1
|
Meth EMS, Nôga DA, Dubol M, Xue P, Sundström-Poromaa I, Benedict C. The impact of pharmacotherapy for premenstrual dysphoric disorder on sleep. Sleep Med Rev 2025; 80:102069. [PMID: 39952094 DOI: 10.1016/j.smrv.2025.102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
Premenstrual dysphoric disorder (PMDD) affects a subset of women of reproductive age, characterized by severe mood disturbances and physical symptoms during the luteal phase of the menstrual cycle. Symptoms include mood swings, irritability, anxiety, fatigue, physical discomfort, and disruptions to sleep and circadian rhythms, such as altered melatonin secretion. Despite the prevalence of these symptoms, the impact of PMDD treatments on sleep and circadian markers, like melatonin, remains insufficiently understood. This review examines how dysregulated serotonin signaling, disrupted allopregnanolone activity (a neurosteroid derived from progesterone), and aberrant circadian rhythms contribute to PMDD. It also explores the effects of pharmacological treatments, including selective serotonin reuptake inhibitors, on sleep and melatonin regulation, and how these factors influence treatment outcomes. Additionally, the use of hypnotics and sedatives to manage sleep disturbances in PMDD is considered, weighing their potential benefits and risks. A deeper understanding of the interaction between PMDD symptoms, sleep, and circadian rhythms is crucial for developing more effective treatments. Further research is needed to explore the relationship between symptom management, sleep patterns, and circadian function in PMDD, and to determine how these factors can be optimized to improve clinical outcomes and quality of life for women affected by the disorder.
Collapse
Affiliation(s)
- Elisa M S Meth
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden.
| | - Diana A Nôga
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | - Manon Dubol
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Sweden
| | - Pei Xue
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | | | | |
Collapse
|
2
|
Ono D, Weaver DR, Hastings MH, Honma KI, Honma S, Silver R. The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward. J Biol Rhythms 2024; 39:135-165. [PMID: 38366616 PMCID: PMC7615910 DOI: 10.1177/07487304231225706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
It has been 50 years since the suprachiasmatic nucleus (SCN) was first identified as the central circadian clock and 25 years since the last overview of developments in the field was published in the Journal of Biological Rhythms. Here, we explore new mechanisms and concepts that have emerged in the subsequent 25 years. Since 1997, methodological developments, such as luminescent and fluorescent reporter techniques, have revealed intricate relationships between cellular and network-level mechanisms. In particular, specific neuropeptides such as arginine vasopressin, vasoactive intestinal peptide, and gastrin-releasing peptide have been identified as key players in the synchronization of cellular circadian rhythms within the SCN. The discovery of multiple oscillators governing behavioral and physiological rhythms has significantly advanced our understanding of the circadian clock. The interaction between neurons and glial cells has been found to play a crucial role in regulating these circadian rhythms within the SCN. Furthermore, the properties of the SCN network vary across ontogenetic stages. The application of cell type-specific genetic manipulations has revealed components of the functional input-output system of the SCN and their correlation with physiological functions. This review concludes with the high-risk effort of identifying open questions and challenges that lie ahead.
Collapse
Affiliation(s)
- Daisuke Ono
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - David R Weaver
- Department of Neurobiology and NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ken-Ichi Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Center for Sleep and Circadian Rhythm Disorders, Sapporo Hanazono Hospital, Sapporo, Japan
| | - Sato Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Center for Sleep and Circadian Rhythm Disorders, Sapporo Hanazono Hospital, Sapporo, Japan
| | - Rae Silver
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neuroscience & Behavior, Barnard College and Department of Psychology, Columbia University, New York City, New York, USA
| |
Collapse
|
3
|
Wan X, Wang L, Khan MA, Peng L, Zhang K, Sun X, Yi X, Wang Z, Chen K. Shift work promotes adipogenesis via cortisol-dependent downregulation of EGR3-HDAC6 pathway. Cell Death Discov 2024; 10:129. [PMID: 38467615 PMCID: PMC10928160 DOI: 10.1038/s41420-024-01904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
The disruption of circadian rhythms caused by long-term shift work can cause metabolic diseases such as obesity. Early growth response 3 (EGR3) is a member of early growth response (EGR) family, which is involved in several cellular responses, had been reported as a circadian rhythm gene in suprachiasmatic nucleus. In this research, EGR3 was found to be widely expressed in the different tissue of human and mice, and downregulated in adipose tissue of obese subjects and high-fat diet mice. Moreover, EGR3 was found negatively regulated by cortisol. In addition, EGR3 is a key negative modulator of hADSCs and 3T3-L1 adipogenesis via regulating HDAC6, which is a downstream target gene of EGR3 and a negative regulator of adipogenesis and lipogenesis. These findings may explain how circadian rhythm disorder induced by shift works can cause obesity. Our study revealed a potential therapeutic target to alleviate metabolic disorders in shift workers and may provide better health guidance to shift workers.
Collapse
Affiliation(s)
- Xinxing Wan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Linghao Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Md Asaduzzaman Khan
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
- Pulmonary Department, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, 410005, Hunan, PR China
| | - Keke Zhang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Xiaoying Sun
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Xuan Yi
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Zhouqi Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Ke Chen
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China.
| |
Collapse
|
4
|
Boyd HM, Frick KM, Kwapis JL. Connecting the Dots: Potential Interactions Between Sex Hormones and the Circadian System During Memory Consolidation. J Biol Rhythms 2023; 38:537-555. [PMID: 37464775 PMCID: PMC10615791 DOI: 10.1177/07487304231184761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Both the circadian clock and sex hormone signaling can strongly influence brain function, yet little is known about how these 2 powerful modulatory systems might interact during complex neural processes like memory consolidation. Individually, the molecular components and action of each of these systems have been fairly well-characterized, but there is a fundamental lack of information about how these systems cooperate. In the circadian system, clock genes function as timekeeping molecules that convey time-of-day information on a well-stereotyped cycle that is governed by the suprachiasmatic nucleus. Keeping time is particularly important to synchronize various physiological processes across the brain and body, including those that regulate memory consolidation. Similarly, sex hormones are powerful modulators of memory, with androgens, estrogens, and progestins, all influencing memory consolidation within memory-relevant brain regions like the hippocampus. Despite clear evidence that each system can influence memory individually, exactly how the circadian and hormonal systems might interact to impact memory consolidation remains unclear. Research investigating either sex hormone action or circadian gene function within memory-relevant brain regions has unveiled several notable places in which the two systems could interact to control memory. Here, we bring attention to known interactions between the circadian clock and sex hormone signaling. We then review sex hormone-mediated control of memory consolidation, highlighting potential nodes through which the circadian system might interact during memory formation. We suggest that the bidirectional relationship between these two systems is essential for proper control of memory formation based on an animal's hormonal and circadian state.
Collapse
Affiliation(s)
- Hannah M. Boyd
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania
| | - Karyn M. Frick
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
| | - Janine L. Kwapis
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
5
|
Joye DAM, Evans JA. Sex differences in daily timekeeping and circadian clock circuits. Semin Cell Dev Biol 2021; 126:45-55. [PMID: 33994299 DOI: 10.1016/j.semcdb.2021.04.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
The circadian system regulates behavior and physiology in many ways important for health. Circadian rhythms are expressed by nearly every cell in the body, and this large system is coordinated by a central clock in the suprachiasmatic nucleus (SCN). Sex differences in daily rhythms are evident in humans and understanding how circadian function is modulated by biological sex is an important goal. This review highlights work examining effects of sex and gonadal hormones on daily rhythms, with a focus on behavior and SCN circuitry in animal models commonly used in pre-clinical studies. Many questions remain in this area of the field, which would benefit from further work investigating this topic.
Collapse
Affiliation(s)
- Deborah A M Joye
- Marquette University, Department of Biomedical Sciences, Milwaukee, WI, USA
| | - Jennifer A Evans
- Marquette University, Department of Biomedical Sciences, Milwaukee, WI, USA.
| |
Collapse
|
6
|
Bottalico LN, Weljie AM. Cross-species physiological interactions of endocrine disrupting chemicals with the circadian clock. Gen Comp Endocrinol 2021; 301:113650. [PMID: 33166531 PMCID: PMC7993548 DOI: 10.1016/j.ygcen.2020.113650] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 10/09/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are endocrine-active chemical pollutants that disrupt reproductive, neuroendocrine, cardiovascular and metabolic health across species. The circadian clock is a transcriptional oscillator responsible for entraining 24-hour rhythms of physiology, behavior and metabolism. Extensive bidirectional cross talk exists between circadian and endocrine systems and circadian rhythmicity is present at all levels of endocrine control, from synthesis and release of hormones, to sensitivity of target tissues to hormone action. In mammals, a range of hormones directly alter clock gene expression and circadian physiology via nuclear receptor (NR) binding and subsequent genomic action, modulating physiological processes such as nutrient and energy metabolism, stress response, reproductive physiology and circadian behavioral rhythms. The potential for EDCs to perturb circadian clocks or circadian-driven physiology is not well characterized. For this reason, we explore evidence for parallel endocrine and circadian disruption following EDC exposure across species. In the reviewed studies, EDCs dysregulated core clock and circadian rhythm network gene expression in brain and peripheral organs, and altered circadian reproductive, behavioral and metabolic rhythms. Circadian impacts occurred in parallel to endocrine and metabolic alterations such as impaired fertility and dysregulated metabolic and energetic homeostasis. Further research is warranted to understand the nature of interaction between circadian and endocrine systems in mediating physiological effects of EDC exposure at environmental levels.
Collapse
Affiliation(s)
- Lisa N Bottalico
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Pilorz V, Kolms B, Oster H. Rapid Jetlag Resetting of Behavioral, Physiological, and Molecular Rhythms in Proestrous Female Mice. J Biol Rhythms 2020; 35:612-627. [PMID: 33140660 DOI: 10.1177/0748730420965291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A gradual adaptation to a shifted light-dark (LD) cycle is a key element of the circadian clock system and believed to be controlled by the central circadian pacemaker, the suprachiasmatic nucleus (SCN). Endocrine factors have a strong influence on the regulation of the circadian clock network and alter acute photic responses of the SCN clock. In females, endocrine function depends on the stage of the ovarian cycle. So far, however, little is known about the effect of the estrous cycle on behavioral and molecular responses to shifts in the LD rhythm. Based on this, we investigated whether estrous state affects the kinetics of phase shift during jetlag in behavior, physiology, and molecular clock rhythms in the SCN and in peripheral tissues. Female mice exposed to an advanced LD phase at proestrous or metestrous showed different phase-shift kinetics, with proestrous females displaying accelerated adaptation in behavior and physiology. Constant darkness release experiments suggest that these fast phase shifts do not reflect resetting of the SCN pacemaker. Explant experiments on SCN, adrenal gland, and uterus confirmed this finding with proestrous females showing significantly faster clock phase shifts in peripheral tissues compared with the SCN. Together, these findings provide strong evidence for an accelerated adaptation of proestrous compared with metestrous females to new LD conditions that is accompanied by rapid behavioral, physiological, and molecular rhythm resetting. Not only do these findings open up a new avenue to understand the effect of estrous cycle on the clock network under changing environmental conditions but also imply a greater susceptibility in proestrous females.
Collapse
Affiliation(s)
- Violetta Pilorz
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Luebeck, Germany
| | - Beke Kolms
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Luebeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Luebeck, Germany
| |
Collapse
|
8
|
Brown AMC, Gervais NJ. Role of Ovarian Hormones in the Modulation of Sleep in Females Across the Adult Lifespan. Endocrinology 2020; 161:5879359. [PMID: 32735650 PMCID: PMC7450669 DOI: 10.1210/endocr/bqaa128] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Ovarian hormones, including 17β-estradiol, are implicated in numerous physiological processes, including sleep. Beginning at puberty, girls report more sleep complaints than boys, which is maintained throughout the reproductive life stage. Sleep problems are exacerbated during the menopausal transition, evidenced by greater risk for sleep disorders. There is emerging evidence that menopause-associated hormone loss contributes to this elevated risk, but age is also an important factor. The extent to which menopause-associated sleep disturbance persists into postmenopause above and beyond the effects of age remains unknown. Untreated sleep disturbances have important implications for cognitive health, as they are emerging as risk factors for dementia. Given that sleep loss impairs memory, an important knowledge gap concerns the role played by menopause-associated hormone loss in exacerbating sleep disturbance and, ultimately, cognitive function in aging women. In this review, we take a translational approach to illustrate the contribution of ovarian hormones in maintaining the sleep-wake cycle in younger and middle-aged females, with evidence implicating 17β-estradiol in supporting the memory-promoting effects of sleep. Sleep physiology is briefly reviewed before turning to behavioral and neural evidence from young females linking 17β-estradiol to sleep-wake cycle maintenance. Implications of menopause-associated 17β-estradiol loss is also reviewed before discussing how ovarian hormones may support the memory-promoting effects of sleep, and why menopause may exacerbate pathological aging via effects on sleep. While still in its infancy, this research area offers a new sex-based perspective on aging research, with a focus on a modifiable risk factor for pathological aging.
Collapse
Affiliation(s)
- Alana M C Brown
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Nicole J Gervais
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Correspondence: Nicole J. Gervais, University of Toronto, Department of Psychology, 100 St. George Street, Toronto, ON, Canada M5S 3G3. E-mail:
| |
Collapse
|
9
|
Nishimura Y, Mabuchi K, Omura N, Igarashi A, Miura M, Mima N, Negishi H, Morimoto K, Takamata A. Fluoxetine Mimics the Anorectic Action of Estrogen and Its Regulation of Circadian Feeding in Ovariectomized Female Rats. Nutrients 2020; 12:nu12030849. [PMID: 32235766 PMCID: PMC7146435 DOI: 10.3390/nu12030849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/09/2023] Open
Abstract
Our previous study demonstrated that chronic estrogen replacement in ovariectomized rats reduces food intake and augments c-Fos expression in the suprachiasmatic nucleus (SCN), specifically during the light phase. Here, we hypothesized that serotonergic neurons in the central nervous system (CNS), which have anorectic action and play a role in regulating circadian rhythm, mediate the light phase-specific anorectic action of estrogen, and that selective serotonin reuptake inhibitors (SSRIs) mimic the hypophagic action of estrogen. Female Wistar rats were ovariectomized and treated with estradiol (E2) or cholesterol by subcutaneously implanting a silicon capsule containing E2 or cholesterol. Then, half of the cholesterol-treated rats were injected with the SSRI fluoxetine (5 mg/kg) (FLX group), while the remaining rats in the cholesterol-treated group (CON group) and all those in the E2 group were injected with saline subcutaneously twice daily at the onsets of the light and dark phases. Both E2 and FLX reduced food intake during the light phase but not the dark phase, and reduced body weight gain. In addition, both E2 and FLX augmented the c-Fos expression in the SCN, specifically during the light phase. These data indicate that FLX exerts estrogen-like antiobesity and hypophagic actions by modifying circadian feeding patterns, and suggest that estrogen regulates circadian feeding rhythm via serotonergic neurons in the CNS.
Collapse
Affiliation(s)
- Yuri Nishimura
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (K.M.); (N.O.); (A.I.); (M.M.); (N.M.); (H.N.); (K.M.)
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Kaori Mabuchi
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (K.M.); (N.O.); (A.I.); (M.M.); (N.M.); (H.N.); (K.M.)
| | - Natsumi Omura
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (K.M.); (N.O.); (A.I.); (M.M.); (N.M.); (H.N.); (K.M.)
| | - Ayako Igarashi
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (K.M.); (N.O.); (A.I.); (M.M.); (N.M.); (H.N.); (K.M.)
| | - Megumi Miura
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (K.M.); (N.O.); (A.I.); (M.M.); (N.M.); (H.N.); (K.M.)
| | - Nanako Mima
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (K.M.); (N.O.); (A.I.); (M.M.); (N.M.); (H.N.); (K.M.)
| | - Hiroko Negishi
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (K.M.); (N.O.); (A.I.); (M.M.); (N.M.); (H.N.); (K.M.)
| | - Keiko Morimoto
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (K.M.); (N.O.); (A.I.); (M.M.); (N.M.); (H.N.); (K.M.)
| | - Akira Takamata
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (K.M.); (N.O.); (A.I.); (M.M.); (N.M.); (H.N.); (K.M.)
- Correspondence: ; Tel./Fax: +81-742-20-3469
| |
Collapse
|
10
|
Sleep Timing in Patients with Precocious and Delayed Pubertal Development. Clocks Sleep 2019; 1:140-150. [PMID: 33089160 PMCID: PMC7509672 DOI: 10.3390/clockssleep1010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
Previous studies have reported a shift in the timing of sleep during adolescence toward a later time. To date, it is unclear whether hormonal changes during puberty might contribute to this change in sleeping behavior. We systematically assessed pubertal development and sleep timing in a cross-sectional case-control study in girls with precocious (n = 42) and boys with delayed pubertal development (n = 19). We used the Munich ChronoType Questionnaire and the Children’s ChronoType Questionnaire to assess sleep timing in patients and age- and sex-matched controls (n = 309) and used the midpoint of sleep on free days, corrected for potential sleep debt accumulated during the school week, as a marker for sleep timing. Compared to the controls, girls with central precocious puberty showed a delay in sleep timing of 54 min, and girls with premature pubarche slept on average 30 min later. Male adolescents with delayed pubertal development showed an average sleep midpoint that was 40 min earlier compared to the control group. The results of this pilot study suggest an association between pubertal onset and shifts in sleep timing, which is a novel finding in human sleep behavior. Prospective studies in larger cohorts will be needed to examine the robustness and generalizability of the findings.
Collapse
|
11
|
Hatcher KM, Royston SE, Mahoney MM. Modulation of circadian rhythms through estrogen receptor signaling. Eur J Neurosci 2018; 51:217-228. [PMID: 30270552 DOI: 10.1111/ejn.14184] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 01/11/2023]
Abstract
Circadian rhythms are physiological and behavioral processes that exhibit a 24-hr cycle. These daily rhythms are essential for living organisms to align their behavior and physiology with the environment to increase the likelihood of survival. In mammals, circadian rhythms synchronize with the environment primarily by the suprachiasmatic nucleus, a hypothalamic brain region that integrates exogenous and endogenous timing cues. Sex steroid hormones, including estrogens, are thought to modulate sexually dimorphic behaviors through developmental programming of the brain (i.e., organization), as well as acute receptor signaling during adulthood (i.e., activation). Importantly, there are known sex differences in the expression of circadian locomotor activity and molecular organization of the suprachiasmatic nucleus, likely due, in part, to the actions of circulating estrogens. Circadian locomotor rhythms, which are coordinated by the suprachiasmatic nucleus, have been shown to be regulated by developmental and adult levels of circulating estrogens. Further, increasing evidence suggests that estrogens can modulate expression of circadian clock genes that are essential for orchestration of circadian rhythms by the suprachiasmatic nucleus. In this review, we will discuss the organizational and activational modulation of the circadian timekeeping system by estrogens through estrogen receptor signaling.
Collapse
Affiliation(s)
- Katherine M Hatcher
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sara E Royston
- Department of Anesthesiology, Perioperative Medicine and Pain, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Spine and Pain Management, Christie Clinic, Champaign, Illinois
| | - Megan M Mahoney
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
12
|
Ovariectomy influences the circadian rhythm of locomotor activity and the photic phase shifts in the volcano mouse. Physiol Behav 2017; 182:77-85. [DOI: 10.1016/j.physbeh.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 11/18/2022]
|
13
|
Nishimura Y, Mabuchi K, Takano A, Hara Y, Negishi H, Morimoto K, Ueno T, Uchiyama S, Takamata A. S-equol Exerts Estradiol-Like Anorectic Action with Minimal Stimulation of Estrogen Receptor-α in Ovariectomized Rats. Front Endocrinol (Lausanne) 2017; 8:281. [PMID: 29097993 PMCID: PMC5653693 DOI: 10.3389/fendo.2017.00281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/06/2017] [Indexed: 11/13/2022] Open
Abstract
Chronic estrogen replacement in ovariectomized rats attenuates food intake and enhances c-Fos expression in the suprachiasmatic nucleus (SCN), specifically during the light phase. S-equol, a metabolite of daidzein, has a strong affinity for estrogen receptor (ER)-β and exerts estrogenic activity. The purpose of the present study was to elucidate whether S-equol exerts an estrogen-like anorectic effect by modifying the regulation of the circadian feeding rhythm in ovariectomized rats. Ovariectomized female Wistar rats were divided into an estradiol (E2)-replaced group and cholesterol (vehicle; Veh)-treated group. These animals were fed either a standard diet or an S-equol-containing diet for 13 days. Then, the brain, uterus, and pituitary gland were collected along with blood samples. In the rats fed the standard diet, E2 replacement attenuated food intake (P < 0.001) and enhanced c-Fos expression in the SCN (P < 0.01) during the light phase. Dietary S-equol supplementation reduced food intake (P < 0.01) and increased c-Fos expression in the SCN (P < 0.01) in the Veh-treated rats but not in the E2-replaced rats during the light phase. Dietary S-equol did not alter ER-α expression in the medial preoptic area or the arcuate nucleus, nor did dietary S-equol affect pituitary gland weight or endometrial epithelial layer thickness. By contrast, E2 replacement not only markedly decreased ER-α expression in these brain areas (P < 0.001) but also increased both the pituitary gland weight (P < 0.001) and the endometrial epithelial layer thickness (P < 0.001). Thus, dietary S-equol acts as an anorectic by modifying the diurnal feeding pattern in a manner similar to E2 in ovariectomized rats; however, the mechanism of action is not likely to be mediated by ER-α. The data suggest a possibility that dietary S-equol could be an alternative to hormone replacement therapy for the prevention of hyperphagia and obesity with a lower risk of adverse effects induced by ER-α stimulation.
Collapse
Affiliation(s)
- Yuri Nishimura
- Department of Environmental Health, Nara Women’s University, Nara, Japan
| | - Kaori Mabuchi
- Department of Environmental Health, Nara Women’s University, Nara, Japan
| | - Azusa Takano
- Department of Environmental Health, Nara Women’s University, Nara, Japan
| | - Yayoi Hara
- Department of Environmental Health, Nara Women’s University, Nara, Japan
| | - Hiroko Negishi
- Department of Environmental Health, Nara Women’s University, Nara, Japan
| | - Keiko Morimoto
- Department of Environmental Health, Nara Women’s University, Nara, Japan
| | - Tomomi Ueno
- Saga Nutraceuticals Research Institute, Otsuka Pharmaceutical Co., Ltd., Saga, Japan
| | - Shigeto Uchiyama
- Saga Nutraceuticals Research Institute, Otsuka Pharmaceutical Co., Ltd., Saga, Japan
| | - Akira Takamata
- Department of Environmental Health, Nara Women’s University, Nara, Japan
- *Correspondence: Akira Takamata,
| |
Collapse
|
14
|
Kang X, Jia L, Shen X. Manifestation of Hyperandrogenism in the Continuous Light Exposure-Induced PCOS Rat Model. BIOMED RESEARCH INTERNATIONAL 2015; 2015:943694. [PMID: 26064969 PMCID: PMC4433651 DOI: 10.1155/2015/943694] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/25/2014] [Indexed: 12/13/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder, and its pathogenesis has yet to be completely clarified. A fully convincing animal model has not been established for PCOS. In earlier studies, researchers have shown that the exposure of rats to continuous light can induce PCOS; nevertheless, hyperandrogenism, a key characteristic observed in human PCOS, has not been reported previously. In the present study, we found that (1) body weights decreased in female rats in a continuous light environment with both ovarian and uterine augmentation; (2) the estrous cycle in rats under continuous light environment was disordered, and polycystic ovary-like changes occurred, accompanied with fur loss and lethargy; and (3) serum testosterone levels in rats in a continuous light environment significantly increased. Our data suggest that continuous light can lead to the occurrence of PCOS in female rats without the need for drugs; this is a reasonable PCOS animal model that is more consistent with the natural disease state in humans; and poor sleep habits or negligence of sleep hygiene may be an important lifestyle factor in pathogenesis of PCOS.
Collapse
Affiliation(s)
- Xuezhi Kang
- College of Acupuncture and Moxibustion, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China
| | - Lina Jia
- Department of Traditional Chinese Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Xueyong Shen
- College of Acupuncture and Moxibustion, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China
| |
Collapse
|
15
|
Urlep Z, Rozman D. The Interplay between Circadian System, Cholesterol Synthesis, and Steroidogenesis Affects Various Aspects of Female Reproduction. Front Endocrinol (Lausanne) 2013; 4:111. [PMID: 24065951 PMCID: PMC3778439 DOI: 10.3389/fendo.2013.00111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 08/13/2013] [Indexed: 01/22/2023] Open
Abstract
Circadian aspect of reproduction has gained much attention in recent years. In mammals, it is very important that the timing of greatest sexual motivation is in line with the highest fertility. Peripheral clocks have been found to reside also in reproductive organs, such as the uterus and ovary. The timing signal from the suprachiasmatic nucleus is suggested to be transmitted via hormonal and neural mechanisms, and could thus mediate circadian expression of target genes in these organs. In turn, estrogens from the ovary have been found to signal back to the hypothalamus, completing the feedback loop. In this review we will focus on the interplay between clock and estrogens. Estradiol has been directly linked with expression of Per1 and Per2 in the uterus. CLOCK, on the other hand, has been shown to alter estradiol signaling. We also present the idea that cholesterol could play a vital role in the regulation of reproduction. Cholesterol synthesis itself is circadially regulated and has been found to interfere with steroidogenesis in the ovary on the molecular level. This review presents a systems view on how the interplay between circadian clock, steroidogenesis, and cholesterol synthesis affect various aspects of mammalian reproduction.
Collapse
Affiliation(s)
- Ziga Urlep
- Center for Functional Genomics and Bio-Chips, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Center for Functional Genomics and Bio-Chips, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Damjana Rozman, Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia e-mail:
| |
Collapse
|
16
|
Blattner MS, Mahoney MM. Photic Phase-Response Curve in 2 Strains of Mice with Impaired Responsiveness to Estrogens. J Biol Rhythms 2013; 28:291-300. [DOI: 10.1177/0748730413497190] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Steroid hormones including estrogens modulate the expression of daily activity and circadian rhythms, including free-running period, phase angle of activity onset, and response to light. The mechanisms underlying these effects, however, are not fully understood. We tested the hypothesis that estrogen signaling is required for photic responsiveness of the circadian timing system. We used estrogen receptor subtype 1 (ESR1) knock-out mice (ERKO) and nonclassic estrogen receptor knock-in mice (NERKI). ERKO animals are unable to respond to estrogen at ESR1, and NERKI animals lack the ability to respond to estrogens via estrogen response element-mediated transcription but still respond via nonclassical mechanisms. We analyzed behavioral shifts in activity onset in response to 1-h light pulses given across the subjective 24-h day in gonadally intact male and female NERKI, ERKO, and wild-type (WT) littermates. We also examined Fos protein expression in the suprachiasmatic nucleus, the site of the master circadian pacemaker, at 2 times of day. We found a significant effect of genotype on phase shifts in response to light pulses given in the subjective night. Female WT mice had a significantly larger phase response than ERKO females during the early subjective night (phase shift of 98 min and 58 min, respectively; p < 0.05). NERKI females were intermediate to WT and ERKO females, suggesting a contribution of nonclassical estrogen signaling on circadian timekeeping functions. This genotype effect is not observed in males; they did not have a difference in phase shifts following a light pulse at any time point. WT males, however, shifted an average of 47 min less than did females at zeitgeber time (ZT) 16 (ZT 0 lights-on and ZT 12 lights-off). These data indicate that estrogens modify the response of the circadian timekeeping system to light via classical and nonclassical signaling pathways.
Collapse
Affiliation(s)
- Margaret S. Blattner
- Neuroscience Program and Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana
| | - Megan M. Mahoney
- Neuroscience Program and Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana
| |
Collapse
|
17
|
Boden MJ, Varcoe TJ, Kennaway DJ. Circadian regulation of reproduction: from gamete to offspring. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:387-97. [PMID: 23380455 DOI: 10.1016/j.pbiomolbio.2013.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/10/2012] [Accepted: 01/22/2013] [Indexed: 01/19/2023]
Abstract
Few challenges are more critical to the survival of a species than reproduction. To ensure reproductive success, myriad aspects of physiology and behaviour need to be tightly orchestrated within the animal, as well as timed appropriately with the external environment. This is accomplished through an endogenous circadian timing system generated at the cellular level through a series of interlocked transcription/translation feedback loops, leading to the overt expression of circadian rhythms. These expression patterns are found throughout the body, and are intimately interwoven with both the timing and function of the reproductive process. In this review we highlight the many aspects of reproductive physiology in which circadian rhythms are known to play a role, including regulation of the estrus cycle, the LH surge and ovulation, the production and maturation of sperm and the timing of insemination and fertilisation. We will also describe roles for circadian rhythms in support of the preimplantation embryo in the oviduct, implantation/placentation, as well as the control of parturition and early postnatal life. There are several key differences in physiology between humans and the model systems used for the study of circadian disruption, and these challenges to interpretation will be discussed as part of this review.
Collapse
Affiliation(s)
- M J Boden
- Robinson Institute, Research Centre for Reproductive Health, Department of Obstetrics and Gynaecology, University of Adelaide, Medical School, Adelaide, SA 5005, Australia.
| | | | | |
Collapse
|
18
|
Hagenauer MH, Lee TM. The neuroendocrine control of the circadian system: adolescent chronotype. Front Neuroendocrinol 2012; 33:211-29. [PMID: 22634481 PMCID: PMC4762453 DOI: 10.1016/j.yfrne.2012.04.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 04/03/2012] [Accepted: 04/07/2012] [Indexed: 10/28/2022]
Abstract
Scientists, public health and school officials are paying growing attention to the mechanism underlying the delayed sleep patterns common in human adolescents. Data suggest that a propensity towards evening chronotype develops during puberty, and may be caused by developmental alterations in internal daily timekeeping. New support for this theory has emerged from recent studies which show that pubertal changes in chronotype occur in many laboratory species similar to human adolescents. Using these species as models, we find that pubertal changes in chronotype differ by sex, are internally generated, and driven by reproductive hormones. These chronotype changes are accompanied by alterations in the fundamental properties of the circadian timekeeping system, including endogenous rhythm period and sensitivity to environmental time cues. After comparing the developmental progression of chronotype in different species, we propose a theory regarding the ecological relevance of adolescent chronotype, and provide suggestions for improving the sleep of human adolescents.
Collapse
|
19
|
Butler MP, Karatsoreos IN, LeSauter J, Silver R. Dose-dependent effects of androgens on the circadian timing system and its response to light. Endocrinology 2012; 153:2344-52. [PMID: 22492303 PMCID: PMC3339642 DOI: 10.1210/en.2011-1842] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hypothalamic suprachiasmatic nucleus (SCN) is the locus of a master clock that regulates circadian rhythms in physiology and behavior. Gonadectomy in male mice lengthens the period of circadian rhythms and increases the day-to-day variability of activity onset time. Both of these responses are rescued by the nonaromatizable androgen dihydrotestosterone. Androgen receptors (AR) are localized in SCN neurons that receive direct retinal input. To explore how androgens affect circadian clock function and its responsiveness to photic cues, we measured wheel-running behavior and SCN AR expression in intact, gonadectomized, and testosterone-replaced mice, held under various photic conditions. Gonadectomy lengthened circadian period in constant dim light but not in constant darkness. Increasing intensities of constant light parametrically increased circadian period, and this was potentiated at all intensities by gonadectomy. In contrast, gonadectomy did not alter light-induced pupil constriction, suggesting a nonretinal locus of hormone action. In hormone-replaced animals housed in constant darkness, T concentration was positively correlated with precision of activity onset and with SCN AR expression and negatively correlated with duration of activity. We infer the existence of two androgenic mechanisms: one modulates SCN responsiveness to light, and the second modulates SCN timekeeping and locomotor activity in a dose-dependent manner. Finally, the effects of androgens on period are a result of hormonal modulation of the SCN's response to photic input rather than to a change in the inherent period of oscillators in the absence of light.
Collapse
Affiliation(s)
- Matthew P Butler
- Columbia University, Department of Psychology, 406 Schermerhorn Hall, 1190 Amsterdam Avenue, New York, New York 10027, USA
| | | | | | | |
Collapse
|
20
|
Brockman R, Bunick D, Mahoney MM. Estradiol deficiency during development modulates the expression of circadian and daily rhythms in male and female aromatase knockout mice. Horm Behav 2011; 60:439-47. [PMID: 21816154 DOI: 10.1016/j.yhbeh.2011.07.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 07/17/2011] [Accepted: 07/18/2011] [Indexed: 11/29/2022]
Abstract
Gonadal steroids modify the phase, amplitude and period of circadian rhythms. To further resolve the role of estradiol, we examined daily patterns of activity, circadian free running period and behavioral responses to light pulses using aromatase deficient (ArKO) mice. These animals lack the enzyme necessary to produce estradiol. We hypothesized that circulating estrogens during development and adulthood modulate the amount of activity, the temporal relationship of activity patterns relative to a light:dark cycle, and the free running period. Intact and gonadectomized male and female ArKO and wildtype (WT) littermates were used. WT males, but not ArKO males, retained the ability to respond to steroid hormones; the time of activity onset, free running period in constant darkness, and total daily activity were significantly different in gonadectomized compared to intact males. In contrast, gonadectomy did not alter the expression of these variables in ArKO males. ArKO females had a longer free running period in constant darkness compared to WT females regardless of gonadal state. Ovariectomized ArKO females had a significantly delayed activity onset when compared to intact ArKO females and ovariectomized WT females, despite all 3 groups being estrogen deficient. Phase shifts in response to light pulses given at different times of the day revealed an interaction between genotype, sex, and circulating steroids. These results from ArKO animals strongly suggest an organizational effect of estradiol during a critical period of development on the expression of biological rhythms.
Collapse
Affiliation(s)
- Rebecca Brockman
- University of Illinois, Department of Comparative Biosciences, Urbana, IL 61802, USA
| | | | | |
Collapse
|
21
|
The cortisol awakening response (CAR) across the female menstrual cycle. Psychoneuroendocrinology 2011; 36:905-12. [PMID: 21237574 DOI: 10.1016/j.psyneuen.2010.12.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 11/22/2022]
Abstract
The cortisol awakening response (CAR) has been established as a useful marker of hypothalamus-pituitary-adrenal (HPA) axis activity and has become a standard tool for stress research in ambulatory settings. Although much knowledge has been accumulated on a variety of factors modulating the CAR, the impact of the female menstrual cycle, especially during ovulation, still remains unclear. To the best of our knowledge, this is the first study that measured the CAR during menses, the follicular phase, ovulation and the luteal phase in a repeated measurement design. For this purpose, a final sample of 29 naturally cycling, healthy, non-smoking, and medication-free women collected saliva samples directly after awakening as well as 30, 45, and 60 min later during each of the four different phases. To determine the timing of ovulation, an ambulatory chromatographic ovulation test kit was applied. A repeated measurements ANOVA resulted in a significant interaction effect sample × cycle phase (p=0.04), with the highest awakening response during ovulation. While awakening cortisol levels were comparable across the four cycle phases (p=n.s.), the net increase was significantly elevated during ovulation (p=0.05). Our data also confirmed earlier cross-sectional results reporting no differences in the CAR between the follicular and luteal phase. Finally, a concurrent assessment of mood applying the POMS (Profile of Mood States) yielded no differences across the four cycle phases (all p=n.s.). In sum, the present data points to the idea that the CAR is elevated during ovulation, an effect which is presumably mediated by elevated sex steroid levels during the ovulation period.
Collapse
|
22
|
Chronic oestrogen replacement in ovariectomised rats attenuates food intake and augments c-Fos expression in the suprachiasmatic nucleus specifically during the light phase. Br J Nutr 2011; 106:1283-9. [DOI: 10.1017/s0007114511001607] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oestrogen replacement in ovariectomised (OVX) rats has been reported to attenuate food intake, especially during the light phase. To gain better insight into the central mechanism of oestrogen-induced reduction of food intake, we examined the effect of chronic oestrogen replacement in OVX rats on c-Fos expression in the suprachiasmatic nucleus (SCN) and on food intake during the light and dark phases. Eight-week-old female rats were ovariectomised and implanted with either an oestradiol (E2) or a vehicle pellet (Veh) subcutaneously. The animals were housed in an environment with a 12 h light–12 h dark cycle with the lights on at 07.00 hours. The amount of spontaneous food intake relative to each animal's body weight was significantly less for the E2 group than for the Veh group during the light phase, but there were no differences shown between these groups during the dark phase. There were no differences shown in the number of c-Fos-immunoreactive cells in the SCN in the E2 group compared with the Veh group during the early dark phase (22.00 hours; Zeitgeber time 15.00 (ZT15)), but the number was significantly higher than in the Veh group during the early light phase (10.00 hours; ZT3). This finding suggests that chronic oestrogen replacement chronically enhances SCN activity, specifically during the light phase. The oestrogen-induced enhancement of SCN activity during the light phase is possibly involved in the light phase-specific attenuation of food intake by oestrogen replacement in OVX rats.
Collapse
|
23
|
Deurveilher S, Rusak B, Semba K. Female reproductive hormones alter sleep architecture in ovariectomized rats. Sleep 2011; 34:519-30. [PMID: 21461331 DOI: 10.1093/sleep/34.4.519] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
STUDY OBJECTIVES Treating ovariectomized rats with physiological levels of estradiol and/or progesterone affects aspects of both baseline (24 h) sleep and recovery (18 h) sleep after 6 h of sleep deprivation. We have extended the analysis of these effects by examining several additional parameters of sleep architecture using the same data set as in our previous study (Deurveilher et al. SLEEP 2009;32(7):865-877). DESIGN Sleep in ovariectomized rats implanted with oil, 17 β-estradiol and/or progesterone capsules was recorded using EEG and EMG before, during, and after 6 h of sleep deprivation during the light phase of a 12/12 h light/dark cycle. MEASUREMENTS AND RESULTS During the baseline dark, but not light, phase, treatments with estradiol alone or combined with progesterone decreased the mean duration of non-rapid eye movement sleep (NREMS) episodes and the number of REMS episodes, while also increasing brief awakenings, consistent with the previously reported lower baseline NREMS and REMS amounts. Following sleep deprivation, the hormonal treatments caused a larger percentage increase from baseline in the mean durations of NREMS and REMS episodes, and a larger percentage decrease in brief awakenings, consistent with the previously reported larger increase in recovery REMS amount. There were no hormonal effects on NREMS and REMS EEG power values, other than on recovery NREMS delta power, as previously reported. CONCLUSIONS Physiological levels of estradiol and/or progesterone in female rats modulate sleep architecture differently at baseline and after acute sleep loss, fragmenting baseline sleep while consolidating recovery sleep. These hormones also play a role in the diurnal pattern of NREMS maintenance.
Collapse
Affiliation(s)
- Samüel Deurveilher
- Department of Anatomy & Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
24
|
Schrader JA, Nunez AA, Smale L. Changes in and dorsal to the rat suprachiasmatic nucleus during early pregnancy. Neuroscience 2010; 171:513-23. [PMID: 20807562 DOI: 10.1016/j.neuroscience.2010.08.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/07/2010] [Accepted: 08/26/2010] [Indexed: 01/25/2023]
Abstract
Circadian rhythms in behavior and physiology change as female mammals transition from one reproductive state to another. The mechanisms responsible for this plasticity are poorly understood. The suprachiasmatic nucleus (SCN) of the hypothalamus contains the primary circadian pacemaker in mammals, and a large portion of its efferent projections terminate in the ventral subparaventricular zone (vSPZ), which also plays important roles in rhythm regulation. To determine whether these regions might mediate changes in overt rhythms during early pregnancy, we first compared rhythms in Fos and Per2 protein expression in the SCN and vSPZ of diestrous and early pregnant rats maintained in a 12:12-h light/dark (LD) cycle. No differences in the Fos rhythm were seen in the SCN core, but in the SCN shell, elevated Fos expression was maintained throughout the light phase in pregnant, but not diestrous, rats. In the vSPZ, the Fos rhythm was bimodal in diestrous rats, but this rhythm was lost in pregnant rats. Peak Per2 expression was phase-advanced by 4 h in the SCN of pregnant rats, and some differences in Per2 expression were found in the vSPZ as well. To determine whether differences in Fos expression were due to altered responsivity to light, we next characterized light-induced Fos expression in the SCN and vSPZ of pregnant and diestrous rats in the mid-subjective day and night. We found that the SCN core of the two groups responded in the same way at each time of day, whereas the rhythm of Fos responsivity in the SCN shell and vSPZ differed between diestrous and pregnant rats. These results indicate that the SCN and vSPZ are functionally re-organized during early pregnancy, particularly in how they respond to the photic environment. These changes may contribute to changes in overt behavioral and physiological rhythms that occur at this time.
Collapse
Affiliation(s)
- J A Schrader
- Department of Zoology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
25
|
Christian CA, Moenter SM. The neurobiology of preovulatory and estradiol-induced gonadotropin-releasing hormone surges. Endocr Rev 2010; 31:544-77. [PMID: 20237240 PMCID: PMC3365847 DOI: 10.1210/er.2009-0023] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 02/18/2010] [Indexed: 12/14/2022]
Abstract
Ovarian steroids normally exert homeostatic negative feedback on GnRH release. During sustained exposure to elevated estradiol in the late follicular phase of the reproductive cycle, however, the feedback action of estradiol switches to positive, inducing a surge of GnRH release from the brain, which signals the pituitary LH surge that triggers ovulation. In rodents, this switch appears dependent on a circadian signal that times the surge to a specific time of day (e.g., late afternoon in nocturnal species). Although the precise nature of this daily signal and the mechanism of the switch from negative to positive feedback have remained elusive, work in the past decade has provided much insight into the role of circadian/diurnal and estradiol-dependent signals in GnRH/LH surge regulation and timing. Here we review the current knowledge of the neurobiology of the GnRH surge, in particular the actions of estradiol on GnRH neurons and their synaptic afferents, the regulation of GnRH neurons by fast synaptic transmission mediated by the neurotransmitters gamma-aminobutyric acid and glutamate, and the host of excitatory and inhibitory neuromodulators including kisspeptin, vasoactive intestinal polypeptide, catecholamines, neurokinin B, and RFamide-related peptides, that appear essential for GnRH surge regulation, and ultimately ovulation and fertility.
Collapse
Affiliation(s)
- Catherine A Christian
- Departments of Medicine and Cell Biology, University of Virginia, Charlottesville, 22908, USA.
| | | |
Collapse
|
26
|
Mahoney MM, Smale L, Lee TM. Daily Immediate Early Gene Expression in the Suprachiasmatic Nucleus of Male and FemaleOctodon degus. Chronobiol Int 2010; 26:821-37. [DOI: 10.1080/07420520903044265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Vida B, Hrabovszky E, Kalamatianos T, Coen CW, Liposits Z, Kalló I. Oestrogen receptor alpha and beta immunoreactive cells in the suprachiasmatic nucleus of mice: distribution, sex differences and regulation by gonadal hormones. J Neuroendocrinol 2008; 20:1270-7. [PMID: 18752649 DOI: 10.1111/j.1365-2826.2008.01787.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oestrogen regulates various aspects of circadian rhythm physiology. The presence of oestrogen receptors within the suprachiasmatic nucleus (SCN), the principal circadian oscillator, indicates that some actions of oestrogen on circadian functions may be exerted at that site. The present study analysed sex differences, topographic distribution, and neurochemical phenotype of neurones expressing the alpha and beta subtypes of oestrogen receptors (ERalpha and ERbeta) in the mouse SCN. We found that relatively few neurones in the SCN are immunoreactive (IR) for ERalpha (approximately 4.5% in females and 3% in males), but five- to six-fold more SCN neurones express ERbeta. ER-IR neurones are primarily in the shell subdivision of the nucleus and show differences between the sexes, significantly greater numbers being found in females. Treatment of male or female gonadectomised mice with oestradiol benzoate for 24 h substantially reduced the number of ERbeta-IR neurones, but not ERalpha-IR neurones. Double-labelling immunocytochemical experiments to characterise the phenotype of the oestrogen-receptive neurones showed the presence of the calcium-binding proteins calretinin or calbindin D28K in approximately 12% and 10%, respectively, of ERalpha-IR neurones. A higher proportion (approximately 38%) of ERbeta-IR neurones contains calbindin D28K; a few (approximately 2%) express calretinin or vasopressin. These double-labelled cells appear primarily in the shell subdivision of the SCN. Neither vasoactive intestinal polypeptide- nor gastrin releasing peptide-immunoreactivity was observed in ER-IR neurones. These data indicate that the primary target cells for oestrogen are in the shell subdivision of the nucleus. The sexually differentiated expression and distribution of ERalpha and ERbeta in various cell populations of the SCN suggest multiple modes of oestrogen signalling within this nucleus, which may modulate circadian functions.
Collapse
Affiliation(s)
- B Vida
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
28
|
Lynch WJ, Girgenti MJ, Breslin FJ, Newton SS, Taylor JR. Gene profiling the response to repeated cocaine self-administration in dorsal striatum: a focus on circadian genes. Brain Res 2008; 1213:166-77. [PMID: 18452895 PMCID: PMC2494701 DOI: 10.1016/j.brainres.2008.02.106] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 02/27/2008] [Accepted: 02/29/2008] [Indexed: 01/09/2023]
Abstract
Alterations in gene expression in the dorsal striatum caused by chronic cocaine exposure have been implicated in the long-term behavioral changes associated with cocaine addiction. To gain further insight into the molecular alterations that occur as a result of cocaine self-administration, we conducted a microarray analysis of gene expression followed by bioinformatic gene network analysis that allowed us to identify adaptations at the level of gene expression as well as into interconnected networks. Changes in gene expression were examined in the dorsal striatum of rats 1 day after they had self-administered cocaine for 7 days under a 24-h access, discrete trial paradigm (averaging 98 mg/kg/day). Here we report the regulation of the circadian genes Clock, Bmal1, Cryptochrome1, Period2, as well as several genes that are regulated by/associated with the circadian system (i.e., early growth response 1, dynorphin). We also observed regulation of other relevant genes (i.e., Nur77, beta catenin). These changes were then linked to curated pathways and formulated networks which identified circadian rhythm processes as affected by cocaine self-administration. These data strongly suggest involvement of circadian-associated genes in the brain's response to cocaine and may contribute to an understanding of addictive behavior including disruptions in sleep and circadian rhythmicity.
Collapse
Affiliation(s)
- Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA.
| | | | | | | | | |
Collapse
|
29
|
Boulware MI, Kordasiewicz H, Mermelstein PG. Caveolin proteins are essential for distinct effects of membrane estrogen receptors in neurons. J Neurosci 2007; 27:9941-50. [PMID: 17855608 PMCID: PMC6672640 DOI: 10.1523/jneurosci.1647-07.2007] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It has become widely accepted that along with its ability to directly regulate gene expression, estradiol also influences cell signaling and brain function via rapid membrane-initiated events. Many of these novel signaling processes are dependent on estrogen receptors (ERs) localized to the neuronal membrane. However, the mechanism(s) by which ERs are able to trigger cell signaling when targeted to the neuronal membrane surface has yet to be determined. In hippocampal neurons, we find that caveolin proteins are essential for the regulation of CREB (cAMP response element-binding protein) phosphorylation after estradiol activation of metabotropic glutamate receptor (mGluR) signaling. Furthermore, caveolin-1 (CAV1) and CAV3 differentially regulate the ability of estradiol to activate two discrete signaling pathways. ER alpha activation of mGluR1a is dependent on CAV1, whereas CAV3 is necessary for ER alpha and ER beta activation of mGluR2/3. These results are consistent with previous reports in non-neuronal cells, implicating the importance of caveolin proteins in rapid estrogen signaling. In addition, the functional isolation of distinct estrogen-sensitive signaling pathways by different caveolin proteins suggests novel mechanisms through which the membrane-initiated effects of estradiol are orchestrated.
Collapse
Affiliation(s)
- Marissa I. Boulware
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Holly Kordasiewicz
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Paul G. Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
30
|
Schirman-Hildesheim TD, Ben-Aroya N, Koch Y. Daily GnRH and GnRH-receptor mRNA expression in the ovariectomized and intact rat. Mol Cell Endocrinol 2006; 252:120-5. [PMID: 16672174 DOI: 10.1016/j.mce.2006.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We recently described patterns of GnRH and GnRH receptor (GnRH-R) expression in the hypothalamus, pituitary and ovary throughout the rat estrus cycle. Here, we wished to distinguish between regulatory effects of ovarian factors and underlying circadian rhythmicity. We quantified GnRH and GnRH-R mRNA in the pituitary and hypothalamus of long-term ovariectomized (OVX) rats, at different times of day, using real-time PCR. Furthermore, we expanded our previous study of hypothalamic and pituitary GnRH and GnRH-R expression in intact rats by including more time points throughout the estrus cycle. We found different daily patterns of GnRH and GnRH-R expression in intact versus OVX rats, in both tissues. In the hypothalamus of OVX rats, GnRH mRNA peaked at 12, 16 and 20 h, whereas in the hypothalamus of intact rats we observed somewhat higher GnRH mRNA concentrations at 19 h on every day of the estrus cycle except proestrus, when the peak occurred at 17 h. In this tissue, GnRH-R fluctuated less significantly and peaked at 16 h in OVX rats. During the estrus cycle, we observed higher levels in the afternoon of each day except on estrus. In OVX rats, pituitary GnRH mRNA rose sharply at 9 h, with low levels thereafter. In these animals, pituitary GnRH-R also peaked at 9h followed by a second rise at 22 h. In intact rats pituitary GnRH was high at noon of diestrus-II and on estrus, whereas GnRH-R mRNA was highest in the evening of diestrus-II. This is the first demonstration of daily GnRH and GnRH-R mRNA expression patterns in castrated animals. The observed daily fluctuations hint at underlying tissue-specific circadian rhythms. Ovarian factors probably modulate these rhythms, yielding the observed estrus cycle patterns.
Collapse
|
31
|
Kriegsfeld LJ, Silver R. The regulation of neuroendocrine function: Timing is everything. Horm Behav 2006; 49:557-74. [PMID: 16497305 PMCID: PMC3275441 DOI: 10.1016/j.yhbeh.2005.12.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 12/06/2005] [Accepted: 12/08/2005] [Indexed: 11/21/2022]
Abstract
Hormone secretion is highly organized temporally, achieving optimal biological functioning and health. The master clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus coordinates the timing of circadian rhythms, including daily control of hormone secretion. In the brain, the SCN drives hormone secretion. In some instances, SCN neurons make direct synaptic connections with neurosecretory neurons. In other instances, SCN signals set the phase of "clock genes" that regulate circadian function at the cellular level within neurosecretory cells. The protein products of these clock genes can also exert direct transcriptional control over neuroendocrine releasing factors. Clock genes and proteins are also expressed in peripheral endocrine organs providing additional modes of temporal control. Finally, the SCN signals endocrine glands via the autonomic nervous system, allowing for rapid regulation via multisynaptic pathways. Thus, the circadian system achieves temporal regulation of endocrine function by a combination of genetic, cellular, and neural regulatory mechanisms to ensure that each response occurs in its correct temporal niche. The availability of tools to assess the phase of molecular/cellular clocks and of powerful tract tracing methods to assess connections between "clock cells" and their targets provides an opportunity to examine circadian-controlled aspects of neurosecretion, in the search for general principles by which the endocrine system is organized.
Collapse
Affiliation(s)
- Lance J Kriegsfeld
- Department of Psychology and Helen Wills Neuroscience Institute, 3210 Tolman Hall, #1650, University of California, Berkeley, CA 94720-1650, USA.
| | | |
Collapse
|
32
|
de la Iglesia HO, Schwartz WJ. Minireview: timely ovulation: circadian regulation of the female hypothalamo-pituitary-gonadal axis. Endocrinology 2006; 147:1148-53. [PMID: 16373412 DOI: 10.1210/en.2005-1311] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The preovulatory surge in the secretion of LH is timed by a neuroendocrine integrative mechanism that involves ovarian estradiol levels and the endogenous circadian system. Studies in female rats and hamsters have established that the clock in the hypothalamic suprachiasmatic nucleus has a preeminent role in setting the LH surge, and anatomical, physiological, and pharmacological data are revealing the responsible connections between suprachiasmatic nucleus neurons and GnRH and estradiol-receptive areas. Recent investigations show that GnRH and pituitary cells express circadian clock genes that might play a role in the release and reception of the GnRH signal. Analysis of the circadian regulation of the LH surge may provide a model for understanding how multiple neural oscillators function within other neuroendocrine axes.
Collapse
Affiliation(s)
- Horacio O de la Iglesia
- Department of Biology, University of Washington, Box 351800, Seattle, Washington 98195-1800, USA.
| | | |
Collapse
|
33
|
Tsukahara S. Increased Fos immunoreactivity in suprachiasmatic nucleus before luteinizing hormone surge in estrogen-treated ovariectomized female rats. Neuroendocrinology 2006; 83:303-12. [PMID: 16926533 DOI: 10.1159/000095341] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 07/10/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The suprachiasmatic nucleus (SCN) is thought to control the timing of luteinizing hormone (LH) surges. The present study was designed to examine temporal patterns of Fos expression in the dorsomedial and ventrolateral parts of the SCN (SCNdm and SCNvl) of female rats during an LH surge. It also included examination of temporal changes in plasma LH levels and temporal changes in Fos levels in the anteroventral periventricular nucleus (AVPV) and gonadotropin-releasing hormone (GnRH) neurons. METHODS Ovariectomized rats injected with 20 microg estradiol benzoate (EB) or vehicle were sacrificed at various times from Zeitgeber time (ZT) 8:00 to 16:30 h (ZT8-16.5; ZT0 = lights on; ZT12 = lights off) on the 2nd day after the injection. Immunohistochemical analyses for Fos and GnRH and enzyme-linked immunosorbent assays for LH were then performed. RESULTS In both the SCNdm and SCNvl of EB rats, the number of Fos-immunoreactive cells significantly increased between ZT9.5-10.5 and ZT11-12. On the other hand, in EB rats there were significant peaks of LH levels and Fos levels in GnRH neurons and the AVPV between ZT11-12 and ZT13-14. There was no significant difference in the number of Fos-immunoreactive cells between EB and control rats in either the SCNdm or SCNvl at ZT9.5-10.5, or in the SCNdm at ZT11-12, whereas the SCNvl of EB rats contained more Fos-immunoreactive cells than that of control rats at ZT11-12. CONCLUSION These results suggest that in female rats during an LH surge, a peak in the Fos level in the SCN precedes peaks in Fos levels in the AVPV and GnRH neurons.
Collapse
Affiliation(s)
- Shinji Tsukahara
- Graduate School of Science and Technology, Kobe University, Nada-ku, Kobe, Japan.
| |
Collapse
|
34
|
Abizaid A, Mezei G, Thanarajasingam G, Horvath TL. Estrogen enhances light-induced activation of dorsal raphe serotonergic neurons. Eur J Neurosci 2005; 21:1536-46. [PMID: 15845081 DOI: 10.1111/j.1460-9568.2005.03964.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The serotonergic system has been implicated in the modulation of physiological processes including circadian rhythms, learning, memory, mood and food intake. In females, cessation of ovarian function produces deleterious changes in all of these processes and estrogen treatment often ameliorates these conditions. Estrogen may produce these effects by acting on the midbrain raphe, an estrogen-sensitive region that receives direct projections from sensory systems. Here we examined the ability of estradiol to modulate neuronal responses of neurons within raphe nuclei to photic stimulation. Ovariectomized rats treated with estradiol or cholesterol were killed 1 h after the normal onset of light (Zeitgeber time 0) or after a 2-h phase advance (Zeitgeber time 22). In a second study, estradiol-treated ovariectomized rats under constant dark conditions were exposed to light 2 h before the subjective onset of circadian time [(CT)22] and killed 1 h later (CT23). The brains from all animals were processed for Fos and/or serotonin (5-HT) immunocytochemistry. Comparisons showed that the phase shift increased Fos immunoreactivity in all dorsal raphe nucleus (DRN) regions. Although estradiol did not alter the overall number of Fos-positive nuclei, it significantly increased the number of Fos/5-HT double-labelled cells in the medial and lateral DRN. In contrast, neither a phase shift nor estradiol altered the number of Fos-immunoreactive cells or the proportion of Fos-positive 5-HT cells in the median raphe nucleus. Results reveal that the DRN 5-HT system responds to changes in the light : dark cycle and that these responses are modulated by estrogen.
Collapse
Affiliation(s)
- Alfonso Abizaid
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Streetm, New Haven, CT 06529, USA
| | | | | | | |
Collapse
|
35
|
You S, Wood PA, Xiong Y, Kobayashi M, Du-Quiton J, Hrushesky WJM. Daily coordination of cancer growth and circadian clock gene expression. Breast Cancer Res Treat 2005; 91:47-60. [PMID: 15868431 DOI: 10.1007/s10549-004-6603-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Circadian coordination in mammals is accomplished, in part, by coordinate, rhythmic expression of a series of circadian clock genes in the central clock within the suprachiasmatic nuclei (SCN) of the hypothalamus. These same genes are also rhythmically expressed each day within each peripheral tissue. METHODS We measured tumor size, tumor cell cyclin E protein, tumor cell mitotic index, and circadian clock gene expression in liver and tumor cells at six equispaced times of day in individual mice of a 12-h light, 12-h dark schedule. RESULTS We demonstrate that C3HFeJ/HeB mice with transplanted syngeneic mammary tumor maintain largely normal circadian sleep/activity patterns, and that the rate of tumor growth is highly rhythmic during each day. Two daily 2.5-fold peaks in cancer cell cyclin E protein, a marker of DNA synthesis, are followed by two daily up-to-3-fold peaks in cancer cell mitosis (one minor, and one major peak). These peaks are, in turn, followed by two prominent daily peaks in tumor growth rate occurring during mid-sleep and the second, during mid-activity. These data indicate that all therapeutic targets relevant to tumor growth and tumor cell proliferation are ordered in tumor cells within each day. The daily expression patterns of the circadian clock genes Bmal1, mPer1, and mPer2, remain normally circadian coordinated in the livers of these tumor bearing mice. Bmal1 gene expression remains circadian rhythmic in cancer cells, although damped in amplitude, with a similar circadian pattern to that in normal hepatocytes. However, tumor cell mPer1 and mPer2 gene expression patterns fail to maintain statistically significant daily rhythms. CONCLUSION We conclude that, if core circadian clock gene expression is essential to gate tumor cell proliferation within each day, then there may be substantial redundancy in this timing system. Alternatively, the daily ordering of tumor cell clock gene expression may not be essential to the daily gating of cancer cell DNA synthesis, mitosis and growth. This would indicate that host central SCN-mediated neuro-humoro-behavioral controls and/or daily light-induced changes in melatonin or peripherally-induced rhythms such as those resulting from feeding, may be adequate for the daily coordination of cancer cell expression of proliferation related therapeutic targets.
Collapse
Affiliation(s)
- Shaojin You
- Medical Chronobiology Laboratory, Dorn Research Institute, WJB Dorn VA Medical Center and the School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Circadian rhythmicity is evident in a wide range of physiological systems including the reproductive axis. The recent discoveries of rhythmic clock gene expression in peripheral tissues, including reproductive tissue, suggests that they may play an important role in optimizing fertility. The evidence for rhythmic control of reproduction from studies in laboratory animals is reviewed and where possible this includes evidence from human studies. Clock genes are highly conserved across species including humans and there is no reason to suggest that they are functionless in humans. The challenge issued here is for researchers to probe their function and the consequences of their disruption in both animal and human reproduction.
Collapse
Affiliation(s)
- David J Kennaway
- Department of Obstetrics and Gynaecology, University of Adelaide, Medical School, Frome Road, Adelaide, South Australia, Australia, 5005.
| |
Collapse
|