1
|
Flasbeck V, Schedlowski M, Brüne M, Engler H. Impact of experimental inflammation on the neuronal processing of cardiac interoceptive signals and heart rate variability in humans. Neuroimage 2025; 314:121257. [PMID: 40349741 DOI: 10.1016/j.neuroimage.2025.121257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/27/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
Interoception, or the perception of internal somatic states, is crucial for signaling the individual to take care of the body when needed. It enables behavioral adaptations to sickness states, which further impact autonomic nervous system (ANS) activity. Whether acute inflammation affects interoceptive processing and how this relates to sickness behavior remains unknown. Therefore, we investigated interoceptive processing in participants undergoing experimental endotoxemia. In neuroimaging research, heartbeat-evoked potentials (HEP) - defined as event-related potentials time-locked to electrocardiogram (ECG) R-waves during electroencephalogram (EEG) recordings - have emerged as a promising metric for cardiac interoceptive processing. We analyzed the effects of intravenous administration of lipopolysaccharide (LPS; 0.4 ng/kg) or placebo, on HEP amplitudes and ANS functioning in healthy, female participants (n = 52) during 8 min resting-state EEG and ECG recordings before and 2 h after injections. Our results showed increased cortisol and cytokine levels in the LPS group, along with increased sympathetic and decreased parasympathetic activity 2 h after injections compared to the placebo group. Placebo-injected participants exhibited lower post injection-baseline differences in HEP amplitudes in an early timeframe (255-455 ms), indicating lower HEPs 2 h after administrations. Moreover, post-injection HEP amplitudes differed between groups, suggesting that while participants in the placebo group showed altered HEP amplitudes after injection, HEPs remained unresponsive to LPS administration. These findings are discussed in the context of predictive processing, expectation violation and attention direction to external and interoceptive cues. Future research should further investigate the role of LPS dose and explore behavioral measures of interoception under experimental inflammation.
Collapse
Affiliation(s)
- Vera Flasbeck
- Department of Psychiatry, Psychotherapy and Preventive Medicine, Division of Social Neuropsychiatry and Evolutionary Medicine, Ruhr University Bochum, LWL University Hospital Bochum, Alexandrinenstraße 1-3, Bochum 44791, Germany.
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, Essen 45122, Germany; Osher Center for Integrative Health, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Martin Brüne
- Department of Psychiatry, Psychotherapy and Preventive Medicine, Division of Social Neuropsychiatry and Evolutionary Medicine, Ruhr University Bochum, LWL University Hospital Bochum, Alexandrinenstraße 1-3, Bochum 44791, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, Essen 45122, Germany
| |
Collapse
|
2
|
Zhang Y, Becker B, Kendrick KM, Zhang Q, Yao S. Self-navigating the "Island of Reil": a systematic review of real-time fMRI neurofeedback training of insula activity. Transl Psychiatry 2025; 15:170. [PMID: 40379616 PMCID: PMC12084372 DOI: 10.1038/s41398-025-03382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 04/26/2025] [Accepted: 05/07/2025] [Indexed: 05/19/2025] Open
Abstract
Real-time fMRI (rtfMRI) neurofeedback (NF) is a novel noninvasive technique that permits individuals to voluntarily control brain activity. The crucial role of the insula in emotional and salience processing makes it one of the most commonly targeted regions in previous rtfMRI studies. To provide an overview of progress in the field, the present review identified 25 rtfMRI insula studies and systematically reviewed key characteristics and findings in these studies. We found that rtfMRI-based NF training is efficient for modulating insula activity and its associated behavioral/symptom-related and neural changes. Furthermore, we also observed a maintenance effect of self-regulation ability and sustained symptom improvement, which is of importance for clinical application. However, training success of insula regulation was not consistently paralleled by behavioral/symptom-related changes, suggesting a need for optimizing the NF training protocol enabling more robust training effects. Principles including inclusion of a well-designed control group/condition, statistical analyses and reporting results following common criteria and a priori determination of sample and effect sizes as well as pre-registration are also highly recommended. In summary, we believe our review will inspire and inform both basic research and therapeutic translation of rtfMRI NF training as an intervention in mental disorders particularly those with insula dysfunction.
Collapse
Affiliation(s)
- Yuan Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiong Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
3
|
Simor P, Lilla RZ, Szalárdy O, Jordán Z, Halász L, Erőss L, Fabó D, Bódizs R. Heartbeat-related activity in the anterior thalamus differs between phasic and tonic REM sleep. J Physiol 2025; 603:2839-2855. [PMID: 40231737 PMCID: PMC12072251 DOI: 10.1113/jp287802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Rapid eye movement (REM) sleep is a fundamental sleep state associated with diverse functions from elemental physiological processes to higher order neurocognitive functions. A growing body of research indicates that REM sleep with eye movements (phasic REM) differs from REM periods without ocular activity (tonic) in terms of spontaneous and evoked neural responses. Studies using auditory stimulation consistently observed enhanced evoked responses in tonic versus phasic REM, indicating that external processing is largely diminished when the eyes move during REM sleep. Whereas exteroceptive processing during sleep is widely studied, investigations on interoception (the processing of bodily signals) during sleep are scarce, and limited to scalp electroencephalographic recordings. Here we studied interoceptive processing in a group of epileptic patients (N = 11) by measuring their heartbeat-related neural activity in the anterior nuclei of the thalamus (ANT) during phasic and tonic REM sleep and resting wakefulness. Evoked potentials and beta-low gamma spectral power locked to the heartbeat were significantly different in phasic REM compared with tonic REM and wakefulness. Heartbeat-related neural signals exhibited pronounced inter-trial phase synchronization at lower (7-20 Hz) oscillatory activity in all vigilance states, but reduced gamma synchronization at later time points in phasic REM only. Tonic REM and wakefulness did not show significant differences in heartbeat-related activity in the ANT. Our findings indicate that heartbeat-related neural activity is detectable at the level of the ANT, showing distinct signatures of interoceptive processing in phasic REM compared with tonic REM and wakefulness. KEY POINTS: We studied interoceptive processing in the anterior the thalamus (ANT). The ANT tracks cardiac signals during wakefulness and rapid eye movement (REM) sleep. Phasic REM shows distinct patterns of heartbeat-related oscillatory activity. Interoceptive processing might be attenuated during REM periods with eye movements.
Collapse
Affiliation(s)
- Péter Simor
- Institute of Psychology, ELTEEötvös Loránd UniversityBudapestHungary
- Institute of Behavioural SciencesSemmelweis UniversityBudapestHungary
| | - Róka Zita Lilla
- Institute of Psychology, ELTEEötvös Loránd UniversityBudapestHungary
- HUN‐REN Institute for Computer Science and ControlBudapestHungary
| | - Orsolya Szalárdy
- Institute of Behavioural SciencesSemmelweis UniversityBudapestHungary
| | - Zsófia Jordán
- Department of Neurosurgery, Faculty of MedicineSemmelweis UniversityBudapestHungary
| | - László Halász
- Department of Neurosurgery, Faculty of MedicineSemmelweis UniversityBudapestHungary
| | - Loránd Erőss
- Department of Neurosurgery, Faculty of MedicineSemmelweis UniversityBudapestHungary
| | - Dániel Fabó
- Department of Neurosurgery, Faculty of MedicineSemmelweis UniversityBudapestHungary
| | - Róbert Bódizs
- Institute of Behavioural SciencesSemmelweis UniversityBudapestHungary
| |
Collapse
|
4
|
Keskin M, Turkan M, Gozluklu G, Camlica B, Gogeren F, Aydin MK, Kaya DO. Comparisons of Body Awareness, Physical, and Cognitive Components and Relationships in Patients with Chronic Neck, Back, and Low Back Pain: A Cross-Sectional Study. Pain Manag Nurs 2025:S1524-9042(25)00150-X. [PMID: 40312157 DOI: 10.1016/j.pmn.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/10/2025] [Accepted: 03/29/2025] [Indexed: 05/03/2025]
Abstract
PURPOSE This study aimed to investigate the relationships between body awareness, body image, and physical and cognitive components in patients with neck, back, and low back pain. The secondary aim was to compare body awareness across these spine pain groups. DESIGN A cross-sectional study. METHODS Sixty-six patients with non-specific chronic spine pain were included, distributed among neck (n = 22, 28.18 ± 9.54 years), back (n = 21, 30.71 ± 12.26 years), and low back (n = 23, 38.43 ± 12.64 years) pain groups. Measurements included visual analogue scale for pain, Body Awareness Questionnaire, Stunkard Body Figure Scale, anthropometric measurements (weight, height, body mass index, waist-hip circumference, waist and hip ratio), one-leg stand test, Y balance test, New York Posture Analysis Scale, Melbourne Decision Making Scale, and Stress Coping Scale. Correlations were analyzed using Pearson/Spearman methods and compared with Kruskal Wallis/ANOVA tests according to their normal distribution. RESULTS Resting pain levels were 4.23 ± 2.66 cm (neck), 4.68 ± 2.62 cm (back) and, 4.32 ± 2.84 cm (low back). Body awareness was correlated with weight, body mass index, waist, and hip circumference in neck pain group (r = 0.610/p = .003; r = 0.569/p = .006, r = 0.498/p = .018; r = 0.445/p = .038). In the back pain group, as body awareness level increased, the level of coping with stress increased (r = 0.442/p = .045). No difference was found in intergroup comparisons (p > .05). CONCLUSION The study showed that body awareness and body image were associated with physical components (anthropometric measurements and balance) and cognitive components (stress coping skills). However, when comparing neck, back, and low back pain, no significant differences were found between any of the components. CLINICAL IMPLICATIONS A holistic approach addresses both physical and cognitive components for more balanced and effective care.
Collapse
Affiliation(s)
- Merve Keskin
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Izmir Katip Celebi University, Izmir, Turkey.
| | - Melisa Turkan
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Izmir Katip Celebi University, Izmir, Turkey
| | - Gozde Gozluklu
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Izmir Katip Celebi University, Izmir, Turkey
| | - Busra Camlica
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Izmir Katip Celebi University, Izmir, Turkey
| | - Fatmanur Gogeren
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Izmir Katip Celebi University, Izmir, Turkey
| | - Merve Kurt Aydin
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Izmir Katip Celebi University, Izmir, Turkey
| | - Derya Ozer Kaya
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Izmir Katip Celebi University, Izmir, Turkey
| |
Collapse
|
5
|
Dohata M, Kaneko N, Takahashi R, Suzuki Y, Nakazawa K. Posture-Dependent Modulation of Interoceptive Processing in Young Male Participants: A Heartbeat-Evoked Potential Study. Eur J Neurosci 2025; 61:e70021. [PMID: 39957442 PMCID: PMC11831245 DOI: 10.1111/ejn.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/18/2025]
Abstract
Interoception, the internal perception of bodily states such as heartbeat and hunger, plays a crucial role in shaping cognitive and emotional states. Since postural control affects cognitive and emotional processing, exploring postural effects on interoception could help uncover the neural mechanisms underlying its effects on cognition and emotion. In this study, we aimed to investigate how different postures affect interoception by using heartbeat-evoked potentials (HEPs), which reflect the cortical processing of cardiac signals. Two experiments were conducted; Experiment 1 involved 47 healthy male participants comparing sitting and standing postures, and Experiment 2 involved 24 healthy male participants comparing stable and unstable standing conditions. HEPs were analyzed using cluster-based permutation analysis to identify statistically significant spatiotemporal clusters. In Experiment 1, significant clusters were identified over central electrodes (Cz, C1, C2, FCz, and FC1) within the post-R-wave interval of 304-572 ms, revealing significantly lower HEP amplitudes during standing compared to sitting [W = 80, p < 0.001, r = 0.62]. In Experiment 2, HEP amplitudes were significantly lower during unstable standing compared to stable standing [t(20) = 2.9, p = 0.0099, d = 0.62]. Furthermore, we found no significant correlations between HEP changes and physiological changes such as cardiac activity and periodic and aperiodic brain activity. These findings suggest postural differences modulate interoceptive processing, with standing postures attenuating HEP amplitudes, probably because of a redistribution of attentional resources from interoceptive to somatosensory (proprioceptive) and vestibular processing, necessary for maintaining standing posture. This study provides insights into the neural mechanisms underlying posture-interoception interaction.
Collapse
Affiliation(s)
- Mayu Dohata
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Ryogo Takahashi
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
- Japan Society for the Promotion of Science (JSPS)TokyoJapan
| | - Yuya Suzuki
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
6
|
Bai L, Li J, Li G, Zhou D, Su J, Liu C. Skeletal interoception and prospective application in biomaterials for bone regeneration. Bone Res 2025; 13:1. [PMID: 39743568 DOI: 10.1038/s41413-024-00378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 01/04/2025] Open
Abstract
Accumulating research has shed light on the significance of skeletal interoception, in maintaining physiological and metabolic homeostasis related to bone health. This review provides a comprehensive analysis of how skeletal interoception influences bone homeostasis, delving into the complex interplay between the nervous system and skeletal system. One key focus of the review is the role of various factors such as prostaglandin E2 (PGE2) in skeletal health via skeletal interoception. It explores how nerves innervating the bone tissue communicate with the central nervous system to regulate bone remodeling, a process critical for maintaining bone strength and integrity. Additionally, the review highlights the advancements in biomaterials designed to utilize skeletal interoception for enhancing bone regeneration and treatment of bone disorders. These biomaterials, tailored to interact with the body's interoceptive pathways, are positioned at the forefront of innovative treatments for conditions like osteoporosis and fractures. They represent a convergence of bioengineering, neuroscience, and orthopedics, aiming to create more efficient and targeted therapies for bone-related disorders. In conclusion, the review underscores the importance of skeletal interoception in physiological regulation and its potential in developing more effective therapies for bone regeneration. It emphasizes the need for further research to fully understand the mechanisms of skeletal interoception and to harness its therapeutic potential fully.
Collapse
Affiliation(s)
- Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, China
| | - Jilong Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Guangfeng Li
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Dongyang Zhou
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Changsheng Liu
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
7
|
Kandilarova S, Najar D, Velkov N, Stoyanova D, Zlateva G, Todorova AA, Stoyanov D. Neuroimaging aspects of interception in mood disorders: A systematic review. J Affect Disord 2025; 368:686-694. [PMID: 39303889 DOI: 10.1016/j.jad.2024.09.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION Mood disorders often involve attenuated interoception, which impairs the accurate perception and interpretation of internal bodily signals. Functional magnetic resonance imaging has been used to explore the neurobiology of interoception in vivo while participants are performing interoceptive tasks. AIM The aim of this review is to present the progress in neuroimaging studies of interoception in mood disorders. METHODS We performed a systematic search in Pubmed, Scopus and Web of Science with the terms "interoception", "depression", "bipolar disorder", "mood disorders", "neuroimaging" and derivative terms. RESULTS 461 records have been identified in the 3 databases, 34 records were assessed for eligibility and finally 17 reports were selected. The main findings were: disrupted cardioception in Major Depressive Disorder (MDD) which was related to reduced insular activity; altered visceroception in major depression has been linked to hypoactivation in the dorsal mid-insula; reduced nociception was reflected by hypoactivation in the insula in both MDD and Bipolar Disorder, and altered insular activity has been linked to maladaptive eating behavior. DISCUSSION & CONCLUSION The current review demonstrated that neuroimaging studies focusing on interoceptive tasks in mood disorders are limited in both number and sample size. This is notably relevant to bipolar disorder where only one publication was found. Nevertheless, we were able to outline the findings on four separate aspects of interoception - cardioception, visceroception, nociception and appetite all of which are pointing to the insula as core dysfunctional region. Further research is needed to draw more conclusive insights and improve our understanding of interoception in mood disorders.
Collapse
Affiliation(s)
- Sevdalina Kandilarova
- Medical University Plovdiv, Department of Psychiatry and Medical Psychology, Research Insititute and SRIPD-MUP, Translational and Computation Neuroscience Group, Vassil Aprilov 15 a, 4002 Plovdiv, Bulgaria.
| | - Diyana Najar
- Medical University Plovdiv, Faculty of Medicine, Vassil Aprilov 15 a, 4002 Plovdiv, Bulgaria
| | - Nikola Velkov
- Medical University Plovdiv, Faculty of Medicine, Vassil Aprilov 15 a, 4002 Plovdiv, Bulgaria
| | - Dana Stoyanova
- Medical University Plovdiv, Faculty of Medicine, Vassil Aprilov 15 a, 4002 Plovdiv, Bulgaria
| | - Gabriela Zlateva
- Medical University Plovdiv, Faculty of Medicine, Vassil Aprilov 15 a, 4002 Plovdiv, Bulgaria
| | - Aya-Alexandra Todorova
- Medical University Plovdiv, Faculty of Medicine, Vassil Aprilov 15 a, 4002 Plovdiv, Bulgaria
| | - Drozdstoy Stoyanov
- Medical University Plovdiv, Department of Psychiatry and Medical Psychology, Research Insititute and SRIPD-MUP, Translational and Computation Neuroscience Group, Vassil Aprilov 15 a, 4002 Plovdiv, Bulgaria
| |
Collapse
|
8
|
Haudry S, Turpin AL, Landeau B, Mézenge F, Delarue M, Hébert O, Marchant NL, Klimecki O, Collette F, Gonneaud J, de La Sayette V, Vivien D, Lutz A, Chételat G. Decoding meditation mechanisms underlying brain preservation and psycho-affective health in older expert meditators and older meditation-naive participants. Sci Rep 2024; 14:29521. [PMID: 39604423 PMCID: PMC11603193 DOI: 10.1038/s41598-024-79687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Meditation is a mental training approach that can improve mental health and well-being in aging. Yet the underlying mechanisms remain unknown. The Medit-Ageing model stipulates that three mechanisms - attentional, constructive, and deconstructive - upregulate positive psycho-affective factors and downregulate negative ones. To test this hypothesis, we measured brain structural MRI and perfusion, negative and positive psycho-affective composite scores, and meditation mechanisms in 27 older expert meditators and 135 meditation-naive older controls. We identified brain and psycho-affective differences and performed mediation analyses to assess whether and which meditation mechanisms mediate their links.Meditators showed significantly higher volume in fronto-parietal areas and perfusion in temporo-occipito-parietal areas. They also had higher positive and lower negative psycho-affective scores. Attentional and constructive mechanisms both mediated the links between brain differences and the positive psycho-affective score whereas the deconstructive mechanism mediated the links between brain differences and the negative psycho-affective score.Our results corroborate the Medit-Ageing model, indicating that, in aging, meditation leads to brain changes that decrease negative psycho-affective factors and increase positive ones through relatively specific mechanisms. Shedding light on the neurobiological and psycho-affective mechanisms of meditation in aging, these findings provide insights to refine future interventions.
Collapse
Affiliation(s)
- Sacha Haudry
- U1237, PhIND, Neuropresage Team, Normandy University, UNICAEN, INSERM, GIP Cyceron, Boulevard Henri Becquerel, Caen, 14000, France
| | - Anne-Laure Turpin
- U1237, PhIND, Neuropresage Team, Normandy University, UNICAEN, INSERM, GIP Cyceron, Boulevard Henri Becquerel, Caen, 14000, France
| | - Brigitte Landeau
- U1237, PhIND, Neuropresage Team, Normandy University, UNICAEN, INSERM, GIP Cyceron, Boulevard Henri Becquerel, Caen, 14000, France
| | - Florence Mézenge
- U1237, PhIND, Neuropresage Team, Normandy University, UNICAEN, INSERM, GIP Cyceron, Boulevard Henri Becquerel, Caen, 14000, France
| | - Marion Delarue
- U1237, PhIND, Neuropresage Team, Normandy University, UNICAEN, INSERM, GIP Cyceron, Boulevard Henri Becquerel, Caen, 14000, France
| | - Oriane Hébert
- U1237, PhIND, Neuropresage Team, Normandy University, UNICAEN, INSERM, GIP Cyceron, Boulevard Henri Becquerel, Caen, 14000, France
| | - Natalie L Marchant
- Division of Psychiatry, Faculty of Brain Sciences, University College London, London, UK
| | - Olga Klimecki
- Developmental Psychology, Friedrich-Schiller-Universität Jena, Jena, Germany
- Biological Psychology, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Fabienne Collette
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Julie Gonneaud
- U1237, PhIND, Neuropresage Team, Normandy University, UNICAEN, INSERM, GIP Cyceron, Boulevard Henri Becquerel, Caen, 14000, France
| | | | - Denis Vivien
- PhIND "Physiopathology and Imaging of Neurological Disorders", Normandy University, UNICAEN, INSERM, U1237, Institut Blood & Brain @ Caen, Cyceron, Caen, 14000, France
- Département de Recherche Clinique, CHU Caen-Normandie, Caen, France
| | - Antoine Lutz
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
| | - Gaël Chételat
- U1237, PhIND, Neuropresage Team, Normandy University, UNICAEN, INSERM, GIP Cyceron, Boulevard Henri Becquerel, Caen, 14000, France.
| |
Collapse
|
9
|
Adamic EM, Teed AR, Avery J, de la Cruz F, Khalsa S. Hemispheric divergence of interoceptive processing across psychiatric disorders. eLife 2024; 13:RP92820. [PMID: 39535878 PMCID: PMC11560129 DOI: 10.7554/elife.92820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Interactions between top-down attention and bottom-up visceral inputs are assumed to produce conscious perceptions of interoceptive states, and while each process has been independently associated with aberrant interoceptive symptomatology in psychiatric disorders, the neural substrates of this interface are unknown. We conducted a preregistered functional neuroimaging study of 46 individuals with anxiety, depression, and/or eating disorders (ADE) and 46 propensity-matched healthy comparisons (HC), comparing their neural activity across two interoceptive tasks differentially recruiting top-down or bottom-up processing within the same scan session. During an interoceptive attention task, top-down attention was voluntarily directed towards cardiorespiratory or visual signals. In contrast, during an interoceptive perturbation task, intravenous infusions of isoproterenol (a peripherally-acting beta-adrenergic receptor agonist) were administered in a double-blinded and placebo-controlled fashion to drive bottom-up cardiorespiratory sensations. Across both tasks, neural activation converged upon the insular cortex, localizing within the granular and ventral dysgranular subregions bilaterally. However, contrasting hemispheric differences emerged, with the ADE group exhibiting (relative to HCs) an asymmetric pattern of overlap in the left insula, with increased or decreased proportions of co-activated voxels within the left or right dysgranular insula, respectively. The ADE group also showed less agranular anterior insula activation during periods of bodily uncertainty (i.e. when anticipating possible isoproterenol-induced changes that never arrived). Finally, post-task changes in insula functional connectivity were associated with anxiety and depression severity. These findings confirm the dysgranular mid-insula as a key cortical interface where attention and prediction meet real-time bodily inputs, especially during heightened awareness of interoceptive states. Furthermore, the dysgranular mid-insula may indeed be a 'locus of disruption' for psychiatric disorders.
Collapse
Affiliation(s)
- Emily M Adamic
- Laureate Institute for Brain ResearchTulsaUnited States
- Department of Biological Sciences, University of TulsaTulsaUnited States
| | - Adam R Teed
- Laureate Institute for Brain ResearchTulsaUnited States
| | - Jason Avery
- Laboratory of Brain and Cognition, National Institute of Mental HealthBethesdaUnited States
| | - Feliberto de la Cruz
- Laboratory for Autonomic Neuroscience, Imaging, and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University HospitalJenaGermany
| | - Sahib Khalsa
- Laureate Institute for Brain ResearchTulsaUnited States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los AngelesLos AngelesUnited States
| |
Collapse
|
10
|
Lovan P, Prado G, Lee T, Coccia C. A snapshot of eating behaviors in undergraduate college students living in South Florida. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2024; 72:2567-2576. [PMID: 36084262 DOI: 10.1080/07448481.2022.2119402] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Objective: To examine a) whether college students' eating behaviors are different by students' sex and/or body mass index (BMI) categories and b) the correlations between college students' eating behaviors and the degree to which they rely on internal bodily signals for food intake. Participants: Undergraduate college students 18-24 years old at a public university located in South Florida. Methods: Eligible students answered questionnaires to examine interoception, intuitive eating, and eating behaviors including emotional eating, restrained eating, cognitive restraint, external eating, and uncontrolled eating. Pearson correlation and independent t test were used (significance: p < 0.05). Results: Females reported lower interoception, intuitive eating, and higher emotional eating than males. Students with lower BMI had higher intuitive eating and lower restrained eating. Interoception was positively correlated with intuitive eating and negatively correlated with emotional, uncontrolled, restrained, and external eating. Conclusion: College students who have a better connection with their bodily signals have healthier eating behaviors and lower BMI.
Collapse
Affiliation(s)
- Padideh Lovan
- Department of Psychology, University of Miami, Miami, Florida, USA
| | - Guillermo Prado
- School of Nursing and Health Studies, University of Miami, Miami, Florida, USA
| | - Tae Lee
- Department of Child Psychology and Education, Sungkyunkwan University, Seoul, South Korea
| | - Catherine Coccia
- Department of Dietetics and Nutrition, Florida International University, Miami, Florida, USA
| |
Collapse
|
11
|
Kipping M, Mai-Lippold SA, Herbert BM, Desdentado L, Kammer T, Pollatos O. Insights into interoceptive and emotional processing: Lessons from studies on insular HD-tDCS. Psychophysiology 2024; 61:e14639. [PMID: 38946148 DOI: 10.1111/psyp.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/03/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Interoception, the processing of internal bodily signals, is proposed as the fundamental mechanism underlying emotional experiences. Interoceptive and emotional processing appear distorted in psychiatric disorders. However, our understanding of the neural structures involved in both processes remains limited. To explore the feasibility of enhancing interoception and emotion, we conducted two studies using high-definition transcranial direct current stimulation (HD-tDCS) applied to the right anterior insula. In study one, we compared the effects of anodal HD-tDCS and sham tDCS on interoceptive abilities (sensibility, confidence, accuracy, emotional evaluation) in 52 healthy subjects. Study two additionally included physical activation through ergometer cycling at the beginning of HD-tDCS and examined changes in interoceptive and emotional processing in 39 healthy adults. In both studies, HD-tDCS was applied in a single-blind cross-over online design with two separate sessions. Study one yielded no significant effects of HD-tDCS on interoceptive dimensions. In study two, significant improvements in interoceptive sensibility and confidence were observed over time with physical preactivation, while no differential effects were found between sham and insula stimulation. The expected enhancement of interoceptive and emotional processing following insula stimulation was not observed. We conclude that HD-tDCS targeting the insula does not consistently increase interoceptive or emotional variables. The observed increase in interoceptive sensibility may be attributed to the activation of the interoceptive network through physical activity or training effects. Future research on HD-tDCS involving interoceptive network structures could benefit from protocols targeting larger regions within the network, rather than focusing solely on insula stimulation.
Collapse
Affiliation(s)
- Miriam Kipping
- Clinical and Health Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Sandra A Mai-Lippold
- Clinical and Health Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Beate M Herbert
- Biological Psychology and Experimental Psychopathology, Charlotte-Fresenius-University, Munich, Germany
- Department Psychology, Clinical Psychology and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Lorena Desdentado
- Polibienestar Research Institute, University of Valencia, Valencia, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Thomas Kammer
- Section for Neurostimulation, Department of Psychiatry, Ulm University, Ulm, Germany
| | - Olga Pollatos
- Clinical and Health Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| |
Collapse
|
12
|
Muehlhan M, Spindler C, Nowaczynski S, Buchner C, Fascher M, Trautmann S. Where alcohol use disorder meets interoception: A meta-analytic view on structural and functional neuroimaging data. J Neurochem 2024; 168:2515-2531. [PMID: 38528368 DOI: 10.1111/jnc.16104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Alcohol use disorder (AUD) has been associated with changes in the processing of internal body signals, known as interoception. Changes in brain structure, particularly in the insula, are thought to underlie impaired interoception. As studies specifically investigating this association are largely lacking, this analysis takes an approach that compares meta-analytic results on interoception with recently published meta-analytic results on gray matter reduction in AUD. A systematic literature search identified 25 eligible interoception studies. Activation likelihood estimation (ALE) was used to test for spatial convergence of study results. Overlap between interoception and AUD clusters was tested using conjunction analysis. Meta-analytic connectivity modeling (MACM) and resting-state functional connectivity were used to identify the functional network of interoception and to test where this network overlapped with AUD meta-analytic clusters. The results were characterized using behavioral domain analysis. The interoception ALE identified a cluster in the left middle insula. There was no overlap with clusters of reduced gray matter in AUD. MACM analysis of the interoception cluster revealed a large network located in the insulae, thalami, basal nuclei, cingulate and medial frontal cortices, and pre- and postcentral gyri. Resting state analysis confirmed this result, showing the strongest connections to nodes of the salience- and somatomotor network. Five of the eight clusters that showed a structural reduction in AUD were located within these networks. The behavioral profiles of these clusters were suggestive of higher-level processes such as salience control, somatomotor functions, and skin sensations. The results suggest an altered salience mapping of interoceptive signals in AUD, consistent with current models. Connections to the somatomotor network may be related to action control and integration of skin sensations. Mindfulness-based interventions, pleasurable touch, and (deep) transcranial magnetic stimulation may be targeted interventions that reduce interoceptive deficits in AUD and thus contribute to drug use reduction and relapse prevention.
Collapse
Affiliation(s)
- Markus Muehlhan
- Department of Psychology, Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
- ICAN Institute of Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany
| | - Carolin Spindler
- Department of Psychology, Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
| | - Sandra Nowaczynski
- Department of Psychology, Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
- ICAN Institute of Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany
- Department of Addiction Medicine, Carl-Friedrich-Flemming-Clinic, Helios Medical Center Schwerin, Schwerin, Germany
| | - Claudius Buchner
- Department of Psychology, Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
| | - Maximilian Fascher
- Department of Psychology, Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
- ICAN Institute of Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany
| | - Sebastian Trautmann
- Department of Psychology, Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
- ICPP Institute of Clinical Psychology and Psychotherapy, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
13
|
Shi K, Li J, Zhang H, Wang K, Li C, Xia Y, Tian T, Li Y, Peng X, Yang Y. The functional and structural alterations in brain regions related to the fear network model in panic disorder: A resting-state fMRI and T1-weighted imaging study. J Psychiatr Res 2024; 177:59-65. [PMID: 38972266 DOI: 10.1016/j.jpsychires.2024.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Abnormal functional connectivity (FC) within the fear network model (FNM) has been identified in panic disorder (PD) patients, but the specific local structural and functional properties, as well as effective connectivity (EC), remain poorly understood in PD. The purpose of this study was to investigate the structural and functional patterns of the FNM in PD. Magnetic resonance imaging data were collected from 33 PD patients and 35 healthy controls (HCs). Gray matter volume (GMV), degree centrality (DC), regional homogeneity (ReHo), and amplitude of low-frequency fluctuation (ALFF) were used to identify the structural and functional characteristics of brain regions within the FNM in PD. Subsequently, FC and EC of abnormal regions, based on local structural and functional features, and their correlation with clinical features were further examined. PD patients exhibited preserved GMV, ReHo, and ALFF in the brain regions of the FNM compared with HCs. However, increased DC in the bilateral amygdala was observed in PD patients. The amygdala and its subnuclei exhibited altered EC with rolandic operculum, insula, medial superior frontal gyrus, supramarginal gyrus, opercular part of inferior frontal gyrus, and superior temporal gyrus. Additionally, Hamilton Anxiety Scale score was positively correlated with EC from left lateral nuclei (dorsal portion) of amygdala to right rolandic operculum and left superior temporal gyrus. Our findings revealed a reorganized functional network in PD involving brain regions regulating exteroceptive-interoceptive signals, mood, and somatic symptoms. These results enhance our understanding of the neurobiological underpinnings of PD, suggesting potential biomarkers for diagnosis and targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ke Shi
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Juan Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Han Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kai Wang
- Department of Medical Psychology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Cun Li
- Department of Medical Psychology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ye Xia
- Department of Medical Psychology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaolong Peng
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC29425, USA.
| | - Yuan Yang
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
14
|
Wu H, Huang Y, Qin P, Wu H. Individual Differences in Bodily Self-Consciousness and Its Neural Basis. Brain Sci 2024; 14:795. [PMID: 39199487 PMCID: PMC11353174 DOI: 10.3390/brainsci14080795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
Bodily self-consciousness (BSC), a subject of interdisciplinary interest, refers to the awareness of one's bodily states. Previous studies have noted the existence of individual differences in BSC, while neglecting the underlying factors and neural basis of such individual differences. Considering that BSC relied on integration from both internal and external self-relevant information, we here review previous findings on individual differences in BSC through a three-level-self model, which includes interoceptive, exteroceptive, and mental self-processing. The data show that cross-level factors influenced individual differences in BSC, involving internal bodily signal perceptibility, multisensory processing principles, personal traits shaped by environment, and interaction modes that integrate multiple levels of self-processing. Furthermore, in interoceptive processing, regions like the anterior cingulate cortex and insula show correlations with different perceptions of internal sensations. For exteroception, the parietal lobe integrates sensory inputs, coordinating various BSC responses. Mental self-processing modulates differences in BSC through areas like the medial prefrontal cortex. For interactions between multiple levels of self-processing, regions like the intraparietal sulcus involve individual differences in BSC. We propose that diverse experiences of BSC can be attributed to different levels of self-processing, which moderates one's perception of their body. Overall, considering individual differences in BSC is worth amalgamating diverse methodologies for the diagnosis and treatment of some diseases.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (H.W.); (Y.H.)
| | - Ying Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (H.W.); (Y.H.)
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (H.W.); (Y.H.)
- Pazhou Lab, Guangzhou 510330, China
| | - Hang Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
15
|
Raimo S, Ferrazzano G, Di Vita A, Gaita M, Satriano F, Veneziano M, Torchia V, Zerella MP, Malimpensa L, Signoriello E, Lus G, Palermo L, Conte A. The multidimensional assessment of body representation and interoception in multiple sclerosis. Mult Scler Relat Disord 2024; 87:105692. [PMID: 38810419 DOI: 10.1016/j.msard.2024.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/29/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND The mental representation of the body (or body representation, BR) derives from the processing of multiple sensory and motor inputs and plays a crucial role in guiding our actions and in how we perceive our body. Fundamental inputs for BR construction come also from the interoceptive systems which refer to the whole bidirectional processes between the brain and the body. People with Multiple sclerosis (MS) show an abnormal multisensory integration which may compromise BR and interoception integrity. However, no study has evaluated possible deficits on distinct and dissociable dimensions of body representation (i.e., action-oriented, aBR; and a nonaction-oriented body representation, NaBR) and interoception (i.e., interoceptive accuracy, interoceptive sensibility, and interoceptive awareness) in MS. OBJECTIVE In the present study, we aimed to determine whether participants with MS present changes in BR and interoceptive dimensions. METHODS We performed comparison analyses on tasks and questionnaires tapping all BR and interoceptive dimensions between 36 people with relapsing-remitting MS (RRMS) and 42 healthy controls, and between 23 people with progressive MS (PMS) and 33 healthy controls. RESULTS Overall, patients with MS exhibited lower interoceptive accuracy than matched controls. The RRMS group also showed higher visceral interoceptive sensibility levels. No differences were found in BR accuracy measures, but the PMS reported longer response times when performing the aBR task. CONCLUSION These findings open a new issue on the role of inner-signal monitoring in the body symptomatology of MS and highlight the need for an accurate BR and interoceptive assessment in a clinical setting.
Collapse
Affiliation(s)
- Simona Raimo
- Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy.
| | - Gina Ferrazzano
- Department of Human Neuroscience, 'Sapienza' University of Rome, Roma, Italy
| | - Antonella Di Vita
- Department of Human Neuroscience, 'Sapienza' University of Rome, Roma, Italy
| | - Mariachiara Gaita
- Department of Psychology, University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Federica Satriano
- Department of Human Neuroscience, 'Sapienza' University of Rome, Roma, Italy
| | - Miriam Veneziano
- Department of Psychology, University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Valentina Torchia
- Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Maria Paola Zerella
- Department of Human Neuroscience, 'Sapienza' University of Rome, Roma, Italy
| | | | - Elisabetta Signoriello
- Multiple Sclerosis Center, II Neurological Clinic, University of Campania 'Luigi Vanvitelli', Napoli, Italy; Department of Medical and Surgical Sciences, University of Campania 'Luigi Vanvitelli', Napoli, Italy
| | - Giacomo Lus
- Multiple Sclerosis Center, II Neurological Clinic, University of Campania 'Luigi Vanvitelli', Napoli, Italy; Department of Medical and Surgical Sciences, University of Campania 'Luigi Vanvitelli', Napoli, Italy
| | - Liana Palermo
- Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Antonella Conte
- Department of Human Neuroscience, 'Sapienza' University of Rome, Roma, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
16
|
Adamic EM, Teed AR, Avery JA, de la Cruz F, Khalsa SS. Hemispheric divergence of interoceptive processing across psychiatric disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.570759. [PMID: 38105986 PMCID: PMC10723463 DOI: 10.1101/2023.12.08.570759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Interactions between top-down attention and bottom-up visceral inputs are assumed to produce conscious perceptions of interoceptive states, and while each process has been independently associated with aberrant interoceptive symptomatology in psychiatric disorders, the neural substrates of this interface are unknown. We conducted a preregistered functional neuroimaging study of 46 individuals with anxiety, depression, and/or eating disorders (ADE) and 46 propensity-matched healthy comparisons (HC), comparing their neural activity across two interoceptive tasks differentially recruiting top-down or bottom-up processing within the same scan session. During an interoceptive attention task, top-down attention was voluntarily directed towards cardiorespiratory or visual signals, whereas during an interoceptive perturbation task, intravenous infusions of isoproterenol (a peripherally-acting beta-adrenergic receptor agonist) were administered in a double-blinded and placebo-controlled fashion to drive bottom-up cardiorespiratory sensations. Across both tasks, neural activation converged upon the insular cortex, localizing within the granular and ventral dysgranular subregions bilaterally. However, contrasting hemispheric differences emerged, with the ADE group exhibiting (relative to HCs) an asymmetric pattern of overlap in the left insula, with increased or decreased proportions of co-activated voxels within the left or right dysgranular insula, respectively. The ADE group also showed less agranular anterior insula activation during periods of bodily uncertainty (i.e., when anticipating possible isoproterenol-induced changes that never arrived). Finally, post-task changes in insula functional connectivity were associated with anxiety and depression severity. These findings confirm the dysgranular mid-insula as a key cortical interface where attention and prediction meet real-time bodily inputs, especially during heightened awareness of interoceptive states. Further, the dysgranular mid-insula may indeed be a "locus of disruption" for psychiatric disorders.
Collapse
Affiliation(s)
- Emily M Adamic
- Laureate Institute for Brain Research, Tulsa, OK, USA, 74136
- Department of Biological Sciences, University of Tulsa, Tulsa, OK, USA, 74104
| | - Adam R Teed
- Laureate Institute for Brain Research, Tulsa, OK, USA, 74136
| | - Jason A Avery
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA, 20814
| | - Feliberto de la Cruz
- Laboratory for Autonomic Neuroscience, Imaging, and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Thuringia, Germany, 07743
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, USA, 74136
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA, 74119
| |
Collapse
|
17
|
Cambi S, Solcà M, Micali N, Berchio C. Cardiac interoception in Anorexia Nervosa: A resting-state heartbeat-evoked potential study. EUROPEAN EATING DISORDERS REVIEW 2024; 32:417-430. [PMID: 38009624 DOI: 10.1002/erv.3049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE A deficit in interoception - the ability to perceive, interpret and integrate afferent signals about the physiological state of the body - has been shown in Anorexia Nervosa (AN), and linked to altered hunger sensations, body dysmorphia, and abnormal emotional awareness. The present high-density electroencephalography (hdEEG) study aims to assess cardiac interoception in AN and to investigate its neural correlates, using an objective neurophysiological measure. METHOD Heartbeat-evoked potentials (HEPs) were computed from 5 min of resting-state EEG and electrocardiogram (ECG) data and compared between individuals with AN (N = 22) and healthy controls (HC) (N = 19) with waveform, topographic, and source imaging analyses. RESULTS Differences in the cortical representation of heartbeats were present between AN and HC at a time window of 332-348 ms after the ECG R-peak. Source imaging analyses revealed a right-sided hypoactivation in AN of brain regions linked to interoceptive processing, such as the anterior cingulate and orbitofrontal areas. CONCLUSIONS To the best of our knowledge, this is the first study using hdEEG to localise the underlying sources of HEPs in AN. Results point to altered interoceptive processing during resting-state in AN. As our participants had a short duration of illness, this might not be the consequence of prolonged starvation. Interventions targeted at interoception could provide an additional tool to facilitate recovery.
Collapse
Affiliation(s)
- Susanne Cambi
- Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland
| | - Marco Solcà
- Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland
| | - Nadia Micali
- Mental Health Services of the Capital Region of Denmark, Center for Eating and Feeding Disorders Research, Psychiatric Centre Ballerup, Ballerup, Denmark
- University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Cristina Berchio
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
18
|
Ghanem K, Saltoun K, Suvrathan A, Draganski B, Bzdok D. Longitudinal microstructural changes in 18 amygdala nuclei resonate with cortical circuits and phenomics. Commun Biol 2024; 7:477. [PMID: 38637627 PMCID: PMC11026520 DOI: 10.1038/s42003-024-06187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
The amygdala nuclei modulate distributed neural circuits that most likely evolved to respond to environmental threats and opportunities. So far, the specific role of unique amygdala nuclei in the context processing of salient environmental cues lacks adequate characterization across neural systems and over time. Here, we present amygdala nuclei morphometry and behavioral findings from longitudinal population data (>1400 subjects, age range 40-69 years, sampled 2-3 years apart): the UK Biobank offers exceptionally rich phenotyping along with brain morphology scans. This allows us to quantify how 18 microanatomical amygdala subregions undergo plastic changes in tandem with coupled neural systems and delineating their associated phenome-wide profiles. In the context of population change, the basal, lateral, accessory basal, and paralaminar nuclei change in lockstep with the prefrontal cortex, a region that subserves planning and decision-making. The central, medial and cortical nuclei are structurally coupled with the insular and anterior-cingulate nodes of the salience network, in addition to the MT/V5, basal ganglia, and putamen, areas proposed to represent internal bodily states and mediate attention to environmental cues. The central nucleus and anterior amygdaloid area are longitudinally tied with the inferior parietal lobule, known for a role in bodily awareness and social attention. These population-level amygdala-brain plasticity regimes in turn are linked with unique collections of phenotypes, ranging from social status and employment to sleep habits and risk taking. The obtained structural plasticity findings motivate hypotheses about the specific functions of distinct amygdala nuclei in humans.
Collapse
Affiliation(s)
- Karam Ghanem
- The Neuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada.
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada.
| | - Karin Saltoun
- The Neuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Aparna Suvrathan
- Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience (BRaIN) Research Program, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Bogdan Draganski
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Danilo Bzdok
- The Neuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada.
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada.
| |
Collapse
|
19
|
Mai-Lippold SA, Schultze J, Pollatos O. Interoceptive abilities impairment correlates with emotional eating and taste abnormalities in children with overweight and obesity. Appetite 2024; 194:107182. [PMID: 38154574 DOI: 10.1016/j.appet.2023.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Weight problems in children are associated with emotional eating, which has been linked to interoceptive abilities. Previous research also shows altered olfactory and gustatory perception in children with obesity and overweight. Therefore, we aimed to investigate the connection of alterations in olfactory and gustatory perception to interoceptive abilities and emotional eating among children with obesity and overweight. 23 children with overweight and obesity and age-matched controls with normal weight (12-16 years old) underwent olfactory and gustatory testing. Interoceptive abilities were assessed, focusing on interoceptive accuracy and interoceptive sensibility. Children with overweight and obesity showed significantly higher accuracy for detection of sweet taste, but descriptively lower accuracy for all other taste qualities compared to normal weight children. We found no changes in olfactory abilities in children with overweight and obesity. Emotional eating scores were elevated for children with overweight and obesity, and interoceptive accuracy scores were significantly lower. In both groups, interoceptive accuracy was inversely correlated with emotional eating. Our results support prior findings of altered gustatory abilities in children with overweight and obesity. The observed link between impaired interoceptive processes and heightened emotional eating in this group implies that interventions for overweight in children could benefit from targeting interoceptive abilities. This study provides meaningful grounds for further investigations into the roles of taste, emotional eating, and interoceptive abilities for overweight in children and adolescents.
Collapse
Affiliation(s)
- Sandra A Mai-Lippold
- Clinical and Health Psychology, Institute of Psychology, Ulm University, Germany
| | - Jasmin Schultze
- Clinical and Health Psychology, Institute of Psychology, Ulm University, Germany
| | - Olga Pollatos
- Clinical and Health Psychology, Institute of Psychology, Ulm University, Germany.
| |
Collapse
|
20
|
Murphy J. Interoception: Where do we go from here? Q J Exp Psychol (Hove) 2024; 77:223-229. [PMID: 37082986 PMCID: PMC10798007 DOI: 10.1177/17470218231172725] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
In recent years, there has been a significant rise in interest in interoception, the processing of internal bodily signals. This interest has been coupled by increased concerns regarding the measurement and conceptualisation of interoception. Focusing on cardiac interoceptive accuracy, I outline what I believe to be the most pressing issues in the field of interoception-specifically the continued reliance on the heartbeat counting task. I then provide an overview of what I believe to be more general limitations concerning how we measure and conceptualise individual differences in interoception and suggestions for a way forward. Specifically, I believe that by moving beyond single measurements, establishing optimal levels of interoceptive accuracy, and refocusing from accuracy to propensity, we may be able to uncover the real-life relevance of interoceptive abilities.
Collapse
Affiliation(s)
- Jennifer Murphy
- Department of Psychology, Royal Holloway, University of London, Egham, UK
| |
Collapse
|
21
|
Blickle M, Klüpfel C, Homola GA, Gamer M, Herrmann MJ, Störk S, Gelbrich G, Heuschmann PU, Deckert J, Pham M, Menke A. Heart rate variability, interoceptive accuracy and functional connectivity in middle-aged and older patients with depression. J Psychiatr Res 2024; 170:122-129. [PMID: 38134721 DOI: 10.1016/j.jpsychires.2023.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND AND OBJECTIVE Major depressive disorder (MDD) is associated with increased cardiac morbidity. Reduced heart rate variability (HRV) as well as lower interoceptive accuracy (IAc) have been observed in MDD as possible sympathomimetic mechanisms related to insula activity. The salience network (SN) anchored by the insula has been posited as a crucial functional network for cardiac sensations and the default mode network (DMN) for MDD. This study aimed to investigate the relation between insula-centered and depression-related brain networks, IAc and HRV in patients with depression as a possible mechanism by which MDD increases cardiac morbidity. METHODS 30 depressed inpatients and 30 healthy subjects (derived from the population-based "Characteristics and Course of Heart Failure Stages A-B and Determinants of Progression" cohort study, STAAB) all over 50 years were examined. HRV and IAc were assessed via electrocardiogram and a heartbeat perception task prior to a 3 T resting-state functional magnetic resonance imaging. Seed-to-voxel resting-state functional connectivity (FC) analysis was conducted with six seeds in the insula and two seeds in the DMN. RESULTS Depressed patients on the one hand showed decreased FC between insula cortex and frontal as well occipital cortical brain regions compared to controls. Depressed patients on the other hand exhibited higher FC between the medial prefrontal cortex and the insula cortex compared to controls. However, depressed patients did not differ in HRV nor in IAc compared to controls. CONCLUSION Thus, differences in insula-related brain networks in depression in our study were not mirrored by differences in HRV and IAc. Future research is needed to define the mechanism by which depression increases cardiac morbidity.
Collapse
Affiliation(s)
- Manuel Blickle
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Catherina Klüpfel
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - György A Homola
- Department of Neuroradiology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Matthias Gamer
- Department of Psychology, University of Würzburg, Marcusstr. 9-11, 97070, Würzburg, Germany
| | - Martin J Herrmann
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Stefan Störk
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany; Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Götz Gelbrich
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany; Clinical Trial Center, University Hospital Würzburg, Würzburg, Germany
| | - Peter U Heuschmann
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany; Clinical Trial Center, University Hospital Würzburg, Würzburg, Germany
| | - Jürgen Deckert
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Mirko Pham
- Department of Neuroradiology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Andreas Menke
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical Park Chiemseeblick, Rasthausstr. 25, 83233, Bernau am Chiemsee, Germany; Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.
| |
Collapse
|
22
|
Joshi SD, Ruffini G, Nuttall HE, Watson DG, Braithwaite JJ. Optimised Multi-Channel Transcranial Direct Current Stimulation (MtDCS) Reveals Differential Involvement of the Right-Ventrolateral Prefrontal Cortex (rVLPFC) and Insular Complex in those Predisposed to Aberrant Experiences. Conscious Cogn 2024; 117:103610. [PMID: 38056338 DOI: 10.1016/j.concog.2023.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Research has shown a prominent role for cortical hyperexcitability underlying aberrant perceptions, hallucinations, and distortions in human conscious experience - even in neurotypical groups. The rVLPFC has been identified as an important structure in mediating cognitive affective states / feeling conscious states. The current study examined the involvement of the rVLPFC in mediating cognitive affective states in those predisposed to aberrant experiences in the neurotypical population. Participants completed two trait-based measures: (i) the Cortical Hyperexcitability Index_II (CHi_II, a proxy measure of cortical hyperexcitability) and (ii) two factors from the Cambridge Depersonalisation Scale (CDS). An optimised 7-channel MtDCS montage for stimulation conditions (Anodal, Cathodal and Sham) was created targeting the rVLPFC in a single-blind study. At the end of each stimulation session, participants completed a body-threat task (BTAB) while skin conductance responses (SCRs) and psychological responses were recorded. Participants with signs of increasing cortical hyperexcitability showed significant suppression of SCRs in the Cathodal stimulation relative to the Anodal and sSham conditions. Those high on the trait-based measures of depersonalisation-like experiences failed to show reliable effects. Collectively, the findings suggest that baseline brain states can mediate the effects of neurostimulation which would be missed via sample level averaging and without appropriate measures for stratifying individual differences.
Collapse
|
23
|
Huang L, Song M, Wang L, Zhang Q, Liu X, Cai C. The Psychometric Properties of the Chinese version of the Interoceptive Awareness Questionnaire (IAQ) among PATIENTS WITH Cardiovascular Disease. Heart Lung 2024; 63:18-22. [PMID: 37738946 DOI: 10.1016/j.hrtlng.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Interoceptive awareness (perception of body conditions and processes) and heart rate variability are connected physiologically in cardiovascular disease (CVD) patients. At present, there is no specific evaluation model for the perception of the physical state and processes of CVD patients in China. OBJECTIVES The objective of this study is to examine the reliability and validity of the Chinese Interoceptive Awareness Questionnaire (C-IAQ) for Chinese CVD patients. METHODS 160 CVD patients were recruited from a hospital in Hubei province using a convenient sampling method. A standard "forward-backward" translation method was applied to convert the C-IAQ into Mandarin. Split-half reliability and internal consistency were conducted by using reliability tests. Validity testing was conducted on the content, structure, and criterion-related validity. Criterion-related validity was assessed by using the Anxiety Sensitivity Index-III (ASI-III). RESULTS The research results indicate that the dual factor structure of the original C-IAQ has 19 items, including attention to unpleasant sensations (9 items) and awareness of neutral body sensations (10 items). Moreover, C-IAQ is positively correlated with ASI-III (r = 0.48, P<0.01). The entire scale has a Cronbach's α value of 0.85 and split-half dependability of 0.77. CONCLUSION The C-IAQ has favorable psychometric feature. Hence, it can be used to measure the interoceptive awareness of CVD patients.
Collapse
Affiliation(s)
- Liu Huang
- College of Basic Medical Science, China Three Gorges University, Yichang, 443000, China
| | - Mengtao Song
- The First College of Clinical Medicine Science, China Three Gorges University, Yichang, 443000, China
| | - Ling Wang
- The First College of Clinical Medicine Science, China Three Gorges University, Yichang, 443000, China
| | - Qiran Zhang
- School of Medicine Xiangyang Polytechnic, Xiangyang, 441100, China
| | - Xiao Liu
- School of Medicine Xiangyang Polytechnic, Xiangyang, 441100, China
| | - Chunfeng Cai
- School of Nursing, Wuhan University, Wuhan, 430000, China..
| |
Collapse
|
24
|
Zhang Y, Zhang Q, Wang J, Zhou M, Qing Y, Zou H, Li J, Yang C, Becker B, Kendrick KM, Yao S. "Listen to your heart": A novel interoceptive strategy for real-time fMRI neurofeedback training of anterior insula activity. Neuroimage 2023; 284:120455. [PMID: 37952779 DOI: 10.1016/j.neuroimage.2023.120455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
Real-time fMRI (rt-fMRI) neurofeedback (NF) training is a novel non-invasive technique for volitional brain modulation. Given the important role of the anterior insula (AI) in human cognitive and affective processes, it has become one of the most investigated regions in rt-fMRI studies. Most rt-fMRI insula studies employed emotional recall/imagery as the regulation strategy, which may be less effective for psychiatric disorders characterized by altered emotional processing. The present study thus aimed to examine the feasibility of a novel interoceptive strategy based on heartbeat detection in rt-fMRI guided AI regulation and its associated behavioral changes using a randomized double-blind, sham feedback-controlled between-subject design. 66 participants were recruited and randomly assigned to receive either NF from the left AI (LAI) or sham feedback from a control region while using the interoceptive strategy. N = 57 participants were included in the final data analyses. Empathic and interoceptive pre-post training changes were collected as behavioral measures of NF training effects. Results showed that participants in the NF group exhibited stronger LAI activity than the control group with LAI activity being positively correlated with interoceptive accuracy following NF training, although there were no significant increases of LAI activity over training sessions. Importantly, ability of LAI regulation could be maintained in a transfer session without feedback. Successful LAI regulation was associated with strengthened functional connectivity of the LAI with cognitive control, memory and learning, and salience/interoceptive networks. The present study demonstrated for the first time the efficacy of a novel regulation strategy based on interoceptive processing in up-regulating LAI activity. Our findings also provide proof of concept for the translational potential of this strategy in rt-fMRI AI regulation of psychiatric disorders characterized by altered emotional processing.
Collapse
Affiliation(s)
- Yuan Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiong Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiayuan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Menghan Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanan Qing
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Haochen Zou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianfu Li
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chenghui Yang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Benjamin Becker
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
25
|
Patino LR, Tallman MJ, Wen H, Adler CM, Welge JA, DelBello MP. Deficits in sustained attention in adolescents with bipolar disorder during their first manic episode. J Affect Disord 2023; 339:43-51. [PMID: 37380109 DOI: 10.1016/j.jad.2023.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVES Evaluate differences in sustained attention (SAT) and associated neurofunctional profiles between bipolar disorder type I (BD), attention-deficit/hyperactivity disorder (ADHD), and healthy comparison (HC) youth. METHODS Adolescent participants, aged 12-17 years, with BD (n = 30) and ADHD (n = 28) and HC adolescents (n = 26) underwent structural and functional magnetic resonance imaging (fMRI) while completing a modified Continuous Performance Task-Identical Pairs task. Attentional load was modifying in this task using three levels of image distortion (0 %, 25 % and 50 % image distortion). Task related fMRI activation and performance measures: perceptual sensitivity index (PSI); response bias (RB) and response time (RT); were calculated and compared between groups. RESULTS BD participants displayed lower perceptual sensitivity index (0 % p = 0.012; 25 % p = 0.015; 50 % p = 0.036) and higher values of response bias across levels of distortion (0 % p = 0.002, 25 % p = 0.001, and 50 % p = 0.008) as compared to HC. No statistically significant differences were observed for PSI and RB between BD and ADHD groups. No difference in RT were detected. Between-group and within-group differences in task related fMRI measures were detected in several clusters. In a region of interest (ROI) analysis of these clusters comparing BD and ADHD confirmed differences between these two groups. CONCLUSIONS Compared with HC, BD participants displayed SAT deficits. Increased attentional load revealed that BD participants had lower activation in brain regions associated with performance and integration of neural processes in SAT. ROI analysis between BD and ADHD participants shows that the differences were likely not attributable to ADHD comorbidity, suggesting SAT deficits were distinct to the BD group.
Collapse
Affiliation(s)
- Luis R Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Maxwell J Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hongbo Wen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey A Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
26
|
von Mohr M, Finotti G, Esposito G, Bahrami B, Tsakiris M. Social interoception: Perceiving events during cardiac afferent activity makes people more suggestible to other people's influence. Cognition 2023; 238:105502. [PMID: 37336022 DOI: 10.1016/j.cognition.2023.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/04/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023]
Abstract
Our judgements are often influenced by other people's views and opinions. Interoception also influences decision making, but little is known about its role in social influence and particularly, the extent to which other people may influence our decisions. Across two experiments, using different forms of social influence, participants judged the trustworthiness of faces presented either during the systolic phase of the cardiac cycle, when baroreceptors convey information from the heart to the brain, or during diastolic phase, when baroreceptors are quiescent. We quantified the extent to which participants changed their minds (as an index of social influence) following the social feedback, in order to compare two competing hypotheses. According to the Arousal-Confidence Hypothesis, cardiac signals create a context of heightened bodily arousal that increases confidence in perceptual judgements. People should, therefore, be less subject to social influence during systole. By contrast, according to the Uncertainty-Conformity Hypothesis, cardiac signals increase neural noise and sensory attenuation, such that people should display greater effects of social influence during systole, as they then underweight private interoceptive signals in favour of the external social information. Across two studies that used different kind of social interactions, we found that participants changed their minds more when faces were presented at systole. Our results, therefore, support the Uncertainly-Conformity hypothesis and highlight how cardiac afferent signals contribute to shape our social decision-making in different types of social interactions.
Collapse
Affiliation(s)
- Mariana von Mohr
- Lab of Action and Body, Department of Psychology, Royal Holloway, University of London, UK; Centre for the Politics of Feelings, School of Advanced Study, University of London, UK.
| | - Gianluca Finotti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology, University of Bologna, Italy
| | | | - Bahador Bahrami
- Department of Psychology, Ludwig Maximilian University, Munich, Germany; Department of Psychology, Royal Holloway, University of London, UK
| | - Manos Tsakiris
- Lab of Action and Body, Department of Psychology, Royal Holloway, University of London, UK; Centre for the Politics of Feelings, School of Advanced Study, University of London, UK
| |
Collapse
|
27
|
Danielli E, Simard N, DeMatteo CA, Kumbhare D, Ulmer S, Noseworthy MD. A review of brain regions and associated post-concussion symptoms. Front Neurol 2023; 14:1136367. [PMID: 37602240 PMCID: PMC10435092 DOI: 10.3389/fneur.2023.1136367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The human brain is an exceptionally complex organ that is comprised of billions of neurons. Therefore, when a traumatic event such as a concussion occurs, somatic, cognitive, behavioral, and sleep impairments are the common outcome. Each concussion is unique in the sense that the magnitude of biomechanical forces and the direction, rotation, and source of those forces are different for each concussive event. This helps to explain the unpredictable nature of post-concussion symptoms that can arise and resolve. The purpose of this narrative review is to connect the anatomical location, healthy function, and associated post-concussion symptoms of some major cerebral gray and white matter brain regions and the cerebellum. As a non-exhaustive description of post-concussion symptoms nor comprehensive inclusion of all brain regions, we have aimed to amalgamate the research performed for specific brain regions into a single article to clarify and enhance clinical and research concussion assessment. The current status of concussion diagnosis is highly subjective and primarily based on self-report of symptoms, so this review may be able to provide a connection between brain anatomy and the clinical presentation of concussions to enhance medical imaging assessments. By explaining anatomical relevance in terms of clinical concussion symptom presentation, an increased understanding of concussions may also be achieved to improve concussion recognition and diagnosis.
Collapse
Affiliation(s)
- Ethan Danielli
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Nicholas Simard
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
| | - Carol A. DeMatteo
- ARiEAL Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Rehabilitation Sciences, McMaster University, Hamilton, ON, Canada
| | - Dinesh Kumbhare
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephan Ulmer
- Neurorad.ch, Zurich, Switzerland
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Michael D. Noseworthy
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
- ARiEAL Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Radiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
28
|
Fermin AS, Sasaoka T, Maekawa T, Chan HL, Machizawa MG, Okada G, Okamoto Y, Yamawaki S. Insula neuroanatomical networks predict interoceptive awareness. Heliyon 2023; 9:e18307. [PMID: 37520943 PMCID: PMC10374932 DOI: 10.1016/j.heliyon.2023.e18307] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Interoceptive awareness (IA), the subjective and conscious perception of visceral and physiological signals from the body, has been associated with functions of cortical and subcortical neural systems involved in emotion control, mood and anxiety disorders. We recently hypothesized that IA and its contributions to mental health are realized by a brain interoception network (BIN) linking brain regions that receive ascending interoceptive information from the brainstem, such as the amygdala, insula and anterior cingulate cortex (ACC). However, little evidence exists to support this hypothesis. In order to test this hypothesis, we used a publicly available dataset that contained both anatomical neuroimaging data and an objective measure of IA assessed with a heartbeat detection task. Whole-brain Voxel-Based Morphometry (VBM) was used to investigate the association of IA with gray matter volume (GMV) and the structural covariance network (SCN) of the amygdala, insula and ACC. The relationship between IA and mental health was investigated with questionnaires that assessed depressive symptoms and anxiety. We found a positive correlation between IA and state anxiety, but not with depressive symptoms. In the VBM analysis, only the GMV of the left anterior insula showed a positive association with IA. A similar association was observed between the parcellated GMV of the left dorsal agranular insula, located in the anterior insula, and IA. The SCN linking the right dorsal agranular insula with the left dorsal agranular insula and left hyper-granular insula were positively correlated with IA. No association between GMV or SCN and depressive symptoms or anxiety were observed. These findings revealed a previously unknown association between IA, insula volume and intra-insula SCNs. These results may support development of non-invasive neuroimaging interventions, e.g., neurofeedback, seeking to improve IA and to prevent development of mental health problems, such anxiety disorders.
Collapse
Affiliation(s)
- Alan S.R. Fermin
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, 734-8553, Hiroshima city, Hiroshima, Japan
| | - Takafumi Sasaoka
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, 734-8553, Hiroshima city, Hiroshima, Japan
| | - Toru Maekawa
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, 734-8553, Hiroshima city, Hiroshima, Japan
| | - Hui-Ling Chan
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, 734-8553, Hiroshima city, Hiroshima, Japan
| | - Maro G. Machizawa
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, 734-8553, Hiroshima city, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, 734-8553, Hiroshima city, Hiroshima, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University, 734-8553, Hiroshima city, Hiroshima, Japan
| | - Shigeto Yamawaki
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, 734-8553, Hiroshima city, Hiroshima, Japan
| |
Collapse
|
29
|
Luettich A, Sievers C, Alfaro Almagro F, Allen M, Jbabdi S, Smith SM, Pattinson KTS. Functional connectivity between interoceptive brain regions is associated with distinct health-related domains: A population-based neuroimaging study. Hum Brain Mapp 2023; 44:3210-3221. [PMID: 36939141 PMCID: PMC10171512 DOI: 10.1002/hbm.26275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 03/21/2023] Open
Abstract
Interoception is the sensation, perception, and integration of signals from within the body. It has been associated with a broad range of physiological and psychological processes. Further, interoceptive variables are related to specific regions and networks in the human brain. However, it is not clear whether or how these networks relate empirically to different domains of physiological and psychological health at the population level. We analysed a data set of 19,020 individuals (10,055 females, 8965 males; mean age: 63 years, age range: 45-81 years), who have participated in the UK Biobank Study, a very large-scale prospective epidemiological health study. Using canonical correlation analysis (CCA), allowing for the examination of associations between two sets of variables, we related the functional connectome of brain regions implicated in interoception to a selection of nonimaging health and lifestyle related phenotypes, exploring their relationship within modes of population co-variation. In one integrated and data driven analysis, we obtained four statistically significant modes. Modes could be categorised into domains of arousal and affect and cardiovascular health, respiratory health, body mass, and subjective health (all p < .0001) and were meaningfully associated with distinct neural circuits. Circuits represent specific neural "fingerprints" of functional domains and set the scope for future studies on the neurobiology of interoceptive involvement in different lifestyle and health-related phenotypes. Therefore, our research contributes to the conceptualisation of interoception and may lead to a better understanding of co-morbid conditions in the light of shared interoceptive structures.
Collapse
Affiliation(s)
- Alexander Luettich
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Carolin Sievers
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Fidel Alfaro Almagro
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Micah Allen
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
- Aarhus Institute of Advanced StudiesAarhus UniversityAarhusDenmark
- Cambridge PsychiatryUniversity of CambridgeCambridgeUK
| | - Saad Jbabdi
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Stephen M. Smith
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Kyle T. S. Pattinson
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| |
Collapse
|
30
|
Ho A, Orton R, Tayler R, Asamaphan P, Herder V, Davis C, Tong L, Smollett K, Manali M, Allan J, Rawlik K, McDonald SE, Vink E, Pollock L, Gannon L, Evans C, McMenamin J, Roy K, Marsh K, Divala T, Holden MTG, Lockhart M, Yirrell D, Currie S, O'Leary M, Henderson D, Shepherd SJ, Jackson C, Gunson R, MacLean A, McInnes N, Bradley-Stewart A, Battle R, Hollenbach JA, Henderson P, Odam M, Chikowore P, Oosthuyzen W, Chand M, Hamilton MS, Estrada-Rivadeneyra D, Levin M, Avramidis N, Pairo-Castineira E, Vitart V, Wilkie C, Palmarini M, Ray S, Robertson DL, da Silva Filipe A, Willett BJ, Breuer J, Semple MG, Turner D, Baillie JK, Thomson EC. Adeno-associated virus 2 infection in children with non-A-E hepatitis. Nature 2023; 617:555-563. [PMID: 36996873 PMCID: PMC7617659 DOI: 10.1038/s41586-023-05948-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/10/2023] [Indexed: 04/01/2023]
Abstract
An outbreak of acute hepatitis of unknown aetiology in children was reported in Scotland1 in April 2022 and has now been identified in 35 countries2. Several recent studies have suggested an association with human adenovirus with this outbreak, a virus not commonly associated with hepatitis. Here we report a detailed case-control investigation and find an association between adeno-associated virus 2 (AAV2) infection and host genetics in disease susceptibility. Using next-generation sequencing, PCR with reverse transcription, serology and in situ hybridization, we detected recent infection with AAV2 in plasma and liver samples in 26 out of 32 (81%) cases of hepatitis compared with 5 out of 74 (7%) of samples from unaffected individuals. Furthermore, AAV2 was detected within ballooned hepatocytes alongside a prominent T cell infiltrate in liver biopsy samples. In keeping with a CD4+ T-cell-mediated immune pathology, the human leukocyte antigen (HLA) class II HLA-DRB1*04:01 allele was identified in 25 out of 27 cases (93%) compared with a background frequency of 10 out of 64 (16%; P = 5.49 × 10-12). In summary, we report an outbreak of acute paediatric hepatitis associated with AAV2 infection (most likely acquired as a co-infection with human adenovirus that is usually required as a 'helper virus' to support AAV2 replication) and disease susceptibility related to HLA class II status.
Collapse
Affiliation(s)
- Antonia Ho
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Richard Orton
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Rachel Tayler
- Department of Paediatrics, Royal Hospital for Children, Glasgow, UK
| | - Patawee Asamaphan
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Vanessa Herder
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Chris Davis
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Lily Tong
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Katherine Smollett
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Maria Manali
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Jay Allan
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Konrad Rawlik
- Pandemic Science Hub, Centre for Inflammation Research and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Sarah E McDonald
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Elen Vink
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Louisa Pollock
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
- Department of Paediatrics, Royal Hospital for Children, Glasgow, UK
| | | | - Clair Evans
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, UK
| | | | | | | | | | | | | | | | | | | | | | | | - Celia Jackson
- West of Scotland Specialist Virology Centre, Glasgow, UK
| | - Rory Gunson
- West of Scotland Specialist Virology Centre, Glasgow, UK
| | | | - Neil McInnes
- West of Scotland Specialist Virology Centre, Glasgow, UK
| | | | - Richard Battle
- Histocompatibility and Immunogenetics (H&I) Laboratory, Scottish National Blood Transfusion Service, Edinburgh Royal Infirmary, Edinburgh, UK
| | - Jill A Hollenbach
- Department of Neurology and Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Paul Henderson
- Child Life and Health, University of Edinburgh, Edinburgh, UK
| | - Miranda Odam
- Pandemic Science Hub, Centre for Inflammation Research and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Primrose Chikowore
- Pandemic Science Hub, Centre for Inflammation Research and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Wilna Oosthuyzen
- Pandemic Science Hub, Centre for Inflammation Research and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Melissa Shea Hamilton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Diego Estrada-Rivadeneyra
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Michael Levin
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Nikos Avramidis
- Pandemic Science Hub, Centre for Inflammation Research and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Erola Pairo-Castineira
- Pandemic Science Hub, Centre for Inflammation Research and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Veronique Vitart
- Pandemic Science Hub, Centre for Inflammation Research and Roslin Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Craig Wilkie
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Massimo Palmarini
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Surajit Ray
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - David L Robertson
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Ana da Silva Filipe
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Brian J Willett
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | | | - David Turner
- Histocompatibility and Immunogenetics (H&I) Laboratory, Scottish National Blood Transfusion Service, Edinburgh Royal Infirmary, Edinburgh, UK
| | - J Kenneth Baillie
- Pandemic Science Hub, Centre for Inflammation Research and Roslin Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Emma C Thomson
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK.
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
31
|
Kruithof ES, Klaus J, Schutter DJLG. The human cerebellum in reward anticipation and reward outcome processing: An activation likelihood estimation meta-analysis. Neurosci Biobehav Rev 2023; 149:105171. [PMID: 37060968 DOI: 10.1016/j.neubiorev.2023.105171] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 03/10/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
The cerebellum generates internal prediction models and actively compares anticipated and actual outcomes in order to reach a desired end state. In this process, reward can serve as a reinforcer that shapes internal prediction models, enabling context-appropriate behavior. While the involvement of the cerebellum in reward processing has been established in animals, there is no detailed account of which cerebellar regions are involved in reward anticipation and reward outcome processing in humans. To this end, an activation likelihood estimation meta-analysis of functional neuroimaging studies was performed to investigate cerebellar functional activity patterns associated with reward anticipation and reward outcome processing in healthy adults. Results showed that reward anticipation (k=31) was associated with regional activity in the bilateral anterior lobe, bilateral lobule VI, left Crus I and the posterior vermis, while reward outcome (k=16) was associated with regional activity in the declive and left lobule VI. The findings of this meta-analysis show distinct involvement of the cerebellum in reward anticipation and reward outcome processing as part of a predictive coding routine.
Collapse
Affiliation(s)
- Eline S Kruithof
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands.
| | - Jana Klaus
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands
| | - Dennis J L G Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands
| |
Collapse
|
32
|
Atzil S, Satpute AB, Zhang J, Parrish MH, Shablack H, MacCormack JK, Leshin J, Goel S, Brooks JA, Kang J, Xu Y, Cohen M, Lindquist KA. The impact of sociality and affective valence on brain activation: A meta-analysis. Neuroimage 2023; 268:119879. [PMID: 36642154 DOI: 10.1016/j.neuroimage.2023.119879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Thirty years of neuroimaging reveal the set of brain regions consistently associated with pleasant and unpleasant affect in humans-or the neural reference space for valence. Yet some of humans' most potent affective states occur in the context of other humans. Prior work has yet to differentiate how the neural reference space for valence varies as a product of the sociality of affective stimuli. To address this question, we meta-analyzed across 614 social and non-social affective neuroimaging contrasts, summarizing the brain regions that are consistently activated for social and non-social affective information. We demonstrate that across the literature, social and non-social affective stimuli yield overlapping activations within regions associated with visceromotor control, including the amygdala, hypothalamus, anterior cingulate cortex and insula. However, we find that social processing differs from non-social affective processing in that it involves additional cortical activations in the medial prefrontal and posterior cingulum that have been associated with mentalizing and prediction. A Bayesian classifier was able to differentiate unpleasant from pleasant affect, but not social from non-social affective states. Moreover, it was not able to classify unpleasantness from pleasantness at the highest levels of sociality. These findings suggest that highly social scenarios may be equally salient to humans, regardless of their valence.
Collapse
Affiliation(s)
- Shir Atzil
- The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | - Jiahe Zhang
- Northeastern University, Boston, MA, United States
| | | | - Holly Shablack
- Washington and Lee University, Lexington, VA, United States
| | | | - Joseph Leshin
- University of North Carolina, Chapel Hill, NC, United States
| | | | - Jeffrey A Brooks
- Hume AI, New York, NY, United States; University of California, Berkeley, CA, United States
| | - Jian Kang
- University of Michigan, Ann Arbor, MI, United States
| | - Yuliang Xu
- University of Michigan, Ann Arbor, MI, United States
| | - Matan Cohen
- The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
33
|
Central control of cardiac activity as assessed by intra-cerebral recordings and stimulations. Neurophysiol Clin 2023; 53:102849. [PMID: 36867969 DOI: 10.1016/j.neucli.2023.102849] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 03/05/2023] Open
Abstract
Some of the most important integrative control centers for the autonomic nervous system are located in the brainstem and the hypothalamus. However, growing recent neuroimaging evidence support that a set of cortical regions, named the central autonomic network (CAN), is involved in autonomic control and seems to play a major role in continuous autonomic cardiac adjustments to high-level emotional, cognitive or sensorimotor cortical activities. Intracranial explorations during stereo-electroencephalography (SEEG) offer a unique opportunity to address the question of the brain regions involved in heart-brain interaction, by studying: (i) direct cardiac effects produced by the electrical stimulation of specific brain areas; (ii) epileptic seizures inducing cardiac modifications; (iii) cortical regions involved in cardiac interoception and source of cardiac evoked potentials. In this review, we detail the available data assessing cardiac central autonomic regulation using SEEG, address the strengths and also the limitations of this technique in this context, and discuss perspectives. The main cortical regions that emerge from SEEG studies as being involved in cardiac autonomic control are the insula and regions belonging to the limbic system: the amygdala, the hippocampus, and the anterior and mid-cingulate. Although many questions remain, SEEG studies have already demonstrated afferent and efferent interactions between the CAN and the heart. Future studies in SEEG should integrate these afferent and efferent dimensions as well as their interaction with other cortical networks to better understand the functional heart-brain interaction.
Collapse
|
34
|
Hsueh B, Chen R, Jo Y, Tang D, Raffiee M, Kim YS, Inoue M, Randles S, Ramakrishnan C, Patel S, Kim DK, Liu TX, Kim SH, Tan L, Mortazavi L, Cordero A, Shi J, Zhao M, Ho TT, Crow A, Yoo ACW, Raja C, Evans K, Bernstein D, Zeineh M, Goubran M, Deisseroth K. Cardiogenic control of affective behavioural state. Nature 2023; 615:292-299. [PMID: 36859543 PMCID: PMC9995271 DOI: 10.1038/s41586-023-05748-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/20/2023] [Indexed: 03/03/2023]
Abstract
Emotional states influence bodily physiology, as exemplified in the top-down process by which anxiety causes faster beating of the heart1-3. However, whether an increased heart rate might itself induce anxiety or fear responses is unclear3-8. Physiological theories of emotion, proposed over a century ago, have considered that in general, there could be an important and even dominant flow of information from the body to the brain9. Here, to formally test this idea, we developed a noninvasive optogenetic pacemaker for precise, cell-type-specific control of cardiac rhythms of up to 900 beats per minute in freely moving mice, enabled by a wearable micro-LED harness and the systemic viral delivery of a potent pump-like channelrhodopsin. We found that optically evoked tachycardia potently enhanced anxiety-like behaviour, but crucially only in risky contexts, indicating that both central (brain) and peripheral (body) processes may be involved in the development of emotional states. To identify potential mechanisms, we used whole-brain activity screening and electrophysiology to find brain regions that were activated by imposed cardiac rhythms. We identified the posterior insular cortex as a potential mediator of bottom-up cardiac interoceptive processing, and found that optogenetic inhibition of this brain region attenuated the anxiety-like behaviour that was induced by optical cardiac pacing. Together, these findings reveal that cells of both the body and the brain must be considered together to understand the origins of emotional or affective states. More broadly, our results define a generalizable approach for noninvasive, temporally precise functional investigations of joint organism-wide interactions among targeted cells during behaviour.
Collapse
Affiliation(s)
- Brian Hsueh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ritchie Chen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - YoungJu Jo
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Daniel Tang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Misha Raffiee
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Masatoshi Inoue
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sawyer Randles
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Sneha Patel
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Doo Kyung Kim
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Tony X Liu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Soo Hyun Kim
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Longzhi Tan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Leili Mortazavi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Arjay Cordero
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jenny Shi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Mingming Zhao
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Theodore T Ho
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ailey Crow
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ai-Chi Wang Yoo
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Cephra Raja
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Kathryn Evans
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Daniel Bernstein
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Maged Goubran
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
35
|
The relationship between brain neural correlates, self-objectification, and interoceptive sensibility. Behav Brain Res 2023; 439:114227. [PMID: 36436730 DOI: 10.1016/j.bbr.2022.114227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Interoceptive sensibility refers to the tendency to focus on internal bodily states and the capacity to detect them. As the subjective dimension of interoception, interoceptive sensibility plays a key role in individuals' health. Self-objectification, a process by which individuals tend to adopt a third-person's perspective of their physical self, leads to decreased interoceptive sensibility. However, few studies regarding the neural basis of interoceptive sensibility and the underlying mechanism of the relationship between self-objectification and interoceptive sensibility have been conducted. In this study, we assessed the resting-state brain activity (fractional amplitude of low-frequency fluctuation, fALFF) and connectivity (resting-state functional connectivity, RSFC) of 442 college students. Whole-brain correlation analyses revealed that a higher level of interoceptive sensibility was linked to higher fALFF in the right inferior frontal gyrus (IFG) and left cerebellum and to lower fALFF in the left paracentral lobule and left superior/middle temporal gyrus. Interoceptive sensibility also was negatively associated with the RSFC between the right IFG and the right secondary somatosensory cortex (S2) and the right IFG and the ventral premotor cortex (VPC). These brain regions and connections are mainly responsible for switching attention to internal/external information and processing body-related somatosensory as well as sensory information. Mediation analyses suggested that the fALFF of the right IFG and the RSFC of IFG-S2 and IFG-VPC mediated the relationship between self-objectification and interoceptive sensibility. Overall, these results suggest that the IFG may be the neural marker of interoceptive sensibility and reveal several potential mediation models of the relationship between brain neural correlates and self-objectification and interoceptive sensibility.
Collapse
|
36
|
Pollatos O, Mönkemöller K, Groppe K, Elsner B. Interoceptive accuracy is associated with benefits in decision making in children. Front Psychol 2023; 13:1070037. [PMID: 36743603 PMCID: PMC9893641 DOI: 10.3389/fpsyg.2022.1070037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Decision making results not only from logical analyses, but seems to be further guided by the ability to perceive somatic information (interoceptive accuracy). Relations between interoceptive accuracy and decision making have been exclusively studied in adults and with regard to complex, uncertain situations (as measured by the Iowa Gambling Task, IGT). Methods In the present study, 1454 children (6-11 years) were examined at two time points (approximately 1 year apart) using an IGT as well as a delay-of-gratification task for sweets-items and toy-items. Interoceptive accuracy was measured using a child-adapted version of the Heartbeat Perception Task. Results The present results revealed that children with higher, as compared to lower, interoceptive accuracy showed more advantageous choices in the IGT and delayed more sweets-items, but not toy-items, in a delay-of-gratification task at time point 2 but not at time point 1. However, no longitudinal relation between interoceptive accuracy and decision making 1 year later could be shown. Discussion Results indicate that interoceptive accuracy relates to decision-making abilities in situations of varying complexity already in middle childhood, and that this link might consolidate across the examined 1-year period. Furthermore, the association of interoceptive accuracy and the delay of sweets-items might have implications for the regulation of body weight at a later age.
Collapse
Affiliation(s)
- Olga Pollatos
- Clinical and Health Psychology, Institute of Education and Psychology, Ulm University, Ulm, Germany
| | - Karla Mönkemöller
- Clinical and Health Psychology, Institute of Education and Psychology, Ulm University, Ulm, Germany,*Correspondence: Karla Mönkemöller, ✉
| | - Karoline Groppe
- Evangelisches Krankenhaus Königin Elisabeth Herzberge, Berlin, Germany
| | - Birgit Elsner
- Department of Psychology, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
37
|
Cardiac and Gastric Interoceptive Awareness Have Distinct Neural Substrates. eNeuro 2023; 10:ENEURO.0157-22.2023. [PMID: 36653188 PMCID: PMC9887674 DOI: 10.1523/eneuro.0157-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Interoceptive awareness, an awareness of the internal body state, guides adaptive behavior by providing ongoing information on body signals, such as heart rate and energy status. However, it is still unclear how interoceptive awareness of different body organs are represented in the human brain. Hence, we directly compared the neural activations accompanying attention to cardiac (related to heartbeat) and gastric (related to stomach) sensations, which generate cardiac and gastric interoceptive awareness, in the same population (healthy humans, N = 31). Participants were asked to direct their attention toward heart and stomach sensations and become aware of them in a magnetic resonance imaging (MRI) scanner. The results indicated that the neural activations underlying gastric attention encompassed larger brain regions, including the occipitotemporal visual cortices, bilateral primary motor cortices, primary somatosensory cortex, left orbitofrontal cortex, and hippocampal regions. Cardiac attention, however, selectively activated the right anterior insula extending to the frontal operculum compared with gastric attention. Moreover, our detailed analyses focusing on the insula, the most relevant region for interoceptive awareness, revealed that the left dorsal middle insula encoded cardiac and gastric attention via different activation patterns, but the posterior insula did not. Our results demonstrate that cardiac and gastric attention evoke different brain activation patterns; in particular, the selective activation may reflect differences in the functional roles of cardiac and gastric interoceptive awareness.
Collapse
|
38
|
Arslanova I, Galvez-Pol A, Kilner J, Finotti G, Tsakiris M. Seeing Through Each Other's Hearts: Inferring Others' Heart Rate as a Function of Own Heart Rate Perception and Perceived Social Intelligence. AFFECTIVE SCIENCE 2022; 3:862-877. [PMID: 36519151 PMCID: PMC9743902 DOI: 10.1007/s42761-022-00151-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/12/2022] [Indexed: 06/17/2023]
Abstract
Successful social interactions require a good understanding of the emotional states of other people. This information is often not directly communicated but must be inferred. As all emotional experiences are also imbedded in the visceral or interoceptive state of the body (i.e., accelerating heart rate during arousal), successfully inferring the interoceptive states of others may open a window into their emotional state. But how well can people do that? Here, we replicate recent results showing that people can discriminate between the cardiac states (i.e., the resting heartrate) of other people by simply looking at them. We further tested whether the ability to infer the interoceptive states of others depends on one's own interoceptive abilities. We measured people's performance in a cardioception task and their self-reported interoceptive accuracy. Whilst neither was directly associated to their ability to infer the heartrate of another person, we found a significant interaction. Specifically, overestimating one's own interoceptive capacities was associated with a worse performance at inferring the heartrate of others. In contrast, underestimating one's own interoceptive capacities did not have such influence. This pattern suggests that deficient beliefs about own interoceptive capacities can have detrimental effects on inferring the interoceptive states of other people. Supplementary Information The online version contains supplementary material available at 10.1007/s42761-022-00151-4.
Collapse
Affiliation(s)
- Irena Arslanova
- Department of Psychology, Royal Holloway, University of London, London, UK
| | | | - James Kilner
- Institute of Neurology, University College London, London, UK
| | - Gianluca Finotti
- Department of Psychology, Royal Holloway, University of London, London, UK
| | - Manos Tsakiris
- Department of Psychology, Royal Holloway, University of London, London, UK
- Centre for the Politics of Feeling, School of Advanced Study, University of London, London, UK
| |
Collapse
|
39
|
Parviainen T, Lyyra P, Nokia MS. Cardiorespiratory rhythms, brain oscillatory activity and cognition: review of evidence and proposal for significance. Neurosci Biobehav Rev 2022; 142:104908. [DOI: 10.1016/j.neubiorev.2022.104908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022]
|
40
|
Luo L, Xiao M, Luo Y, Yi H, Dong D, Liu Y, Chen X, Li W, Chen H. Knowing what you feel: Inferior frontal gyrus-based structural and functional neural patterns underpinning adaptive body awareness. J Affect Disord 2022; 315:224-233. [PMID: 35901991 DOI: 10.1016/j.jad.2022.07.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND Heightened body awareness (BA) is conducive for increasing understanding of bodily state and improves individuals' health and well-being. Although there has been cumulative research concentrating on the self-perceived tendency to focus on negatively valenced interoceptive sensations, the specific structural and functional neural patterns underlying BA and their role in the relationship between BA and individual well-being remain unclear. METHODS Voxel-based morphometry and whole brain functional connectivity analyses were conducted to examine the structural and functional neural patterns, respectively, in 686 healthy subjects. BA and subjective well-being were assessed using questionnaires. RESULTS BA was inversely related to gray matter volume of the right inferior frontal gyrus, opercular part (IFGoperc). Higher BA was correlated with enhanced IFGoperc-precuneus and IFGoperc-anterior supramarginal gyrus connectivities, and with decreased IFGoperc-lateral occipital cortex and IFGoperc-medial frontal cortex connectivities. The inferior frontal gyrus, triangular part (in the fronto-parietal task control network) acted as the hub that linked the sensory/somatomotor network, the default mode network, and the dorsal and ventral attention network. The IFGoperc-precuneus connectivity moderated the association between BA and subjective well-being. LIMITATIONS We were unable to rank all the networks by their relative importance, because the absolute weighted value in each module was not calculated. CONCLUSION Our findings demonstrated that BA was reflected by specific neural patterns mainly involved in cognitive-affective control, attentional and self-referential processing, as well as multisensory integration, which could offer some references for current therapies (e.g., mindfulness, yoga training) that are dedicated to solving health problems and improving individual well-being.
Collapse
Affiliation(s)
- Lin Luo
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Mingyue Xiao
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Yijun Luo
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Haijing Yi
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Yong Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Ximei Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Wei Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
41
|
de la Cruz F, Geisler M, Schumann A, Herbsleb M, Kikinis Z, Weiss T, Bär KJ. Central autonomic network alterations in male endurance athletes. Sci Rep 2022; 12:16743. [PMID: 36202877 PMCID: PMC9537279 DOI: 10.1038/s41598-022-20064-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Physical exercise causes marked adjustments in brain function and the cardiovascular system. Brain regions of the so-called central autonomic network (CAN) are likely to show exercise-related alterations due to their involvement in cardiac control, yet exercise-induced CAN changes remain unclear. Here we investigate the effects of intensive exercise on brain regions involved in cardiac autonomic regulation using resting-state functional connectivity (rsFC). We explored rsFC of six core regions within CAN, namely ventromedial prefrontal cortex, dorsolateral anterior cingulate cortex, left/right amygdala, and left/right anterior insula, in 20 endurance athletes and 21 non-athletes. We showed that athletes had enhanced rsFC within CAN and sensorimotor areas compared to non-athletes. Likewise, we identified two networks with increased rsFC encompassing autonomic and motor-related areas using network-based statistics analysis. In addition, rsFC displayed an inverse relationship with heart rate, where the stronger rsFC in athletes correlates with their slower heart rate. Despite this significant relationship, mediation analysis revealed that heart rate is a weak mediator of the effect of intensive physical training on rsFC. Our findings prove that physical exercise enhances brain connectivity in central autonomic and sensorimotor networks and highlight the close link between brain and heart.
Collapse
Affiliation(s)
- Feliberto de la Cruz
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, 07743, Jena, Germany
| | - Maria Geisler
- Department of Clinical Psychology, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Andy Schumann
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, 07743, Jena, Germany
| | - Marco Herbsleb
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, 07743, Jena, Germany
| | - Zora Kikinis
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas Weiss
- Department of Clinical Psychology, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Karl-Jürgen Bär
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, 07743, Jena, Germany.
| |
Collapse
|
42
|
McIntosh RC, Lobo JD, Reed M, Britton JC. Anterior Insula Activation During Cardiac Interoception Relates to Depressive Symptom Severity in HIV-Positive and HIV-Negative Postmenopausal Women. Psychosom Med 2022; 84:863-873. [PMID: 36162077 PMCID: PMC9553270 DOI: 10.1097/psy.0000000000001136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 06/22/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study aimed to determine whether subclinical symptoms of depression in postmenopausal women are associated with blood oxygen level-dependent (BOLD) activity within the anterior insula during cardiac interoceptive awareness and whether this association differs for persons living with the human immunodeficiency virus (PWH). METHOD Twenty-three postmenopausal (mean [standard deviation] age = 56.5 [4.8] years) and 27 HIV-negative women (mean [standard deviation] age = 56.4 [8.0]) underwent functional magnetic resonance imaging while performing a heartbeat detection task. BOLD activation within the bilateral anterior insula based on the contrast of a heartbeat detection condition with and without a distracting tone was entered along with age, HIV status, and psychological stress into two multivariate regression models with self-reported depressive symptom severity as the outcome. RESULTS Depressive symptoms did not vary by HIV status, nor was there a main effect or interaction for PWH on insula BOLD activation. Depressive symptoms were positively associated with psychological stress for the left ( β = 0.310, t (49) = 2.352, p = .023) and right brain models ( β = 0.296, t (49) = 2.265, p = .028) as well as the magnitude of BOLD activation in the left insula ( β = 0.290, t (49) = 2.218, p = .032) and right insula ( β = 0.318, t (49) = 2.453, p = .018), respectively. Exploratory analyses revealed that greater magnitude of BOLD activation attributed to exteroceptive noise (tone) was also correlated with self-reported distrust and preoccupation with interoceptive sensations. CONCLUSIONS Results support an active interference model for interoceptive awareness wherein greater BOLD signal in the anterior insula in the presence of distracting exteroceptive stimuli may reflect greater prediction error, a feature of depression.
Collapse
|
43
|
Embodied feelings-A meta-analysis on the relation of emotion intensity perception and interoceptive accuracy. Physiol Behav 2022; 254:113904. [PMID: 35820627 DOI: 10.1016/j.physbeh.2022.113904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/06/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022]
Abstract
Emotion theories emphasize the relevance of (predicted) bodily changes for the construction of one's own emotions and an extensive overlap of brain regions involved during emotion intensity perception and somatosensory processing. The ability to accurately perceive bodily changes and its impact on the perception of emotion intensity has been studied for at least 40 years. The results of previous studies were summarized in a meta-analysis to examine how closely interoceptive accuracy and emotion intensity are related. After a systematic literature search, 4036 studies were screened for eligibility. Only studies assessing adults from general population samples were considered. Samples recruited to examine mental disorders or neurological conditions were excluded. Thirty studies with a quantifiable measure for the relation of interoceptive accuracy and emotion intensity perception were included in the meta-analysis. Interoceptive accuracy was significantly related with emotion intensity perception, when emotions were experimentally induced (k= 22, r= 0.15). However, the relationship was only found when IAPS images (k= 9, r= 0.33) or facial expressions (k= 3, r= 0.24) were used for emotion induction. No significant relation was found in studies without emotion induction (k= 19, r = -0.007). There was considerable bias, varying dependent on bias assessment method, study protocol and examined risk of bias dimension. We discuss the impact of differences in study protocols, review the operationalization of interoceptive accuracy critically and derive directions for future research.
Collapse
|
44
|
Zhang YS, Takahashi DY, El Hady A, Liao DA, Ghazanfar AA. Active neural coordination of motor behaviors with internal states. Proc Natl Acad Sci U S A 2022; 119:e2201194119. [PMID: 36122243 PMCID: PMC9522379 DOI: 10.1073/pnas.2201194119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
The brain continuously coordinates skeletomuscular movements with internal physiological states like arousal, but how is this coordination achieved? One possibility is that the brain simply reacts to changes in external and/or internal signals. Another possibility is that it is actively coordinating both external and internal activities. We used functional ultrasound imaging to capture a large medial section of the brain, including multiple cortical and subcortical areas, in marmoset monkeys while monitoring their spontaneous movements and cardiac activity. By analyzing the causal ordering of these different time series, we found that information flowing from the brain to movements and heart-rate fluctuations were significantly greater than in the opposite direction. The brain areas involved in this external versus internal coordination were spatially distinct, but also extensively interconnected. Temporally, the brain alternated between network states for this regulation. These findings suggest that the brain's dynamics actively and efficiently coordinate motor behavior with internal physiology.
Collapse
Affiliation(s)
- Yisi S. Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Daniel Y. Takahashi
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59076-550, Brazil
| | - Ahmed El Hady
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
- Center for Advanced Study of Collective Behavior, University of Konstanz, Konstanz 78464, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz 78464, Germany
| | - Diana A. Liao
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Asif A. Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
- Department of Psychology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
45
|
Moretta P, Spisto M, Ausiello FP, Iodice R, De Lucia N, Santangelo G, Trojano L, Salvatore E, Dubbioso R. Alteration of interoceptive sensitivity: expanding the spectrum of behavioural disorders in amyotrophic lateral sclerosis. Neurol Sci 2022; 43:5403-5410. [PMID: 35751711 PMCID: PMC9385786 DOI: 10.1007/s10072-022-06231-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with progressive loss of upper and lower motor neurons. Non-motor-symptoms, such as cognitive, emotional, autonomic, and somatosensory alterations, have been also described. Interoception represents the link between the body and brain, since it refers to the ability to consciously perceive the physical condition of the inner body, including one's heartbeat (i.e., interoceptive sensitivity, IS). OBJECTIVES To evaluate IS in ALS patients by means of a well-established task: the heartbeat perception task. Moreover, we evaluated possible correlations between IS and neuropsychological, affective, and disease-related characteristics. METHODS Fifty-five ALS patients (mean-age = 60.3 ± 12.5 years; mean disease-duration = 20.9 ± 18.8 months) and 41 caregivers (CG) underwent the heartbeat perception task and an extensive evaluation of motor, cognitive, body awareness, affective, and emotion domains. RESULTS ALS patients showed lower IS than CG (0.68 ± 0.24 vs 0.82 ± 0.16; p = 0.003). Significant correlations were found between IS and self-reported measures of alexithymia (subscale of Toronto Alexithymia scale-20 "difficulties in describing feelings"; rho = - .391, p = .003) and interoceptive awareness (subscale of Multidimensional assessment of interoceptive awareness "not worrying about pain"; rho = .405, p = .002). No significant differences were found on questionnaires for depression and anxiety between patients with ALS and their caregivers (p > .05). CONCLUSIONS ALS patients show reduced interoceptive sensitivity that is associated with poorer ability to describe feelings and with lower focalization on pain, regardless of cognitive and motor impairment. Alteration of interoception may represent a specific behavioural sign within the spectrum of emotion processing deficits described in ALS patients.
Collapse
Affiliation(s)
- Pasquale Moretta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurological Rehabilitation Unit of Telese Terme Institute, 82037, Telese Terme, Benevento, Italy
| | - Myriam Spisto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Francesco Pio Ausiello
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Rosa Iodice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Natascia De Lucia
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Gabriella Santangelo
- Department of Psychology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luigi Trojano
- Department of Psychology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Elena Salvatore
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Via Sergio Pansini, 5, 80131, Naples, Italy.
| |
Collapse
|
46
|
Hübner AM, Trempler I, Schubotz RI. Interindividual differences in interoception modulate behavior and brain responses in emotional inference. Neuroimage 2022; 261:119524. [PMID: 35907498 DOI: 10.1016/j.neuroimage.2022.119524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022] Open
Abstract
Emotional experiences are proposed to arise from contextualized perception of bodily responses, also referred to as interoceptive inferences. The recognition of emotions benefits from adequate access to one's own interoceptive information. However, direct empirical evidence of interoceptive inferences and their neural basis is still lacking. In the present fMRI study healthy volunteers performed a probabilistic emotion classification task with videotaped dynamically unfolding facial expressions. In a first step, we aimed to determine functional areas involved in the processing of dynamically unfolding emotional expressions. We then tested whether individuals with higher interoceptive accuracy (IAcc), as assessed by the Heartbeat detection task (HDT), or higher interoceptive sensitivity (IS), as assessed by the Multidimensional Assessment of Interoceptive Awareness, Version 2 (MAIA-2), benefit more from the contextually given likelihood of emotional valence and whether brain regions reflecting individual IAcc and/or IS play a role in this. Individuals with higher IS benefitted more from the biased probability of emotional valence. Brain responses to more predictable emotions elicited a bilateral activity pattern comprising the inferior frontal gyrus and the posterior insula. Importantly, individual IAcc scores positively covaried with brain responses to more surprising and less predictable emotional expressions in the insula and caudate nucleus. We show for the first time that IAcc score is associated with enhanced processing of interoceptive prediction errors, particularly in the anterior insula. A higher IS score seems more likely to be associated with a stronger weighting of attention to interoceptive changes processed by the posterior insula and ventral prefrontal cortex.
Collapse
Affiliation(s)
| | - Ima Trempler
- Department of Psychology, University of Muenster, Germany; Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Muenster, Germany
| | - Ricarda I Schubotz
- Department of Psychology, University of Muenster, Germany; Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Muenster, Germany
| |
Collapse
|
47
|
Tan Y, Yan R, Gao Y, Zhang M, Northoff G. Spatial-topographic nestedness of interoceptive regions within the networks of decision making and emotion regulation: Combining ALE meta-analysis and MACM analysis. Neuroimage 2022; 260:119500. [PMID: 35872175 DOI: 10.1016/j.neuroimage.2022.119500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/28/2022] [Accepted: 07/20/2022] [Indexed: 10/17/2022] Open
Abstract
Prominent theories propose that interoception modulates our behavioral and emotional responses involving decision-making and emotion regulation. Are the regions implicated in interoception also spatially related to and possibly nested within the networks of decision making and emotion regulation? Addressing this question, we performed three meta-analyses of functional magnetic resonance imaging studies to identify the regions that are commonly activated by the three domains using activation likelihood estimation (ALE). Additionally, we assessed the coactivation pattern of identified common regions using meta-analytic connectivity modeling (MACM). The results showed major overlaps of interoception with both decision making and emotion regulation in specifically the right dorsal anterior insula. The pairwise contrast analyses confirmed this finding and revealed conjunction-based activities in decision making and emotion regulation in the dorsal anterior cingulate cortex (dACC). MACM based on the identified insula revealed a widespread convergent coactivation pattern with the left anterior insula, dACC, and bilateral thalamus which, together, constitute the salience network. Among these co-activated regions, bilateral insula and the dACC were shared among all three domains. These results suggest that the regions mediating interoception including intero-exteroceptive integration and salience attribution are contained and thus spatially nested within the more extensive networks recruited during decision making and emotion regulation.
Collapse
Affiliation(s)
- Yafei Tan
- School of Psychology, Central China Normal University, Wuhan 430079, Hubei Province, China; Key Laboratory of Adolescent Cyberpsychology and Behavior, Ministry of Education, Wuhan 430079, Hubei Province, China
| | - Ranran Yan
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610000, Sichuan Province, China
| | - Yuan Gao
- School of Psychology, South China Normal University, Guangzhou, Guangdong Province, China
| | - Meng Zhang
- Department of Psychology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Ontario K1Z 7K4, Canada; Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang Province, China; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 310013, Zhejiang Province, China
| |
Collapse
|
48
|
Sun W, Ueno D, Narumoto J. Brain Neural Underpinnings of Interoception and Decision-Making in Alzheimer's Disease: A Narrative Review. Front Neurosci 2022; 16:946136. [PMID: 35898412 PMCID: PMC9309692 DOI: 10.3389/fnins.2022.946136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
This study reviews recent literature on interoception directing decision-making in Alzheimer's disease (AD). According to the somatic marker hypothesis, signals from the internal body direct decision-making and involve the ventromedial prefrontal cortex (vmPFC). After reviewing relevant studies, we summarize the brain areas related to interoception and decision-making (e.g., vmPFC, hippocampus, amygdala, hypothalamus, anterior cingulate cortex, and insular cortex) and their roles in and relationships with AD pathology. Moreover, we outline the relationship among interoception, the autonomic nervous system, endocrine system, and AD pathology. We discuss that impaired interoception leads to decreased decision-making ability in people with AD from the perspective of brain neural underpinning. Additionally, we emphasize that anosognosia or reduced self-awareness and metacognition in AD are remarkably congruent with the malfunction of the autonomic nervous system regulating the interoceptive network. Furthermore, we propose that impaired interoception may contribute to a loss in the decision-making ability of patients with AD. However, there still exist empirical challenges in confirming this proposal. First, there has been no standardization for measuring or improving interoception to enhance decision-making ability in patients with AD. Future studies are required to better understand how AD pathology induces impairments in interoception and decision-making.
Collapse
|
49
|
Crucianelli L, Enmalm A, Ehrsson HH. Interoception as independent cardiac, thermosensory, nociceptive, and affective touch perceptual submodalities. Biol Psychol 2022; 172:108355. [PMID: 35597523 DOI: 10.1016/j.biopsycho.2022.108355] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022]
Abstract
Interoception includes signals from inner organs and thin afferents in the skin, providing information about the body's physiological state. However, the functional relationships between interoceptive submodalities are unclear, and thermosensation as skin-based interoception has rarely been considered. We used five tasks to examine the relationships among cardiac awareness, thermosensation, affective touch, and nociception. Thermosensation was probed with a classic temperature detection task and the new dynamic thermal matching task, where participants matched perceived moving thermal stimuli in a range of colder/warmer stimuli around thermoneutrality. We also examined differences between hairy and non-hairy skin and found superior perception of dynamic temperature and static cooling on hairy skin. Notably, no significant correlations were observed across interoceptive submodality accuracies (except for cold and pain perception in the palm), which indicates that interoception at perceptual levels should be conceptualised as a set of relatively independent processes and abilities rather than a single construct. DATA AVAILABILITY STATEMENT: Data of this study are available as a supplementary file.
Collapse
Affiliation(s)
- Laura Crucianelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Adam Enmalm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Kritzman L, Eidelman-Rothman M, Keil A, Freche D, Sheppes G, Levit-Binnun N. Steady-state visual evoked potentials differentiate between internally and externally directed attention. Neuroimage 2022; 254:119133. [PMID: 35339684 DOI: 10.1016/j.neuroimage.2022.119133] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
While attention to external visual stimuli has been extensively studied, attention directed internally towards mental contents (e.g., thoughts, memories) or bodily signals (e.g., breathing, heartbeat) has only recently become a subject of increased interest, due to its relation to interoception, contemplative practices and mental health. The present study aimed at expanding the methodological toolbox for studying internal attention, by examining for the first time whether the steady-state visual evoked potential (ssVEP), a well-established measure of attention, can differentiate between internally and externally directed attention. To this end, we designed a task in which flickering dots were used to generate ssVEPs, and instructed participants to count visual targets (external attention condition) or their heartbeats (internal attention condition). We compared the ssVEP responses between conditions, along with alpha-band activity and the heartbeat evoked potential (HEP) - two electrophysiological measures associated with internally directed attention. Consistent with our hypotheses, we found that both the magnitude and the phase synchronization of the ssVEP decreased when attention was directed internally, suggesting that ssVEP measures are able to differentiate between internal and external attention. Additionally, and in line with previous findings, we found larger suppression of parieto-occipital alpha-band activity and an increase of the HEP amplitude in the internal attention condition. Furthermore, we found a trade-off between changes in ssVEP response and changes in HEP and alpha-band activity: when shifting from internal to external attention, increase in ssVEP response was related to a decrease in parieto-occipital alpha-band activity and HEP amplitudes. These findings suggest that shifting between external and internal directed attention prompts a re-allocation of limited processing resources that are shared between external sensory and interoceptive processing.
Collapse
Affiliation(s)
- Lior Kritzman
- School of Psychological Sciences, Tel Aviv University, Israel; Sagol Center for Brain and Mind, Reichman University, Israel.
| | | | - Andreas Keil
- Center for the Study of Emotion & Attention, University of Florida, USA
| | - Dominik Freche
- Sagol Center for Brain and Mind, Reichman University, Israel; Physics of Complex Systems, Weizmann Institute of Science, Israel
| | - Gal Sheppes
- School of Psychological Sciences, Tel Aviv University, Israel
| | | |
Collapse
|