1
|
Yuce K, Ozkan AI. The kruppel-like factor (KLF) family, diseases, and physiological events. Gene 2024; 895:148027. [PMID: 38000704 DOI: 10.1016/j.gene.2023.148027] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
The Kruppel-Like Factor family of regulatory proteins, which has 18 members, is transcription factors. This family contains zinc finger proteins, regulates the activation and suppression of transcription, and binds to DNA, RNA, and proteins. Klfs related to the immune system are Klf1, Klf2, Klf3, Klf4, Klf6, and Klf14. Klfs related to adipose tissue development and/or glucose metabolism are Klf3, Klf7, Klf9, Klf10, Klf11, Klf14, Klf15, and Klf16. Klfs related to cancer are Klf3, Klf4, Klf5, Klf6, Klf7, Klf8, Klf9, Klf10, Klf11, Klf12, Klf13, Klf14, Klf16, and Klf17. Klfs related to the cardiovascular system are Klf4, Klf5, Klf10, Klf13, Klf14, and Klf15. Klfs related to the nervous system are Klf4, Klf7, Klf8, and Klf9. Klfs are associated with diseases such as carcinogenesis, oxidative stress, diabetes, liver fibrosis, thalassemia, and the metabolic syndrome. The aim of this review is to provide information about the relationship of Klfs with some diseases and physiological events and to guide future studies.
Collapse
Affiliation(s)
- Kemal Yuce
- Selcuk University, Medicine Faculty, Department of Basic Medical Sciences, Physiology, Konya, Turkiye.
| | - Ahmet Ismail Ozkan
- Artvin Coruh University, Medicinal-Aromatic Plants Application and Research Center, Artvin, Turkiye.
| |
Collapse
|
2
|
Hong W, Gong P, Pan X, Liu Y, Qi G, Qi C, Qin S. Krüppel-like factor 7 deficiency disrupts corpus callosum development and neuronal migration in the developing mouse cerebral cortex. Brain Pathol 2023; 33:e13186. [PMID: 37401095 PMCID: PMC10467035 DOI: 10.1111/bpa.13186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/16/2023] [Indexed: 07/05/2023] Open
Abstract
Krüppel-like Factor 7 (KLF7) is a zinc finger transcription factor that has a critical role in cellular differentiation, tumorigenesis, and regeneration. Mutations in Klf7 are associated with autism spectrum disorder, which is characterized by neurodevelopmental delay and intellectual disability. Here we show that KLF7 regulates neurogenesis and neuronal migration during mouse cortical development. Conditional depletion of KLF7 in neural progenitor cells resulted in agenesis of the corpus callosum, defects in neurogenesis, and impaired neuronal migration in the neocortex. Transcriptomic profiling analysis indicated that KLF7 regulates a cohort of genes involved in neuronal differentiation and migration, including p21 and Rac3. These findings provide insights into our understanding of the potential mechanisms underlying neurological defects associated with Klf7 mutations.
Collapse
Affiliation(s)
- Wentong Hong
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Pifang Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Xinjie Pan
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yitong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Guibo Qi
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Congcong Qi
- Department of Laboratory Animal ScienceFudan UniversityShanghaiChina
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
3
|
Zhou C, Cheng X, Meng F, Wang Y, Luo W, Zheng E, Cai G, Wu Z, Li Z, Hong L. Identification and characterization of circRNAs in peri-implantation endometrium between Yorkshire and Erhualian pigs. BMC Genomics 2023; 24:412. [PMID: 37488487 PMCID: PMC10364396 DOI: 10.1186/s12864-023-09414-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND One of the most critical periods for the loss of pig embryos is the 12th day of gestation when implantation begins. Recent studies have shown that non-coding RNAs (ncRNAs) play important regulatory roles during pregnancy. Circular RNAs (circRNAs) are a kind of ubiquitously expressed ncRNAs that can directly regulate the binding proteins or regulate the expression of target genes by adsorbing micro RNAs (miRNA). RESULTS We used the Illumina Novaseq6,000 technology to analyze the circRNA expression profile in the endometrium of three Erhualian (EH12) and three Yorkshire (YK12) pigs on day 12 of gestation. Overall, a total of 22,108 circRNAs were identified. Of these, 4051 circRNAs were specific to EH12 and 5889 circRNAs were specific to YK12, indicating a high level of breed specificity. Further analysis showed that there were 641 significant differentially expressed circRNAs (SDEcircRNAs) in EH12 compared with YK12 (FDR < 0.05). Functional enrichment of differential circRNA host genes revealed many pathways and genes associated with reproduction and regulation of embryo development. Network analysis of circRNA-miRNA interactions further supported the idea that circRNAs act as sponges for miRNAs to regulate gene expression. The prediction of differential circRNA binding proteins further explored the potential regulatory pathways of circRNAs. Analysis of SDEcircRNAs suggested a possible reason for the difference in embryo survival between the two breeds at the peri-implantation stage. CONCLUSIONS Together, these data suggest that circRNAs are abundantly expressed in the endometrium during the peri-implantation period in pigs and are important regulators of related genes. The results of this study will help to further understand the differences in molecular pathways between the two breeds during the critical implantation period of pregnancy, and will help to provide insight into the molecular mechanisms that contribute to the establishment of pregnancy and embryo loss in pigs.
Collapse
Affiliation(s)
- Chen Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyan Cheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Fanming Meng
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
| | - Yongzhong Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Wanyun Luo
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China.
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China.
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China.
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China.
| |
Collapse
|
4
|
Krüppel-like Transcription Factor 7 Is a Causal Gene in Autism Development. Int J Mol Sci 2022; 23:ijms23063376. [PMID: 35328799 PMCID: PMC8949233 DOI: 10.3390/ijms23063376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disease. To date, more than 1000 genes have been shown to be associated with ASD, and only a few of these genes account for more than 1% of autism cases. Klf7 is an important transcription factor of cell proliferation and differentiation in the nervous system, but whether klf7 is involved in autism is unclear. Methods: We first performed ChIP-seq analysis of klf7 in N2A cells, then performed behavioral tests and RNA-seq in klf7+/− mice, and finally restored mice with adeno-associated virus (AAV)-mediated overexpression of klf7 in klf7+/− mice. Results: Klf7 targeted genes are enriched with ASD genes, and 631 ASD risk genes are also differentially expressed in klf7+/− mice which exhibited the core symptoms of ASD. When klf7 levels were increased in the central nervous system (CNS) in klf7+/− adult mice, deficits in social interaction, repetitive behavior and majority of dysregulated ASD genes were rescued in the adults, suggesting transcriptional regulation. Moreover, knockdown of klf7 in human brain organoids caused dysregulation of 517 ASD risk genes, 344 of which were shared with klf7+/− mice, including some high-confidence ASD genes. Conclusions: Our findings highlight a klf7 regulation of ASD genes and provide new insights into the pathogenesis of ASD and promising targets for further research on mechanisms and treatments.
Collapse
|
5
|
Li Z, Xie F, Yang N, Yang J, Luo J, Hua D, He T, Xing Y. Krüppel-like factor 7 protects retinal ganglion cells and promotes functional preservation via activating the Akt pathway after retinal ischemia-reperfusion injury. Exp Eye Res 2021; 207:108587. [PMID: 33891954 DOI: 10.1016/j.exer.2021.108587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The purpose of this study is to investigate the effects of Krüppel-like factor 7 (KLF7) on retinal ganglion cells (RGCs) and retinal function after retinal ischemia-reperfusion (RIR) injury in mice. METHODS Male C57BL/6J mice were intravitreally injected with recombinant adeno-associated vectors (rAAV-KLF7-EGFP or rAAV-EGFP), and subsequently used to induce RIR injury. Retinal cryosections were used to access the efficacy of virus transfection, 1, 2, 3, and 4 weeks after rAAV-KLF7-EGFP transfer. RGCs survival rate was observed and quantified by immunofluorescent staining, 7 days after RIR injury. Meanwhile, electroretinogram (ERG) and optomotor response were used to evaluate the electrophysiological functions and visual acuity. Apoptosis was evaluated by TUNEL staining 1 day after RIR injury. Expression of KLF7, Akt, phospho-Akt, Bcl-2, and Bax were further detected by western blot to excavate the underlying mechanism. RESULTS The transfection efficiency of rAAV-KLF7-EGFP was increased in a time-dependent manner, and the number of EGFP-positive cells was increased significantly 3 weeks after rAAV-KLF7-EGFP transfer. RGCs survival rates, amplitudes of ERG a-, b-wave, Ops, PhNR, and visual acuity of mice were decreased after RIR injury. With the increase of light intensity, the amplitudes of scotopic ERG a- and b-wave were gradually increased while the incubation period was gradually shortened. RGCs survival rates, amplitudes of ERG a-, b-wave, Ops, PhNR, and visual acuity of mice were increased after rAAV-KLF7-EGFP transfer. The protein level of KLF7 was up-regulated after rAAV-KLF7-EGFP transfer. Up-regulation of KLF7 significantly inhibited cells apoptosis, increased phospho-Akt and Bcl-2 expression, and decreased Bax expression. There were no significant changes in Akt expression. CONCLUSION Overexpression of KLF7 can not only prevent the loss of RGCs, but also preserve the electrophysiological function. In addition, overexpression of KLF7 can ameliorate the retinal dysfunction after RIR injury, and ultimately improve the visual acuity of mice. The activation of Akt pathway and the suppression of the mitochondrial apoptotic pathway contribute to the neuroprotection of KLF7.
Collapse
Affiliation(s)
- Zongyuan Li
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China.
| | - Feijia Xie
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Ning Yang
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Jiayi Yang
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Jinyuan Luo
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Dihao Hua
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Tao He
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China.
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
6
|
Lin T, Chen Y, Zhang Y, Li Y, Gao L, Zhang Z. Transcriptional control of chicken KLF7 promoter in preadipocytes. Acta Biochim Biophys Sin (Shanghai) 2021; 53:149-159. [PMID: 33330912 DOI: 10.1093/abbs/gmaa149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Krüppel-like factor 7 (KLF7) has been reported to inhibit adipogenesis and regulate the development of the nervous system. However, transcription regulation of KLF7 remains poorly understood. In the current study, a 2196-bp-long 5'-flanking sequence of chicken KLF7 (-2286 bp to -91 bp, upstream of the translation start site) was studied for promoter activity, and there was a remarkable promoter activity in this sequence (P<0.05). The 5'-truncated mutation analysis showed that a minimal promoter was on the sequence from -241 bp to -91 bp. In addition, GATA2 overexpression facilitated the promoter activity of pGL3-KLF7(-2286/-91), pGL3-KLF7(-1215/-91), pGL3-KLF7(-521/-91), and pGL3-KLF7(-241/-91), and GATA3 overexpression inhibited the promoter activity of pGL3-KLF7(-1845/-91), pGL3-KLF7(-1215/-91), pGL3-KLF7(-521/-91), and pGL3-KLF7(-241/-91) in chicken preadipocytes (P<0.05). Knockdown of GATA2 expression inhibited the promoter activity of pGL3-KLF7(-1215/-91) and pGL3-KLF7(-241/-91), and knockdown of GATA3 expression facilitated the promoter activity of pGL3-KLF7(-521/-91) and pGL3-KLF7(-241/-91) (P<0.05). Additionally, overexpression and knockdown analyses showed that GATA3 inhibited KLF7 mRNA expression (P<0.05), and both overexpression and knockdown of GATA2 resulted in the downregulation of KLF7 mRNA expression in chicken preadipocytes (P<0.05). Western blot analysis in chicken preadipocytes showed that GATA2 facilitated KLF7 expression and GATA3 inhibited KLF7 expression. Mutation analysis showed that the motif of 'GGATCTATCA' (-107 bp/-98 bp) might be a cis-regulation element, which is involved in the KLF7 expression regulation by GATA3 in chicken preadipocytes. These results provided some details of KLF7 transcription regulation in chicken adipose tissue.
Collapse
Affiliation(s)
- Tao Lin
- School of Medicine, Shihezi University, Shihezi 832000, China
| | - Yuechan Chen
- First Affiliated Hospital of School of Medicine, Shihezi University, Shihezi 832000, China
| | - Yanling Zhang
- Pharmaceutical Department, People’s Hospital of Anyang, Anyang 455000, China
| | - Yaoyao Li
- School of Medicine, Shihezi University, Shihezi 832000, China
| | - Lingyu Gao
- School of Medicine, Shihezi University, Shihezi 832000, China
| | - Zhiwei Zhang
- School of Medicine, Shihezi University, Shihezi 832000, China
| |
Collapse
|
7
|
Zhang Z, Nie C, Chen Y, Dong Y, Lin T. DNA methylation of CpG sites in the chicken KLF7 promoter and Exon 2 in association with mRNA expression in abdominal adipose tissue and blood metabolic indicators. BMC Genet 2020; 21:120. [PMID: 33054719 PMCID: PMC7558735 DOI: 10.1186/s12863-020-00923-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our previous study found that chicken KLF7 was an important regulator in formation of adipose tissue. In the present study, we analyzed the association for DNA methylation in chicken KLF7 with its transcripts of abdominal adipose tissue and blood metabolic indicators. RESULTS The KLF7 transcripts of the adipose tissue of Chinese yellow broilers were associated with age (F = 6.67, P = 0.0035). In addition, the KLF7 transcripts were negatively correlated with blood glucose levels (r = - 0.61841, P = 0.0140). The DNA methylation levels of 26 CpG loci in the chicken KLF7 promoter and Exon 2 were studied by Sequenom MassArray. A total of 22 valid datasets were obtained. None of them was significantly different in relation to age (P > 0.05). However, the DNA methylation levels in the promoter were lower than those in Exon 2 (T = 40.74, P < 0.01). Correlation analysis showed that the DNA methylation levels of PCpG6 and E2CpG9 were significantly correlated with KLF7 transcripts and blood high-density lipoprotein levels, respectively, and many CpG loci were correlated with each other (P < 0.05). The methylation data were subjected to principal component analysis and factor analysis. The six principal components (z1-z6) were extracted and named Factors 1-6, respectively. Factor analysis showed that Factor 1 had a higher load on the loci in the promoter, and Factors 2-6 loaded highly on quite different loci in Exon 2. Correlation analysis showed that only z1 was significantly correlated to KLF7 transcripts (P < 0.05). In addition, an established regression equation between z1 and KLF7 transcripts was built, and the contribution of z1 to the variation on KLF7 transcripts was 34.29%. CONCLUSIONS In conclusion, the KLF7 transcripts of chicken abdominal adipose tissue might be inhibited by DNA methylation in the promoter, and it might be related to the DNA methylation level of PCpG6.
Collapse
Affiliation(s)
- Zhiwei Zhang
- School of Medicine, Shihezi University, No. 59 Beier Road, Shihezi, Xinjiang, 832000, P. R. China.
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi university, Shihezi, 832000, China
| | - Yuechan Chen
- First Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Yanzhe Dong
- School of Medicine, Shihezi University, No. 59 Beier Road, Shihezi, Xinjiang, 832000, P. R. China
| | - Tao Lin
- School of Medicine, Shihezi University, No. 59 Beier Road, Shihezi, Xinjiang, 832000, P. R. China
| |
Collapse
|
8
|
Niu R, Tang Y, Xi Y, Jiang D. High Expression of Krüppel-like Factor 7 Indicates Unfavorable Clinical Outcomes in Patients with Lung Adenocarcinoma. J Surg Res 2020; 250:216-223. [PMID: 32092599 DOI: 10.1016/j.jss.2019.12.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/08/2019] [Accepted: 12/29/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Krüppel-like factor 7 (KLF7), which belongs to the KLF family of zinc finger transcription factors, plays a critical role in regulating gene expression. It was reported that KLF7 overexpression was closely related to the progression of gastric cancer. However, the role of KLF7 in lung adenocarcinoma (LAC) has not been elucidated. The aim of our study is to investigate the expression pattern of KLF7 and explore whether the KLF7 expression is correlated with unfavorable clinical outcome of patients with LAC. MATERIALS AND METHODS The protein and mRNA levels of KLF7 were examined in LAC tissues by using immunohistochemistry staining and quantitative reverse transcription polymerase chain reaction, respectively. The prognostic role of KLF7 in patients with LAC was assessed using univariate and multivariate analyses. Clinical outcomes were evaluated by Kaplan-Meier analysis and logrank test. The effects of KLF7 on lung cancer cells were investigated through cellular experiments. RESULTS KLF7 expression was elevated in LAC tissues compared with adjacent normal tissues. High protein level of KLF7 was correlated with larger tumor size, positive lymph node metastasis, and advanced TNM stage. Moreover, patients with LAC with higher expression level of KLF7 had poorer overall survival, and KLF7 was identified as an unfavorable independent prognosis factor. Knockdown of KLF7 can suppress the proliferation and invasion abilities of cancer cells. CONCLUSIONS Our studies revealed that high KLF7 expression level was significantly associated with the poorer clinical outcomes of patients with LAC, indicating the potential role of KLF7 as a novel prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Rungui Niu
- Department of Geratology, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Yanlei Tang
- Department of Chest Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi, China.
| | - Daowen Jiang
- Department of Chest Surgery, Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Tambalo M, Anwar M, Ahmed M, Streit A. Enhancer activation by FGF signalling during otic induction. Dev Biol 2020; 457:69-82. [PMID: 31539539 PMCID: PMC6902270 DOI: 10.1016/j.ydbio.2019.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
Vertebrate ear progenitors are induced by fibroblast growth factor signalling, however the molecular mechanisms leading to the coordinate activation of downstream targets are yet to be discovered. The ear, like other sensory placodes, arises from the pre-placodal region at the border of the neural plate. Using a multiplex NanoString approach, we determined the response of these progenitors to FGF signalling by examining the changes of more than 200 transcripts that define the otic and other placodes, neural crest and neural plate territories. This analysis identifies new direct and indirect FGF targets during otic induction. Investigating changes in histone marks by ChIP-seq reveals that FGF exposure of pre-placodal cells leads to rapid deposition of active chromatin marks H3K27ac near FGF-response genes, while H3K27ac is depleted in the vicinity of non-otic genes. Genomic regions that gain H3K27ac act as cis-regulatory elements controlling otic gene expression in time and space and define a unique transcription factor signature likely to control their activity. Finally, we show that in response to FGF signalling the transcription factor dimer AP1 recruits the histone acetyl transferase p300 to selected otic enhancers. Thus, during ear induction FGF signalling modifies the chromatin landscape to promote enhancer activation and chromatin accessibility.
Collapse
Affiliation(s)
- Monica Tambalo
- Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Maryam Anwar
- Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Mohi Ahmed
- Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
10
|
Li WY, Zhu GY, Yue WJ, Sun GD, Zhu XF, Wang Y. KLF7 overexpression in bone marrow stromal stem cells graft transplantation promotes sciatic nerve regeneration. J Neural Eng 2019; 16:056011. [PMID: 31296795 DOI: 10.1088/1741-2552/ab3188] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Our previous study demonstrated that the transcription factor, Krüppel-like Factor 7 (KLF7), stimulates axon regeneration following peripheral nerve injury. In the present study, we used a gene therapy approach to overexpress KLF7 in bone marrow-derived stem/stromal cells (BMSCs) as support cells, combined with acellular nerve allografts (ANAs) and determined the potential therapeutic efficacy of a KLF7-transfected BMSC nerve graft transplantation in a rodent model for sciatic nerve injury and repair. APPROACH We efficiently transfected BMSCs with adeno-associated virus (AAV)-KLF7, which were then seeded in ANAs for bridging sciatic nerve defects. MAIN RESULTS KLF7 overexpression promotes proliferation, survival, and Schwann-like cell differentiation of BMSCs in vitro. In vivo, KLF7 overexpression promotes transplanted BMSCs survival and myelinated fiber regeneration in regenerating ANAs; however, KLF7 did not improve Schwann-like cell differentiation of BMSCs within in the nerve grafts. KLF7-BMSCs significantly upregulated expression and secretion of neurotrophic factors by BMSCs, including nerve growth factor, ciliary neurotrophic factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in regenerating ANA. KLF7-BMSCs also improved motor axon regeneration, and subsequent neuromuscular innervation and prevention of muscle atrophy. These benefits were associated with increased motor functional recovery of regenerating ANAs. SIGNIFICANCE Our findings suggest that KLF7-BMSCs promoted peripheral nerve axon regeneration and myelination, and ultimately, motor functional recovery. The mechanism of KLF7 action may be related to its ability to enhance transplanted BMSCs survival and secrete neurotrophic factors rather than Schwann-like cell differentiation. This study provides novel foundational data connecting the benefits of KLF7 in neural injury and repair to BMSC biology and function, and demonstrates a potential combination approach for the treatment of injured peripheral nerve via nerve graft transplant.
Collapse
Affiliation(s)
- Wen-Yuan Li
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang 157011, People's Republic of China
| | | | | | | | | | | |
Collapse
|
11
|
Bialkowska AB, Yang VW, Mallipattu SK. Krüppel-like factors in mammalian stem cells and development. Development 2017; 144:737-754. [PMID: 28246209 DOI: 10.1242/dev.145441] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors that are found in many species. Recent studies have shown that KLFs play a fundamental role in regulating diverse biological processes such as cell proliferation, differentiation, development and regeneration. Of note, several KLFs are also crucial for maintaining pluripotency and, hence, have been linked to reprogramming and regenerative medicine approaches. Here, we review the crucial functions of KLFs in mammalian embryogenesis, stem cell biology and regeneration, as revealed by studies of animal models. We also highlight how KLFs have been implicated in human diseases and outline potential avenues for future research.
Collapse
Affiliation(s)
- Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA.,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| |
Collapse
|
12
|
Wang Y, Li WY, Jia H, Zhai FG, Qu WR, Cheng YX, Liu YC, Deng LX, Guo SF, Jin ZS. KLF7-transfected Schwann cell graft transplantation promotes sciatic nerve regeneration. Neuroscience 2016; 340:319-332. [PMID: 27826105 DOI: 10.1016/j.neuroscience.2016.10.069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 11/16/2022]
Abstract
Our former study demonstrated that Krüppel-like Factor 7 (KLF7) is a transcription factor that stimulates axonal regeneration after peripheral nerve injury. Currently, we used a gene therapy approach to overexpress KLF7 in Schwann cells (SCs) and assessed whether KLF7-transfected SCs graft could promote sciatic nerve regeneration. SCs were transfected by adeno-associated virus 2 (AAV2)-KLF7 in vitro. Mice were allografted by an acellular nerve (ANA) with either an injection of DMEM (ANA group), SCs (ANA+SCs group) or AAV2-KLF7-transfected SCs (ANA+KLF7-SCs group) to assess repair of a sciatic nerve gap. The results indicate that KLF7 overexpression promoted the proliferation of both transfected SCs and native SCs. The neurite length of the dorsal root ganglia (DRG) explants was enhanced. Several beneficial effects were detected in the ANA+KLF7-SCs group including an increase in the compound action potential amplitude, sciatic function index score, enhanced expression of PKH26-labeling transplant SCs, peripheral myelin protein 0, neurofilaments, S-100, and myelinated regeneration nerve. Additionally, HRP-labeled motoneurons in the spinal cord, CTB-labeled sensory neurons in the DRG, motor endplate density and the weight ratios of target muscles were increased by the treatment while thermal hyperalgesia was diminished. Finally, expression of KLF7, NGF, GAP43, TrkA and TrkB were enhanced in the grafted SCs, which may indicate that several signal pathways may be involved in conferring the beneficial effects from KLF7 overexpression. We concluded that KLF7-overexpressing SCs promoted axonal regeneration of the peripheral nerve and enhanced myelination, which collectively proved KLF-SCs as a novel therapeutic strategy for injured nerves.
Collapse
Affiliation(s)
- Ying Wang
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang 157011, China
| | - Wen-Yuan Li
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang 157011, China.
| | - Hua Jia
- Department of Anatomy, Ningxia Medical University, Yinchuan 750004, China
| | - Feng-Guo Zhai
- Department of Pharmacology, Mudanjiang College of Medicine, Mudanjiang 157011, China
| | - Wen-Rui Qu
- Hand & Foot Surgery and Reparative & Reconstructive Surgery Center, Orthopaedic Hospital of the Second Hospital of Jilin University, Changchun 130041, China
| | - Yong-Xia Cheng
- Department of Pathology, Mudanjiang College of Medicine, Mudanjiang 157011, China
| | - Yan-Cui Liu
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang 157011, China
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Su-Fen Guo
- Hand & Foot Surgery and Reparative & Reconstructive Surgery Center, Orthopaedic Hospital of the Second Hospital of Jilin University, Changchun 130041, China
| | - Zai-Shun Jin
- Hand & Foot Surgery and Reparative & Reconstructive Surgery Center, Orthopaedic Hospital of the Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
13
|
Wang Y, Li WY, Sun P, Jin ZS, Liu GB, Deng LX, Guan LX. Sciatic nerve regeneration in KLF7-transfected acellular nerve allografts. Neurol Res 2016; 38:242-54. [DOI: 10.1080/01616412.2015.1105584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Garaffo G, Conte D, Provero P, Tomaiuolo D, Luo Z, Pinciroli P, Peano C, D'Atri I, Gitton Y, Etzion T, Gothilf Y, Gays D, Santoro MM, Merlo GR. The Dlx5 and Foxg1 transcription factors, linked via miRNA-9 and -200, are required for the development of the olfactory and GnRH system. Mol Cell Neurosci 2015; 68:103-19. [PMID: 25937343 PMCID: PMC4604252 DOI: 10.1016/j.mcn.2015.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 01/26/2023] Open
Abstract
During neuronal development and maturation, microRNAs (miRs) play diverse functions ranging from early patterning, proliferation and commitment to differentiation, survival, homeostasis, activity and plasticity of more mature and adult neurons. The role of miRs in the differentiation of olfactory receptor neurons (ORNs) is emerging from the conditional inactivation of Dicer in immature ORN, and the depletion of all mature miRs in this system. Here, we identify specific miRs involved in olfactory development, by focusing on mice null for Dlx5, a homeogene essential for both ORN differentiation and axon guidance and connectivity. Analysis of miR expression in Dlx5−/− olfactory epithelium pointed to reduced levels of miR-9, miR-376a and four miRs of the -200 class in the absence of Dlx5. To functionally examine the role of these miRs, we depleted miR-9 and miR-200 class in reporter zebrafish embryos and observed delayed ORN differentiation, altered axonal trajectory/targeting, and altered genesis and position of olfactory-associated GnRH neurons, i.e. a phenotype known as Kallmann syndrome in humans. miR-9 and miR-200-class negatively control Foxg1 mRNA, a fork-head transcription factor essential for development of the olfactory epithelium and of the forebrain, known to maintain progenitors in a stem state. Increased levels of z-foxg1 mRNA resulted in delayed ORN differentiation and altered axon trajectory, in zebrafish embryos. This work describes for the first time the role of specific miR (-9 and -200) in olfactory/GnRH development, and uncovers a Dlx5–Foxg1 regulation whose alteration affects receptor neuron differentiation, axonal targeting, GnRH neuron development, the hallmarks of the Kallmann syndrome. Dlx5 controls the expressions of miR9 and miR-200, which target the Foxg1 mRNA miR-9 and -200 are needed for olfactory neurons differentiation and axon extension miR-9 and -200 are required for the genesis and position of GnRH neurons. Altered expression of miR-9 and -200 might contribute to the Kallmann disease.
Collapse
Affiliation(s)
- Giulia Garaffo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Daniele Conte
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Paolo Provero
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Daniela Tomaiuolo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Zheng Luo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Patrizia Pinciroli
- Doctorate School in Molecular Medicine, Dept. Medical Biotechnology Translational Medicine (BIOMETRA), University of Milano, Italy
| | - Clelia Peano
- Inst. of Biomedical Technology, National Research Council, ITB-CNR Segrate (MI) Italy
| | - Ilaria D'Atri
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Yorick Gitton
- UMR7221 CNRS/MNHN - Evolution des régulations endocriniennes - Paris, France
| | - Talya Etzion
- Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Yoav Gothilf
- Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Dafne Gays
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Massimo M Santoro
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy; Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Giorgio R Merlo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy.
| |
Collapse
|
15
|
Yin KJ, Hamblin M, Fan Y, Zhang J, Chen YE. Krüpple-like factors in the central nervous system: novel mediators in stroke. Metab Brain Dis 2015; 30:401-10. [PMID: 24338065 PMCID: PMC4113556 DOI: 10.1007/s11011-013-9468-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/04/2013] [Indexed: 01/08/2023]
Abstract
Transcription factors play an important role in the pathophysiology of many neurological disorders, including stroke. In the past three decades, an increasing number of transcription factors and their related gene signaling networks have been identified, and have become a research focus in the stroke field. Krüppel-like factors (KLFs) are members of the zinc finger family of transcription factors with diverse regulatory functions in cell growth, differentiation, proliferation, migration, apoptosis, metabolism, and inflammation. KLFs are also abundantly expressed in the brain where they serve as critical regulators of neuronal development and regeneration to maintain normal brain function. Dysregulation of KLFs has been linked to various neurological disorders. Recently, there is emerging evidence that suggests KLFs have an important role in the pathogenesis of stroke and provide endogenous vaso-or neuro-protection in the brain's response to ischemic stimuli. In this review, we summarize the basic knowledge and advancement of these transcriptional mediators in the central nervous system, highlighting the novel roles of KLFs in stroke.
Collapse
Affiliation(s)
- Ke-Jie Yin
- Correspondence addressed to: Ke-Jie Yin, M.D., Ph.D., Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Phone: 734-647-8975, Fax: 734-936-2641, , Y. Eugene Chen, M.D., Ph.D., Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Phone: 734-763-7838, Fax: 734-936-2641,
| | | | | | | | - Y. Eugene Chen
- Correspondence addressed to: Ke-Jie Yin, M.D., Ph.D., Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Phone: 734-647-8975, Fax: 734-936-2641, , Y. Eugene Chen, M.D., Ph.D., Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Phone: 734-763-7838, Fax: 734-936-2641,
| |
Collapse
|
16
|
Simmen RCM, Heard ME, Simmen AM, Montales MTM, Marji M, Scanlon S, Pabona JMP. The Krüppel-like factors in female reproductive system pathologies. J Mol Endocrinol 2015; 54:R89-R101. [PMID: 25654975 PMCID: PMC4369192 DOI: 10.1530/jme-14-0310] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Female reproductive tract pathologies arise largely from dysregulation of estrogen and progesterone receptor signaling, leading to aberrant cell proliferation, survival, and differentiation. The signaling pathways orchestrated by these nuclear receptors are complex, require the participation of many nuclear proteins serving as key binding partners or targets, and involve a range of paracrine and autocrine regulatory circuits. The members of the Krüppel-like factor (KLF) family of transcription factors are ubiquitously expressed in reproductive tissues and have been increasingly implicated as critical co-regulators and integrators of steroid hormone actions. Herein, we explore the involvement of KLF family members in uterine pathology, describe their currently known molecular mechanisms, and discuss their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rosalia C M Simmen
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Melissa E Heard
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Angela M Simmen
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Maria Theresa M Montales
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Meera Marji
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Samantha Scanlon
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - John Mark P Pabona
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| |
Collapse
|
17
|
Abstract
Axon regeneration is crucial for recovery of function after nervous system injury. Over many years, research has uncovered numerous factors which prevent damaged axons from regrowing and reforming functional connections after damage. These factors are both extrinsic, relating to the central nervous system environment, and intrinsic, relating to the growth capacity of the neurons themselves. In this short review, I summarize these elements with a view to illustrating how they may be overcome to promote nervous system repair.
Collapse
Affiliation(s)
- Andrew J Murray
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 W 168th Street, New York, NY, 10032, USA,
| |
Collapse
|
18
|
Garaffo G, Provero P, Molineris I, Pinciroli P, Peano C, Battaglia C, Tomaiuolo D, Etzion T, Gothilf Y, Santoro M, Merlo GR. Profiling, Bioinformatic, and Functional Data on the Developing Olfactory/GnRH System Reveal Cellular and Molecular Pathways Essential for This Process and Potentially Relevant for the Kallmann Syndrome. Front Endocrinol (Lausanne) 2013; 4:203. [PMID: 24427155 PMCID: PMC3876029 DOI: 10.3389/fendo.2013.00203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/18/2013] [Indexed: 11/28/2022] Open
Abstract
During embryonic development, immature neurons in the olfactory epithelium (OE) extend axons through the nasal mesenchyme, to contact projection neurons in the olfactory bulb. Axon navigation is accompanied by migration of the GnRH+ neurons, which enter the anterior forebrain and home in the septo-hypothalamic area. This process can be interrupted at various points and lead to the onset of the Kallmann syndrome (KS), a disorder characterized by anosmia and central hypogonadotropic hypogonadism. Several genes has been identified in human and mice that cause KS or a KS-like phenotype. In mice a set of transcription factors appears to be required for olfactory connectivity and GnRH neuron migration; thus we explored the transcriptional network underlying this developmental process by profiling the OE and the adjacent mesenchyme at three embryonic ages. We also profiled the OE from embryos null for Dlx5, a homeogene that causes a KS-like phenotype when deleted. We identified 20 interesting genes belonging to the following categories: (1) transmembrane adhesion/receptor, (2) axon-glia interaction, (3) scaffold/adapter for signaling, (4) synaptic proteins. We tested some of them in zebrafish embryos: the depletion of five (of six) Dlx5 targets affected axonal extension and targeting, while three (of three) affected GnRH neuron position and neurite organization. Thus, we confirmed the importance of cell-cell and cell-matrix interactions and identified new molecules needed for olfactory connection and GnRH neuron migration. Using available and newly generated data, we predicted/prioritized putative KS-disease genes, by building conserved co-expression networks with all known disease genes in human and mouse. The results show the overall validity of approaches based on high-throughput data and predictive bioinformatics to identify genes potentially relevant for the molecular pathogenesis of KS. A number of candidate will be discussed, that should be tested in future mutation screens.
Collapse
Affiliation(s)
- Giulia Garaffo
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Ivan Molineris
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Patrizia Pinciroli
- Department of Medical Biotechnology Translational Medicine (BIOMETRA), University of Milano, Milano, Italy
| | - Clelia Peano
- Institute of Biomedical Technology, National Research Council, ITB-CNR, Segrate, Italy
| | - Cristina Battaglia
- Department of Medical Biotechnology Translational Medicine (BIOMETRA), University of Milano, Milano, Italy
- Institute of Biomedical Technology, National Research Council, ITB-CNR, Segrate, Italy
| | - Daniela Tomaiuolo
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Talya Etzion
- The George S. Wise Faculty of Life Sciences, Department of Neurobiology, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoav Gothilf
- The George S. Wise Faculty of Life Sciences, Department of Neurobiology, Tel-Aviv University, Tel-Aviv, Israel
| | - Massimo Santoro
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Giorgio R. Merlo
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
- *Correspondence: Giorgio R. Merlo, Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, Torino 10126, Italy e-mail:
| |
Collapse
|
19
|
Abstract
Understanding axon regenerative failure remains a major goal in neuroscience, and reversing this failure remains a major goal for clinical neurology. Although an inhibitory central nervous system environment clearly plays a role, focus on molecular pathways within neurons has begun to yield fruitful insights. Initial steps forward investigated the receptors and signaling pathways immediately downstream of environmental cues, but recent work has also shed light on transcriptional control mechanisms that regulate intrinsic axon growth ability, presumably through whole cassettes of gene target regulation. Here we will discuss transcription factors that regulate neurite growth in vitro and in vivo, including p53, SnoN, E47, cAMP-responsive element binding protein (CREB), signal transducer and activator of transcription 3 (STAT3), nuclear factor of activated T cell (NFAT), c-Jun activating transcription factor 3 (ATF3), sex determining region Ybox containing gene 11 (Sox11), nuclear factor κ-light chain enhancer of activated B cells (NFκB), and Krüppel-like factors (KLFs). Revealing the similarities and differences among the functions of these transcription factors may further our understanding of the mechanisms of transcriptional regulation in axon growth and regeneration.
Collapse
Affiliation(s)
| | - Jeffrey L. Goldberg
- Bascom Palmer Eye Institute and the Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
20
|
Moore DL, Apara A, Goldberg JL. Krüppel-like transcription factors in the nervous system: novel players in neurite outgrowth and axon regeneration. Mol Cell Neurosci 2011; 47:233-43. [PMID: 21635952 PMCID: PMC3143062 DOI: 10.1016/j.mcn.2011.05.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 01/25/2023] Open
Abstract
The Krüppel-like family of transcription factors (KLFs) have been widely studied in proliferating cells, though very little is known about their role in post-mitotic cells, such as neurons. We have recently found that the KLFs play a role in regulating intrinsic axon growth ability in retinal ganglion cells (RGCs), a type of central nervous system (CNS) neuron. Previous KLF studies in other cell types suggest that there may be cell-type specific KLF expression patterns, and that their relative expression allows them to compete for binding sites, or to act redundantly to compensate for another's function. With at least 15 of 17 KLF family members expressed in neurons, it will be important for us to determine how this complex family functions to regulate the intricate gene programs of axon growth and regeneration. By further characterizing the mechanisms of the KLF family in the nervous system, we may better understand how they regulate neurite growth and axon regeneration.
Collapse
Affiliation(s)
| | - Akintomide Apara
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Jeffrey L. Goldberg
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
21
|
Mitsui S, Igarashi KM, Mori K, Yoshihara Y. Genetic visualization of the secondary olfactory pathway in Tbx21 transgenic mice. NEURAL SYSTEMS & CIRCUITS 2011; 1:5. [PMID: 22330144 PMCID: PMC3257540 DOI: 10.1186/2042-1001-1-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 12/06/2010] [Indexed: 12/02/2022]
Abstract
Background Mitral and tufted cells are the projection neurons in the olfactory bulb, conveying odour information to various regions of the olfactory cortex. In spite of their functional importance, there are few molecular and genetic tools that can be used for selective labelling or manipulation of mitral and tufted cells. Tbx21 was first identified as a T-box family transcription factor regulating the differentiation and function of T lymphocytes. In the brain, Tbx21 is specifically expressed in mitral and tufted cells of the olfactory bulb. Results In this study, we performed a promoter/enhancer analysis of mouse Tbx21 gene by comparing nucleotide sequence similarity of Tbx21 genes among several mammalian species and generating transgenic mouse lines with various lengths of 5' upstream region fused to a fluorescent reporter gapVenus. We identified the cis-regulatory enhancer element (~300 nucleotides) at ~ 3.0 kb upstream of the transcription start site of Tbx21 gene, which is both necessary and sufficient for transgene expression in mitral and tufted cells. In contrast, the 2.6-kb 5'-flanking region of mouse Tbx21 gene induced transgene expression with variable patterns in restricted populations of neurons predominantly located along the olfactory pathway. Furthermore, we generated transgenic mice expressing the genetically-encoded fluorescent exocytosis indicator, synaptopHluorin, in mitral and tufted cells for visualization of presynaptic neural activities in the piriform cortex. Conclusions The transcriptional enhancer of Tbx21 gene provides a powerful tool for genetic manipulations of mitral and tufted cells in studying the development and function of the secondary olfactory pathways from the bulb to the cortex.
Collapse
Affiliation(s)
- Sachiko Mitsui
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
22
|
Li S, Yin M, Liu S, Chen Y, Yin Y, Liu T, Zhou J. Expression of ventral diencephalon-enriched genes in zebrafish. Dev Dyn 2010; 239:3368-79. [DOI: 10.1002/dvdy.22467] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
23
|
Feng W, Simoes-de-Souza F, Finger TE, Restrepo D, Williams T. Disorganized olfactory bulb lamination in mice deficient for transcription factor AP-2epsilon. Mol Cell Neurosci 2009; 42:161-71. [PMID: 19580868 PMCID: PMC2745980 DOI: 10.1016/j.mcn.2009.06.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/22/2009] [Accepted: 06/24/2009] [Indexed: 01/15/2023] Open
Abstract
Within the olfactory bulb, neurons and their axonal connections are organized into distinct layers corresponding to different functionalities. Here we demonstrate that transcription factor AP-2epsilon is required for olfactory bulb development, specifically the establishment of appropriate neuronal lamination. During normal mouse embryogenesis, AP-2epsilon transcripts are one of the earliest markers of olfactory bulb formation, and expression eventually becomes refined to the projection neurons, the mitral and tufted cells. To assess the function of AP-2epsilon in olfaction, we generated a null allele (the "AK" allele) by inserting a Cre recombinase transgene into the endogenous AP-2epsilon genomic locus. AP-2epsilon-null mice exhibited defective olfactory bulb architecture. The mitral cell layer was disorganized, typified by misoriented and aberrantly positioned projection neurons, and the adjacent internal plexiform layer was absent. Despite the significant disruption of olfactory bulb organization, AP-2epsilon null mice were viable and could discriminate a variety of odors. AP-2epsilon-null mice thus provide compelling evidence for the robust nature of the mouse olfactory system, and serve as a model system to probe both the regulation of neuronal lamination and the functional circuitry of the olfactory bulb. We also show that Cre recombinase expression directed by the AP-2epsilon locus can specifically target floxed genes within the olfactory bulb, extending the utility of this AK allele.
Collapse
Affiliation(s)
- Weiguo Feng
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
- Department of Cell and Developmental Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
| | - Fabio Simoes-de-Souza
- Department of Cell and Developmental Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
- The Rocky Mountain Taste and Smell Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas E. Finger
- Department of Cell and Developmental Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
- The Rocky Mountain Taste and Smell Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
- The Rocky Mountain Taste and Smell Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
- Department of Cell and Developmental Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
24
|
Sacher R, Stergiou L, Pelkmans L. Lessons from genetics: interpreting complex phenotypes in RNAi screens. Curr Opin Cell Biol 2008; 20:483-9. [PMID: 18602470 DOI: 10.1016/j.ceb.2008.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/10/2008] [Accepted: 06/10/2008] [Indexed: 11/16/2022]
Abstract
Mammalian cell biology is witnessing a new era in which cellular processes are explained through dynamic networks of interacting cellular components. In this fast-pacing field, where image-based RNAi screening is taking a central role, there is a strong need to improve ways to capture such interactions in space and time. Cell biologists traditionally depict these events by confining themselves to the level of a single cell, or to many population-averaged cells. Similarly, classical geneticists observe and interpret phenotypes in a single organism to delineate signaling processes, but have also described genetic phenomena in populations of organisms. The analogy in the two approaches inspired us to draw parallels with, and take lessons from concepts in classical genetics.
Collapse
Affiliation(s)
- Raphael Sacher
- Institute of Molecular Systems Biology, ETH Zürich, Wolfgang-Pauli Street 16, 8093 Zürich, Switzerland.
| | | | | |
Collapse
|
25
|
Harrison SJ, Nishinakamura R, Monaghan AP. Sall1 regulates mitral cell development and olfactory nerve extension in the developing olfactory bulb. Cereb Cortex 2008; 18:1604-17. [PMID: 18024993 DOI: 10.1093/cercor/bhm191] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sall1 is a zinc finger containing transcription factor that is highly expressed during mammalian embryogenesis. In humans, the developmental disorder Townes Brocks Syndrome is associated with mutations in the SALL1 gene. Sall1-deficient animals die at birth due to kidney deficits; however, its function in the nervous system has not been characterized. We examined the role of Sall1 in the developing olfactory system. We demonstrate that Sall1 is expressed by cells in the olfactory epithelium and olfactory bulb (OB). Sall1-deficient OBs are reduced in size and exhibit alterations in neurogenesis and mitral cell production. In addition, the olfactory nerve failed to extend past the ventral-medial region of the OB in Sall1-deficient animals. We observed intrinsic patterns of neurogenesis during olfactory development in control animals. In Sall1-mutant animals, these patterns of neurogenesis were disrupted. These findings suggest a role for Sall1 in regulating neuronal differentiation and maturation in developing neural structures.
Collapse
Affiliation(s)
- Susan J Harrison
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
26
|
Kajimura D, Dragomir C, Ramirez F, Laub F. Identification of genes regulated by transcription factor KLF7 in differentiating olfactory sensory neurons. Gene 2006; 388:34-42. [PMID: 17123745 DOI: 10.1016/j.gene.2006.09.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 08/10/2006] [Accepted: 09/23/2006] [Indexed: 10/24/2022]
Abstract
Gene targeting in mice has recently demonstrated that transcription factor KLF7 plays a critical role in neurite outgrowth and neuronal survival. Here we extended this genetic evidence by establishing the transcriptional profile of differentiating olfactory sensory neurons (OSNs) in Klf7(-/-) mice, and by identifying relevant genes that are directly regulated by KLF7. Functional clustering of DNA microarray data revealed that loss of KLF7 affects primarily the activity of genes involved in OSN differentiation, axonal growth, cytoskeletal dynamics, cell adhesion and synaptogenesis. Cell transfection experiments, on the other hand, demonstrated that the promoters of the genes encoding the OSN-specific OMP and the adhesion molecule L1 are both activated by KLF7 binding to CACCC motifs. Collectively, these results advance knowledge of transcriptional regulation of olfactory neurogenesis and KLF7 action.
Collapse
Affiliation(s)
- Daisuke Kajimura
- Child Health Institute of New Jersey, UMDNJ-Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | | | | | | |
Collapse
|