1
|
O'Grady K, Grabrucker AM. Metal Dyshomeostasis as a Driver of Gut Pathology in Autism Spectrum Disorders. J Neurochem 2025; 169:e70041. [PMID: 40108935 PMCID: PMC11923526 DOI: 10.1111/jnc.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/31/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Despite being classified as neurodevelopmental disorders, in recent years, there has been a growing interest in the association between autism spectrum disorders (ASDs) and gut pathology. This comprehensive and systematic review explores a potential mechanism underlying gut pathology in ASDs, including alterations in gut microbiota, intestinal permeability, immune dysregulation, and gastrointestinal (GI) symptoms. Specifically, it delves into the role of toxic and essential metals and their interplay, affecting the development and function of the GI tract. The review also discusses the potential implications of this gut pathology in the development and management of ASDs. Studies have shown that heavy metal exposure, whether through environmental sources or dietary intake, can disrupt the delicate balance of trace elements in the gut. This disruption can adversely affect zinc homeostasis, potentially exacerbating gut pathology in individuals with ASDs. The impaired zinc absorption resulting from heavy metal exposure may contribute to the immune dysregulation, oxidative stress, and inflammation observed in the gut of individuals with ASDs. By shedding light on the multifaceted nature of gut pathology, including the impact of metal dyshomeostasis as a non-genetic factor in ASD, this review underscores the significance of the gut-brain axis in the etiology and management of ASDs.
Collapse
Affiliation(s)
- Katelyn O'Grady
- Department of Biological SciencesUniversity of LimerickLimerickIreland
- Bernal InstituteUniversity of LimerickLimerickIreland
- Health Research Institute (HRI)University of LimerickLimerickIreland
| | - Andreas M. Grabrucker
- Department of Biological SciencesUniversity of LimerickLimerickIreland
- Bernal InstituteUniversity of LimerickLimerickIreland
- Health Research Institute (HRI)University of LimerickLimerickIreland
| |
Collapse
|
2
|
Nakamura R, Iwai T, Takanezawa Y, Shirahata T, Konishi N, Ohshiro Y, Uraguchi S, Tanabe M, Kobayashi Y, Sakamoto K, Nakahara T, Yamamoto M, Kiyono M. Oleanolic acid-3-glucoside, a synthetic oleanane-type saponin, ameliorates methylmercury-induced dysfunction of synaptic transmission in mice. Toxicology 2024; 506:153867. [PMID: 38906242 DOI: 10.1016/j.tox.2024.153867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Methylmercury (MeHg) is widely distributed in nature and is known to cause neurotoxic effects. This study aimed to examine the anti-MeHg activity of oleanolic acid-3-glucoside (OA3Glu), a synthetic oleanane-type saponin derivative, by evaluating its effects on motor function, pathology, and electrophysiological properties in a mouse model of MeHg poisoning. Mice were orally administered 2 or 4 mg·kg-1·d-1 MeHg with or without 100 µg·kg-1·d-1 OA3Glu 5x/week for four weeks. Motor function was evaluated using beam-walking and dynamic weight-bearing (DWB) tests. High-dose MeHg exposure significantly increased the frequency of stepping off the hind leg while crossing the beam in the beam-walking test, and increased weight on forelegs when moving freely in the DWB test. OA3Glu treatment alleviated motor abnormality caused by high-dose MeHg exposure in both motor function tests. Additionally, OA3Glu treatment reduced the number of contracted Purkinje cells frequently observed in the cerebellum of MeHg-treated groups, although cerebrum histology was similar in all experimental groups. The synaptic potential amplitude in the cerebellum decreased as MeHg exposure increased, which was restored by OA3Glu treatment. Even in the cerebrum, where the effects of MeHg were not observed, the amplitude of the field potential was suppressed with increasing MeHg exposure but was restored with OA3Glu treatment. Taken together, the study findings suggest that OA3Glu improves neurotransmission and movement disorders associated with MeHg exposure via protection of Purkinje cells in the cerebellum while ameliorating pre/post-synaptic deficits in the cerebral cortex in which no changes were observed at the tissue level, potentially providing a treatment to mitigate MeHg toxicity.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takashi Iwai
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yasukazu Takanezawa
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tatsuya Shirahata
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Naruki Konishi
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuka Ohshiro
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shimpei Uraguchi
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Mitsuo Tanabe
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenji Sakamoto
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tsutomu Nakahara
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Megumi Yamamoto
- Department of Environment and Public Health, National Institute for Minamata Disease, 4058-18, Hama, Minamata, Kumamoto 867-0008, Japan
| | - Masako Kiyono
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
3
|
Desjardins K, Ponton DE, Bilodeau F, Rosabal M, Amyot M. Methylmercury in northern pike (Esox lucius) liver and hepatic mitochondria is linked to lipid peroxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172703. [PMID: 38703851 DOI: 10.1016/j.scitotenv.2024.172703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024]
Abstract
Methylmercury (MeHg) readily bioaccumulates and biomagnifies in aquatic food webs leading to elevated concentrations in fish and may thus induce toxicity. Oxidative stress is a suggested effect of MeHg bioaccumulation in fish. However, studies on how MeHg triggers oxidative stress in wild fish are scarce. The purpose of this study was to link the subcellular distribution of MeHg in the liver of northern pike from the St. Maurice River (Québec, Canada), affected by two run-of-river (RoR) dams, artificial wetlands, forest fires, and logging activity, to lipid peroxidation as an indicator of oxidative stress. We also evaluated the protective effects of the glutathione (GSH) system and selenium (Se), as they are known to alleviate MeHg toxicity. A customized subcellular partitioning protocol was used to separate the liver into metal-sensitive (mitochondria, microsome/lysosome and HDP - heat-denatured proteins) and metal-detoxified fractions (metal-rich granules and HSP - heat-stable proteins). We examined the relation among THg, MeHg, and Se concentration in livers and subcellular fractions, and the hepatic ratio of total GSH (GSHt) to oxidized glutathione (GSSG) on lipid peroxidation levels, using the concentrations of malondialdehyde (MDA), a product of lipid peroxidation. Results showed that hepatic MDA concentration was positively correlated with the combined MeHg and Se concentrations in northern pike liver (r2 = 0.88, p < 0.001) and that MDA concentrations were best predicted by MeHg associated with the mitochondria (r2 = 0.71, p < 0.001). This highlights the need for additional research on the MeHg influence on fish health and the interactions between Hg and Se in northern pike.
Collapse
Affiliation(s)
- Kimberley Desjardins
- Groupe interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Complexe des sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Dominic E Ponton
- Groupe interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Complexe des sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - François Bilodeau
- Direction Environnement, Hydro-Québec, 800 Boul. De Maisonneuve Est, Montréal, Québec H2Z 1A4, Canada
| | - Maikel Rosabal
- Groupe interuniversitaire en limnologie et en environnement aquatique (GRIL), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Marc Amyot
- Groupe interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Complexe des sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.
| |
Collapse
|
4
|
Blaylock RL. Additive aluminum as a cause of induced immunoexcitoxicity resulting in neurodevelopmental and neurodegenerative disorders: A biochemical, pathophysiological, and pharmacological analysis. Surg Neurol Int 2024; 15:171. [PMID: 38840623 PMCID: PMC11152537 DOI: 10.25259/sni_296_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 06/07/2024] Open
Abstract
Much has been learned about the neurotoxicity of aluminum over the past several decades in terms of its ability to disrupt cellular function, result in slow accumulation, and the difficulty of its removal from cells. Newer evidence suggests a central pathophysiological mechanism may be responsible for much of the toxicity of aluminum and aluminofluoride compounds on the brain and spinal cord. This mechanism involves activation of the brain's innate immune system, primarily the microglia, astrocytes, and macrophages, with a release of neurotoxic concentrations of excitotoxins and proinflammatory cytokines, chemokines, and immune mediators. Many studies suggest that excitotoxicity plays a significant role in the neurotoxic action of several metals, including aluminum. Recently, researchers have found that while most of the chronic pathology involved in the observed neurodegenerative effects of these metals are secondary to prolonged inflammation, it is the enhancement of excitotoxicity by the immune mediators that are responsible for most of the metal's toxicity. This enhancement occurs through a crosstalk between cytokines and glutamate-related mechanisms. The author coined the name immunoexcitotoxicity to describe this process. This paper reviews the evidence linking immunoexcitotoxicity to aluminum's neurotoxic effects and that a slow accumulation of aluminum may be the cause of neurodevelopmental defects as well as neurodegeneration in the adult.
Collapse
Affiliation(s)
- Russell L. Blaylock
- Theoretical Neuroscience Research, LLC, Ridgeland, Mississippi, United States
| |
Collapse
|
5
|
Leal-Nazaré CG, Arrifano GP, Lopes-Araújo A, Santos-Sacramento L, Barthelemy JL, Soares-Silva I, Crespo-Lopez ME, Augusto-Oliveira M. Methylmercury neurotoxicity: Beyond the neurocentric view. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170939. [PMID: 38365040 DOI: 10.1016/j.scitotenv.2024.170939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Mercury is a highly toxic metal widely used in human activities worldwide, therefore considered a global public health problem. Many cases of mercury intoxication have occurred in history and represent a huge challenge nowadays. Of particular importance is its methylated form, methylmercury (MeHg). This mercurial species induces damage to several organs in the human body, especially to the central nervous system. Neurological impairments such as executive, memory, motor and visual deficits are associated with MeHg neurotoxicity. Molecular mechanisms involved in MeHg-induced neurotoxicity include excitotoxicity due to glutamatergic imbalance, disturbance in calcium homeostasis and oxidative balance, failure in synaptic support, and inflammatory response. Although neurons are largely affected by MeHg intoxication, they only represent half of the brain cells. Glial cells represent roughly 50 % of the brain cells and are key elements in the functioning of the central nervous system. Particularly, astrocytes and microglia are deeply involved in MeHg-induced neurotoxicity, resulting in distinct neurological outcomes depending on the context. In this review, we discuss the main findings on astroglial and microglial involvement as mediators of neuroprotective and neurotoxic responses to MeHg intoxication. The literature shows that these responses depend on chemical and morphophysiological features, thus, we present some insights for future investigations, considering the particularities of the context, including time and dose of exposure, brain region, and species of study.
Collapse
Affiliation(s)
- Caio Gustavo Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Jean Ludger Barthelemy
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Isabela Soares-Silva
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| |
Collapse
|
6
|
Zhang X, Hao H, Ma K, Pang H, Li X, Tian T, Hou S, Ning X, Wu H, Hou Q, Li M, Sun Y, Song X, Jin M. The role and mechanism of unfolded protein response signaling pathway in methylmercury-induced apoptosis of mouse spermatocytes germ cell-2 cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:472-482. [PMID: 36330985 DOI: 10.1002/tox.23684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The study aimed to explore the role and mechanism of unfolded protein response (UPR) in methylmercury (MeHg)-induced Mouse Spermatocytes (GC-2spd[ts]) apoptosis. Methods such as MTT, flow cytometry, and Western Blot were used to evaluate the cell viability, membrane potential (MMP), reactive oxygen species (ROS), calcium ion (Ca2+ ), rate of cell apoptosis, and the expression of apoptosis-related and UPR-related protein. The results showed that with the increase of MeHg concentration, cell viability and MMP decreased, ROS, Ca2+ , rate of cell apoptosis, and the expression of apoptosis-related protein and UPR-related protein increased. To further explore the effect of ROS-induced oxidative damage on it, the ROS inhibitor N-acetyl-L-cysteine (NAC) was used. The effects of MeHg on germ cell (GC-2) cells were partially inhibited after NAC pretreatment. Our present study proved that MeHg might induce cell apoptosis by activating the UPR signaling pathway in GC-2 cells and affect normal reproductive function.
Collapse
Affiliation(s)
- Xiayu Zhang
- School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Huifang Hao
- School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Kai Ma
- School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Huan Pang
- School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Xinyue Li
- School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Tiantian Tian
- School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Shanshan Hou
- School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Xiaofan Ning
- School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Hao Wu
- School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Qiaohong Hou
- School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Meng Li
- School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Yunxiang Sun
- School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Xiuling Song
- School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Minghua Jin
- School of Public Health, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
7
|
Błażewicz A, Grabrucker AM. Metal Profiles in Autism Spectrum Disorders: A Crosstalk between Toxic and Essential Metals. Int J Mol Sci 2022; 24:ijms24010308. [PMID: 36613749 PMCID: PMC9820494 DOI: 10.3390/ijms24010308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Since hundreds of years ago, metals have been recognized as impacting our body's physiology. As a result, they have been studied as a potential cure for many ailments as well as a cause of acute or chronic poisoning. However, the link between aberrant metal levels and neuropsychiatric illnesses such as schizophrenia and neurodevelopmental disorders, such as autism spectrum disorders (ASDs), is a relatively new finding, despite some evident ASD-related consequences of shortage or excess of specific metals. In this review, we will summarize past and current results explaining the pathomechanisms of toxic metals at the cellular and molecular levels that are still not fully understood. While toxic metals may interfere with dozens of physiological processes concurrently, we will focus on ASD-relevant activity such as inflammation/immune activation, mitochondrial malfunction, increased oxidative stress, impairment of axonal myelination, and synapse formation and function. In particular, we will highlight the competition with essential metals that may explain why both the presence of certain toxic metals and the absence of certain essential metals have emerged as risk factors for ASD. Although often investigated separately, through the agonistic and antagonistic effects of metals, a common metal imbalance may result in relation to ASD.
Collapse
Affiliation(s)
- Anna Błażewicz
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 20-093 Lublin, Poland
| | - Andreas M. Grabrucker
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Correspondence: ; Tel.: +353-61-237756
| |
Collapse
|
8
|
Bjørklund G, Antonyak H, Polishchuk A, Semenova Y, Lesiv M, Lysiuk R, Peana M. Effect of methylmercury on fetal neurobehavioral development: an overview of the possible mechanisms of toxicity and the neuroprotective effect of phytochemicals. Arch Toxicol 2022; 96:3175-3199. [PMID: 36063174 DOI: 10.1007/s00204-022-03366-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Methylmercury (MeHg) is a global environmental pollutant with neurotoxic effects. Exposure to MeHg via consumption of seafood and fish can severely impact fetal neurobehavioral development even when MeHg levels in maternal blood are as low as about 5 μg/L, which the mother tolerates well. Persistent motor dysfunctions and cognitive deficits may result from trans-placental exposure. The present review summarizes current knowledge on the mechanisms of MeHg toxicity during the period of nervous system development. Although cerebellar Purkinje cells are MeHg targets, the actions of MeHg on thiol components in the neuronal cytoskeleton as well as on mitochondrial enzymes and induction of disturbances of glutamate signaling can impair extra-cerebellar functions, also at levels well tolerated by adult individuals. Numerous herbal substances possess neuroprotective effects, predominantly represented by natural polyphenolic molecules that might be utilized to develop natural drugs to alleviate neurotoxicity symptoms caused by MeHg or other Hg compounds.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | | | | | | | - Marta Lesiv
- Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
9
|
Rahman MM, Islam MR, Yamin M, Islam MM, Sarker MT, Meem AFK, Akter A, Emran TB, Cavalu S, Sharma R. Emerging Role of Neuron-Glia in Neurological Disorders: At a Glance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3201644. [PMID: 36046684 PMCID: PMC9423989 DOI: 10.1155/2022/3201644] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022]
Abstract
Based on the diverse physiological influence, the impact of glial cells has become much more evident on neurological illnesses, resulting in the origins of many diseases appearing to be more convoluted than previously happened. Since neurological disorders are often random and unknown, hence the construction of animal models is difficult to build, representing a small fraction of people with a gene mutation. As a result, an immediate necessity is grown to work within in vitro techniques for examining these illnesses. As the scientific community recognizes cell-autonomous contributions to a variety of central nervous system illnesses, therapeutic techniques involving stem cells for treating neurological diseases are gaining traction. The use of stem cells derived from a variety of sources is increasingly being used to replace both neuronal and glial tissue. The brain's energy demands necessitate the reliance of neurons on glial cells in order for it to function properly. Furthermore, glial cells have diverse functions in terms of regulating their own metabolic activities, as well as collaborating with neurons via secreted signaling or guidance molecules, forming a complex network of neuron-glial connections in health and sickness. Emerging data reveals that metabolic changes in glial cells can cause morphological and functional changes in conjunction with neuronal dysfunction under disease situations, highlighting the importance of neuron-glia interactions in the pathophysiology of neurological illnesses. In this context, it is required to improve our understanding of disease mechanisms and create potential novel therapeutics. According to research, synaptic malfunction is one of the features of various mental diseases, and glial cells are acting as key ingredients not only in synapse formation, growth, and plasticity but also in neuroinflammation and synaptic homeostasis which creates critical physiological capacity in the focused sensory system. The goal of this review article is to elaborate state-of-the-art information on a few glial cell types situated in the central nervous system (CNS) and highlight their role in the onset and progression of neurological disorders.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Yamin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Mohaimenul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Taslim Sarker
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Atkia Farzana Khan Meem
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| |
Collapse
|
10
|
Sahu R, Mehan S, Kumar S, Prajapati A, Alshammari A, Alharbi M, Assiri MA, Narula AS. Effect of alpha-mangostin in the prevention of behavioural and neurochemical defects in methylmercury-induced neurotoxicity in experimental rats. Toxicol Rep 2022; 9:977-998. [PMID: 35783250 PMCID: PMC9247835 DOI: 10.1016/j.toxrep.2022.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Methylmercury (MeHg+) is a known neurotoxin that causes progressive motor neuron degeneration in the central nervous system. Axonal degeneration, oligodendrocyte degeneration, and myelin basic protein (MBP) deficits are among the neuropathological abnormalities caused by MeHg+ in amyotrophic lateral sclerosis (ALS). This results in demyelination and motor neuron death in both humans and animals. Previous experimental studies have confirmed that overexpression of the extracellular signalling regulated kinase (ERK1/2) signalling contributes to glutamate excitotoxicity, inflammatory response of microglial cells, and oligodendrocyte (OL) dysfunction that promotes myelin loss. Alpha-mangostin (AMG), an active ingredient obtained from the tree "Garcinia mangostana Linn," has been used in experimental animals to treat a variety of brain disorders, including Parkinson's and Huntington's disease memory impairment, Alzheimer's disease, and schizophrenia, including Parkinson's disease and Huntington's disease memory impairment, Alzheimer's disease, and schizophrenia. AMG has traditionally been used as an antioxidant, anti-inflammatory, and neuroprotective agent.Accordingly, we investigated the therapeutic potential of AMG (100 and 200 mg/kg) in experimental rats with methylmercury (MeHg+)-induced neurotoxicity. The neuroprotective effect of AMG on behavioural, cellular, molecular, and other gross pathological changes, such as histopathological alterations in MeHg+ -treated rat brains, is presented. The neurological behaviour of experimental rats was evaluated using a Morris water maze (MWM), open field test (OFT), grip strength test (GST), and force swim test (FST). In addition, we investigate AMG's neuroprotective effect by restoring MBP levels in cerebral spinal fluid and whole rat brain homogenate. The apoptotic, pro-inflammatory, and oxidative stress markers were measured in rat blood plasma samples and brain homogenate. According to the findings of this study, AMG decreases ERK-1/2 levels and modulates neurochemical alterations in rat brains, minimising MeHg+ -induced neurotoxicity.
Collapse
Affiliation(s)
- Rakesh Sahu
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sumit Kumar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Aradhana Prajapati
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
11
|
Ferrer B, Suresh H, Tinkov AA, Santamaria A, Rocha JB, Skalny AV, Bowman AB, Aschner M. Ghrelin attenuates methylmercury-induced oxidative stress in neuronal cells. Mol Neurobiol 2022; 59:2098-2115. [PMID: 35040042 DOI: 10.1007/s12035-022-02726-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022]
Abstract
Methylmercury (MeHg) is a global pollutant, which can cause damage to the central nervous system at both high-acute and chronic-low exposures, especially in vulnerable populations, such as children and pregnant women. Nowadays, acute-high poisoning is rare. However, chronic exposure to low MeHg concentrations via fish consumption remains a health concern. Current therapeutic strategies for MeHg poisoning are based on the use of chelators. However, these therapies have limited efficacy. Ghrelin is a gut hormone with an important role in regulating physiologic processes. It has been reported that ghrelin plays a protective role against the toxicity of several xenobiotics. Here, we explored the role of ghrelin as a putative protector against MeHg-induced oxidative stress. Our data show that ghrelin was able to ameliorate MeHg-induced reactive oxygen species (ROS) production in primary neuronal hypothalamic and hippocampal cultures. An analogous effect was observed in mouse hypothalamic neuronal GT 1-7 cells. Using this model, our novel findings show that antioxidant protection of ghrelin against MeHg is mediated by glutathione upregulation and induction of the NRF2/NQO1 pathway.
Collapse
Affiliation(s)
- Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Harshini Suresh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Alexey A Tinkov
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University, Moscow, Russia.,Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular Y Nanotecnología, Instituto Nacional de Neurología Y Neurocirugía, 14269, Mexico City, Mexico
| | - João Batista Rocha
- Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Anatoly V Skalny
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.,Department of Bioelementology, KG Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA. .,Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
12
|
Pan J, Li X, Wei Y, Ni L, Xu B, Deng Y, Yang T, Liu W. Advances on the Influence of Methylmercury Exposure during Neurodevelopment. Chem Res Toxicol 2022; 35:43-58. [PMID: 34989572 DOI: 10.1021/acs.chemrestox.1c00255] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mercury (Hg) is a toxic heavy-metal element, which can be enriched in fauna and flora and transformed into methylmercury (MeHg). MeHg is a widely distributed environmental pollutant that may be harmful to fish-eating populations through enrichment of aquatic food chains. The central nervous system is a primary target of MeHg. Embryos and infants are more sensitive to MeHg, and exposure to MeHg during gestational feeding can significantly impair the homeostasis of offspring, leading to long-term neurodevelopmental defects. At present, MeHg-induced neurodevelopmental toxicity has become a hotspot in the field of neurotoxicology, but its mechanisms are not fully understood. Some evidence point to oxidative damage, excitotoxicity, calcium ion imbalance, mitochondrial dysfunction, epigenetic changes, and other molecular mechanisms that play important roles in MeHg-induced neurodevelopmental toxicity. In this review, advances in the study of neurodevelopmental toxicity of MeHg exposure during pregnancy and the molecular mechanisms of related pathways are summarized, in order to provide more scientific basis for the study of neurodevelopmental toxicity of MeHg.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| |
Collapse
|
13
|
Nascimento PC, Aragão WAB, Bittencourt LO, Silva MCF, Crespo-Lopez ME, Lima RR. Salivary parameters alterations after early exposure to environmental methylmercury: A preclinical study in offspring rats. J Trace Elem Med Biol 2021; 68:126820. [PMID: 34293649 DOI: 10.1016/j.jtemb.2021.126820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 06/02/2021] [Accepted: 07/14/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Methylmercury (MeHg) is still considered a global pollutant of major concern; thus, it becomes relevant to investigate and validate alternative diagnostic methods to track early-life human exposure. This study aimed to evaluate the salivary parameters and to characterize potential mechanisms of oxidative damage on the salivary glands (SG) of offspring rats after pre- and postnatal environmental-experimental MeHg exposure. METHODS Pregnant Wistar rats were daily exposed to 40 μg/kg MeHg during both gestational and lactation periods. Then, the saliva of offspring rats was analyzed in terms of flow rate, amylase activity, and total protein concentration. The SG of the offspring rats were dissected to perform the oxidative biochemistry analyses of antioxidant capacity against peroxyl radicals (ACAP), lipid peroxidation (LPO), and nitrite levels. RESULTS Exposure to MeHg significantly decreased the ACAP, increased LPO and nitrite levels, decreased salivary flow rate, amylase activity, and total protein concentration. CONCLUSION Saliva analyses can predict damages induced by early-life MeHg exposure and may be used as an auxiliary diagnostic method.
Collapse
Affiliation(s)
- Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Marcia Cristina Freitas Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil.
| |
Collapse
|
14
|
The Role of Human LRRK2 in Acute Methylmercury Toxicity in Caenorhabditis elegans. Neurochem Res 2021; 46:2991-3002. [PMID: 34272628 DOI: 10.1007/s11064-021-03394-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Methylmercury (MeHg) exposure and its harmful effects on the developing brain continue to be a global environmental health concern. Decline in mitochondrial function is central to the toxic effects of MeHg and pathogenesis of mitochondria-related diseases including Parkinson's disease (PD). LRRK2 (Leucine-rich repeat kinase 2) mutation is one of the most common genetic risk factors for PD. In this study, we utilize an acute toxicity model of MeHg exposure in the model organism Caenorhabditis elegans (C. elegans) to compare lifespan, developmental progression, mitochondrial membrane potential and reactive oxygen species (ROS) between the wild-type N2 strain, wild-type LRRK2 transgenic strain (WLZ1), and mutant LRRK2(G2019S) transgenic strain (WLZ3). Additionally, the expression levels of skn-1 and gst-4 were investigated. Our results show that acute MeHg exposure (5 and 10 µM) caused a significant developmental delay in the N2 and WLZ3 worms. Notably, the worms expressing wild-type LRRK2 were resistant to 5 µM MeHg- induced developmental retardation. ROS levels in response to MeHg exposure were increased in the N2 worms, but not in the WLZ1 or WLZ3 worms. The mitochondrial membrane potential was decreased in the N2 worms but increased in the WLZ1 and WLZ3 worms following MeHg exposure. Furthermore, MeHg exposure increased the expression of skn-1 in N2, but not in WLZ1 worms. Although skn-1 expression was increased in the WLZ3 worms following MeHg exposure, gst-4 expression was not induced. Both skn-1 and gst-4 had higher basal expression levels in LRRK2s transgenic than wild-type N2 worms. Knocking down of skn-1 with feeding RNAi had a significant developmental effect in WLZ1 worms; however, the effect was not found in WLZ3 worms. These results suggest that mitochondrial dysfunction and a defect in the SKN-1 signaling in the LRRK2 G2019S worms contribute to the severe developmental delay, establishing a modulatory role of LRRK2 mutation in MeHg-induced acute toxicity.
Collapse
|
15
|
Cheng H, Yang B, Ke T, Li S, Yang X, Aschner M, Chen P. Mechanisms of Metal-Induced Mitochondrial Dysfunction in Neurological Disorders. TOXICS 2021; 9:142. [PMID: 34204190 PMCID: PMC8235163 DOI: 10.3390/toxics9060142] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/31/2023]
Abstract
Metals are actively involved in multiple catalytic physiological activities. However, metal overload may result in neurotoxicity as it increases formation of reactive oxygen species (ROS) and elevates oxidative stress in the nervous system. Mitochondria are a key target of metal-induced toxicity, given their role in energy production. As the brain consumes a large amount of energy, mitochondrial dysfunction and the subsequent decrease in levels of ATP may significantly disrupt brain function, resulting in neuronal cell death and ensuing neurological disorders. Here, we address contemporary studies on metal-induced mitochondrial dysfunction and its impact on the nervous system.
Collapse
Affiliation(s)
- Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; (H.C.); (X.Y.)
| | - Bobo Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China;
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; (H.C.); (X.Y.)
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| |
Collapse
|
16
|
de Souza-Rodrigues RD, Puty B, Bonfim L, Nogueira LS, Nascimento PC, Bittencourt LO, Couto RSD, Barboza CAG, de Oliveira EHC, Marques MM, Lima RR. Methylmercury-induced cytotoxicity and oxidative biochemistry impairment in dental pulp stem cells: the first toxicological findings. PeerJ 2021; 9:e11114. [PMID: 34178433 PMCID: PMC8199917 DOI: 10.7717/peerj.11114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/24/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Methylmercury (MeHg) is a potent toxicant able to harm human health, and its main route of contamination is associated with the consumption of contaminated fish and other seafood. Moreover, dental amalgams are also associated with mercury release on human saliva and may contribute to the accumulation of systemic mercury. In this way, the oral cavity seems to be the primary location of exposure during MeHg contaminated food ingestion and dental procedures but there is a lack of literature about its effects on dental tissues and the impact of this toxicity on human health. In this way, this study aimed to analyze the effects of different doses of MeHg on human dental pulp stem cells after short-term exposure. METHODS Dental pulp stem cells from human exfoliated deciduous teeth (SHED) were treated with 0.1, 2.5 and 5 µM of MeHg during 24 h. The MeHg effects were assessed by evaluating cell viability with Trypan blue exclusion assay. The metabolic viability was indirectly assessed by MTT reduction assay. In order to evaluate an indicative of antioxidant defense impairment, cells exposed to 0.1 and 5 µM MeHg were tested by measuring glutathione (GSH) level. RESULTS It was observed that cell viability decreased significantly after exposure to 2.5 and 5 µM of MeHg, but the metabolic viability only decreased significantly at 5 µM MeHg exposure, accompanied by a significant decrease in GSH levels. These results suggest that an acute exposure of MeHg in concentrations higher than 2.5 µM has cytotoxic effects and reduction of antioxidant capacity on dental pulp stem cells.
Collapse
Affiliation(s)
- Renata Duarte de Souza-Rodrigues
- Institute of Arts Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil, Brazil
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil, Brazil
| | - Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil, Brazil
- Laboratory of Tissue Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Laís Bonfim
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil, Brazil
- Laboratory of Tissue Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Lygia Sega Nogueira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil, Brazil
- Laboratory of Tissue Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil, Brazil
| | | | | | | | - Marcia Martins Marques
- Graduation Program, School of Dentistry, Ibirapuera University (UNIb), São Paulo, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil, Brazil
| |
Collapse
|
17
|
Hernández-Fernández J, Pinzón-Velasco A, López EA, Rodríguez-Becerra P, Mariño-Ramírez L. Transcriptional Analyses of Acute Exposure to Methylmercury on Erythrocytes of Loggerhead Sea Turtle. TOXICS 2021; 9:70. [PMID: 33805397 PMCID: PMC8066450 DOI: 10.3390/toxics9040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023]
Abstract
To understand changes in enzyme activity and gene expression as biomarkers of exposure to methylmercury, we exposed loggerhead turtle erythrocytes (RBCs) to concentrations of 0, 1, and 5 mg L-1 of MeHg and de novo transcriptome were assembled using RNA-seq. The analysis of differentially expressed genes (DEGs) indicated that 79 unique genes were dysregulated (39 upregulated and 44 downregulated genes). The results showed that MeHg altered gene expression patterns as a response to the cellular stress produced, reflected in cell cycle regulation, lysosomal activity, autophagy, calcium regulation, mitochondrial regulation, apoptosis, and regulation of transcription and translation. The analysis of DEGs showed a low response of the antioxidant machinery to MeHg, evidenced by the fact that genes of early response to oxidative stress were not dysregulated. The RBCs maintained a constitutive expression of proteins that represented a good part of the defense against reactive oxygen species (ROS) induced by MeHg.
Collapse
Affiliation(s)
- Javier Hernández-Fernández
- Department of Natural and Environmental Science, Marine Biology Program, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group–GENBIMOL, Jorge Tadeo Lozano University, Cra. 4 No 22-61, Bogotá 110311, Colombia;
- Faculty of Sciences, Department of Biology, Pontificia Universidad Javeriana, Calle 45, Cra. 7, Bogotá 110231, Colombia
| | - Andrés Pinzón-Velasco
- Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Calle 45, Cra. 30, Bogotá 111321, Colombia;
| | - Ellie Anne López
- IDEASA Research Group-Environment and Sustainability, Institute of Environmental Studies and Services, Sergio Arboleda University, Bogotá 111711, Colombia;
| | - Pilar Rodríguez-Becerra
- Department of Natural and Environmental Science, Marine Biology Program, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group–GENBIMOL, Jorge Tadeo Lozano University, Cra. 4 No 22-61, Bogotá 110311, Colombia;
| | - Leonardo Mariño-Ramírez
- NCBI, NLM, NIH Computational Biology Branch, Building 38A, Room 6S614M 8600 Rockville Pike, MSC 6075, Bethesda, MD 20894-6075, USA;
| |
Collapse
|
18
|
Novo JP, Martins B, Raposo RS, Pereira FC, Oriá RB, Malva JO, Fontes-Ribeiro C. Cellular and Molecular Mechanisms Mediating Methylmercury Neurotoxicity and Neuroinflammation. Int J Mol Sci 2021; 22:ijms22063101. [PMID: 33803585 PMCID: PMC8003103 DOI: 10.3390/ijms22063101] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Methylmercury (MeHg) toxicity is a major environmental concern. In the aquatic reservoir, MeHg bioaccumulates along the food chain until it is consumed by riverine populations. There has been much interest in the neurotoxicity of MeHg due to recent environmental disasters. Studies have also addressed the implications of long-term MeHg exposure for humans. The central nervous system is particularly susceptible to the deleterious effects of MeHg, as evidenced by clinical symptoms and histopathological changes in poisoned humans. In vitro and in vivo studies have been crucial in deciphering the molecular mechanisms underlying MeHg-induced neurotoxicity. A collection of cellular and molecular alterations including cytokine release, oxidative stress, mitochondrial dysfunction, Ca2+ and glutamate dyshomeostasis, and cell death mechanisms are important consequences of brain cells exposure to MeHg. The purpose of this review is to organize an overview of the mercury cycle and MeHg poisoning events and to summarize data from cellular, animal, and human studies focusing on MeHg effects in neurons and glial cells. This review proposes an up-to-date compendium that will serve as a starting point for further studies and a consultation reference of published studies.
Collapse
Affiliation(s)
- João P. Novo
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
| | - Beatriz Martins
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
| | - Ramon S. Raposo
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
- Experimental Biology Core, University of Fortaleza, Health Sciences, Fortaleza 60110-001, Brazil
| | - Frederico C. Pereira
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
| | - Reinaldo B. Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, Brazil;
| | - João O. Malva
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
- Correspondence: (J.O.M.); (C.F.-R.)
| | - Carlos Fontes-Ribeiro
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
- Correspondence: (J.O.M.); (C.F.-R.)
| |
Collapse
|
19
|
Cordier W, Yousaf M, Nell MJ, Steenkamp V. Underlying mechanisms of cytotoxicity in HepG2 hepatocarcinoma cells exposed to arsenic, cadmium and mercury individually and in combination. Toxicol In Vitro 2021; 72:105101. [PMID: 33497711 DOI: 10.1016/j.tiv.2021.105101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/16/2020] [Accepted: 01/20/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Toxicity data regarding combinational exposure of humans to arsenic, cadmium and mercury is scarce. Although hepatotoxicity has been reported, limited information is available on their mechanistic underpinnings. The cytotoxic mechanisms of these metals were determined in HepG2 hepatocarcinoma cell lines after individual and combinational exposure. METHODS HepG2 cells were exposed to heavy metals (sodium arsenite, cadmium chloride, and mercury chloride) individually or in combination for 24 h, after which cell density, mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), reduced glutathione (GSH), adenosine triphosphate (ATP) and caspase-3/7 activity was assessed. RESULTS AND DISCUSSION Cadmium (IC50 = 0.43 mg/L) and the combination (0.45 mg/L, arsenic reference) were most cytotoxic, followed by arsenic (6.71 mg/L) and mercury (28.23 mg/L). Depolarisation of the ΔΨm and reductions in ROS, GSH and ATP levels occurred. Arsenic, cadmium and the combination increased caspase-3/7 activity, while mercury reduced it. CONCLUSION The combination produced a greater, albeit mechanistically similar, cytotoxicity compared to individual metals. Cytotoxicity was dependent on altered mitochondrial integrity, redox-status, and bioenergetics. Although the combination's cytotoxicity was associated with caspase-3/7 activity, this was not true for mercury. Heavy metal interactions should be assessed to elucidate molecular underpinnings of cytotoxicity.
Collapse
Affiliation(s)
- W Cordier
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - M Yousaf
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - M J Nell
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - V Steenkamp
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
20
|
Hossain KFB, Rahman MM, Sikder MT, Hosokawa T, Saito T, Kurasaki M. Selenium modulates inorganic mercury induced cytotoxicity and intrinsic apoptosis in PC12 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111262. [PMID: 32916531 DOI: 10.1016/j.ecoenv.2020.111262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) in its all forms, including inorganic Hg (iHg) is an environmental contaminant due to toxicity and diseases in human. However, a little is known about the underlying mechanisms responsible for iHg toxicity. Selenium (Se) is an essential trace element, recognized as an antioxidant and protective agent against metal toxicities. The purpose of this research was to investigate ameliorations of Se counter to iHg-mediated toxicity in PC12 cells. Cytotoxic assays have been shown that iHg (5 μM) caused oxidative stress and intrinsic apoptosis via ROS generation, oxidizing glutathione, damaging DNA, degrading cell membrane integrity, down-regulating mTOR, p-mTOR, akt and ERK1, and up-regulating cleaved caspase 3 and cytochrome c release in PC12 cells 48 h after incubation. Co-treatment of Se (5 μM) inhibited intrinsic apoptosis and oxidative stress induced by iHg (5 μM) via inhibiting ROS formation, boosting GPx contents, increasing reduced glutathione, limiting DNA degradation, improving cell membrane integrity, up-regulating mTOR, p-mTOR, akt, ERK1 and caspase 3, and down-regulating cleaved caspase 3 and cytochrome c leakage in PC12 cells. In conclusion, these results recommended that excessive ROS generation acts a critical role in iHg-influenced oxidative stress and co-treatment of Se attenuates iHg-cytotoxicity through its antioxidant properties.
Collapse
Affiliation(s)
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Md Tajuddin Sikder
- Department of Public Health and Informatics, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Toshiyuki Hosokawa
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, 060-0817, Japan
| | - Takeshi Saito
- Faculty of Health Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan; Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
21
|
Bjørklund G, Pivina L, Dadar M, Semenova Y, Chirumbolo S, Aaseth J. Mercury Exposure, Epigenetic Alterations and Brain Tumorigenesis: A Possible Relationship? Curr Med Chem 2020; 27:6596-6610. [DOI: 10.2174/0929867326666190930150159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/11/2019] [Accepted: 08/30/2019] [Indexed: 12/09/2022]
Abstract
The risk assessment of mercury (Hg), in both wildlife and humans, represents an increasing
challenge. Increased production of Reactive Oxygen Species (ROS) is a known Hg-induced
toxic effect, which can be accentuated by other environmental pollutants and by complex interactions
between environmental and genetic factors. Some epidemiological and experimental studies
have investigated a possible correlation between brain tumors and heavy metals. Epigenetic modifications
in brain tumors include aberrant activation of genes, hypomethylation of specific genes,
changes in various histones, and CpG hypermethylation. Also, Hg can decrease the bioavailability
of selenium and induce the generation of reactive oxygen that plays important roles in different
pathological processes. Modification of of metals can induce excess ROS and cause lipid peroxidation,
alteration of proteins, and DNA damage. In this review, we highlight the possible relationship
between Hg exposure, epigenetic alterations, and brain tumors.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| |
Collapse
|
22
|
Cephalic Neuronal Vesicle Formation is Developmentally Dependent and Modified by Methylmercury and sti-1 in Caenorhabditis elegans. Neurochem Res 2020; 45:2939-2948. [PMID: 33037975 DOI: 10.1007/s11064-020-03142-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 01/09/2023]
Abstract
Methylmercury (MeHg) is a potent neurotoxicant. The mechanisms underlying MeHg-induced neurotoxicity are not fully understood. Several studies have shown that protein chaperones are involved in MeHg toxicity. The protein co-chaperone, stress inducible protein 1 (STI-1), has important functions in protein quality control of the chaperone pathway. In the current study, dopaminergic (DAergic) cephalic (CEP) neuronal morphology was evaluated in the Caenorhabditis elegans (C. elegans) sti-1 knockout strain. In the control OH7193 strain (dat-1::mCherry + ttx-3::mCherry), we characterized the morphology of CEP neurons by checking the presence of attached vesicles and unattached vesicles to the CEP dendrites. We showed that the attached vesicles were only present in adult stage worms; whereas they were absent in the younger L3 stage worms. In the sti-1 knockout strain, MeHg treatment significantly altered the structures of CEP dendrites with discontinuation of mCherry fluorescence and shrinkage of CEP soma, as compared to the control. 12 h post treatment on MeHg-free OP50-seeded plates, the discontinuation of mCherry fluorescence of CEP dendrites in worms treated with 0.05 or 0.5 µM MeHg returned to levels statistically indistinguishable from control, while in worms treated with 5 µM MeHg a higher percentage of discontinuation of mCherry fluorescence persisted. Despite this strong effect by 5 µM MeHg, CEP attached vesicles were increased upon 0.05 or 0.5 µM MeHg treatment, yet unaffected by 5 µM MeHg. The CEP attached vesicles of sti-1 knockout strain were significantly increased shortly after MeHg treatment, but were unaffected 48 h post treatment. In addition, there was a significant interactive effect of MeHg and sti-1 on the number of attached vesicles. Knock down sti-1 via RNAi did not alter the number of CEP attached vesicles. Taking together, our data suggests that the increased occurrence of attached vesicles in adult stage worms could initiate a substantial loss of membrane components of CEP dendrites following release of vesicles, leading to the discontinuation of mCherry fluorescence, and the formation of CEP attached vesicles could be regulated by sti-1 to remove cellular debris for detoxification.
Collapse
|
23
|
Effects of foetal and breastfeeding exposure to methylmercury (MeHg) and retinol palmitate (Vitamin A) in rats: Redox parameters and susceptibility to DNA damage in liver. Mutat Res 2020; 858-860:503239. [PMID: 33198929 DOI: 10.1016/j.mrgentox.2020.503239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 08/01/2020] [Accepted: 08/14/2020] [Indexed: 01/01/2023]
Abstract
Methylmercury (MeHg) is known to be a chemical that poses a risk to public health. Exposure to MeHg and vitamin A (VitA) occurs through the ingestion of fish, present in the diet of most pregnant women. The absorption of these elements generates oxidative stress and can generate adaptations for future stressful events. Here, we assessed how exposure to VitA and/or MeHg during the fetal and breastfeeding period modulates the toxicity of MeHg reexposure in adulthood. We focus on redox systems and repairing DNA damage. Male rats (n = 50), were divided into 5 groups. Control received mineral oil; The VitA group received VitA during pregnancy, during breastfeeding and was exposed to MeHg in adulthood; VitA + MeHg received VitA and MeHg during pregnancy and breastfeeding and was exposed to MeHg in adulthood. The single exposure group (SE) was exposed to MeHg only in adulthood; and the MeHg group was pre-exposed to MeHg during pregnancy and breastfeeding and re-exposed to MeHg in adulthood. After treating the animals, we evaluated the redox status and the level of DNA damage in all rats. The results revealed that MeHg significantly decreased the activity of glutathione peroxidase (GPx) and sulfhydryl levels and increased the activity of superoxide dismutase (SOD), glutathione transferase, glutathione and carbonyl in all exposed groups. These results suggest that the second exposure to MeHg directly altered the effects of oxidation and that there were no specific effects associated with exposure during the fetal and breastfeeding periods. In addition, our findings indicate that MDA levels increased in MeHg and SE levels and no differences in MDA levels were observed between the VitA and MeHg + VitA groups. We also observed that animals pretreated exclusively with VitA showed residual damage similar to the control's DNA, while the other groups showed statistically higher levels of damage. In conclusion, low doses of MeHg and VitA during fetal and breastfeeding periods were unable to condition an adaptive response to subsequent exposure to MeHg in adulthood in relation to the observed levels of oxidative damage assessed after exposure.
Collapse
|
24
|
Bittencourt LO, Dionizio A, Nascimento PC, Puty B, Leão LKR, Luz DA, Silva MCF, Amado LL, Leite A, Buzalaf MR, Crespo-Lopez ME, Maia CSF, Lima RR. Proteomic approach underlying the hippocampal neurodegeneration caused by low doses of methylmercury after long-term exposure in adult rats. Metallomics 2020; 11:390-403. [PMID: 30525157 DOI: 10.1039/c8mt00297e] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Methylmercury (MeHg) is an important toxicant that causes cognitive dysfunctions in humans. This study aimed to investigate the proteomic and biochemical alterations of the hippocampus associated with behavioural consequences of low doses of MeHg in a long-term exposure model, and to realistically mimic in vivo the result of human exposure to this toxicant. Adult Wistar male rats were exposed to a dose of MeHg at 0.04 mg kg-1 day-1 by gavage for 60 days. Total mercury (Hg) content was significantly increased in the hippocampal parenchyma. The increase in the Hg levels was capable of reducing neuron and astrocyte cell density in the CA1, CA3, hilus and dentate gyrus regions, increasing both malondialdehyde and nitrite levels and decreasing antioxidant capacity against peroxyl radicals. The proteomic analysis detected 1041 proteins with altered expression due to MeHg exposure, including 364 proteins with no expression, 295 proteins with de novo expression and 382 proteins with up- or down-regulated expression. This proteomic approach revealed alterations in pathways related to chemical synapses, metabolism, amino acid transport, cell energy, neurodegenerative processes and myelin maintenance. Therefore, even at low doses of MeHg exposure, it is possible to cause hippocampal damage in adult rats at many organisational levels, triggering oxidative stress and proteome misbalance, featuring a neurodegenerative process and culminating in long- and short-term memory and learning deficits.
Collapse
Affiliation(s)
- Leonardo Oliveira Bittencourt
- Laboratory of Structural and Functional Biology, Institute of Biological Sciences, Federal University of Pará, No 125, Augusto Corrêa Street N. 01, Guamá, 66075-900, Belém, Pará, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Binte Hossain KF, Rahman MM, Sikder MT, Hosokawa T, Saito T, Kurasaki M. Regulatory effects of dihydrolipoic acid against inorganic mercury-mediated cytotoxicity and intrinsic apoptosis in PC12 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110238. [PMID: 32036095 DOI: 10.1016/j.ecoenv.2020.110238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) is an extremely dangerous environmental contaminant, responsible for human diseases including neurological disorders. However, the mechanisms of inorganic Hg (iHg)-induced cell death and toxicity are little known. Dihydrolipoic acid (DHLA) is the reduced form of a naturally occurring compound lipoic acid, which act as a potent antioxidant through multiple mechanisms. So we hypothesized that DHLA has an inhibitory role on iHg-cytotoxicity. The purposes of this research were to investigate mechanism/s of cytotoxicity of iHg, as well as, the cyto-protection of DHLA against iHg induced toxicity using PC12 cells. Treatment of PC12 cells with HgCl2 (Hg2+) (0-2.5 μM) for 48 h resulted in significant toxic effects, such as, cell viability loss, high level of lactate dehydrogenase (LDH) release, DNA damage, cellular glutathione (GSH) level decrease and increased Hg accumulation. In addition, protein level expressions of akt, p-akt, mTOR, GR, NFkB, ERK1, Nrf2 and HO-1 in cells were downregulated; and cleaved caspase 3 and cytochrome c release were upregulated after Hg2+ (2.5 μM) exposure and thus inducing apoptosis. Hg2+induced apoptosis was also confirmed by flow cytometry. However, pretreatment with DHLA (50 μM) for 3 h before Hg2+ (2.5 μM) exposure showed inhibition against iHg2+-induced cytotoxicity by reversing cell viability loss, LDH release, DNA damage, GSH decrease and inhibiting Hg accumulation. Moreover, DHLA pretreatment reversed the protein level expressions of akt, p-akt, mTOR, GR, NFkB, ERK1, Nrf2, HO-1, cleaved caspase 3 and cytochrome c. In conclusion, results showed that DHLA could attenuate Hg2+-induced cytotoxicity via limiting Hg accumulation, boosting up of antioxidant defense, and inhibition of apoptosis in cells.
Collapse
Affiliation(s)
| | - Md Mostafizur Rahman
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan; Department of Environmental Science, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Md Tajuddin Sikder
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan; Department of Public Health and Informatics, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Toshiyuki Hosokawa
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, 060-0817, Japan
| | - Takeshi Saito
- Faculty of Health Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan; Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
26
|
Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U. Toxicity of mercury: Molecular evidence. CHEMOSPHERE 2020; 245:125586. [PMID: 31881386 DOI: 10.1016/j.chemosphere.2019.125586] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 05/25/2023]
Abstract
Minamata disease in Japan and the large-scale poisoning by methylmercury (MeHg) in Iraq caused wide public concerns about the risk emanating from mercury for human health. Nowadays, it is widely known that all forms of mercury induce toxic effects in mammals, and increasing evidence supports the concern that environmentally relevant levels of MeHg could impact normal biological functions in wildlife. The information of mechanism involved in mercurial toxicity is growing but knowledge gaps still exist between the adverse effects and mechanisms of action, especially at the molecular level. A body of data obtained from experimental studies on mechanisms of mercurial toxicity in vivo and in vitro points to that disruption of the antioxidant system may play an important role in the mercurial toxic effects. Moreover, the accumulating evidence indicates that signaling transduction, protein or/and enzyme activity, and gene regulation are involving in mediating toxic and adaptive response to mercury exposure. We conducted here a comprehensive review of mercurial toxic effects on wildlife and human, in particular synthesized key findings of molecular pathways involved in mercurial toxicity from the cells to human. We discuss the molecular evidence related mercurial toxicity to the adverse effects, with particular emphasis on the gene regulation. The further studies relying on Omic analysis connected to adverse effects and modes of action of mercury will aid in the evaluation and validation of causative relationship between health outcomes and gene expression.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.
| | - Yuanyuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Zidie Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Uwe Strähle
- Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
27
|
Ke T, Bornhorst J, Schwerdtle T, Santamaría A, Soare FAA, Rocha JBT, Farina M, Bowman AB, Aschner M. Therapeutic Efficacy of the N,N' Bis-(2-Mercaptoethyl) Isophthalamide Chelator for Methylmercury Intoxication in Caenorhabditis elegans. Neurotox Res 2020; 38:133-144. [PMID: 32236898 DOI: 10.1007/s12640-020-00194-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
Methylmercury (MeHg) is a global pollutant and potent neurotoxin. In humans, MeHg damages the central nervous system (CNS), causing irreversible neuronal shrinkage, and neuronal loss. Most chelators for clinical mercury detoxification are thiol-containing agents. N,N 'bis-(2-mercaptoethyl) isophthalamide (NBMI) is a lipophilic thiol agent synthesized from natural chemicals. NBMI has high affinity for mercury, cadmium and lead, and can decrease their concentrations in polluted water. However, the efficacy of NBMI for MeHg toxicity has yet to be evaluated in intact animals. Here we used the nematode Caenorhabditis elegans (C. elegans) to test the efficacy of NBMI in attenuating MeHg toxicity in vivo in the whole organism. The results showed that NBMI reduced both the acute toxicity (125 μM MeHg, 1 h) and chronic (5 μM MeHg, 24 h) MeHg toxicity. Co-treatment with NBMI achieved maximal efficacy against MeHg toxicity, however delayed treatment 6 days after initiation of exposure was also effective at reducing neurotoxicity. Co-treatment of NBMI reduced the worms' death rate, structural damage in DAergic neurons, and restored antioxidant response levels. While this study provides proof of principle for the therapeutic value of NBMI in MeHg toxicity, future studies are needed to address the cellular and molecular mechanisms and translatability of these effects to humans and other animals.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA
| | - Julia Bornhorst
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | | | - João B T Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907-2051, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA.
| |
Collapse
|
28
|
Chen Y, Qin C, Huang J, Tang X, Liu C, Huang K, Xu J, Guo G, Tong A, Zhou L. The role of astrocytes in oxidative stress of central nervous system: A mixed blessing. Cell Prolif 2020; 53:e12781. [PMID: 32035016 PMCID: PMC7106951 DOI: 10.1111/cpr.12781] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/17/2019] [Accepted: 01/20/2020] [Indexed: 02/05/2023] Open
Abstract
Central nervous system (CNS) maintains a high level of metabolism, which leads to the generation of large amounts of free radicals, and it is also one of the most vulnerable organs to oxidative stress. Emerging evidences have shown that, as the key homeostatic cells in CNS, astrocytes are deeply involved in multiple aspects of CNS function including oxidative stress regulation. Besides, the redox level in CNS can in turn affect astrocytes in morphology and function. The complex and multiple roles of astrocytes indicate that their correct performance is crucial for the normal functioning of the CNS, and its dysfunction may result in the occurrence and progression of various neurological disorders. To date, the influence of astrocytes in CNS oxidative stress is rarely reviewed. Therefore, in this review we sum up the roles of astrocytes in redox regulation and the corresponding mechanisms under both normal and different pathological conditions.
Collapse
Affiliation(s)
- Yaxing Chen
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Qin
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Jianhan Huang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Tang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Keru Huang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Guo
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Wang G, DiBari J, Bind E, Steffens AM, Mukherjee J, Bartell TR, Bellinger DC, Hong X, Ji Y, Wang MC, Wills-Karp M, Cheng TL, Wang X. In utero exposure to mercury and childhood overweight or obesity: counteracting effect of maternal folate status. BMC Med 2019; 17:216. [PMID: 31775748 PMCID: PMC6882077 DOI: 10.1186/s12916-019-1442-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/07/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Low-dose mercury (Hg) exposure has been associated with cardiovascular diseases, diabetes, and obesity in adults, but it is unknown the metabolic consequence of in utero Hg exposure. This study aimed to investigate the association between in utero Hg exposure and child overweight or obesity (OWO) and to explore if adequate maternal folate can mitigate Hg toxicity. METHODS This prospective study included 1442 mother-child pairs recruited at birth and followed up to age 15 years. Maternal Hg in red blood cells and plasma folate levels were measured in samples collected 1-3 days after delivery (a proxy for third trimester exposure). Adequate folate was defined as plasma folate ≥ 20.4 nmol/L. Childhood OWO was defined as body mass index ≥ 85% percentile for age and sex. RESULTS The median (interquartile range) of maternal Hg levels were 2.11 (1.04-3.70) μg/L. Geometric mean (95% CI) of maternal folate levels were 31.1 (30.1-32.1) nmol/L. Maternal Hg levels were positively associated with child OWO from age 2-15 years, independent of maternal pre-pregnancy OWO, diabetes, and other covariates. The relative risk (RR = 1.24, 95% CI 1.05-1.47) of child OWO associated with the highest quartile of Hg exposure was 24% higher than those with the lowest quartile. Maternal pre-pregnancy OWO and/or diabetes additively enhanced Hg toxicity. The highest risk of child OWO was found among children of OWO and diabetic mothers in the top Hg quartile (RR = 2.06; 95% CI 1.56-2.71) compared to their counterparts. Furthermore, adequate maternal folate status mitigated Hg toxicity. Given top quartile Hg exposure, adequate maternal folate was associated with a 34% reduction in child OWO risk (RR = 0.66, 95% CI 0.51-0.85) as compared with insufficient maternal folate. There was a suggestive interaction between maternal Hg and folate levels on child OWO risk (p for interaction = 0.086). CONCLUSIONS In this US urban, multi-ethnic population, elevated in utero Hg exposure was associated with a higher risk of OWO in childhood, and such risk was enhanced by maternal OWO and/or diabetes and reduced by adequate maternal folate. These findings underscore the need to screen for Hg and to optimize maternal folate status, especially among mothers with OWO and/or diabetes.
Collapse
Affiliation(s)
- Guoying Wang
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA.
| | - Jessica DiBari
- Division of Research, Office of Epidemiology and Research, Maternal and Child Health Bureau, Health Resources and Services Administration, 5600 Fishers Ln, Rockville, MD, 20852, USA
| | - Eric Bind
- Metals Laboratory, Environmental and Chemical Laboratory Services, The New Jersey Department of Health, Trenton, NJ, 08628, USA
| | - Andrew M Steffens
- Metals Laboratory, Environmental and Chemical Laboratory Services, The New Jersey Department of Health, Trenton, NJ, 08628, USA
| | - Jhindan Mukherjee
- Metals Laboratory, Environmental and Chemical Laboratory Services, The New Jersey Department of Health, Trenton, NJ, 08628, USA
| | - Tami R Bartell
- Mary Ann & J. Milburn Smith Child Health Research, Outreach and Advocacy Center, Stanley Manne Children's Research Institute, Ann & Robert H Lurie Children's Hospital of Chicago, 2430 N Halsted St, Chicago, IL, 60614, USA
| | - David C Bellinger
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Xiumei Hong
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - Yuelong Ji
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - Mei-Cheng Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe street, Baltimore, MD, 21205, USA
| | - Marsha Wills-Karp
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe street, Baltimore, MD, 21205, USA
| | - Tina L Cheng
- Department of Pediatrics, Johns Hopkins School of Medicine, 615 N. Wolfe street, Baltimore, MD, 21205, USA
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, 615 N. Wolfe street, Baltimore, MD, 21205, USA
| |
Collapse
|
30
|
Fan S, Xian X, Li L, Yao X, Hu Y, Zhang M, Li W. Ceftriaxone Improves Cognitive Function and Upregulates GLT-1-Related Glutamate-Glutamine Cycle in APP/PS1 Mice. J Alzheimers Dis 2019; 66:1731-1743. [PMID: 30452416 DOI: 10.3233/jad-180708] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is characterized by progressive impairment of learning, memory, and cognitive deficits. Glutamate is the major excitatory neurotransmitter in the central nervous system and plays an important role in learning, memory, and cognition. The homeostasis and reutilization of glutamate are dependent on astrocytic uptake by glutamate transporter-1 (GLT-1) and the subsequent glutamate-glutamine cycle. Increasing evidence showed impairments in GLT-1 expression and uptake activity and glutamate-glutamine cycle in AD. Ceftriaxone (Cef) has been reported to upregulate the expression and uptake of GLT-1. Therefore, the present study was undertaken to explore whether Cef can improve cognitive deficits of APP/PS1 mice in early stage of AD by upregulating GLT-1 expression, and then promoting the glutamate-glutamine cycle. It was shown that Cef treatment significantly alleviated the cognitive deficits measured by Morris water maze test and upregulated GLT-1 protein expression in the hippocampus of APP/PS1 mice. Particularly, the activity of glutamine synthetase (GS) and the protein expression of system N glutamine transporter 1 (SN1), which are the key factors involved in the glutamate-glutamine cycle, were significantly upregulated as well after the Cef treatment. Furthermore, inhibition of GLT-1 uptake activity by dihydrokainic acid, an inhibitor of GLT-1, blocked the Cef-induced improvement on the cognitive deficits, GS activity, and SN1 expression. The above results suggested that Cef could improve cognitive deficits of APP/PS1 mice in early stage of AD by upregulating the GLT-1 expression, GS activity, and SN1 expression, which would lead to stimulating the glutamate-glutamine cycle.
Collapse
Affiliation(s)
- ShuJuan Fan
- Department of Pathophysiology, Neuroscience Center, Hebei Medical University, Shijiazhuang, P.R. China
| | - XiaoHui Xian
- Department of Pathophysiology, Neuroscience Center, Hebei Medical University, Shijiazhuang, P.R. China
| | - Li Li
- Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - XiaoGuang Yao
- Department of Pathophysiology, Neuroscience Center, Hebei Medical University, Shijiazhuang, P.R. China
| | - YuYan Hu
- Department of Pathophysiology, Neuroscience Center, Hebei Medical University, Shijiazhuang, P.R. China
| | - Min Zhang
- Department of Pathophysiology, Neuroscience Center, Hebei Medical University, Shijiazhuang, P.R. China
| | - WenBin Li
- Department of Pathophysiology, Neuroscience Center, Hebei Medical University, Shijiazhuang, P.R. China.,Aging and Cognition Neuroscience Laboratory of Hebei Province, Shijiazhuang, P.R. China
| |
Collapse
|
31
|
Ishihara Y, Itoh K, Oguro A, Chiba Y, Ueno M, Tsuji M, Vogel CFA, Yamazaki T. Neuroprotective activation of astrocytes by methylmercury exposure in the inferior colliculus. Sci Rep 2019; 9:13899. [PMID: 31554907 PMCID: PMC6761145 DOI: 10.1038/s41598-019-50377-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022] Open
Abstract
Methylmercury (MeHg) is well known to induce auditory disorders such as dysarthria. When we performed a global analysis on the brains of mice exposed to MeHg by magnetic resonance imaging, an increase in the T1 signal in the inferior colliculus (IC), which is localized in the auditory pathway, was observed. Therefore, the purpose of this study is to examine the pathophysiology and auditory dysfunction induced by MeHg, focusing on the IC. Measurement of the auditory brainstem response revealed increases in latency and decreases in threshold in the IC of mice exposed to MeHg for 4 weeks compared with vehicle mice. Incoordination in MeHg-exposed mice was noted after 6 weeks of exposure, indicating that IC dysfunction occurs earlier than incoordination. There was no change in the number of neurons or microglial activity, while the expression of glial fibrillary acidic protein, a marker for astrocytic activity, was elevated in the IC of MeHg-exposed mice after 4 weeks of exposure, indicating that astrogliosis occurs in the IC. Suppression of astrogliosis by treatment with fluorocitrate exacerbated the latency and threshold in the IC evaluated by the auditory brainstem response. Therefore, astrocytes in the IC are considered to play a protective role in the auditory pathway. Astrocytes exposed to MeHg increased the expression of brain-derived neurotrophic factor in the IC, suggesting that astrocytic brain-derived neurotrophic factor is a potent protectant in the IC. This study showed that astrogliosis in the IC could be an adaptive response to MeHg toxicity. The overall toxicity of MeHg might be determined on the basis of the balance between MeHg-mediated injury to neurons and protective responses from astrocytes.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8521, Japan. .,Center for Health and the Environment, University of California, Davis, CA, 95616, USA.
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2193, Japan
| | - Ami Oguro
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8521, Japan
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Mayumi Tsuji
- Department of Environmental Health, University of Occupational and Environmental Health, Fukuoka, 807-8555, Japan
| | - Christoph F A Vogel
- Center for Health and the Environment, University of California, Davis, CA, 95616, USA.,Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Takeshi Yamazaki
- Program of Life and Environmental Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8521, Japan
| |
Collapse
|
32
|
Yang B, Yin C, Zhou Y, Wang Q, Jiang Y, Bai Y, Qian H, Xing G, Wang S, Li F, Feng Y, Zhang Y, Cai J, Aschner M, Lu R. Curcumin protects against methylmercury-induced cytotoxicity in primary rat astrocytes by activating the Nrf2/ARE pathway independently of PKCδ. Toxicology 2019; 425:152248. [PMID: 31330227 PMCID: PMC6710134 DOI: 10.1016/j.tox.2019.152248] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/07/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental toxicant that leads to long-lasting neurological deficits in animals and humans. Curcumin, a polyphenol obtained from the rhizome of turmeric, has well-known antioxidant functions. Here, we evaluated curcumin's efficacy in mitigating MeHg-induced cytotoxicity and further investigated the underlying mechanism of this neuroprotection in primary rat astrocytes. Pretreatment with curcumin (2, 5, 10 and 20 μM for 3, 6, 12 or 24 h) protected against MeHg-induced (5 μM for 6 h) cell death in a time and dose-dependent manner. Curcumin (2, 5, 10 or 20 μM) pretreatment for 12 h significantly ameliorated the MeHg-induced astrocyte injury and oxidative stress, as evidenced by morphological alterations, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) generation, and glutathione (GSH) and catalase (CAT) levels. Moreover, curcumin pretreatment increased Nrf2 nuclear translocation and downstream enzyme expression, heme oxygenase-1 (HO-1) and NADPH quinone reductase-1 (NQO1). Knockdown of Nrf2 with siRNA attenuated the protective effect of curcumin against MeHg-induced cell death. However, both the pan-protein kinase C (PKC) inhibitor, Ro 31-8220, and the selective PKCδ inhibitor, rottlerin, failed to suppress the curcumin-activated Nrf2/Antioxidant Response Element(ARE) pathway and attenuate the protection exerted by curcumin. Taken together, these findings confirm that curcumin protects against MeHg-induced neurotoxicity by activating the Nrf2/ARE pathway and this protection is independent of PKCδ activation. More studies are needed to understand the mechanisms of curcumin cytoprotection.
Collapse
Affiliation(s)
- Bobo Yang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Changsheng Yin
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yun Zhou
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiang Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuanyue Jiang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yu Bai
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hai Qian
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guangwei Xing
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Suhua Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Fang Li
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yun Feng
- Department of Pharmacology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yubin Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jiyang Cai
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77550-1106, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Center for Experimental Research, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215132, China.
| |
Collapse
|
33
|
Creed JH, Peeri NC, Anic GM, Thompson RC, Olson JJ, LaRocca RV, Chowdhary SA, Brockman JD, Gerke TA, Nabors LB, Egan KM. Methylmercury exposure, genetic variation in metabolic enzymes, and the risk of glioma. Sci Rep 2019; 9:10861. [PMID: 31350461 PMCID: PMC6659774 DOI: 10.1038/s41598-019-47284-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 07/15/2019] [Indexed: 12/25/2022] Open
Abstract
Methylmercury (MeHg) is an environmental neurotoxin with human exposure mainly from dietary intake of contaminated fish. Exposure to MeHg has been implicated in neurological damage, but research on its role in cancers, specifically glioma, is limited. In a glioma case-control study, we examined associations between toenail mercury (Hg) and glioma risk. We also examined genetic polymorphisms in 13 genes related to MeHg metabolism for association with glioma risk; genetic associations were also studied in the UK Biobank cohort. Median toenail Hg in cases and controls, respectively, was 0.066 μg/g and 0.069 μg/g (interquartile range (IQR): 0.032-0.161 and 0.031-0.150 μg/g). Toenail Hg was not found to be significantly associated with glioma risk (Odds Ratio: 1.02; 95% Confidence Interval: 0.91, 1.14; p = 0.70 in analysis for ordinal trend with increasing quartile of toenail MeHg). No genetic variant was statistically significant in both of the studies; one variant, rs11859163 (MMP2) had a combined p-value of 0.02 though it was no longer significant after adjustment for multiple testing (Bonferroni corrected p = 1). This study does not support the hypothesis that exposure to MeHg plays a role in the development of glioma at levels of exposure found in this study population.
Collapse
Affiliation(s)
- Jordan H Creed
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Inc., Tampa, FL, 33612, USA
| | - Noah C Peeri
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Inc., Tampa, FL, 33612, USA
| | - Gabriella M Anic
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Inc., Tampa, FL, 33612, USA
| | - Reid C Thompson
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory School of Medicine, Atlanta, GA, 30322, USA
| | | | - Sajeel A Chowdhary
- Neuro-Oncology Program, Lynn Cancer Institute, 701 NW 13th Street, Boca Raton, FL, 33486, USA
| | - John D Brockman
- University of Missouri Research Reactor, University of Missouri, Columbia, MO, 65211, USA
| | - Travis A Gerke
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Inc., Tampa, FL, 33612, USA
| | - Louis B Nabors
- Neuro-oncology Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kathleen M Egan
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Inc., Tampa, FL, 33612, USA.
| |
Collapse
|
34
|
Scalise M, Console L, Galluccio M, Pochini L, Tonazzi A, Giangregorio N, Indiveri C. Exploiting Cysteine Residues of SLC Membrane Transporters as Targets for Drugs. SLAS DISCOVERY 2019; 24:867-881. [PMID: 31251685 DOI: 10.1177/2472555219856601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The observation that cysteine is the top gainer amino acid during evolution attracted the attention of scientists dealing with protein chemistry. The thiol group of cysteine, indeed, is a potential site for several types of reactions with variable specificity and strength. This feature proved to be promising also in the field of membrane transporters that represent boundary proteins fundamental for cell homeostasis. These proteins are classified, according to the driving force for transport, in primary or secondary active transporters. Another frequently used classification is nowadays based on phylogenesis. Two major groups are identified that take into account both criteria: the ABC and the SLC transporters, the second being much more numerous. The cellular localization of the transporters makes them very attractive for drug design. Moreover, the presence of at least one cysteine residue in all the annotated SLC transporters, so far, highlights the possibility of using the thiol (SH) residue for covalent drug targeting. Even if a delay exists in this research field due to the scarce knowledge of structure/function relationships, the setup of novel experimental tools for studying SLC proteins of plasma and organelle membranes opens an important perspective in pharmacology.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), Bari, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), Bari, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
35
|
Santana LNDS, Bittencourt LO, Nascimento PC, Fernandes RM, Teixeira FB, Fernandes LMP, Freitas Silva MC, Nogueira LS, Amado LL, Crespo-Lopez ME, Maia CDSF, Lima RR. Low doses of methylmercury exposure during adulthood in rats display oxidative stress, neurodegeneration in the motor cortex and lead to impairment of motor skills. J Trace Elem Med Biol 2019; 51:19-27. [PMID: 30466930 DOI: 10.1016/j.jtemb.2018.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
Despite the vast distribution among tissues, the central nervous system (CNS) represents the main target of methylmercury (MeHg) toxicity. However, few studies have evaluated the effects of MeHg exposure on the CNS at equivalent doses to human environmental exposure. In our study, we evaluated the motor cortex, an important area of motor control, in adult rats chronically exposed to MeHg in a concentration equivalent to those found in fish-eating populations exposed to mercury (Hg). The parameters evaluated were total Hg accumulation, oxidative stress, tissue damage, and behavioral assessment in functional actions that involved this cortical region. Our results show in exposed animals a significantly greater level of Hg in the motor cortex; increase of nitrite levels and lipid peroxidation, associated with decreased antioxidant capacity against peroxyl radicals; reduction of neuronal and astrocyte density; and poor coordination and motor learning impairment. Our data showed that chronic exposure at low doses to MeHg is capable of promoting damages to the motor cortex of adult animals, with changes in oxidative biochemistry misbalance, neurodegeneration, and motor function impairment.
Collapse
Affiliation(s)
- Luana Nazaré da Silva Santana
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rafael Monteiro Fernandes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Francisco Bruno Teixeira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Luanna Melo Pereira Fernandes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Marcia Cristina Freitas Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Lygia Sega Nogueira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Lílian Lund Amado
- Laboratory of Ecotoxicology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil.
| |
Collapse
|
36
|
Chen N, Lin M, Liu N, Wang S, Xiao X. Methylmercury-induced testis damage is associated with activation of oxidative stress and germ cell autophagy. J Inorg Biochem 2019; 190:67-74. [DOI: 10.1016/j.jinorgbio.2018.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
|
37
|
Verkhratsky A, Parpura V, Rodriguez-Arellano JJ, Zorec R. Astroglia in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:273-324. [PMID: 31583592 DOI: 10.1007/978-981-13-9913-8_11] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease is the most common cause of dementia. Cellular changes in the brains of the patients suffering from Alzheimer's disease occur well in advance of the clinical symptoms. At the cellular level, the most dramatic is a demise of neurones. As astroglial cells carry out homeostatic functions of the brain, it is certain that these cells are at least in part a cause of Alzheimer's disease. Historically, Alois Alzheimer himself has recognised this at the dawn of the disease description. However, the role of astroglia in this disease has been understudied. In this chapter, we summarise the various aspects of glial contribution to this disease and outline the potential of using these cells in prevention (exercise and environmental enrichment) and intervention of this devastating disease.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Faculty of Health and Medical Sciences, Center for Basic and Translational Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA.,University of Rijeka, Rijeka, Croatia
| | - Jose Julio Rodriguez-Arellano
- BioCruces Health Research Institute, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Department of Neuroscience, The University of the Basque Country UPV/EHU, Plaza de Cruces 12, 48903, Barakaldo, Bizkaia, Spain
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica BIOMEDICAL, Ljubljana, Slovenia
| |
Collapse
|
38
|
Verkhratsky A, Ho MS, Vardjan N, Zorec R, Parpura V. General Pathophysiology of Astroglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:149-179. [PMID: 31583588 PMCID: PMC7188602 DOI: 10.1007/978-981-13-9913-8_7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Astroglial cells are involved in most if not in all pathologies of the brain. These cells can change the morpho-functional properties in response to pathology or innate changes of these cells can lead to pathologies. Overall pathological changes in astroglia are complex and diverse and often vary with different disease stages. We classify astrogliopathologies into reactive astrogliosis, astrodegeneration with astroglial atrophy and loss of function, and pathological remodelling of astrocytes. Such changes can occur in neurological, neurodevelopmental, metabolic and psychiatric disorders as well as in infection and toxic insults. Mutation in astrocyte-specific genes leads to specific pathologies, such as Alexander disease, which is a leukodystrophy. We discuss changes in astroglia in the pathological context and identify some molecular entities underlying pathology. These entities within astroglia may repent targets for novel therapeutic intervention in the management of brain pathologies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Margaret S Ho
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
- Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
- Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
39
|
Espitia-Pérez P, Albino SM, da Rosa HT, Silveira AK, Espitia-Pérez L, Brango H, Moraes DP, Hermann PRS, Mingori M, Barreto F, Kunzler A, Gelain DP, Schnorr CE, Moreira JCF. Effects of methylmercury and retinol palmitate co-administration in rats during pregnancy and breastfeeding: Metabolic and redox parameters in dams and their offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:603-615. [PMID: 30031321 DOI: 10.1016/j.ecoenv.2018.06.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Ubiquitous low-dose methylmercury (MeHg) exposure through an increased fish consumption represents a global public health problem, especially among pregnant women. A plethora of micronutrients presented in fish affects MeHg uptake/distribution, but limited data is available. Vitamin A (VitA), another fish micronutrient is used in nutritional supplementation, especially during pregnancy. However, there is no information about the health effects arising from their combined exposure. Therefore, the present study aimed to examine the effects of both MeHg and retinyl palmitate administered on pregnant and lactating rats in metabolic and redox parameters from dams and their offspring. Thirty Wistar female rats were orally supplemented with MeHg (0,5 mg/kg/day) and retinyl palmitate (7500 µg RAE/kg/day) via gavage, either individually or in combination from the gestational day 0 to weaning. For dams (150 days old) and their offspring (31 days old), glycogen accumulation (hepatic and cardiac) and retinoid contents (plasma and liver) were analyzed. Hg deposition in liver tissue was quantified. Redox parameters (liver, kidney, and heart) were evaluated for both animals. Cytogenetic damage was analyzed with micronucleus test. Our results showed no general toxic or metabolic alterations in dams and their offspring by MeHg-VitA co-administration during pregnancy and lactation. However, increased lipoperoxidation in maternal liver and a disrupted pro-oxidant response in the heart of male pups was encountered, with apparently no particular effects in the antioxidant response in female offspring. GST activity in dam kidney was altered leading to possible redox disruption of this tissue with no alterations in offspring. Finally, the genomic damage was exacerbated in both male and female pups. In conclusion, low-dose MeHg exposure and retinyl palmitate supplementation during gestation and lactation produced a potentiated pro-oxidant effect, which was tissue-specific. Although this is a pre-clinical approach, we recommend precaution for pregnant women regarding food consumption, and we encourage more epidemiological studies to assess possible modulations effects of MeHg-VitA co-administration at safe or inadvertently used doses in humans, which may be related to specific pathologies in mothers and their children.
Collapse
Affiliation(s)
- Pedro Espitia-Pérez
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Suelen Marin Albino
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Helen Tais da Rosa
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alexandre Kleber Silveira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lyda Espitia-Pérez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Calle 38 Carrera 1W, Barrio Juan XXIII, Montería, Córdoba, Colombia
| | - Hugo Brango
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Diogo Pompéu Moraes
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Paolla Rissi Silva Hermann
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Moara Mingori
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiano Barreto
- Laboratório de Análise de Resíduos de Pesticidas e Medicamentos Veterinários (RPM), Laboratório Nacional Agropecuário RS, Estrada da Ponta Grossa 3036, CEP: 91780-580 Porto Alegre, Rio Grande do Sul, Brazil
| | - Alice Kunzler
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Eduardo Schnorr
- Departamento de Civil y Ambiental, Programa de Ingeniería Ambiental, Universidad de la Costa, Calle 58 #55- 66, Barranquilla, Atlántico, Colombia
| | - José Cláudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
40
|
Wu F, Huang W, Liu Q, Xu X, Zeng J, Cao L, Hu J, Xu X, Gao Y, Jia S. Responses of Antioxidant Defense and Immune Gene Expression in Early Life Stages of Large Yellow Croaker ( Pseudosciaena crocea) Under Methyl Mercury Exposure. Front Physiol 2018; 9:1436. [PMID: 30364149 PMCID: PMC6191496 DOI: 10.3389/fphys.2018.01436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/21/2018] [Indexed: 01/22/2023] Open
Abstract
Early life stages of marine organisms are the most sensitive stages to environment stressors including pollutants. In order to understand the toxicological effects induced by MeHg exposure on juveniles of large yellow croaker (Pseudosciaena crocea), a toxicity test was performed wherein fish were exposed to sub-lethal concentrations of MeHg under laboratory conditions (18 ± 1°C; 26 ± 1 in salinity). After 30 days of 0–4.0 μg L-1 MeHg exposure, SOD activity was significantly decreased in the 0.25, 1.0, and 4.0 μg L-1 treatments; while CAT activity was significantly increased in the 4.0 μg L-1 treatments; GSH level, GPx activity were significantly elevated in the 4.0 μg L-1 treatments, respectively. Meanwhile, malondialdehyde content was also significantly increased in the 1.0 and 4.0 μg L-1 treatments with respect to the control. Acetylcholinesterase activity was significantly decreased by 18.3, 25.2, and 21.7% in the 0.25, 1.0, and 4.0 μg L-1 treatments, respectively. The expression of TCTP, GST3, Hsp70, Hsp27 mRNA were all up-regulated in juveniles with a dose-dependent manner exposed to MeHg. These results suggest that large yellow croaker juveniles have the potential to regulate the levels of antioxidant enzymes and initiate immune response in order to protect fish to some extent from oxidative stress induced by MeHg.
Collapse
Affiliation(s)
- Fangzhu Wu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Qiang Liu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Xiaoqun Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Jiangning Zeng
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China.,Ocean College, Zhejiang University, Hangzhou, China
| | - Liang Cao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ji Hu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Xudan Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Yuexin Gao
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Shenghua Jia
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China.,Zhejiang Surveying Institute of Estuary and Coast, Hangzhou, China
| |
Collapse
|
41
|
Continuous Exposure to Inorganic Mercury Affects Neurobehavioral and Physiological Parameters in Mice. J Mol Neurosci 2018; 66:291-305. [PMID: 30251082 DOI: 10.1007/s12031-018-1176-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/14/2018] [Indexed: 02/02/2023]
Abstract
Contamination with mercury is a real health issue for humans with physiological consequences. The main objective of the present study was to assess the neurotoxicological effect of inorganic mercury: HgCl2. For this, adult mice were exposed prenatally, postnatally, and during the adult period to a low level of the metal, and their behavior and antioxidant status were analyzed. First, we showed that mercury concentrations in brain tissue of treated animals showed significant bioaccumulation, which resulted in behavioral deficits in adult mice. Thus, the treated mice developed an anxiogenic state, as evidenced by open field and elevated plus maze tests. This anxiety-like behavior was accompanied by a decrease in social behavior. Furthermore, an impairment of memory in these treated mice was detected in the object recognition and Y-maze tests. The enzymatic activity of the antioxidant system was assessed in eight brain structures, including the cerebral cortex, olfactory bulb, hippocampus, hypothalamus, mesencephalon, pons, cerebellum, and medulla oblongata. The results show that chronic exposure to HgCl2 caused alterations in the activity of catalase, thioredoxin reductase, glutathione peroxidase, superoxide dismutase, and glutathione S-transferase, accompanied by peroxidation of membrane lipids, indicating a disturbance in intracellular redox homeostasis with subsequent increased intracellular oxidative stress. These changes in oxidative stress were concomitant with a redistribution of essential heavy metals, i.e., iron, copper, zinc, and magnesium, in the brain as a possible response to homeostatic dysfunction following chronic exposure. The alterations observed in overall oxidative stress could constitute the basis of the anxiety-like state and the neurocognitive disorders observed.
Collapse
|
42
|
Pereira LC, de Paula ES, Pazin M, Carneiro MFH, Grotto D, Barbosa F, Dorta DJ. Niacin prevents mitochondrial oxidative stress caused by sub-chronic exposure to methylmercury. Drug Chem Toxicol 2018; 43:64-70. [PMID: 30192646 DOI: 10.1080/01480545.2018.1497045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Humans and animals can be exposed to different chemical forms of mercury (Hg) in the environment. For example, methylmercury (MeHg)-contaminated fish is part of the basic diet of the riparian population in the Brazilian Amazon Basin, which leads to high total blood and plasma Hg levels in people living therein. Hg induces toxic effects mainly through oxidative stress. Different compounds have been used to prevent the damage caused by MeHg-induced reactive oxygen species (ROS). This study aims to investigate the in vivo effects of sub-chronic exposure to low MeHg levels on the mitochondrial oxidative status and to evaluate the niacin protective effect against MeHg-induced oxidative stress. For this purpose, Male Wistar rats were divided into four groups: control group, treated with drinking water on a daily basis; group exposed to MeHg at a dose of 100 µg/kg/day; group that received niacin at a dose of 50 mg/kg/day in drinking water, with drinking water being administered by gavage; group that received niacin at a dose of 50 mg/kg/day in drinking water as well as MeHg at a dose of 100 µg/kg/day. After 12 weeks, the rats, which weighed 500-550 g, were sacrificed, and their liver mitochondria were isolated by standard differential centrifugation. Sub-chronic exposure to MeHg (100 µg/kg/day for 12 weeks) led to mitochondrial swelling (p < 0.05) and induced ROS overproduction as determined by increased DFCH oxidation (p < 0.05), increased gluthatione oxidation (p < 0.05), and reduced protein thiol content (p < 0.05). In contrast, niacin supplementation inhibited oxidative stress, which counteracted and minimized the toxic MeHg effects on mitochondria.
Collapse
Affiliation(s)
- Lílian Cristina Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil.,Faculdade de Ciências Agronômicas, Departamento de Bioprocessos e Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brasil.,Departamento de Patologia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, TOXICAM - Núcleo de Avaliação do Impacto Ambiental sobre a Saúde Humana, Botucatu, São Paulo, Brazil
| | - Eloisa Silva de Paula
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Murilo Pazin
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Maria Fernanda Hornos Carneiro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Denise Grotto
- Laboratório de Pesquisa em Toxicologia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade de Sorocaba, Sorocaba, São Paulo, Brasil
| | - Fernando Barbosa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Daniel Junqueira Dorta
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil.,Instituto Nacional de Tecnologias Alternativas de Detecção, Avaliação Toxicológica e Remoção de Micropututantes e Radioativos (INCT-DATREM), Unesp, Instituto de Química, Araraquara, São Paulo, Brasil
| |
Collapse
|
43
|
Antunes Dos Santos A, Ferrer B, Marques Gonçalves F, Tsatsakis AM, Renieri EA, Skalny AV, Farina M, Rocha JBT, Aschner M. Oxidative Stress in Methylmercury-Induced Cell Toxicity. TOXICS 2018; 6:toxics6030047. [PMID: 30096882 PMCID: PMC6161175 DOI: 10.3390/toxics6030047] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
Methylmercury (MeHg) is a hazardous environmental pollutant, which elicits significant toxicity in humans. The accumulation of MeHg through the daily consumption of large predatory fish poses potential health risks, and the central nervous system (CNS) is the primary target of toxicity. Despite well-described neurobehavioral effects (i.e., motor impairment), the mechanisms of MeHg-induced toxicity are not completely understood. However, several lines of evidence point out the oxidative stress as an important molecular mechanism in MeHg-induced intoxication. Indeed, MeHg is a soft electrophile that preferentially interacts with nucleophilic groups (mainly thiols and selenols) from proteins and low-molecular-weight molecules. Such interaction contributes to the occurrence of oxidative stress, which can produce damage by several interacting mechanisms, impairing the function of various molecules (i.e., proteins, lipids, and nucleic acids), potentially resulting in modulation of different cellular signal transduction pathways. This review summarizes the general aspects regarding the interaction between MeHg with regulators of the antioxidant response system that are rich in thiol and selenol groups such as glutathione (GSH), and the selenoenzymes thioredoxin reductase (TrxR) and glutathione peroxidase (Gpx). A particular attention is directed towards the role of the PI3K/Akt signaling pathway and the nuclear transcription factor NF-E2-related factor 2 (Nrf2) in MeHg-induced redox imbalance.
Collapse
Affiliation(s)
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Aristides M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece.
| | - Elisavet A Renieri
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece.
| | - Anatoly V Skalny
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 150000, Russia.
- Laboratory of Biotechnology and Applied Bioelementology, Yaroslavl State University, Yaroslavl 150014, Russia.
- All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow 150000, Russia.
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis 88040-900, Santa Catarina, Brazil.
| | - João B T Rocha
- Department of Biochemistry, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
44
|
Nielsen KM, Zhang Y, Curran TE, Magnuson JT, Venables BJ, Durrer KE, Allen MS, Roberts AP. Alterations to the Intestinal Microbiome and Metabolome of Pimephales promelas and Mus musculus Following Exposure to Dietary Methylmercury. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8774-8784. [PMID: 29943971 DOI: 10.1021/acs.est.8b01150] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mercury is a global contaminant, which may be microbially transformed into methylmercury (MeHg), which bioaccumulates. This results in potentially toxic body burdens in high trophic level organisms in aquatic ecosystems and maternal transfer to offspring. We previously demonstrated effects on developing fish including hyperactivity, altered time-to-hatch, reduced survival, and dysregulation of the dopaminergic system. A link between gut microbiota and central nervous system function in teleosts has been established with implications for behavior. We sequenced gut microbiomes of fathead minnows exposed to dietary MeHg to determine microbiome effects. Dietary exposures were repeated with adult CD-1 mice. Metabolomics was used to screen for metabolome changes in mouse brain and larval fish, and results indicate effects on lipid metabolism and neurotransmission, supported by microbiome data. Findings suggest environmentally relevant exposure scenarios may cause xenobiotic-mediated dysbiosis of the gut microbiome, contributing to neurotoxicity. Furthermore, small-bodied teleosts may be a useful model species for studying certain types of neurodegenerative diseases, in lieu of higher vertebrates.
Collapse
Affiliation(s)
- Kristin M. Nielsen
- Department of Biological Sciences and Advanced Environmental Research Institute , University of North Texas , 1155 Union Circle , Denton , Texas 76203 , United States
| | - Yan Zhang
- Department of Microbiology, Immunology and Genetics , University of North Texas Health Science Center , 3500 Camp Bowie Blvd. , Fort Worth , Texas 76107 , United States
| | - Thomas E Curran
- Department of Biological Sciences and Advanced Environmental Research Institute , University of North Texas , 1155 Union Circle , Denton , Texas 76203 , United States
| | - Jason T Magnuson
- Department of Biological Sciences and Advanced Environmental Research Institute , University of North Texas , 1155 Union Circle , Denton , Texas 76203 , United States
| | - Barney J Venables
- Department of Biological Sciences and Advanced Environmental Research Institute , University of North Texas , 1155 Union Circle , Denton , Texas 76203 , United States
| | - Katherine E Durrer
- Department of Microbiology, Immunology and Genetics , University of North Texas Health Science Center , 3500 Camp Bowie Blvd. , Fort Worth , Texas 76107 , United States
| | - Michael S Allen
- Department of Microbiology, Immunology and Genetics , University of North Texas Health Science Center , 3500 Camp Bowie Blvd. , Fort Worth , Texas 76107 , United States
| | - Aaron P Roberts
- Department of Biological Sciences and Advanced Environmental Research Institute , University of North Texas , 1155 Union Circle , Denton , Texas 76203 , United States
| |
Collapse
|
45
|
Morcillo P, Esteban MA, Cuesta A. Metal detoxification in the marine teleost fish Sparus aurata L. and Dicentrarchus labrax L. MARINE POLLUTION BULLETIN 2018; 133:835-840. [PMID: 30041384 DOI: 10.1016/j.marpolbul.2018.06.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/25/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Transcription of ATP-binding cassette (ABC) transporters has been evaluated in cell lines and primary cultures from gilthead seabream and European sea bass teleost fish exposed to methylmercury (MeHg), arsenic, cadmium or lead. The mRNA expression levels showed abcb1, abcc2 and abcc5 constitutive gene expression in all seabream tissues analyzed; however, we were unable to detect any constitutive transcription of abcb1 in many of the sea bass tissues. Furthermore, ABC mRNA expression levels were all affected by metal exposure, especially in the case of fish cell lines and erythrocytes, and greatly depended on cell type and fish species. Thus, while ABC transcription was up-regulated in the seabream cell line it was down-regulated in the sea bass cell line, while the opposite occurred in the primary cultures. All these data point to the importance of ABC transporters in metal detoxification and in the differential regulation in seabream and sea bass cells.
Collapse
Affiliation(s)
- Patricia Morcillo
- Fish Innate Immune System Group, Department of Cellular Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer, 209, 1300 Morris Park Ave, Bronx 10461, NY, USA
| | - María A Esteban
- Fish Innate Immune System Group, Department of Cellular Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cellular Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
46
|
Karri V, Ramos D, Martinez JB, Odena A, Oliveira E, Coort SL, Evelo CT, Mariman ECM, Schuhmacher M, Kumar V. Differential protein expression of hippocampal cells associated with heavy metals (Pb, As, and MeHg) neurotoxicity: Deepening into the molecular mechanism of neurodegenerative diseases. J Proteomics 2018; 187:106-125. [PMID: 30017948 DOI: 10.1016/j.jprot.2018.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/29/2022]
Abstract
Chronic exposure to heavy metals such as Pb, As, and MeHg can be associated with an increased risk of developing neurodegenerative diseases. Our in vitro bioassays results showed the potency of heavy metals in the order of Pb < As < MeHg on hippocampal cells. The main objective of this study was combining in vitro label free proteomics and systems biology approach for elucidating patterns of biological response, discovering underlying mechanisms of Pb, As, and MeHg toxicity in hippocampal cells. The omics data was refined by using different filters and normalization and multilevel analysis tools were employed to explore the data visualization. The functional and pathway visualization was performed by using Gene ontology and PathVisio tools. Using these all integrated approaches, we identified significant proteins across treatments within the mitochondrial dysfunction, oxidative stress, ubiquitin proteome dysfunction, and mRNA splicing related to neurodegenerative diseases. The systems biology analysis revealed significant alterations in proteins implicated in Parkinson's disease (PD) and Alzheimer's disease (AD). The current proteomics analysis of three metals support the insight into the proteins involved in neurodegeneration and the altered proteins can be useful for metal-specific biomarkers of exposure and its adverse effects. SIGNIFICANCE The proteomics techniques have been claimed to be more sensitive than the conventional toxicological assays, facilitating the measurement of responses to heavy metals (Pb, As, and MeHg) exposure before obvious harm has occurred demonstrating their predictive value. Also, proteomics allows for the comparison of responses between Pb, As, and MeHg metals, permitting the evaluation of potency differences hippocampal cells of the brain. Hereby, the molecular information provided by pathway and gene functional analysis can be used to develop a more thorough understanding of each metal mechanism at the protein level for different neurological adverse outcomes (e.g. Parkinson's disease, Alzheimer's diseases). Efforts are put into developing proteomics based toxicity testing methods using in vitro models for improving human risk assessment. Some of the key proteins identified can also potentially be used as biomarkers in epidemiologic studies. These heavy metal response patterns shed new light on the mechanisms of mRNA splicing, ubiquitin pathway role in neurodegeneration, and can be useful for the development of molecular biomarkers of heavy metals exposure.
Collapse
Affiliation(s)
- Venkatanaidu Karri
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - David Ramos
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Julia Bauzá Martinez
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Antonia Odena
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Eliandre Oliveira
- Unidad de Toxicologia, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Susan L Coort
- Department of Bioinformatics, BiGCaT, NUTRIM, Maastricht University, 6229, ER, Maastricht, the Netherlands
| | - Chris T Evelo
- Department of Bioinformatics, BiGCaT, NUTRIM, Maastricht University, 6229, ER, Maastricht, the Netherlands
| | - Edwin C M Mariman
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain.
| |
Collapse
|
47
|
Shi Y, Wang ZE, Wu W, Wu D, Wang C, Peng X. Glutamine protects intestinal mucosa and promotes its transport after burn injury in rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1825-1835. [PMID: 31938290 PMCID: PMC6958174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/10/2018] [Indexed: 06/10/2023]
Abstract
Glutamine is an important energy source for intestinal epithelial cells (IEC); however, it is still controversial whether glutaminecan be fully utilized under pathological conditions. In this study, we investigated the changes in glutamine transport after burns and assessed the effects of exogenous glutamine administration. Finally, the potential underlying mechanisms were explored. Experimental rats were randomly divided into three groups: control group (C); burn group (B); burn+glutamine group (B+G). Rats in groups B+G and B received intragastric administration of isodose glutamine or alanine, respectively. At days 1, 3 and 5 after burns, the structure of intestinal mucosa and brush-border membrane vesicles (BBMV) were observed. The glutamine transport capacity of IEC and BBMV was detected. The synthesis of glutamine transporter ASCT2 and B0AT1 was determined. Moreover, the intestinal mucosal blood flow (IMBF), diamine oxidase activity, and the glutamine and ATP content were measured. The results showed that burn injury caused structural damage to IECs and BBMV, and significantly impaired the ability for glutamine transportation. Moreover, the mRNA and protein expressions of ASCT2 and B0AT1 as well as the glutamine and ATP content were markedly decreased. Compared with group B, most of these indicators in group B+G showed significant improvement, and approached normal levels. We conclude that glutamine administration can relieve intestinal damage, improve IMBF, promote energy synthesis and alleviate endoplasmic reticulum stress after burn injury. Finally, the synthesis and modification of ASCT2 and B0AT1 are promoted, which ultimately enhances intestinal glutamine transport.
Collapse
Affiliation(s)
- Yan Shi
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burns of PLA, Southwest Hospital, Third Military Medical UniversityChongqing 400038, PR China
| | - Zi-En Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burns of PLA, Southwest Hospital, Third Military Medical UniversityChongqing 400038, PR China
- Department of Burns, Union Hospital, Fujian Medical UniversityFuzhou 350001, PR China
| | - Wei Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burns of PLA, Southwest Hospital, Third Military Medical UniversityChongqing 400038, PR China
| | - Dan Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burns of PLA, Southwest Hospital, Third Military Medical UniversityChongqing 400038, PR China
| | - Chao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burns of PLA, Southwest Hospital, Third Military Medical UniversityChongqing 400038, PR China
| | - Xi Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burns of PLA, Southwest Hospital, Third Military Medical UniversityChongqing 400038, PR China
| |
Collapse
|
48
|
Oxidative stress, caspase-3 activation and cleavage of ROCK-1 play an essential role in MeHg-induced cell death in primary astroglial cells. Food Chem Toxicol 2018; 113:328-336. [PMID: 29428217 DOI: 10.1016/j.fct.2018.01.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
Methylmercury is a toxic environmental contaminant that elicits significant toxicity in humans. The central nervous system is the primary target of toxicity, and is particularly vulnerable during development. Rho-associated protein kinase 1 (ROCK-1) is a major downstream effector of the small GTPase RhoA and a direct substrate of caspase-3. The activation of ROCK-1 is necessary for membrane blebbing during apoptosis. In this work, we examined whether MeHg could affect the RhoA/ROCK-1 signaling pathway in primary cultures of mouse astrocytes. Exposure of cells with 10 μM MeHg decreased cellular viability after 24 h of incubation. This reduction in viability was preceded by a significant increase in intracellular and mitochondrial reactive oxygen species levels, as well as a reduced NAD+/NADH ratio. MeHg also induced an increase in mitochondrial-dependent caspase-9 and caspase-3, while the levels of RhoA protein expression were reduced or unchanged. We further found that MeHg induced ROCK-1 cleavage/activation and promoted LIMK1 and MYPT1 phosphorylation, both of which are the best characterized ROCK-1 downstream targets. Inhibiting ROCK-1 and caspases activation attenuated the MeHg-induced cell death. Collectively, these findings are the first to show that astrocytes exposed to MeHg showed increased cleavage/activation of ROCK-1, which was independent of the small GTPase RhoA.
Collapse
|
49
|
Elkhateeb A, Abdel Latif RR, Marzouk MM, Hussein SR, Kassem MES, Khalil WKB, El-Ansari MA. Flavonoid constituents of Dobera glabra leaves: amelioration impact against CCl 4-induced changes in the genetic materials in male rats. PHARMACEUTICAL BIOLOGY 2017; 55:139-145. [PMID: 27659804 PMCID: PMC7011971 DOI: 10.1080/13880209.2016.1230879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/12/2016] [Accepted: 08/27/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Dobera glabra (Forssk.) Poir (Salvadoraceae) is a highly valued tree with diverse importance as special mineral sourced feed and a folkloric tool for forecasting droughts. However, there are no reports on its phytochemical and biological investigations. OBJECTIVE Phytochemical investigation of D. glabra leaves and its protective potential against CCl4 inducing changes in the genetic materials. MATERIALS AND METHODS D. glabra extract, DGE (70% MeOH/H2O), was applied to polyamide column chromatography, eluting with MeOH/H2O of decreasing polarities, followed by preparative chromatographic tools, yielded seven compounds. Three DGE doses (50, 100 and 200 mg/kg bw/d) were administrated for 8 weeks intragastrically to male albino rats prior treated with CCl4 (0.5 mL/kg/bw). The reactive oxygen species (ROS) levels, expression changes of glutamate transporters (GLAST, GLT-1 and SNAT3) mRNA, DNA fragmentation and glutathione peroxidase (GPx) activity were investigated in the liver tissues of these rats. RESULTS Isorhamnetin-3-O-β-glucopyranoside-7-O-α-rhamnopyranoside, isorhamnetin-3-O-α-rhamnopyranoside-7-O-β-glucopyranoside, kaempferol-3,7-di-O-α-rhamnopyranoside, isorhamnetin-3-O-β-glucopyranoside, kaempferol-3-O-β-glucopyranoside, isorhamnetin and kaempferol were identified. DGE (200 mg/kg bw) + CCl4 exhibited the most significant reduction in ROS levels and DNA fragmentation with 251.3% and141% compared to 523.1% and 273.2% for CCl4, respectively. Additionally, it increased significantly the mRNA expression of GLAST, GLT-1 and SNAT3 to 2.16-, 1.72- and 2.09-fold, respectively. Also, GPx activity was increased to 4.8 U/mg protein/min compared to CCl4 (1.8 U/mg protein/min). DISCUSSION AND CONCLUSION Flavonoid constituents, antioxidant effect and genotoxic protection activity of D. glabra were first reported. DGE may be valuable in the treatment and hindrance of hepatic oxidative stress and genotoxicity.
Collapse
Affiliation(s)
- Ahmed Elkhateeb
- Department of Phytochemistry and Plant Systematics, National Research Center, Dokki, Giza, Egypt
| | - Rasha R. Abdel Latif
- Department of Phytochemistry and Plant Systematics, National Research Center, Dokki, Giza, Egypt
| | - Mona M. Marzouk
- Department of Phytochemistry and Plant Systematics, National Research Center, Dokki, Giza, Egypt
| | - Sameh R. Hussein
- Department of Phytochemistry and Plant Systematics, National Research Center, Dokki, Giza, Egypt
| | - Mona E. S. Kassem
- Department of Phytochemistry and Plant Systematics, National Research Center, Dokki, Giza, Egypt
| | - Wagdy K. B. Khalil
- Department of Cell Biology, National Research Center, Dokki, Giza, Egypt
| | - Mohamed A. El-Ansari
- Department of Phytochemistry and Plant Systematics, National Research Center, Dokki, Giza, Egypt
| |
Collapse
|
50
|
Finger JW, Botero J, Zhang Y, Still SE, Hoffman AJ, Kavazis AN, Cristol DA, Wada H. No Effect of Lifelong Methylmercury Exposure on Oxidative Status in Zebra Finches (Taeniopygia guttata): A Demonstration of Methylmercury-Induced Selection? BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 99:668-672. [PMID: 29080113 DOI: 10.1007/s00128-017-2202-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Songbirds exposed to methylmercury (MeHg) often exhibit reduced reproductive success and cognitive abilities. To better understand whether oxidative stress plays a role, we dosed zebra finches (Taeniopygia guttata) with a contaminated (1.2 ppm MeHg-cysteine) or control diet for their entire lives, including during development in the egg. Levels of antioxidant enzymes [superoxide dismutase (SOD1 and SOD2)], oxidative damage (4-hydroxynonenal; 4-HNE), and antioxidant transcription factors [nuclear factor (erythroid-derived 2)-like 2; Nrf2] were measured in the liver and pectoralis muscle of adults. MeHg treatment did not affect levels of 4-HNE or liver SOD2 or Nrf2. Birds in the MeHg treatment differed significantly from controls in pectoralis SOD1 and Nrf2, and tended to differ in liver SOD1 and pectoralis SOD2; however, we detected no overall pattern of effect of MeHg on oxidative status in dosed finches. We suspect that this is a consequence of the differential survival of MeHg-tolerant birds.
Collapse
Affiliation(s)
- John W Finger
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Juan Botero
- Department of Biology, College of William & Mary, Williamsburg, VA, 23185, USA
| | - Yufeng Zhang
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shelby E Still
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Alexander J Hoffman
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Daniel A Cristol
- Department of Biology, College of William & Mary, Williamsburg, VA, 23185, USA
| | - Haruka Wada
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|