced stability of kinesin-1 as a function of temperature. Biochem Biophys Res Commun 2017; 493:1318-1321. [PMID: 28986254 DOI: 10.1016/j.bbrc.2017.09.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 09/30/2017] [Indexed: 11/21/2022]
Abstract
Kinesin-1 is a mechanochemical enzyme which mediates long distance intracellular cargo transport along microtubules in a wide variety of eukaryotic cells. Kinesin is also relatively easy to purify and shows robust function in vitro, leading to numerous proposals for using the kinesin-1/microtubule system for nanoscale transport in engineered devices. However, kinesin in vitro shows signs of degradation at ∼30 °C which severely limits its usability in biomimetic engineering. Notably, kinesin-1 functions robustly in animal cells at body temperatures as high as 40 °C which suggests that kinesin functioning can be stabilized beyond what is observed in vitro. The present study investigated the effect of trimethylamine N-oxide (TMAO) as a potential heat-protecting agent for kinesin function and microtubule stability. We show that at a concentration of 200 mM, TMAO can indeed stabilize kinesin-based motility up to a little over 50 °C and that such motility can be sustained for extended periods of time. Our results suggest that intracellular crowding (mimicked in vitro by TMAO) can indeed stabilize kinesin-1 at high temperatures and helps resolve a long standing discrepancy between thermal stability of kinesin-1 observed in vivo and in vitro. Moreover, when considered together with our previous report that kinesin-1 can function well down to near-freezing conditions, this study establishes kinesin-1/microtubule motility as a thermally viable engineering platform.
Collapse
|
22
|
Murray JW, Yin D, Wolkoff AW. Reduction of organelle motility by removal of potassium and other solutes. PLoS One 2017; 12:e0184898. [PMID: 28922372 PMCID: PMC5602639 DOI: 10.1371/journal.pone.0184898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/01/2017] [Indexed: 12/02/2022] Open
Abstract
There are surprisingly few studies that describe how the composition of cell culture medium may affect the trafficking of organelles. Here we utilize time lapse multi-channel fluorescent imaging to show that short term exposure of Huh-7 cells to medium lacking potassium, sodium, or chloride strongly reduces but does not eliminate the characteristic back and forth and cell-traversing movement of fluorescent EGF (FL-EGF) containing organelles. We focused on potassium because of its relatively low abundance in media and serum and its energy requiring accumulation into cells. Upon exposure to potassium free medium, organelle motility declined steadily through 90 min and then persisted at a low level. Reduced motility was confirmed in 5 independent cell lines and for organelles of the endocytic pathway (FL-EGF and Lysotracker), autophagosomes (LC3-GFP), and mitochondria (TMRE). As has been previously established, potassium free medium also inhibited endocytosis. We expected that diminished cellular metabolism would precede loss of organelle motility. However, extracellular flux analysis showed near normal mitochondrial oxygen consumption and only a small decrease in extracellular acidification, the latter suggesting decreased glycolysis or proton efflux. Other energy dependent activities such as the accumulation of Lysotracker, TMRE, DiBAC4(3), and the exclusion of propidium iodide remained intact, as did the microtubule cytoskeleton. We took advantage of cell free in vitro motility assays and found that removal of potassium or sodium from the reconstituted cytosolic medium decreased the movement of endosomes on purified microtubules. The results indicate that although changes in proton homeostasis and cell energetics under solute depletion are not fully understood, potassium as well as sodium appear to be directly required by the motile machinery of organelles for optimal trafficking.
Collapse
Affiliation(s)
- John W. Murray
- Marion Bessin Liver Research Center, Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- * E-mail:
| | - David Yin
- Marion Bessin Liver Research Center, Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Allan W. Wolkoff
- Marion Bessin Liver Research Center, Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| |
Collapse
|
23
|
Takshak A, Roy T, Tandaiya P, Kunwar A. Effect of fuel concentration and force on collective transport by a team of dynein motors. Protein Sci 2016; 26:186-197. [PMID: 27727483 DOI: 10.1002/pro.3065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 09/17/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022]
Abstract
Motor proteins are essential components of intracellular transport inside eukaryotic cells. These protein molecules use chemical energy obtained from hydrolysis of ATP to produce mechanical forces required for transporting cargos inside cells, from one location to another, in a directed manner. Of these motors, cytoplasmic dynein is structurally more complex than other motor proteins involved in intracellular transport, as it shows force and fuel (ATP) concentration dependent step-size. Cytoplasmic dynein motors are known to work in a team during cargo transport and force generation. Here, we use a complete Monte-Carlo model of single dynein constrained by in vitro experiments, which includes the effect of both force and ATP on stepping as well as detachment of motors under force. We then use our complete Monte-Carlo model of single dynein motor to understand collective cargo transport by a team of dynein motors, such as dependence of cargo travel distance and velocity on applied force and fuel concentration. In our model, cargos pulled by a team of dynein motors do not detach rapidly under higher forces, confirming the experimental observation of longer persistence time of dynein team on microtubule under higher forces.
Collapse
Affiliation(s)
- Anjneya Takshak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Tanushree Roy
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Parag Tandaiya
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|