1
|
Bellon A. Comparing stem cells, transdifferentiation and brain organoids as tools for psychiatric research. Transl Psychiatry 2024; 14:127. [PMID: 38418498 PMCID: PMC10901833 DOI: 10.1038/s41398-024-02780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 03/01/2024] Open
Abstract
The inaccessibility of neurons coming directly from patients has hindered our understanding of mental illnesses at the cellular level. To overcome this obstacle, six different cellular approaches that carry the genetic vulnerability to psychiatric disorders are currently available: Olfactory Neuroepithelial Cells, Mesenchymal Stem Cells, Pluripotent Monocytes, Induced Pluripotent Stem Cells, Induced Neuronal cells and more recently Brain Organoids. Here we contrast advantages and disadvantages of each of these six cell-based methodologies. Neuronal-like cells derived from pluripotent monocytes are presented in more detail as this technique was recently used in psychiatry for the first time. Among the parameters used for comparison are; accessibility, need for reprograming, time to deliver differentiated cells, differentiation efficiency, reproducibility of results and cost. We provide a timeline on the discovery of these cell-based methodologies, but, our main goal is to assist researchers selecting which cellular approach is best suited for any given project. This manuscript also aims to help readers better interpret results from the published literature. With this goal in mind, we end our work with a discussion about the differences and similarities between cell-based techniques and postmortem research, the only currently available tools that allow the study of mental illness in neurons or neuronal-like cells coming directly from patients.
Collapse
Affiliation(s)
- Alfredo Bellon
- Penn State Hershey Medical Center, Department of Psychiatry and Behavioral Health, Hershey, PA, USA.
- Penn State Hershey Medical Center, Department of Pharmacology, Hershey, PA, USA.
| |
Collapse
|
2
|
Zhai QY, Ren YQ, Ni QS, Song ZH, Ge KL, Guo YL. Transplantation of Human Umbilical Cord Mesenchymal Stem Cells-Derived Neural Stem Cells Pretreated with Neuregulin1β Ameliorate Cerebral Ischemic Reperfusion Injury in Rats. Biomolecules 2022; 12:428. [PMID: 35327620 PMCID: PMC8945978 DOI: 10.3390/biom12030428] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a common cerebrovascular disease and recovering blood flow as early as possible is essential to reduce ischemic damage and maintain neuronal viability, but the reperfusion process usually causes additional damage to the brain tissue in the ischemic area, namely ischemia reperfusion injury. The accumulated studies have revealed that transplantation of exogenous neural stem cells (NSCs) is an ideal choice for the treatment of ischemia reperfusion injury. At present, the source and efficacy of exogenous NSCs after transplantation is still one of the key issues that need to be resolved. In this study, human umbilical cord mesenchymal stem cells (hUC-MSCs) were obtained and induced into NSCs byadding growth factor and neuregulin1β (NRG1β) was introduced during the differentiation process of NSCs. Then, the rat middle cerebral artery occlusion/reperfusion (MCAO/R) models were established, and the therapeutic effects were evaluated among groups treated by NRG1β, NSCs and NSCs pretreated with 10 nM NRG1β (NSCs-10 nM NRG1β) achieved through intra-arterial injection. Our data show that the NSCs-10 nM NRG1β group significantly improves neurobehavioral function and infarct volume after MCAO/R, as well as cerebral cortical neuron injury, ferroptosis-related indexes and mitochondrial injury. Additionally, NSCs-10 nM NRG1β intervention may function through regulating the p53/GPX4/SLC7A11 pathway, and reducing the level of ferroptosis in cells, further enhance the neuroprotective effect on injured cells.
Collapse
Affiliation(s)
- Qiu-Yue Zhai
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao 266003, China; (Q.-Y.Z.); (Y.-Q.R.); (Q.-S.N.)
| | - Yu-Qian Ren
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao 266003, China; (Q.-Y.Z.); (Y.-Q.R.); (Q.-S.N.)
| | - Qin-Shuai Ni
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao 266003, China; (Q.-Y.Z.); (Y.-Q.R.); (Q.-S.N.)
| | - Zhen-Hua Song
- Institute of Pharmacology, Qingdao Medical College, Qingdao University, Qingdao 266021, China;
| | - Ke-Li Ge
- Institute of Integrative Medicine, Qingdao Medical College, Qingdao University, Qingdao 266021, China;
| | - Yun-Liang Guo
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao 266003, China; (Q.-Y.Z.); (Y.-Q.R.); (Q.-S.N.)
| |
Collapse
|
3
|
Ma Q, Cai M, Shang JW, Yang J, Gu XY, Liu WB, Yang Q. Glial cell induced neural differentiation of bone marrow stromal cells. Open Med (Wars) 2020; 15:954-961. [PMID: 33336053 PMCID: PMC7712328 DOI: 10.1515/med-2020-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 11/15/2022] Open
Abstract
Background Bone marrow stromal cells (BMSCs) have an important application prospect in the field of cell therapy for various neurodegenerative diseases, and inducing factors that regulate BMSC differentiation are proposed as a promising therapeutic strategy. In this study, we explored the effect of glial cell-derived neurotrophic factor (GDNF) on the course of BMSC differentiation. Methods BMSCs were isolated from rat bone marrow and induced by GDNF. The effects of GDNF on BMSC viability and proliferation were verified by cell counting kit-8, MTT, bromodeoxyuridine, and flow cytometry assays. Neuronal differentiation from BMSCs was detected by quantitative real-time polymerase chain reaction and immunofluorescence via measuring the expression of several neural specific markers. Results Compared to untreated BMSCs, GDNF induced the differentiation of BMSCs into neuron-like cells and enhanced the expression levels of neuronal markers including nestin and NCAM. Moreover, the expression of SCF was suppressed by GDNF stimulation. Conclusion GDNF could elevate the differentiation of BMSCs into neuron-like cells and could be considered as an effective candidate cell for future neuroscience research.
Collapse
Affiliation(s)
- Qiang Ma
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116023, Liaoning Province, China.,Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Ming Cai
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Jing-Wei Shang
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Jun Yang
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116023, Liaoning Province, China
| | - Xin-Yi Gu
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Wen-Bo Liu
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Qing Yang
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116023, Liaoning Province, China
| |
Collapse
|
4
|
Song B, Wang XX, Yang HY, Kong LT, Sun HY. Temperature-sensitive bone mesenchymal stem cells combined with mild hypothermia reduces neurological deficit in rats of severe traumatic brain injury. Brain Inj 2020; 34:975-982. [PMID: 32362186 DOI: 10.1080/02699052.2020.1753112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND To explore the combined influences of temperature-sensitive bone mesenchymal stem cells (tsBMSCs) and mild hypothermia (MH) on neurological function and glucose metabolism in rats with severe traumatic brain injury (TBI). METHODS SD rats were randomly divided into sham, TBI, TBI + MH, TBI + BMSCs and TBI + MH +tsBMSCs groups. Then, the brain water content, serum-specific proteins (S100β, NSE, LDH, and CK), and blood glucose at different time points were measured. Furthermore, GLUT-3 expression was detected by Western blotting, and apoptotic rate was determined by TUNEL staining. RESULTS After TBI rat establishment, the brain injury resulted in significant increases in mNSS scores and brain water content, and upregulations in serum levels of S100β, NSE, LDH and CK, and blood glucose, with the elevated cell apoptotic rate in the injured cortex. However, these changes were reversed by MH alone, BMSCs alone, or combination treatment of MH and tsBMSCs in varying degrees, and the combination treatment was superior to the treatment with BMSCs or MH alone. CONCLUSION Combination therapy of tsBMSCs and MH can reduce the neuronal apoptosis in severe TBI rats, with the suppression of serum biomarkers and hyperglycemia, contributing to the recovery of neurological functions. ABBREVIATIONS tsBMSCs: temperature-sensitive bone mesenchymal stem cells; MH: mild hypothermia; TBI: traumatic brain injury; mNSS: modified Neurological Severity Score.
Collapse
Affiliation(s)
- Bo Song
- Department of Emergency, YanTaiShan Hospital , YanTai, Shandong, China
| | - Xin-Xiang Wang
- Department of Laboratory, Yantai Chefoo Area Directly Subordinate Organ Hospital , YanTai, Shandong, China
| | - Hai-Yan Yang
- Department of Emergency, YanTaiShan Hospital , YanTai, Shandong, China
| | - Ling-Ting Kong
- Department of Emergency, YanTaiShan Hospital , YanTai, Shandong, China
| | - Hong-Yan Sun
- Department of Endocrinology, YanTaiShan Hospital , YanTai, Shandong, China
| |
Collapse
|
5
|
Bellon A, Wegener A, Lescallette AR, Valente M, Yang SK, Gardette R, Matricon J, Mouaffak F, Watts P, Vimeux L, Yun JK, Kawasawa YI, Clawson GA, Blandin E, Chaumette B, Jay TM, Krebs MO, Feuillet V, Hosmalin A. Transdifferentiation of Human Circulating Monocytes Into Neuronal-Like Cells in 20 Days and Without Reprograming. Front Mol Neurosci 2018; 11:323. [PMID: 30760979 PMCID: PMC6156467 DOI: 10.3389/fnmol.2018.00323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022] Open
Abstract
Despite progress, our understanding of psychiatric and neurological illnesses remains poor, at least in part due to the inability to access neurons directly from patients. Currently, there are in vitro models available but significant work remains, including the search for a less invasive, inexpensive and rapid method to obtain neuronal-like cells with the capacity to deliver reproducible results. Here, we present a new protocol to transdifferentiate human circulating monocytes into neuronal-like cells in 20 days and without the need for viral insertion or reprograming. We have thoroughly characterized these monocyte-derived-neuronal-like cells (MDNCs) through various approaches including immunofluorescence (IF), flow cytometry, qRT-PCR, single cell mRNA sequencing, electrophysiology and pharmacological techniques. These MDNCs resembled human neurons early in development, expressed a variety of neuroprogenitor and neuronal genes as well as several neuroprogenitor and neuronal proteins and also presented electrical activity. In addition, when these neuronal-like cells were exposed to either dopamine or colchicine, they responded similarly to neurons by retracting their neuronal arborizations. More importantly, MDNCs exhibited reproducible differentiation rates, arborizations and expression of dopamine 1 receptors (DR1) on separate sequential samples from the same individual. Differentiation efficiency measured by cell morphology was on average 11.9 ± 1.4% (mean, SEM, n = 38,819 cells from 15 donors). To provide context and help researchers decide which in vitro model of neuronal development is best suited to address their scientific question,we compared our results with those of other in vitro models currently available and exposed advantages and disadvantages of each paradigm.
Collapse
Affiliation(s)
- Alfredo Bellon
- Penn State Hershey Medical Center, Department of Psychiatry, Hershey, PA, United States.,Penn State Hershey Medical Center, Department of Pharmacology, Hershey, PA, United States.,INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cite, Paris, France.,INSERM UMR894, Center for Psychiatry and Neurosciences, Paris, France.,Centre Hospitalier Sainte-Anne, Faculté de Médecine Paris Descartes, Service Hospitalo-Universitaire-S14, Paris, France
| | - Amelie Wegener
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cite, Paris, France.,INSERM UMR894, Center for Psychiatry and Neurosciences, Paris, France
| | - Adam R Lescallette
- Penn State Hershey Medical Center, Department of Psychiatry, Hershey, PA, United States
| | - Michael Valente
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - Seung-Kwon Yang
- Université Paris Descartes, Sorbonne Paris Cite, Paris, France.,INSERM UMR894, Center for Psychiatry and Neurosciences, Paris, France
| | - Robert Gardette
- Université Paris Descartes, Sorbonne Paris Cite, Paris, France.,INSERM UMR894, Center for Psychiatry and Neurosciences, Paris, France
| | - Julien Matricon
- Université Paris Descartes, Sorbonne Paris Cite, Paris, France.,INSERM UMR894, Center for Psychiatry and Neurosciences, Paris, France
| | - Faycal Mouaffak
- Université Paris Descartes, Sorbonne Paris Cite, Paris, France.,INSERM UMR894, Center for Psychiatry and Neurosciences, Paris, France.,Centre Hospitalier Sainte-Anne, Faculté de Médecine Paris Descartes, Service Hospitalo-Universitaire-S14, Paris, France
| | - Paula Watts
- Sky Ridge Medical Center, Department of Internal Medicine, Lone Tree, CO, United States
| | - Lene Vimeux
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - Jong K Yun
- Penn State Hershey Medical Center, Department of Pharmacology, Hershey, PA, United States
| | - Yuka Imamura Kawasawa
- Penn State Hershey Medical Center, Department of Pharmacology, Hershey, PA, United States.,Penn State Hershey Medical Center, Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Hershey, PA, United States
| | - Gary A Clawson
- Gittlen Cancer Research Laboratories, Department of Pathology, Penn State University College of Medicine, Hershey, PA, United States
| | - Elisabeta Blandin
- Penn State Hershey Medical Center, Department of Psychiatry, Hershey, PA, United States.,Penn State Hershey Medical Center, Neural & Behavioral Sciences, Hershey, PA, United States
| | - Boris Chaumette
- Université Paris Descartes, Sorbonne Paris Cite, Paris, France.,INSERM UMR894, Center for Psychiatry and Neurosciences, Paris, France.,Centre Hospitalier Sainte-Anne, Faculté de Médecine Paris Descartes, Service Hospitalo-Universitaire-S14, Paris, France.,Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Therese M Jay
- Université Paris Descartes, Sorbonne Paris Cite, Paris, France.,INSERM UMR894, Center for Psychiatry and Neurosciences, Paris, France
| | - Marie-Odile Krebs
- Université Paris Descartes, Sorbonne Paris Cite, Paris, France.,INSERM UMR894, Center for Psychiatry and Neurosciences, Paris, France.,Centre Hospitalier Sainte-Anne, Faculté de Médecine Paris Descartes, Service Hospitalo-Universitaire-S14, Paris, France
| | - Vincent Feuillet
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - Anne Hosmalin
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cite, Paris, France
| |
Collapse
|
6
|
Neuron-Specific Fluorescence Reporter-Based Live Cell Tracing for Transdifferentiation of Mesenchymal Stem Cells into Neurons by Chemical Compound. Stem Cells Int 2017; 2017:8452830. [PMID: 28808446 PMCID: PMC5541830 DOI: 10.1155/2017/8452830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
Although transdifferentiation of mesenchymal stem cells (MSCs) into neurons increases the possibility of therapeutic use of MSCs for neurodevelopmental disorders, the use of MSCs has the limitation on differentiation efficiency to neuronal lineage and lack of an easy method to monitor the transdifferentiation. In this study, using time-lapse live cell imaging, we assessed the neuronal differentiation of MSCs induced by a small molecule “NHPDQC (N-hydroxy-2-oxo-3-(3-phenylprophyl)-1,2-dihydroquinoxaline-6-carboxamide, C18H17N3O3).” Plasmid vector containing red fluorescence reporter genes under the control of the tubulin α1 (Tα1) promoter (pTα1-DsRed2) traced the neuronal differentiation of MSCs. Two days after NHPDQC treatment, MSCs showed neuron-like phenotype with neurite outgrowth and high expression of neuron-specific markers in more than 95% cells. The fluorescence signals increased in the cytoplasm of pTα1-DsRed2-transfected MSCs after NHPDQC treatment. In vitro monitoring of MSCs along the time courses showed progressive increase of fluorescence till 30 h after treatment, corresponding with the increase in neurite length. We examined an efficient neuronal differentiation of MSCs by NHPDQC alone and monitored the temporal changes of neuronal differentiation by neuron-specific fluorescence reporter along time. This method would help further our understanding of the differentiation of MSCs to produce neurons by simple treatment of small molecule.
Collapse
|
7
|
Nandoe Tewarie RDS, Nandoe RDS, Hurtado A, Levi ADO, Grotenhuis JA, Grotenhuis A, Oudega M. Bone Marrow Stromal Cells for Repair of the Spinal Cord: Towards Clinical Application. Cell Transplant 2017; 15:563-77. [PMID: 17176609 DOI: 10.3727/000000006783981602] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stem cells have been recognized and intensively studied for their potential use in restorative approaches for degenerative diseases and traumatic injuries. In the central nervous system (CNS), stem cell-based strategies have been proposed to replace lost neurons in degenerative diseases such as Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis (Lou Gehrig's disease), or to replace lost oligodendrocytes in demyelinating diseases such as multiple sclerosis. Stem cells have also been implicated in repair of the adult spinal cord. An impact to the spinal cord results in immediate damage to tissue including blood vessels, causing loss of neurons, astrocytes, and oligodendrocytes. In time, more tissue nearby or away from the injury site is lost due to secondary injury. In case of relatively minor damage to the cord some return of function can be observed, but in most cases the neurological loss is permanent. This review will focus on in vitro and in vivo studies on the use of bone marrow stromal cells (BMSCs), a heterogeneous cell population that includes mesenchymal stem cells, for repair of the spinal cord in experimental injury models and their potential for human application. To optimally benefit from BMSCs for repair of the spinal cord it is imperative to develop in vitro techniques that will generate the desired cell type and/or a large enough number for in vivo transplantation approaches. We will also assess the potential and possible pitfalls for use of BMSCs in humans and ongoing clinical trials.
Collapse
Affiliation(s)
- Rishi D S Nandoe Tewarie
- The Miami Project to Cure Paralysis, University of Miami, School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Nori S, Nakamura M, Okano H. Plasticity and regeneration in the injured spinal cord after cell transplantation therapy. PROGRESS IN BRAIN RESEARCH 2017; 231:33-56. [DOI: 10.1016/bs.pbr.2016.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Ullah I, Subbarao RB, Kim EJ, Bharti D, Jang SJ, Park JS, Shivakumar SB, Lee SL, Kang D, Byun JH, Park BW, Rho GJ. In vitro comparative analysis of human dental stem cells from a single donor and its neuronal differentiation potential evaluated by electrophysiology. Life Sci 2016; 154:39-51. [PMID: 27107840 DOI: 10.1016/j.lfs.2016.04.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/12/2016] [Accepted: 04/19/2016] [Indexed: 01/09/2023]
Abstract
AIMS The aim of this study was to find out a mesenchymal stem cells (MSCs) source from human dental tissues of the same donor (follicle, papilla and pulp), which exhibits higher neurogenic differentiation potential in vitro. MAIN METHODS MSCs were isolated from dental tissues (follicle, papilla and pulp) by digestion method. All MSCs were analyzed for pluripotent makers by western blot, cell surface markers by flow cytometry, adipo- and osteocytes markers by RT-qPCR. The neuronal differentiated MSCs were characterized for neuronal specific markers by RT-qPCR and immunofluorescence. Functional neuronal properties were analyzed by electrophysiology and synaptic markers expression. KEY FINDINGS All MSCs expressed pluripotent markers (Oct4, Sox2 and Nanog) and were found positive for mesenymal markers (CD44, CD90, CD105) while negative for hematopoietic markers (CD34 and CD45). Furthermore, MSCs were successfully differentiated into adipocytes, osteocytes and trans-differentiated into neuronal cells. Among them, dental pulp derived MSCs exhibits higher neurogenic differentiation potential, in term of expression of neuronal specific markers at both gene and protein level, and having higher Na(+) and K(+) current with the expression of synaptic markers. SIGNIFICANCE The three types of dental MSCs from a single donor broadly possessed similar cellular properties and can differentiate into neuronal cells; however, pulp derived MSCs showed higher neurogenic potential than the follicle and papilla, suggesting their use in future stem cells therapy for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Raghavendra Baregundi Subbarao
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Eun-Jin Kim
- Department of Physiology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Ji-Sung Park
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Sharath Belame Shivakumar
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dawon Kang
- Department of Physiology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Institute of Health Science, School of Medicine, Gyeongsang National University, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, Institute of Health Science, School of Medicine, Gyeongsang National University, Republic of Korea.
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
10
|
Khanabdali R, Saadat A, Fazilah M, Bazli KFK, Qazi REM, Khalid RS, Hasan Adli DS, Moghadamtousi SZ, Naeem N, Khan I, Salim A, Shamsuddin SA, Mohan G. Promoting effect of small molecules in cardiomyogenic and neurogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Drug Des Devel Ther 2015; 10:81-91. [PMID: 26766903 PMCID: PMC4699543 DOI: 10.2147/dddt.s89658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Small molecules, growth factors, and cytokines have been used to induce differentiation of stem cells into different lineages. Similarly, demethylating agents can trigger differentiation in adult stem cells. Here, we investigated the in vitro differentiation of rat bone marrow mesenchymal stem cells (MSCs) into cardiomyocytes by a demethylating agent, zebularine, as well as neuronal-like cells by β-mercaptoethanol in a growth factor or cytokines-free media. Isolated bone marrow-derived MSCs cultured in Dulbecco's Modified Eagle's Medium exhibited a fibroblast-like morphology. These cells expressed positive markers for CD29, CD44, and CD117 and were negative for CD34 and CD45. After treatment with 1 μM zebularine for 24 hours, the MSCs formed myotube-like structures after 10 days in culture. Expression of cardiac-specific genes showed that treated MSCs expressed significantly higher levels of cardiac troponin-T, Nkx2.5, and GATA-4 compared with untreated cells. Immunocytochemical analysis showed that differentiated cells also expressed cardiac proteins, GATA-4, Nkx 2.5, and cardiac troponin-T. For neuronal differentiation, MSCs were treated with 1 and 10 mM β-mercaptoethanol overnight for 3 hours in complete and serum-free Dulbecco's Modified Eagle's Medium, respectively. Following overnight treatment, neuron-like cells with axonal and dendritic-like projections originating from the cell body toward the neighboring cells were observed in the culture. The mRNA expression of neuronal-specific markers, Map2, Nefl, Tau, and Nestin, was significantly higher, indicating that the treated cells differentiated into neuronal-like cells. Immunostaining showed that differentiated cells were positive for the neuronal markers Flk, Nef, Nestin, and β-tubulin.
Collapse
Affiliation(s)
- Ramin Khanabdali
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Anbarieh Saadat
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Maizatul Fazilah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Rida-e-Maria Qazi
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ramla Sana Khalid
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | | | - Nadia Naeem
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Irfan Khan
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asmat Salim
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | - Gokula Mohan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Fluid Flow Shear Stress Stimulation on a Multiplex Microfluidic Device for Rat Bone Marrow Stromal Cell Differentiation Enhancement. MICROMACHINES 2015. [DOI: 10.3390/mi6121470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Lin R, Ding Z, Ma H, Shi H, Gao Y, Qian W, Shi W, Sun Z, Hou X, Li X. In Vitro Conditioned Bone Marrow-Derived Mesenchymal Stem Cells Promote De Novo Functional Enteric Nerve Regeneration, but Not Through Direct-Transdifferentiation. Stem Cells 2015; 33:3545-3557. [PMID: 26302722 PMCID: PMC5886714 DOI: 10.1002/stem.2197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 07/09/2015] [Accepted: 07/25/2015] [Indexed: 01/05/2023]
Abstract
Injury or neurodegenerative disorders of the enteric nervous system (ENS) cause gastrointestinal dysfunctions for which there is no effective therapy. This study, using the benzalkonium chloride-induced rat gastric denervation model, aimed to determine whether transplantation of bone marrow-derived mesenchymal stem cells (BMSC) could promote ENS neuron regeneration and if so, to elucidate the mechanism. Fluorescently labeled BMSC, isolated from either WT (BMSC labeled with bis-benzimide [BBM]) or green fluorescent protein (GFP)-transgenic rats, were preconditioned in vitro using fetal gut culture media containing glial cell-derived neurotrophic factor (GDNF), and transplanted subserosally into the denervated area of rat pylorus. In the nerve-ablated pylorus, grafted BMSC survived and migrated from the subserosa to the submucosa 28 days after transplantation, without apparent dedifferentiation. A massive number of PGP9.5/NSE/HuC/D/Tuj1-positive (but GFP- and BBM-negative) neurons were effectively regenerated in denervated pylorus grafted with preconditioned BMSC, suggesting that they were regenerated de novo, not originating from trans-differentiation of the transplanted BMSC. BMSC transplantation restored both basal pyloric contractility and electric field stimulation-induced relaxation. High levels of GDNF were induced in both in vitro-preconditioned BMSC as well as the previously denervated pylorus after transplantation of preconditioned BMSC. Thus, a BMSC-initiated GDNF-positive feedback mechanism is suggested to promote neuron regeneration and growth. In summary, we have demonstrated that allogeneically transplanted preconditioned BMSC initiate de novo regeneration of gastric neuronal cells/structures that in turn restore gastric contractility in pylorus-denervated rats. These neuronal structures did not originate from the grafted BMSC. Our data suggest that preconditioned allogeneic BMSC may have therapeutic value in treating enteric nerve disorders.
Collapse
Affiliation(s)
- Rong Lin
- Union Hospital of Tongji Medical College, Division of Gastroenterology, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine, 720 Rutland Avenue, 918 Ross Research Bldg, Baltimore, MD 21205, USA
| | - Zhen Ding
- Union Hospital of Tongji Medical College, Division of Gastroenterology, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine, 720 Rutland Avenue, 918 Ross Research Bldg, Baltimore, MD 21205, USA
| | - Huan Ma
- Union Hospital of Tongji Medical College, Division of Gastroenterology, Huazhong University of Science and Technology, Wuhan, 430022, China
- Qingdao Municipal Hospital, Division of Gastroenterology, Qingdao, 266011 China
| | - Huiying Shi
- Union Hospital of Tongji Medical College, Division of Gastroenterology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuanjun Gao
- Union Hospital of Tongji Medical College, Division of Gastroenterology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Qian
- Union Hospital of Tongji Medical College, Division of Gastroenterology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weina Shi
- Union Hospital of Tongji Medical College, Division of Gastroenterology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, 720 Rutland Avenue, 918 Ross Research Bldg, Baltimore, MD 21205, USA
| | - Xiaohua Hou
- Union Hospital of Tongji Medical College, Division of Gastroenterology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuhang Li
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine, 720 Rutland Avenue, 918 Ross Research Bldg, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Subbarao RB, Ullah I, Kim EJ, Jang SJ, Lee WJ, Jeon RH, Kang D, Lee SL, Park BW, Rho GJ. Characterization and evaluation of neuronal trans-differentiation with electrophysiological properties of mesenchymal stem cells isolated from porcine endometrium. Int J Mol Sci 2015; 16:10934-51. [PMID: 26006231 PMCID: PMC4463684 DOI: 10.3390/ijms160510934] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/11/2015] [Indexed: 12/31/2022] Open
Abstract
Endometrial stromal cells (EMSCs) obtained from porcine uterus (n = 6) were positive for mesenchymal stem cell markers (CD29, CD44 and CD90), and negative for epithelial marker CD9 and hematopoietic markers CD34, CD45 analyzed by flow cytometry. Further the cells were positive for expression of mesenchymal markers, CD105, CD140b, and CD144 by PCR. Pluripotent markers OCT4, SOX2, and NANOG were positively expressed in EMSCs analyzed by Western blotting and PCR. Further, differentiation into adipocytes and osteocytes was confirmed by cytochemical staining and lineage specific gene expression by quantitative realtime-PCR. Adipocyte (FABP, LPL, AP2) and osteocyte specific genes (ON, BG, RUNX2) in differentiated EMSCs showed significant (p < 0.05) increase in expression compared to undifferentiated control cells. Neurogenic transdifferentiation of EMSCs exhibited distinctive dendritic morphology with axon projections and neuronal specific genes, NFM, NGF, MBP, NES, B3T and MAP2 and proteins, B3T, NFM, NGF, and TRKA were positively expressed in neuronal differentiated cells. Functional analysis of neuronal differentiated EMSCs displayed voltage-dependence and kinetics for transient outward K+ currents (Ito), at holding potential of -80 mV, Na+ currents and during current clamp, neuronal differentiated EMSCs was more negative than that of control EMSCs. Porcine EMSCs is a suitable model for studying molecular mechanism of transdifferentiation, assessment of electrophysiological properties and their efficiency during in vivo transplantation.
Collapse
Affiliation(s)
- Raghavendra Baregundi Subbarao
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Eun-Jin Kim
- Department of Physiology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Won-Jae Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Ryoung Hoon Jeon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Dawon Kang
- Department of Physiology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
14
|
Parivar K, Baharara J, Sheikholeslami A. Neural differentiation of mouse bone marrow-derived mesenchymal stem cells treated with sex steroid hormones and basic fibroblast growth factor. CELL JOURNAL 2015; 17:27-36. [PMID: 25870832 PMCID: PMC4393669 DOI: 10.22074/cellj.2015.509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 12/21/2013] [Indexed: 12/21/2022]
Abstract
Objective There are several factors, like environmental agents, neurotrophic factors,
serotonin and some hormones such as estrogen, affecting neurogenesis and neural differentiation. Regarding to importance of proliferation and regeneration in central nervous
system, and a progressive increase in neurodegenerative diseases, cell therapy is an
attractive approach in neuroscience. The aim of the present study was to investigate the
effects of sex steroid hormones and basic fibroblast growth factor (bFGF) on neuronal differentiation of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs).
Materials and Methods This experimental study was established in Kharazmi Univer-
sity. BM was isolated from the bones of femur and tibia of 4-6-week old Naval Medical
Research Institute (NMRI) mice, and the cells were cultured. The cells were divided into
following 4 groups based on the applied treatments: I. control (no treatment), II. steroid
hormones (β-estradiol, progesterone and testosterone), III. bFGF and IV. combination of
steroid hormones and bFGF. Immunocytochemistry and flow cytometery analyses were
applied for beta III-tubulin (β-III tubulin) and microtubule-associated proteins-2 (MAP-2) in
4 days of treatment for all groups.
Results The cells treated with combination of bFGF and steroid hormones represented
more expressions of neural markers as compared to control and to other two groups
treated with either bFGF or steroid hormones.
Conclusion This study showed that BM-MSCs can express specific neural markers after
receiving bFGF pretreatment that was followed by sex steroid hormones treatment. More
investigations are necessary to specify whether steroid hormones and bFGF can be considered for treatment of CNS diseases and disorders.
Collapse
Affiliation(s)
- Kazem Parivar
- Department of Biology, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Baharara
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Azar Sheikholeslami
- Department of Zoology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
15
|
He R, Fan J. Effects of infrasound on the growth of bone marrow mesenchymal stem cells: a pilot study. Mol Med Rep 2014; 10:2427-32. [PMID: 25175368 DOI: 10.3892/mmr.2014.2508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 05/09/2014] [Indexed: 11/05/2022] Open
Abstract
Poor viability of transplanted bone marrow mesenchymal stem cells (BMSCs) is well‑known, but developing methods for enhancing the viability of BMSCs requires further investigation. The aim of the present study was to elucidate the effects of infrasound on the proliferation and apoptosis of BMSCs, and to determine the association between survivin expression levels and infrasound on BMSCs. Primary BMSCs were derived from Sprague Dawley rats. The BMSCs, used at passage three, were divided into groups that received infrasound for 10, 30, 60, 90 or 120 min, and control groups, which were exposed to the air for the same durations. Infrasound was found to promote proliferation and inhibit apoptosis in BMSCs. The results indicated that 60 min was the most suitable duration for applied infrasound treatment to BMSCs. The protein and mRNA expression levels of survivin in BMSCs from the two treatment groups that received 60 min infrasound or air, were examined by immunofluorescence and quantitative polymerase chain reaction. Significant differences in survivin expression levels were identified between the two groups, as infrasound enhanced the expression levels of survivin. In conclusion, infrasound promoted proliferation and inhibited apoptosis in BMSCs, and one mechanisms responsible for the protective effects may be the increased expression levels of survivin.
Collapse
Affiliation(s)
- Renhong He
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jianzhong Fan
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
16
|
Zhang LX, Yin YM, Zhang ZQ, Deng LX. Grafted bone marrow stromal cells: a contributor to glial repair after spinal cord injury. Neuroscientist 2014; 21:277-89. [PMID: 24777423 DOI: 10.1177/1073858414532171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the CNS, astrocytes, oligodendrocytes and microglias are involved in not only development but also pathology such as spinal cord injury (SCI). Glial cells play dual roles (negative vs. positive effects) in these processes. After SCI, detrimental effects usually dominate and significantly retard functional recovery, and curbing these effects is critical for promoting neurological improvement. Bone marrow stromal cells (BMSCs) represent a new therapeutic approach for SCI by enabling improved sensory and motor functions in animal models. Although transdifferentiation to spinal neurons was poor, because of their pleiotropic nature, the protective effects of BMSCs are broad and are primarily mediated through modulation of transdifferentiation into host spinal glial components. Transplantation of BMSCs can positively alter the spinal microenvironment and enhance recovery. The objective of this review is to discuss these and other related mechanisms. Since BMSCs transplantation has been applied in other clinical fields, we hope to provide useful clues for the clinical application of BMSCs to treat the SCI in the near future.
Collapse
Affiliation(s)
- Li-Xin Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan-Mei Yin
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhi-Qiang Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ling-Xiao Deng
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, and Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
17
|
Edalat H, Hajebrahimi Z, Pirhajati V, Movahedin M, Tavallaei M, Soroush MR, Mowla SJ. Transplanting p75-suppressed bone marrow stromal cells promotes functional behavior in a rat model of spinal cord injury. IRANIAN BIOMEDICAL JOURNAL 2014; 17:140-5. [PMID: 23748892 DOI: 10.6091/ibj.1193.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bone marrow stromal cells (BMSC) have been successfully employed for movement deficit recovery in spinal cord injury (SCI) rat models. One of the unsettled problems in cell transplantation is the relative high proportion of cell death, specifically after neural differentiation. According to our previous studies, p75 receptor, known as the death receptor, is only expressed in BMSC in a time window of 6-12 hours following neural induction. Moreover, we have recently reported a decreased level of apoptosis in p75-suppressed BMSC in vitro. Therefore, our objective in this research was to explore the functional effects of transplanting p75:siRNA expressing BMSC in SCI rats. METHODS Laminectomy was performed at L1 vertebra level to expose spinal cord for contusion using weight-drop method. PBS-treated SCI rats (group one) were used as negative controls, in which cavitations were observed 10 weeks after SCI. pRNA-U6.1/Hygro- (group two, as a mock) and pRNA-U6.1/Hygro-p75 shRNA- (group three) transfected BMSC were labeled with a fluorescent dye, CM-DiI, and grafted into the lesion site 7 days after surgery. The Basso-Beattie-Bresnehan locomotor rating scale was performed weekly for 10 weeks. RESULTS There was a significant difference (P≤0.05) between all groups of treated rats regarding functional recovery. Specifically, the discrepancy among p75 siRNA and mock-transfected BMSC was statistically significant. P75 siRNA BMSC also revealed a higher level of in vivo survival compared to the mock BMSC. CONCLUSION Our data suggest that genetically modified BMSC that express p75:siRNA could be a more suitable source of cells for treatment of SCI.
Collapse
Affiliation(s)
- Houri Edalat
- Dept. Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Vahid Pirhajati
- Dept. of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Movahedin
- Dept. of Anatomy, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmoud Tavallaei
- Genetic Research Center, Baqiyatallah Medical Sciences University, Tehran, Iran
| | | | - Seyed Javad Mowla
- Dept. Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
18
|
An Observational Study of Autologous Bone Marrow-Derived Stem Cells Transplantation in Seven Patients with Nervous System Diseases: A 2-Year Follow-Up. Cell Biochem Biophys 2013; 69:179-87. [DOI: 10.1007/s12013-013-9756-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
Ghorbanian MT, Tiraihi T, Mesbah-Namin SA, Fathollahi Y. Selegiline is an efficient and potent inducer for bone marrow stromal cell differentiation into neuronal phenotype. Neurol Res 2013; 32:185-93. [PMID: 19422735 DOI: 10.1179/174313209x409016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mohammad Taghi Ghorbanian
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat, Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
20
|
Shao J, Sun C, Su L, Zhao J, Zhang S, Miao J. Phosphatidylcholine-specific phospholipase C/heat shock protein 70 (Hsp70)/transcription factor B-cell translocation gene 2 signaling in rat bone marrow stromal cell differentiation to cholinergic neuron-like cells. Int J Biochem Cell Biol 2012; 44:2253-60. [PMID: 23000394 DOI: 10.1016/j.biocel.2012.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 08/31/2012] [Accepted: 09/14/2012] [Indexed: 12/22/2022]
Abstract
Although bone marrow stromal cells (BMSCs) can differentiate into neuron-like cells, the mechanisms underlying neuronal differentiation are not well understood. We recently found that inhibition of phosphatidylcholine-specific phospholipase C (PC-PLC) by its inhibitor D609 promoted BMSCs' differentiation into cholinergic neuron-like cells. Using the effective small molecule D609 and gene microarray technology, we investigated the change of gene expression profile to identify key mediators involved in the neuronal differentiation. We selected heat shock protein 70 (Hsp70) and transcription factor B-cell translocation gene 2 (Btg2) that were maximally up-regulated for further study. We found that functional suppression of Hsp70 blocked D609-induced increase of Btg2 expression and cholinergic neuronal differentiation of BMSCs. These results demonstrated that Hsp70 was the pivotal factor in PC-PLC-medicated neuronal differentiation of BMSCs, and Btg2 might be its downstream target. Our findings provide new clues for controlling BMSCs' differentiation into cholinergic neuron-like cells and provide a putative strategy for neurodegenerative diseases therapies.
Collapse
Affiliation(s)
- Jing Shao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | | | | | |
Collapse
|
21
|
Lin X, Zhang Y, Liu W, Dong J, Lu J, Di Q, Shi J. Granulocyte-macrophage colony-stimulating factor-transfected bone marrow stromal cells for the treatment of ischemic stroke. Neural Regen Res 2012; 7:1220-7. [PMID: 25709619 PMCID: PMC4336955 DOI: 10.3969/j.issn.1673-5374.2012.16.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 04/27/2012] [Indexed: 11/20/2022] Open
Abstract
Adult, male, Sprague-Dawley rats were injected with granulocyte-macrophage colony-stimulating factor-transfected bone marrow stromal cells (GM-CSF-BMSCs) into the ischemic boundary zone at 24 hours after onset of middle cerebral artery occlusion. Results showed reduced infarct volume, decreased number of apoptotic cells, improved neurological functions, increased angiogenic factor expression, and increased vascular density in the ischemic boundary zone in rats that underwent GM-CSF-BMSCs transplantation compared with the BMSCs group. Experimental findings suggested that GM-CSF-BMSCs could serve as a potential therapeutic strategy for ischemic stroke and are superior to BMSCs alone.
Collapse
Affiliation(s)
- Xingjian Lin
- Nanjing Medical University, Affiliated Nanjing Brain Hospital, Department of Neurology, Nanjing 210029, Jiangsu Province, China
| | - Yingdong Zhang
- Nanjing Medical University, Affiliated Nanjing Brain Hospital, Department of Neurology, Nanjing 210029, Jiangsu Province, China ; Nanjing Medical University, Affiliated Nanjing First Hospital, Department of Neurology, Nanjing 210029, Jiangsu Province, China
| | - Weiguo Liu
- Nanjing Medical University, Affiliated Nanjing Brain Hospital, Department of Neurology, Nanjing 210029, Jiangsu Province, China
| | - Jingde Dong
- Nanjing Medical University, Affiliated Nanjing Brain Hospital, Department of Neurology, Nanjing 210029, Jiangsu Province, China
| | - Jie Lu
- Nanjing Medical University, Affiliated Nanjing Brain Hospital, Department of Neurology, Nanjing 210029, Jiangsu Province, China
| | - Qing Di
- Nanjing Medical University, Affiliated Nanjing Brain Hospital, Department of Neurology, Nanjing 210029, Jiangsu Province, China
| | - Jingping Shi
- Nanjing Medical University, Affiliated Nanjing Brain Hospital, Department of Neurology, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
22
|
Ruff CA, Wilcox JT, Fehlings MG. Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp Neurol 2012; 235:78-90. [DOI: 10.1016/j.expneurol.2011.02.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/02/2011] [Accepted: 02/10/2011] [Indexed: 12/19/2022]
|
23
|
Wei L, Fraser JL, Lu ZY, Hu X, Yu SP. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis 2012; 46:635-45. [PMID: 22426403 DOI: 10.1016/j.nbd.2012.03.002] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 02/16/2012] [Accepted: 03/01/2012] [Indexed: 12/16/2022] Open
Abstract
Hypoxic preconditioning of stem cells and neural progenitor cells has been tested for promoting cell survival after transplantation. The present investigation examined the hypothesis that hypoxic preconditioning of bone marrow mesenchymal stem cells (BMSCs) could not only enhance their survival but also reinforce regenerative properties of these cells. BMSCs from eGFP engineered rats or pre-labeled with BrdU were pre-treated with normoxia (20% O(2), N-BMSCs) or sub-lethal hypoxia (0.5% O(2). H-BMSCs). The hypoxia exposure up-regulated HIF-1α and trophic/growth factors in BMSCs, including brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF) and its receptor FIK-1, erythropoietin (EPO) and its receptor EPOR, stromal derived factor-1 (SDF-1) and its CXC chemokine receptor 4 (CXCR4). Meanwhile, many pro-inflammatory cytokines/chemokines were down-regulated in H-BMSCs. N-BMSCs or H-BMSCs were intravenously injected into adult rats 24h after 90-min middle cerebral artery occlusion. Comparing to N-BMSCs, transplantation of H-BMSCs showed greater effect of suppressing microglia activity in the brain. Significantly more NeuN-positive and Glut1-positive cells were seen in the ischemic core and peri-infarct regions of the animals received H-BMSC transplantation than that received N-BMSCs. Some NeuN-positive and Glut-1-positive cells showed eGFP or BrdU immunoflourescent reactivity, suggesting differentiation from exogenous BMSCs into neuronal and vascular endothelial cells. In Rotarod test performed 15days after stroke, animals received H-BMSCs showed better locomotion recovery compared with stroke control and N-BMSC groups. We suggest that hypoxic preconditioning of transplanted cells is an effective means of promoting their regenerative capability and therapeutic potential for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
24
|
Jadasz JJ, Aigner L, Rivera FJ, Küry P. The remyelination Philosopher's Stone: stem and progenitor cell therapies for multiple sclerosis. Cell Tissue Res 2012; 349:331-47. [PMID: 22322424 DOI: 10.1007/s00441-012-1331-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/16/2012] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease that leads to oligodendrocyte loss and subsequent demyelination of the adult central nervous system (CNS). The pathology is characterized by transient phases of recovery during which remyelination can occur as a result of resident oligodendroglial precursor and stem/progenitor cell activation. However, myelin repair efficiency remains low urging the development of new therapeutical approaches that promote remyelination activities. Current MS treatments target primarily the immune system in order to reduce the relapse rate and the formation of inflammatory lesions, whereas no therapies exist in order to regenerate damaged myelin sheaths. During the last few years, several transplantation studies have been conducted with adult neural stem/progenitor cells and glial precursor cells to evaluate their potential to generate mature oligodendrocytes that can remyelinate axons. In parallel, modulation of the endogenous progenitor niche by neural and mesenchymal stem cell transplantation with the aim of promoting CNS progenitor differentiation and myelination has been studied. Here, we summarize these findings and discuss the properties and consequences of the various molecular and cell-mediated remyelination approaches. Moreover, we address age-associated intrinsic cellular changes that might influence the regenerative outcome. We also evaluate the extent to which these experimental treatments might increase the regeneration capacity of the demyelinated human CNS and hence be turned into future therapies.
Collapse
Affiliation(s)
- Janusz J Jadasz
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
25
|
Byun JH, Kang EJ, Park SC, Kang DH, Choi MJ, Rho GJ, Park BW. Isolation of human mesenchymal stem cells from the skin and their neurogenic differentiation in vitro. J Korean Assoc Oral Maxillofac Surg 2012. [DOI: 10.5125/jkaoms.2012.38.6.343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Jun-Ho Byun
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Korea
| | - Eun-Ju Kang
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Seong-Cheol Park
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Korea
| | - Dong-Ho Kang
- Department of Neurosurgery, School of Medicine, Gyeongsang National University, Jinju, Korea
| | - Mun-Jeong Choi
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Korea
| | - Gyu-Jin Rho
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
26
|
Liu Y, Jiang X, Zhang X, Chen R, Sun T, Fok KL, Dong J, Tsang LL, Yi S, Ruan Y, Guo J, Yu MK, Tian Y, Chung YW, Yang M, Xu W, Chung CM, Li T, Chan HC. Dedifferentiation-Reprogrammed Mesenchymal Stem Cells with Improved Therapeutic Potential. Stem Cells 2011; 29:2077-2089. [DOI: 10.1002/stem.764] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractStem cell transplantation has been shown to improve functional outcome in degenerative and ischemic disorders. However, low in vivo survival and differentiation potential of the transplanted cells limits their overall effectiveness and thus clinical usage. Here we show that, after in vitro induction of neuronal differentiation and dedifferentiation, on withdrawal of extrinsic factors, mesenchymal stem cells (MSCs) derived from bone marrow, which have already committed to neuronal lineage, revert to a primitive cell population (dedifferentiated MSCs) retaining stem cell characteristics but exhibiting a reprogrammed phenotype distinct from their original counterparts. Of therapeutic interest, the dedifferentiated MSCs exhibited enhanced cell survival and higher efficacy in neuronal differentiation compared to unmanipulated MSCs both in vitro and in vivo, with significantly improved cognition function in a neonatal hypoxic–ischemic brain damage rat model. Increased expression of bcl-2 family proteins and microRNA-34a appears to be the important mechanism giving rise to this previously undefined stem cell population that may provide a novel treatment strategy with improved therapeutic efficacy.
Collapse
Affiliation(s)
- Yang Liu
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
- Children's Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaohua Jiang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University-the Chinese University of Hong Kong, Guangzhou, People's Republic of China
| | - Xiaohu Zhang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Rui Chen
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tingting Sun
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kin Lam Fok
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jianda Dong
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lai Ling Tsang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shaoqiong Yi
- Department of Applied Molecular Biology, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Yechun Ruan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jinghui Guo
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Mei Kuen Yu
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuemin Tian
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yiu Wa Chung
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Mo Yang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Wenming Xu
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
- Sichuan University–the Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Women's and Children's Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chin Man Chung
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tingyu Li
- Children's Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University-the Chinese University of Hong Kong, Guangzhou, People's Republic of China
| |
Collapse
|
27
|
Secretion of bacterial chondroitinase ABC from bone marrow stromal cells by glycosylation site mutation: A promising approach for axon regeneration. Med Hypotheses 2011; 77:914-6. [DOI: 10.1016/j.mehy.2011.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 07/30/2011] [Accepted: 08/06/2011] [Indexed: 11/24/2022]
|
28
|
Kumar BM, Maeng GH, Lee YM, Kim TH, Lee JH, Jeon BG, Ock SA, Yoo JG, Rho GJ. Neurogenic and cardiomyogenic differentiation of mesenchymal stem cells isolated from minipig bone marrow. Res Vet Sci 2011; 93:749-57. [PMID: 21985860 DOI: 10.1016/j.rvsc.2011.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 08/08/2011] [Accepted: 09/13/2011] [Indexed: 01/19/2023]
Abstract
The present study investigated the potential of minipig bone marrow-mesenchymal stem cells (BM-MSCs) to differentiate in vitro into neuron- and cardiomyocyte-like cells. Isolated BM-MSCs exhibited a fibroblast-like morphology, expressed CD29, CD44 and CD90, and differentiated into osteocytes, adipocytes and chondrocytes. Upon induction in two different neuronal specific media, most of BM-MSCs acquired the distinctive morphological features and positively stained for nestin, neurofilament-M (NF-M), neuronal nuclei (NeuN), β-tubulin, galactocerebroside (Gal-C) and glial fibrillary acidic protein (GFAP). Expression of nestin, GFAP and NF-M was further demonstrated by RT-PCR and RT-qPCR. Following cardiomyogenic induction, MSCs exhibited a stick-like morphology with extended cytoplasmic processes, and formed cluster-like structures. The expression of cardiac specific markers α-smooth muscle actin, cardiac troponin T, desmin and α-cardiac actin was positive for immunofluorescence staining, and further confirmed by RT-PCR and RT-qPCR. In conclusion, our results showed the in vitro differentiation ability of porcine BM-MSCs into neuron-like and cardiomyocyte-like cells.
Collapse
Affiliation(s)
- B Mohana Kumar
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Role of mesenchymal stem cells in neurogenesis and nervous system repair. Neurochem Int 2011; 59:347-56. [PMID: 21718735 DOI: 10.1016/j.neuint.2011.06.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/27/2011] [Accepted: 06/09/2011] [Indexed: 02/08/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are attractive candidates for use in regenerative medicine since they are easily accessible and can be readily expanded in vivo, and possess unique immunogenic properties. Moreover, these multipotent cells display intriguing environmental adaptability and secretory capacity. The ability of MSCs to migrate and engraft in a range of tissues has received significant attention. Evidence indicating that MSC transplantation results in functional improvement in animal models of neurological disorders has highlighted exciting potential for their use in neurological cell-based therapies. The manner in which MSCs elicit positive effects in the damaged nervous system remains unclear. Cell fusion and/or 'transdifferentiation' phenomena, by which MSCs have been proposed to adopt neural cell phenotypes, occur at very low frequency and are unlikely to fully account for observed neurological improvement. Alternatively, MSC-mediated neural recovery may result from the release of soluble molecules, with MSC-derived growth factors and extracellular matrix components influencing the activity of endogenous neural cells. This review discusses the potential of MSCs as candidates for use in therapies to treat neurological disorders and the molecular and cellular mechanisms by which they are understood to act.
Collapse
|
30
|
Edalat H, Hajebrahimi Z, Movahedin M, Tavallaei M, Amiri S, Mowla SJ. p75NTR suppression in rat bone marrow stromal stem cells significantly reduced their rate of apoptosis during neural differentiation. Neurosci Lett 2011; 498:15-9. [PMID: 21539892 DOI: 10.1016/j.neulet.2011.04.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/05/2011] [Accepted: 04/19/2011] [Indexed: 11/26/2022]
Abstract
Most of the transplanted cells within central nervous system (CNS) undergo extensive cell death. Preventing the death of stem cell-derived neuron-like cells within adult CNS would enhance the efficiency of transplantation in clinics. We have employed an interfering RNA (RNAi) approach to elevate the survival rate of neurally differentiated bone marrow stromal stem cells (BMSCs), by means of suppressing p75NTR expression. Our data revealed that stably overexpressing a specific shRNA against p75NTR transcript could effectively reduce the expression of endogenous p75NTR in neurally differentiated BMSCs. As p75NTR can induce neuronal death in target cells, its suppression is followed by a significant reduction of apoptosis in neural-like cells derived from BMSCs. Thus, our data provides a method to increase the survival of stem cells being employed in transplantation within CNS and hence increase the success rate of cell-based therapies in damaged area of brain and spinal cord.
Collapse
Affiliation(s)
- Houri Edalat
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
31
|
Park BW, Kang DH, Kang EJ, Byun JH, Lee JS, Maeng GH, Rho GJ. Peripheral nerve regeneration using autologous porcine skin-derived mesenchymal stem cells. J Tissue Eng Regen Med 2011; 6:113-24. [PMID: 21337707 DOI: 10.1002/term.404] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 11/30/2010] [Indexed: 12/23/2022]
Abstract
Porcine skin-derived mesenchymal stem cells (pSMSCs) were evaluated on their biological MSC characterizations and differentiation into mesenchymal lineages, along with in vitro and in vivo neural inductions. Isolated pSMSCs showed plate-adherent growth, expression of various MSC-marker proteins and transcriptional factors, and differentiation potential into mesenchymal lineages. Neuron-like cell morphology and various neural markers were highly detected at 6 h and 24 h after in vitro neural induction of pSMSCs, but their neuron-like characteristics disappeared as induction time extended to 48 and 72 h. To evaluate the in vivo peripheral nerve regeneration potential of pSMSCs, a total of 5 × 10(6) autologous pSMSCs labelled with tracking dye, supplemented with fibrin glue scaffold and collagen tubulization, were transplanted into the peripheral nerve defected miniature pigs. At 2 and 4 weeks after cell transplantation, well-preserved transplanted cells and remarkable in vivo nerve regeneration, including histologically complete nerve bundles, were observed in the regenerated nerve tissues. Moreover, S-100 protein and p75 nerve growth factor receptor were more highly detected in regenerated nerve fibres compared to non-cell grafted control fibres. These results suggest that autologous pSMSCs transplanted with fibrin glue scaffold can induce prominent nerve regeneration in porcine peripheral nerve defect sites.
Collapse
Affiliation(s)
- Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Kashani IR, Golipoor Z, Akbari M, Mahmoudi R, Azari S, Shirazi R, Bayat M, Ghasemi S. Schwann-like cell differentiation from rat bone marrow stem cells. Arch Med Sci 2011; 7:45-52. [PMID: 22291732 PMCID: PMC3258698 DOI: 10.5114/aoms.2011.20603] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/10/2010] [Accepted: 03/14/2010] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The main purpose of this study was differentiation of bone marrow stem cells (BMSCs) into Schwann-like cells and to determine the intensity of apoptosis in BMSCs during the differentiation process. MATERIAL AND METHODS Bone marrow stem cells were isolated from the femur of adult rats and the identity of the undifferentiated BMSCs was confirmed by the detection of specific cell surface markers. The BMSCs were differentiated by sequential administration of β-mercaptoethanol and all-trans-retinoic acid as pre-inducer factors and a mixture of forskolin, basic fibroblast growth factor, platelet-derived growth factor-AA and heregulin-b1 as inducer factors. The immunocytochemical properties of differentiated Schwann-like cells were examined at a specified time point. Reverse transcription-polymerase chain reaction (RT-PCR) was used to investigate the gene expression of the undifferentiated and differentiated BMSCs. Cell apoptosis and viability were assessed with annexin V and propidium iodide double staining and dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide (MTT) assay. RESULTS Immunocytochemistry staining and RT-PCR analysis revealed that the induced BMSCs exhibited Schwann cell-specific markers such as S-100, P75 and glial fibrillary acidic protein (GFAP) at the 14(th) day of differentiation. MTT assay and flow cytometry revealed that of the total BMSCs in the differentiation medium, 40% to 50% of the cells died by apoptosis, but the remaining cell population remained strongly attached to the substrate and differentiated. CONCLUSIONS These findings indicated that BMSCs could differentiate into Schwann-like cells. As a side effect of differentiation an increased cell death rate was noted and our findings indicate that the principle mode of cell death is by apoptosis.
Collapse
Affiliation(s)
- Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Iran
| | - Zolikha Golipoor
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Iran
| | - Reza Mahmoudi
- Department of Anatomy, School of Medicine, Yasouj University of Medical Sciences, Iran
| | - Shahram Azari
- National Cell Bank of Iran, Pasteur Institue of Iran
| | - Reza Shirazi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Iran
| | - Mohammad Bayat
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Iran
| | - Soudabeh Ghasemi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Iran
| |
Collapse
|
33
|
Pal R, Venkataramana NK, Bansal A, Balaraju S, Jan M, Chandra R, Dixit A, Rauthan A, Murgod U, Totey S. Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 2010; 11:897-911. [PMID: 19903102 DOI: 10.3109/14653240903253857] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AIMS Spinal cord injury (SCI) is a medically untreatable condition for which stem cells have created hope in the last few years. Earlier pre-clinical reports have shown that transplantation of bone marrow (BM) mesenchymal stromal cells (MSC) in SCI-simulated models can produce encouraging results. In a clinical pilot study, we investigated the growth kinetics of BM MSC from SCI patients, their safety and functional improvement post-transplantation. METHODS Thirty patients with clinically complete SCI at cervical or thoracic levels were recruited and divided into two groups based on the duration of injury. Patients with <6 months of post-SCI were recruited into group 1 and patients with >6 months of post-SCI were included into group 2. Autologous BM was harvested from the iliac crest of SCI patients under local anesthesia and BM MSC were isolated and expanded ex vivo. BM MSC were tested for quality control, characterized for cell surface markers and transplanted back to the patient via lumbar puncture at a dose of 1 x 10(6) cells/kg body weight. RESULTS At the time of writing, three patients had completed 3 years of follow-up post-BM MSC administration, 10 patients 2 years follow-up and 10 patients 1 year follow-up. Five patients have been lost to follow-up. None of the patients have reported any adverse events associated with BM MSC transplantation. CONCLUSIONS The results indicate that our protocol is safe with no serious adverse events following transplantation in SCI patients. The number of patients recruited and the uncontrolled nature of the trial do not permit demonstration of the effectiveness of the treatment involved. However, the results encourage further trials with higher doses and different routes of administration in order to demonstrate the recovery/efficacy if any, in SCI patients.
Collapse
Affiliation(s)
- Rakhi Pal
- Stempeutics Research Private Ltd, Bangalore, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu M, Ma Y. Expression of soluble Nogo-66 receptor and brain-derived neurotrophic factor in transduced rat bone marrow stromal cells. J Clin Neurosci 2010; 17:762-5. [DOI: 10.1016/j.jocn.2009.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/28/2009] [Accepted: 08/30/2009] [Indexed: 10/19/2022]
|
35
|
Anisimov SV. Cell-based therapeutic approaches for Parkinson's disease: progress and perspectives. Rev Neurosci 2010; 20:347-81. [PMID: 20397620 DOI: 10.1515/revneuro.2009.20.5-6.347] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Motor dysfunctions in Parkinson's disease are believed to be primarily due to the degeneration of dopaminergic neurons located in the substantia nigra pars compacta. Because a single-type cell population is depleted, Parkinson's disease is considered a primary target for cell replacement-based therapeutic strategies. Extensive studies have confirmed transplantation of donor neurons could be beneficial, yet identifying an alternative cell source is clearly essential. Human embryonic stem cells (hESCs) have been proposed as a renewable source of dopaminergic neurons for transplantation in Parkinson's disease; other potential sources could include neural stem cells (hNSCs) and adult mesenchymal stem cells (hMSCs). However, numerous difficulties avert practical application of stem cell-based therapeutic approaches for the treatment of Parkinson's disease. Among the latter, ethical, safety (including xeno- and tumor formation-associated risks) and technical issues stand out. This review aims to provide a balanced and updated outlook on various issues associated with stem cells in regard to their potential in the treatment of Parkinson's disease. Essential features of the individual stem cell subtypes, principles of available differentiation protocols, transplantation, and safety issues are discussed extensively.
Collapse
Affiliation(s)
- Sergey V Anisimov
- Department of Intracellular Signalling and Transport, Institute of Cytology, Russian Academy of Sciences and Research, Saint-Petersburg, Russia.
| |
Collapse
|
36
|
Naghdi M, Tiraihi T, Namin SAM, Arabkheradmand J. Transdifferentiation of bone marrow stromal cells into cholinergic neuronal phenotype: a potential source for cell therapy in spinal cord injury. Cytotherapy 2009; 11:137-52. [PMID: 19253075 DOI: 10.1080/14653240802716582] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND AIMS Cholinergic neurons are very important cells in spinal cord injuries because of the deficits in motor, autonomic and sensory neurons. In this study, bone marrow stromal cells (BMSC) were evaluated as a source of cholinergic neurons in a rat model of contusive spinal cord injury. METHODS BMSC were isolated from adult rats and transdifferentiated into cholinergic neuronal cells. The BMSC were pre-induced with beta-mercaptoethanol (BME), while the induction was done with nerve growth factor (NGF). Neurofilament (NF)-68, -160 and -200 immunostaining was used for evaluating the transdifferentiation of BMSC into a neuronal phenotype. NeuroD expression, a marker for neuroblast differentiation, and Oct-4 expression, a marker for stemness, were evaluated by reverse transcriptase (RT)-polymerase chain reaction (PCR). Choline acetyl transferase (ChAT) immunoreactivity was used for assessing the cholinergic neuronal phenotype. Anti-microtubule-associated protein-2 (MAP-2) and anti-synapsin I antibodies were used as markers for the tendency for synptogenesis. Finally, the induced cells were transplanted into the contused spinal cord and locomotion was evaluated with the Basso-Beattie-Bresnahan (BBB) test. RESULTS At the induction stage, there was a decline in the expression of NF-68 associated with a sustained increase in the expression of NF-200, NF-160, ChAT and synapsin I, whereas MAP-2 expression was variable. Transplanted cells were detected 6 weeks after their injection intraspinally and were associated with functional recovery. CONCLUSIONS The transdifferentiation of BMSC into a cholinergic phenotype is feasible for replacement therapy in spinal cord injury.
Collapse
Affiliation(s)
- Majid Naghdi
- Department of Anatomical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
37
|
Cho YM, Jang YS, Jang YM, Chung SM, Kim HS, Lee JH, Jeong SW, Kim IK, Kim JJ, Kim KS, Kwon OJ. Induction of unfolded protein response during neuronal induction of rat bone marrow stromal cells and mouse embryonic stem cells. Exp Mol Med 2009; 41:440-52. [PMID: 19322020 DOI: 10.3858/emm.2009.41.6.049] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
When we treated rat bone marrow stromal cells (rBMSCs) with neuronal differentiation induction media, typical unfolded protein response (UPR) was observed. BIP/GRP78 protein expression was time-dependently increased, and three branches of UPR were all activated. ATF6 increased the transcription of XBP1 which was successfully spliced by IRE1. PERK was phosphorylated and it was followed by eIF2alpha phosphorylation. Transcription of two downstream targets of eIF2alpha, ATF4 and CHOP/GADD153, were transiently up-regulated with the peak level at 24 h. Immunocytochemical study showed clear coexpression of BIP and ATF4 with NeuN and Map2, respectively. UPR was also observed during the neuronal differentiation of mouse embryonic stem (mES) cells. Finally, chemical endoplasmic reticulum (ER) stress inducers, thapsigargin, tunicamycin, and brefeldin A, dose-dependently increased both mRNA and protein expressions of NF-L, and, its expression was specific to BIP-positive rBMSCs. Our results showing the induction of UPR during neuronal differentiations of rBMSCs and mES cells as well as NF-L expression by ER stress inducers strongly suggest the potential role of UPR in neuronal differentiation.
Collapse
Affiliation(s)
- Yoon Mi Cho
- Department of Biochemistry, 2MRC for Cell Death Disease Research Center, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Barnabé GF, Schwindt TT, Calcagnotto ME, Motta FL, Martinez G, de Oliveira AC, Keim LMN, D'Almeida V, Mendez-Otero R, Mello LE. Chemically-induced RAT mesenchymal stem cells adopt molecular properties of neuronal-like cells but do not have basic neuronal functional properties. PLoS One 2009; 4:e5222. [PMID: 19370156 PMCID: PMC2667250 DOI: 10.1371/journal.pone.0005222] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 03/12/2009] [Indexed: 02/07/2023] Open
Abstract
Induction of adult rat bone marrow mesenchymal stem cells (MSC) by means of chemical compounds (beta-mercaptoethanol, dimethyl sulfoxide and butylated hydroxyanizole) has been proposed to lead to neuronal transdifferentiation, and this protocol has been broadly used by several laboratories worldwide. Only a few hours of MSC chemical induction using this protocol is sufficient for the acquisition of neuronal-like morphology and neuronal protein expression. However, given that cell death is abundant, we hypothesize that, rather than true neuronal differentiation, this particular protocol leads to cellular toxic effects. We confirm that the induced cells with neuronal-like morphology positively stained for NF-200, S100, beta-tubulin III, NSE and MAP-2 proteins. However, the morphological and molecular changes after chemical induction are also associated with an increase in the apoptosis of over 50% of the plated cells after 24 h. Moreover, increased intracellular cysteine after treatment indicates an impairment of redox circuitry during chemical induction, and in vitro electrophysiological recordings (patch-clamp) of the chemically induced MSC did not indicate neuronal properties as these cells do not exhibit Na(+) or K(+) currents and do not fire action potentials. Our findings suggest that a disruption of redox circuitry plays an important role in this specific chemical induction protocol, which might result in cytoskeletal alterations and loss of functional ion-gated channels followed by cell death. Despite the neuronal-like morphology and neural protein expression, induced rat bone marrow MSC do not have basic functional neuronal properties, although it is still plausible that other methods of induction and/or sources of MSC can achieve a successful neuronal differentiation in vitro.
Collapse
Affiliation(s)
- Gabriela F. Barnabé
- Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Telma T. Schwindt
- Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Maria E. Calcagnotto
- Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Fabiana L. Motta
- Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Gilberto Martinez
- Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Allan C. de Oliveira
- Departamento de Pediatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Leda M. N. Keim
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vânia D'Almeida
- Departamento de Pediatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Rosália Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz E. Mello
- Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
39
|
Zwart I, Hill AJ, Girdlestone J, Manca MF, Navarrete R, Navarrete C, Jen LS. Analysis of neural potential of human umbilical cord blood-derived multipotent mesenchymal stem cells in response to a range of neurogenic stimuli. J Neurosci Res 2008; 86:1902-15. [PMID: 18338797 DOI: 10.1002/jnr.21649] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the neurogenic potential of full-term human umbilical cord blood (hUCB)-derived multipotent mesenchymal stem cells (MSCs) in response to neural induction media or coculture with rat neural cells. Phenotypic and functional changes were assessed by immunocytochemistry, RT-PCR, and whole-cell patch-clamp recordings. Naive MSCs expressed both mesodermal and ectodermal markers prior to neural induction. Exposure to retinoic acid, basic fibroblast growth factor, or cyclic adenosine monophosphate (cAMP) did not stimulate neural morphology, whereas exposure to dibutyryl cAMP and 3-isobutyl-1-methylxanthine stimulated a neuron-like morphology but also appeared to be cytotoxic. All protocols stimulated increases in expression of the neural precursor marker nestin, but expression of mature neuronal or glial markers MAP2 and GFAP was not observed. Nestin expression increases were serum level dependent. Electrophysiological properties of MSCs were studied with whole-cell patch-clamp recordings. The MSCs possessed no ionic currents typical of neurons before or after neural induction protocols. Coculture of hUCB-derived MSCs and rat neural cells induced some MSCs to adopt an astrocyte-like morphology and express GFAP protein and mRNA. Our data suggest hUCB-derived MSCs do not transdifferentiate into mature functioning neurons in response to the above neurogenic protocols; however, coculture with rat neural cells led to a minority adopting an astrocyte-like phenotype.
Collapse
Affiliation(s)
- Isabel Zwart
- Department of Cellular and Molecular neuroscience, Imperial College, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
40
|
Koh SH, Kim KS, Choi MR, Jung KH, Park KS, Chai YG, Roh W, Hwang SJ, Ko HJ, Huh YM, Kim HT, Kim SH. Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Res 2008; 1229:233-48. [PMID: 18634757 DOI: 10.1016/j.brainres.2008.06.087] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 06/17/2008] [Accepted: 06/18/2008] [Indexed: 12/14/2022]
Abstract
In the present study, we examined the neuroprotective effects and mechanisms of implanted human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in ischemic stroke. hUC-MSCs were isolated from the endothelial/subendothelial layers of the human umbilical cord and cultured. Twenty days after the induction of in vitro neuronal differentiation, about 77.4% of the inoculated hUC-MSCs displayed morphological features of neurons and expressed neuronal cell markers like TU-20, Trk A, NeuN, and NF-M. However, functionally active neuronal type channels were not detected by electrophysiological examination. Before, during, or one day after in vitro neuronal differentiation, the hUC-MSCs produced granulocyte-colony stimulating factor, vascular endothelial growth factor, glial cell line-derived neurotrophic factor, and brain-derived neurotrophic factor. In an in vivo study, implantation of the hUC-MSCs into the damaged hemisphere of immunosuppressed ischemic stroke rats improved neurobehavioral function and reduced infarct volume relative to control rats. Three weeks after implantation, most of the implanted hUC-MSCs were present in the damaged hemisphere; some of these cells expressed detectable levels of neuron-specific markers. Nestin expression in the hippocampus was increased in the hUC-MSC-implanted group relative to the control group. Since the hUC-MSCs were both morphologically differentiated into neuronal cells and able to produce neurotrophic factors, but had not become functionally active neuronal cells, the improvement in neurobehavioral function and the reduction of infarct volume might be related to the neuroprotective effects of hUC-MSCs rather than the formation of a new network between host neurons and the implanted hUC-MSCs.
Collapse
Affiliation(s)
- Seong-Ho Koh
- Department of Neurology, Hanyang University, Seoul, 139-791, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hokari M, Kuroda S, Shichinohe H, Yano S, Hida K, Iwasaki Y. Bone marrow stromal cells protect and repair damaged neurons through multiple mechanisms. J Neurosci Res 2008; 86:1024-35. [DOI: 10.1002/jnr.21572] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Sheth RN, Manzano G, Li X, Levi AD. Transplantation of human bone marrow-derived stromal cells into the contused spinal cord of nude rats. J Neurosurg Spine 2008; 8:153-62. [PMID: 18248287 DOI: 10.3171/spi/2008/8/2/153] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECT Human bone marrow stromal cells (hMSCs) constitute a potential source of pluripotent stem cells. In the present study, hMSCs were transplanted into an area of spinal cord contusion in nude rats to determine their survival, differentiation, potential for neuroprotection, and influence on axonal growth and functional recovery. METHODS Twenty-nine animals received 6 x 10(5) hMSCs in 6 microl medium 1 week after a contusion, while 14 control animals received an injection of 6 microl medium alone. Basso-Beattie-Bresnahan (BBB) tests were performed weekly. The spinal cords were collected at 6 weeks posttransplantation for histological analysis and assessment of tissue injury. RESULTS Immunostaining with anti-human mitochondria antibody and pretransplantation labeling with green fluorescent protein demonstrated that the grafted hMSCs survived and were capable of achieving a flattened appearance in the grafted area; however, none of the transplanted cells stained positively for human-specific neuronal, anti-neurofilament H or glial fibrillary acidic protein within the sites of engraftment. While neuronal or astrocytic differentiation was not seen, cells lining blood vessels in the vicinity of the transplant stained positively for anti-human endothelium CD105 antibody. Staining for anti-neurofilament H antibody demonstrated abundant axonlike structures around the transplanted area in the hMSC group. Tissue sparing analysis showed that animals with grafted hMSCs had a smaller area of contusion cyst compared with controls, but there was no significant difference between the two groups in BBB scores. CONCLUSIONS The grafted hMSCs survived for > or = 6 weeks posttransplantation, although they did not differentiate into neural or glial cells. Cells with human endothelial characteristics were observed. Spinal cord-injured rats grafted with hMSCs had smaller contusion cavities, which did not have a significant influence on functional recovery.
Collapse
Affiliation(s)
- Rishi N Sheth
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | | |
Collapse
|
43
|
He WY, Liu SX, Jiang HQ. Effect of different induction conditions on hepatocyte-like cells induced in vitro by rat bone marrow mesenchymal stem cells. Shijie Huaren Xiaohua Zazhi 2008; 16:473-478. [DOI: 10.11569/wcjd.v16.i5.473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the optimal conditions for in vitro induction and culture of rat bone marrow mesenchymal stem cells (MSCs) in order to provide the theoretical basis for the treatment of severe liver disease patients with MSCs.
METHODS: MSCs were isolated by gradient density centrifugation and plastic adherence and purified. MSCs were induced by different concentrations of FBS and cytokines. Levels of AFP and albumin in the supernatant were measured by radioimmunoassay on days 15, 21 and 27. On day 27, cells were collected. Glycogen store of heoatocytes was determined by periodic acid-Schiff staining and the expression of CK-18 and CK-19 in MSCs were detected by immunocytochemical analysis.
RESULTS: The level of AFP was higher in induced MSCs than in non-induced MSCs on days 15, 21, 27, and reached its highest on day 21. There was no significant difference in albumin levels on day 15, between induced and non-induced MSCs. However, on days 21 and 27, the albumin level was higher in induced MSCs than in non-induced MSCs. Glycogen storage in induced MSCs was observed on day 27 but not in non-induced MSCs. The induced MSCs expressed CK-18 and CK-19 while the non-induced MSCs did not. Multiple factor analysis by ANOVA showed that MSCs should be cultured in Dulbecco's modified Eagle's medium supplemented with 200 mL/L FBS, 20 μg/L hepatocyte growth factor (HGF) and 20 μg/L fibroblast growth factor 4 (FGF-4), which might be the best induction conditions for MSCs.
CONCLUSION: Rat MSCs can differentiate into hepatocyte-like cells with hepatic phenotypes and functions in the presence HGF and/or FGF-4 in vitro. The concentrations of fetal bovine serum, HGF and FGF-4 affect the differentiation of rat MSCs into hepatocyte-like cells. MSCs can be used in the treatment of severe hepatic diseases.
Collapse
|
44
|
Yaghoobi MM, Mahani MT. NGF and BDNF expression drop off in neurally differentiated bone marrow stromal stem cells. Brain Res 2008; 1203:26-31. [PMID: 18313646 DOI: 10.1016/j.brainres.2008.01.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 12/30/2007] [Accepted: 01/23/2008] [Indexed: 01/01/2023]
Abstract
Bone marrow stromal stem cells (BMSC) express two neurotrophins nerve growth factor (NGF) and brain derived growth factor (BDNF) constitutively and can be differentiated into neuronal-like cells and used to treat neural injuries and diseases. The neurotrophins are required for repair of neural tissues. However, it is not evident whether these cells supply the sufficient amounts of the functional growth factors following neuronal differentiation. This study investigates the expression of NGF, BDNF and their processing enzymes Prohormone convertases (PC) Furin, PC5 and PC6 by Real-time RT-PCR during neural differentiation of rat BMSC. The results showed that all inspected processing enzymes are expressed in the cells. The expression of NGF, BDNF and PC5 decreases following differentiation. In addition, BMSCs express Survivin, an anti-apoptotic gene; however, the differentiated cells reduce its expression similar to two neurotrophins, which could make them susceptible to apoptotic death.
Collapse
Affiliation(s)
- Mohammad Mehdi Yaghoobi
- Department of Biotechnology, Research Institute of Environmental Sciences, International Centre for Science, High Technology & Environmental Sciences, Kerman, Iran.
| | | |
Collapse
|
45
|
Wang N, Sun C, Huo S, Zhang Y, Zhao J, Zhang S, Miao J. Cooperation of phosphatidylcholine-specific phospholipase C and basic fibroblast growth factor in the neural differentiation of mesenchymal stem cells in vitro. Int J Biochem Cell Biol 2008; 40:294-306. [PMID: 17890138 DOI: 10.1016/j.biocel.2007.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 07/06/2007] [Accepted: 08/06/2007] [Indexed: 11/20/2022]
Abstract
Previously, we found that suppressing phosphatidylcholine-specific phospholipase C could induce neuronal differentiation of rat mesenchymal stem cells in the absence of serum and fibroblast growth factor. It is well known that basic fibroblast growth factor plays an important role in mesenchymal stem cell neuronal differentiation. In this study, our purpose was to understand the cooperation of phosphatidylcholine-specific phospholipase C and basic fibroblast growth factor in controlling mesenchymal stem cell neuronal differentiation. Our results showed that suppressing phosphatidylcholine-specific phospholipase C in the presence of basic fibroblast growth factor could induce cell neuronal differentiation and the viability of the differentiated cells was obviously increased. Furthermore, we found that the resting membrane potential of the differentiated cells gradually decreased, but the mitochondrial membrane potential rose with increasing treatment time and these characteristics were similar to cultured neurons from mouse embryo forebrains. To determine the possible mechanism by which this combination controls cell neuronal differentiation, we measured changes in the mitochondrial membrane potential and in the levels of reactive oxygen species. The results showed that both the mitochondrial membrane potential and reactive oxygen species levels decreased when basic fibroblast growth factor was added. The data suggested that lower phosphatidylcholine-specific phospholipase C activity was required for mesenchymal stem cell neuronal differentiation and basic fibroblast growth factor was necessary for maintaining the neuronal differentiation state. Moreover, basic fibroblast growth factor could contribute to rescuing the differentiated cells from death through decreasing overly high mitochondrial membrane potentials and reactive oxygen species levels.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Parr AM, Tator CH, Keating A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 2007; 40:609-19. [PMID: 17603514 DOI: 10.1038/sj.bmt.1705757] [Citation(s) in RCA: 340] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transplantation of bone marrow-derived mesenchymal stromal cells (MSCs) into the injured brain or spinal cord may provide therapeutic benefit. Several models of central nervous system (CNS) injury have been examined, including that of ischemic stroke, traumatic brain injury and traumatic spinal cord injury in rodent, primate and, more recently, human trials. Although it has been suggested that differentiation of MSCs into cells of neural lineage may occur both in vitro and in vivo, this is unlikely to be a major factor in functional recovery after brain or spinal cord injury. Other mechanisms of recovery that may play a role include neuroprotection, creation of a favorable environment for regeneration, expression of growth factors or cytokines, vascular effects or remyelination. These mechanisms are not mutually exclusive, and it is likely that more than one contribute to functional recovery. In light of the uncertainty surrounding the fate and mechanism of action of MSCs transplanted into the CNS, further preclinical studies with appropriate animal models are urgently needed to better inform the design of new clinical trials.
Collapse
Affiliation(s)
- A M Parr
- Department of Surgery, University Health Network and Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
47
|
Khalatbary AR, Tiraihi T. Localization of bone marrow stromal cells in injured spinal cord treated by intravenous route depends on the hemorrhagic lesions in traumatized spinal tissues. Neurol Res 2007; 29:21-6. [PMID: 17427270 DOI: 10.1179/016164107x165642] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Bone marrow stromal cells (BMSCs) have been reported to improve movement deficit in adult rats with spinal cord injury (SCI). The purpose of this study is to determine the distribution of BMSCs in the spinal cord lesion of the contusion model of SCI. METHODS Laminectomy was carried out at L1 vertebra level and SCI was carried out using the weight drop method. BMSCs were isolated from adult rats, labeled with bromodeoxyuridine (BrdU) and administered intravenously to the rats 1 week after SCI, which were killed after 4 weeks. The non-treated animals were used as negative control, which showed cavitations of the spinal cord after 5 weeks of SCI. Rats in another group were killed immediately and used to study the hemorrhagic lesions. The volume densities (Vv) of the hemorrhage and cavitation were the highest at the site of direct trauma. RESULTS The numerical densities of the transmigrated cells per area (Nat) were as follows: 0.3 +/- 0.2, 3.9 +/- 0.4, 5.4 +/- 0.4, 8.4 +/- 0.5, 5.5 +/- 0.3, 3.6 +/- 0.3 and 0.4 +/- 0.2 at the end and the middle of the thoracic vertebra 13 (T13), the region between T13 and the first lumbar vertebra, the middle of L1, the region between L1 and L2, and the middle and the end of L2 vertebra, respectively. The distribution of Nat at the above regions was a Gaussian model. The volume densities of hemorrhage in the spinal cord taken from the above regions showed that hemorrhage with the highest volume density occurred at the impact site and the volume density declined as the samples taken were more distant from the impact site. DISCUSSION The migration of BMSCs in the injured region depends on the amount of the hemorrhage and damage to blood vessels of the spinal cord.
Collapse
Affiliation(s)
- Ali Reza Khalatbary
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | | |
Collapse
|
48
|
Marandi M, Mowla SJ, Tavallaei M, Yaghoobi MM, Jafarnejad SM. Proprotein convertases 1 and 2 (PC1 and PC2) are expressed in neurally differentiated rat bone marrow stromal stem cells (BMSCs). Neurosci Lett 2007; 420:198-203. [PMID: 17556096 DOI: 10.1016/j.neulet.2007.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/09/2007] [Accepted: 04/19/2007] [Indexed: 01/19/2023]
Abstract
Neural-like cells derived from bone marrow stromal stem cells (BMSCs) have potential usefulness in cell therapy of degenerative or traumatic diseases of the central nervous system (CNS). The functional recovery mediated by these cells, however, depends on the secretion of neurotrophins (NTs) and their cognate receptors, as the main regulators of neural survival and death. The function of NTs is further modulated by proprotein convertase (PC) enzymes which function in converting proproteins (including proNTs) into their functional end products. Accordingly, failure in converting proprotein forms of NTs into their mature forms may lead to neuronal cell death. In the present study, we have investigated the expression profile of PCs before and during neural differentiation of rat BMSCs by RT-PCR. Our results show that major members of the PC family functioning in the constitutive secretory pathway (furin, PACE4 and PC7/LPC) are highly expressed in both undifferentiated and neurally differentiated BMSCs. In contrast, while PC1/PC3 and PC2 (specific to neural and endocrine cells) are absent in undifferentiated BMSCs, their expression is initiated upon the induction of differentiation. In conclusion, our results suggest that neurally differentiated BMSCs have acquired the functional machinery to process the precursor forms of proteins in both the constitutive and regulated pathways.
Collapse
Affiliation(s)
- Mohammad Marandi
- Department of Cellular and Molecular Biology, Imam Hossein University, Tehran, Iran
| | | | | | | | | |
Collapse
|
49
|
Tropel P, Platet N, Platel JC, Noël D, Albrieux M, Benabid AL, Berger F. Functional Neuronal Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells 2006; 24:2868-76. [PMID: 16902198 DOI: 10.1634/stemcells.2005-0636] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent results have shown the ability of bone marrow cells to migrate in the brain and to acquire neuronal or glial characteristics. In vitro, bone marrow-derived MSCs can be induced by chemical compounds to express markers of these lineages. In an effort to set up a mouse model of such differentiation, we addressed the neuronal potentiality of mouse MSCs (mMSCs) that we recently purified. These cells expressed nestin, a specific marker of neural progenitors. Under differentiating conditions, mMSCs display a distinct neuronal shape and express neuronal markers NF-L (neurofilament-light, or neurofilament 70 kDa) and class III beta-tubulin. Moreover, differentiated mMSCs acquire neuron-like functions characterized by a cytosolic calcium rise in response to various specific neuronal activators. Finally, we further demonstrated for the first time that clonal mMSCs and their progeny are competent to differentiate along the neuronal pathway, demonstrating that these bone marrow-derived stem cells share characteristics of widely multipotent stem cells unrestricted to mesenchymal differentiation pathways.
Collapse
Affiliation(s)
- Philippe Tropel
- Neurosciences Précliniques, INSERM U318, Université Joseph Fourier, CHU de Grenoble, Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
50
|
Raedt R, Pinxteren J, Van Dycke A, Waeytens A, Craeye D, Timmermans F, Vonck K, Vandekerckhove B, Plum J, Boon P. Differentiation assays of bone marrow-derived Multipotent Adult Progenitor Cell (MAPC)-like cells towards neural cells cannot depend on morphology and a limited set of neural markers. Exp Neurol 2006; 203:542-54. [PMID: 17078948 DOI: 10.1016/j.expneurol.2006.09.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 08/30/2006] [Accepted: 09/18/2006] [Indexed: 11/23/2022]
Abstract
There are accumulating studies that report a neurogenic potential of bone marrow-derived cells both in vitro as well as in vivo. Most claims of neural "transdifferentiation" have based their conclusions on morphology and neural gene expression. Recently, doubts have been raised about the validity of both outcome parameters since non-neural cells can extend neurites and show aberrant neural gene expression as a response to stress inducing factors. In this study, we compared bone marrow-derived Multipotent Adult Progenitor Cell (MAPC)-like cells and neural stem cells (NSC) in their morphology and neural gene expression profile after neural differentiation using three differentiation protocols. We evaluated the expression of five neuroglial antigens [neurofilament 200 (NF200); beta III tubulin (beta3 tub); tau; Glial Fibrillary Acidic Protein (GFAP); Myelin Basic Protein (MBP) and RIP antigen] using real-time PCR (RT-PCR) and immunocytochemistry (ICC). MAPC-like cells adopted a neural-like morphology in one protocol but a fibroblast-like morphology in the two other protocols. RT-PCR and ICC show that MAPC-like cells already express the neural antigens beta III tubulin and NF200 at baseline, but no upregulation of these genes after exposure to three distinct differentiation protocols was seen. In contrast, NSC adopt neural and glial morphologies with a clear increase in expression of all neuroglial genes in all differentiation protocols used. In conclusion, our data demonstrate that neural-like morphology and expression of a limited set of neural marker genes by MAPC-like cells after differentiation are not absolute proof of neural transdifferentiation because MAPC-like cells only partially meet the criteria which are fulfilled by NSC after neural differentiation.
Collapse
Affiliation(s)
- Robrecht Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Department of Neurology, Ghent University Hospital, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|