1
|
Albinhassan TH, Alharbi BM, AlSuhaibani ES, Mohammad S, Malik SS. Small Heat Shock Proteins: Protein Aggregation Amelioration and Neuro- and Age-Protective Roles. Int J Mol Sci 2025; 26:1525. [PMID: 40003991 PMCID: PMC11855743 DOI: 10.3390/ijms26041525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Protein misfolding, aggregation, and aberrant aggregate accumulation play a central role in neurodegenerative disease progression. The proteotoxic factors also govern the aging process to a large extent. Molecular chaperones modulate proteostasis and thereby impact aberrant-protein-induced proteotoxicity. These chaperones have a diverse functional spectrum, including nascent protein folding, misfolded protein sequestration, refolding, or degradation. Small heat shock proteins (sHsps) possess an ATP-independent chaperone-like activity that prevents protein aggregation by keeping target proteins in a folding-competent state to be refolded by ATP-dependent chaperones. Due to their near-universal upregulation and presence in sites of proteotoxic stress like diseased brains, sHsps were considered pathological. However, gene knockdown and overexpression studies have established their protective functions. This review provides an updated overview of the sHsp role in protein aggregation amelioration and highlights evidence for sHsp modulation of neurodegenerative disease-related protein aggregation and aging.
Collapse
Affiliation(s)
- Tahani H. Albinhassan
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Bothina Mohammed Alharbi
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
| | | | - Sameer Mohammad
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
| | - Shuja Shafi Malik
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
| |
Collapse
|
2
|
Sakkaki E, Jafari B, Gharesouran J, Rezazadeh M. Gene expression patterns of CRYM and SIGLEC10 in Alzheimer's disease: potential early diagnostic indicators. Mol Biol Rep 2024; 51:349. [PMID: 38401023 DOI: 10.1007/s11033-023-09113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/06/2023] [Indexed: 02/26/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurological condition that may lead to dementia as well as a slow and steady decline in cognitive ability. Finding early signs that may be used in the diagnosis of AD is still a difficult aim to achieve in the field of medical practice. METHODS AND RESULTS The purpose of this research was to investigate to determine any differences in the gene expression patterns of crystallin mu (CRYM) and sialic acid-binding immunoglobulin-like lectin 10 (SIGLEC10) in whole blood samples obtained from fifty individuals who were diagnosed with AD and fifty individuals as a control group. When compared with controls, it was discovered that the expression of the CRYM gene was substantially decreased in AD patients, but the expression of the SIGLEC10 gene was significantly higher. A positive correlation between CRYM and SIGLEC10 was noticed solely in patients with AD. Furthermore, assessing the diagnostic value of these genes, CRYM and SIGLEC10 transcript levels displayed an area under the curve (AUC) of 0.74 and 0.81, respectively. CONCLUSIONS These results suggest that alterations in CRYM and SIGLEC10 expression may be implicated in AD pathology and that these genes expression levels can potentially serve as biomarkers for early detection and diagnosis of AD. Nevertheless, further validation of these findings requires the inclusion of more extensive and heterogeneous cohorts. The findings derived from this study possess the capability to offer a significant contribution towards the progression of innovative diagnostic and therapeutic strategies for AD.
Collapse
Affiliation(s)
- Ehsan Sakkaki
- Department of Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behboud Jafari
- Department of Microbiology, Ahar Branch, Islamic Azad University, Ahar, Iran.
| | - Jalal Gharesouran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Stoka V, Vasiljeva O, Nakanishi H, Turk V. The Role of Cysteine Protease Cathepsins B, H, C, and X/Z in Neurodegenerative Diseases and Cancer. Int J Mol Sci 2023; 24:15613. [PMID: 37958596 PMCID: PMC10650516 DOI: 10.3390/ijms242115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Papain-like cysteine proteases are composed of 11 human cysteine cathepsins, originally located in the lysosomes. They exhibit broad specificity and act as endopeptidases and/or exopeptidases. Among them, only cathepsins B, H, C, and X/Z exhibit exopeptidase activity. Recently, cysteine cathepsins have been found to be present outside the lysosomes and often participate in various pathological processes. Hence, they have been considered key signalling molecules. Their potentially hazardous proteolytic activities are tightly regulated. This review aims to discuss recent advances in understanding the structural aspects of these four cathepsins, mechanisms of their zymogen activation, regulation of their activities, and functional aspects of these enzymes in neurodegeneration and cancer. Neurodegenerative effects have been evaluated, particularly in Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and neuropsychiatric disorders. Cysteine cathepsins also participate in tumour progression and metastasis through the overexpression and secretion of proteases, which trigger extracellular matrix degradation. To our knowledge, this is the first review to provide an in-depth analysis regarding the roles of cysteine cathepsins B, H, C, and X in neurodegenerative diseases and cancer. Further advances in understanding the functions of cysteine cathepsins in these conditions will result in the development of novel, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- CytomX Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan;
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Filipi T, Matusova Z, Abaffy P, Vanatko O, Tureckova J, Benesova S, Kubiskova M, Kirdajova D, Zahumensky J, Valihrach L, Anderova M. Cortical glia in SOD1(G93A) mice are subtly affected by ALS-like pathology. Sci Rep 2023; 13:6538. [PMID: 37085528 PMCID: PMC10121704 DOI: 10.1038/s41598-023-33608-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/15/2023] [Indexed: 04/23/2023] Open
Abstract
The role of glia in amyotrophic lateral sclerosis (ALS) is undeniable. Their disease-related activity has been extensively studied in the spinal cord, but only partly in the brain. We present herein a comprehensive study of glia in the cortex of SOD1(G93A) mice-a widely used model of ALS. Using single-cell RNA sequencing (scRNA-seq) and immunohistochemistry, we inspected astrocytes, microglia, and oligodendrocytes, in four stages of the disease, respecting the factor of sex. We report minimal changes of glia throughout the disease progression and regardless of sex. Pseudobulk and single-cell analyses revealed subtle disease-related transcriptional alterations at the end-stage in microglia and oligodendrocytes, which were supported by immunohistochemistry. Therefore, our data support the hypothesis that the SOD1(G93A) mouse cortex does not recapitulate the disease in patients, and we recommend the use of a different model for future studies of the cortical ALS pathology.
Collapse
Affiliation(s)
- Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, V Uvalu 84, 15006, Prague, Czech Republic
| | - Zuzana Matusova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 25250, Vestec, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 12800, Prague, Czech Republic
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 25250, Vestec, Czech Republic
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, V Uvalu 84, 15006, Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 25250, Vestec, Czech Republic
- Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628, Prague, Czech Republic
| | - Monika Kubiskova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Jakub Zahumensky
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 25250, Vestec, Czech Republic.
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic.
| |
Collapse
|
5
|
Aksoy O, Hantusch B, Kenner L. Emerging role of T3-binding protein μ-crystallin (CRYM) in health and disease. Trends Endocrinol Metab 2022; 33:804-816. [PMID: 36344381 DOI: 10.1016/j.tem.2022.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Thyroid hormones are essential metabolic and developmental regulators that exert a huge variety of effects in different organs. Triiodothyronine (T3) and thyroxine (T4) are synthesized in the thyroid gland and constitute unique iodine-containing hormones that are constantly regulated by a homeostatic feedback mechanism. T3/T4 activity in cells is mainly determined by specific transporters, cytosolic binding proteins, deiodinases (DIOs), and nuclear receptors. Modulation of intracellular T3/T4 level contributes to the maintenance of this regulatory feedback. μ-Crystallin (CRYM) is an important intracellular high-affinity T3-binding protein that buffers the amount of T3 freely available in the cytosol, thereby controlling its action. In this review, we focus on the molecular and pathological properties of CRYM in thyroid hormone signaling, with emphasis on its critical role in malignancies.
Collapse
Affiliation(s)
- Osman Aksoy
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Brigitte Hantusch
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria; Unit for Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria; Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Li S, Zhu Y, Wei C, Li C, Chen W, Jiang S, Yuan D, Xu R. Identification of Molecular Correlations Between DHRS4 and Progressive Neurodegeneration in Amyotrophic Lateral Sclerosis By Gene Co-Expression Network Analysis. Front Immunol 2022; 13:874978. [PMID: 35479082 PMCID: PMC9035787 DOI: 10.3389/fimmu.2022.874978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, and its candidate biomarkers have not yet been fully elucidated in previous studies. Therefore, with the present study, we aim to define and verify effective biomarkers of ALS by bioinformatics. Here, we employed differentially expressed gene (DEG) analysis, weighted gene co-expression network analysis (WGCNA), enrichment analysis, immune infiltration analysis, and protein-protein interaction (PPI) to identify biomarkers of ALS. To validate the biomarkers, we isolated the lumbar spinal cord from mice and characterized them using Western blotting and immunofluorescence. The results showed that Dhrs4 expression in the spinal cord was upregulated with the progression of SOD1G93A mice, and the upregulation of DHRS4 and its synergistic DHRS3 might be primarily associated with the activation of the complement cascade in the immune system (C1QA, C1QB, C1QC, C3, and ITGB2), which might be a novel mechanism that induces spinal neurodegeneration in ALS. We propose that DHRS4 and its synergistic DHRS3 are promising molecular markers for detecting ALS progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital, Affiliated People’s Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Stella R, Bonadio RS, Cagnin S, Massimino ML, Bertoli A, Peggion C. Perturbations of the Proteome and of Secreted Metabolites in Primary Astrocytes from the hSOD1(G93A) ALS Mouse Model. Int J Mol Sci 2021; 22:ijms22137028. [PMID: 34209958 PMCID: PMC8268687 DOI: 10.3390/ijms22137028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/16/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease whose pathophysiology is largely unknown. Despite the fact that motor neuron (MN) death is recognized as the key event in ALS, astrocytes dysfunctionalities and neuroinflammation were demonstrated to accompany and probably even drive MN loss. Nevertheless, the mechanisms priming astrocyte failure and hyperactivation are still obscure. In this work, altered pathways and molecules in ALS astrocytes were unveiled by investigating the proteomic profile and the secreted metabolome of primary spinal cord astrocytes derived from transgenic ALS mouse model overexpressing the human (h)SOD1(G93A) protein in comparison with the transgenic counterpart expressing hSOD1(WT) protein. Here we show that ALS primary astrocytes are depleted of proteins-and of secreted metabolites-involved in glutathione metabolism and signaling. The observed increased activation of Nf-kB, Ebf1, and Plag1 transcription factors may account for the augmented expression of proteins involved in the proteolytic routes mediated by proteasome or endosome-lysosome systems. Moreover, hSOD1(G93A) primary astrocytes also display altered lipid metabolism. Our results provide novel insights into the altered molecular pathways that may underlie astrocyte dysfunctionalities and altered astrocyte-MN crosstalk in ALS, representing potential therapeutic targets to abrogate or slow down MN demise in disease pathogenesis.
Collapse
Affiliation(s)
- Roberto Stella
- Department of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Raphael Severino Bonadio
- Department of Biology and CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy; (R.S.B.); (S.C.)
| | - Stefano Cagnin
- Department of Biology and CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy; (R.S.B.); (S.C.)
- CIR-Myo Myology Center, University of Padova, 35131 Padova, Italy
| | | | - Alessandro Bertoli
- CNR—Neuroscience Institute, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Correspondence: (A.B.); (C.P.)
| | - Caterina Peggion
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Correspondence: (A.B.); (C.P.)
| |
Collapse
|
8
|
Abstract
µ-Crystallin is a NADPH-regulated thyroid hormone binding protein encoded by the CRYM gene in humans. It is primarily expressed in the brain, muscle, prostate, and kidney, where it binds thyroid hormones, which regulate metabolism and thermogenesis. It also acts as a ketimine reductase in the lysine degradation pathway when it is not bound to thyroid hormone. Mutations in CRYM can result in non-syndromic deafness, while its aberrant expression, predominantly in the brain but also in other tissues, has been associated with psychiatric, neuromuscular, and inflammatory diseases. CRYM expression is highly variable in human skeletal muscle, with 15% of individuals expressing ≥13 fold more CRYM mRNA than the median level. Ablation of the Crym gene in murine models results in the hypertrophy of fast twitch muscle fibers and an increase in fat mass of mice fed a high fat diet. Overexpression of Crym in mice causes a shift in energy utilization away from glycolysis towards an increase in the catabolism of fat via β-oxidation, with commensurate changes of metabolically involved transcripts and proteins. The history, attributes, functions, and diseases associated with CRYM, an important modulator of metabolism, are reviewed.
Collapse
Affiliation(s)
- Christian J Kinney
- Department of Physiology School of Medicine, University of Maryland, Baltimore, Baltimore, MD 21201
| | - Robert J Bloch
- Department of Physiology School of Medicine, University of Maryland, Baltimore, Baltimore, MD 21201
| |
Collapse
|
9
|
Ziabska K, Ziemka-Nalecz M, Pawelec P, Sypecka J, Zalewska T. Aberrant Complement System Activation in Neurological Disorders. Int J Mol Sci 2021; 22:4675. [PMID: 33925147 PMCID: PMC8125564 DOI: 10.3390/ijms22094675] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
The complement system is an assembly of proteins that collectively participate in the functions of the healthy and diseased brain. The complement system plays an important role in the maintenance of uninjured (healthy) brain homeostasis, contributing to the clearance of invading pathogens and apoptotic cells, and limiting the inflammatory immune response. However, overactivation or underregulation of the entire complement cascade within the brain may lead to neuronal damage and disturbances in brain function. During the last decade, there has been a growing interest in the role that this cascading pathway plays in the neuropathology of a diverse array of brain disorders (e.g., acute neurotraumatic insult, chronic neurodegenerative diseases, and psychiatric disturbances) in which interruption of neuronal homeostasis triggers complement activation. Dysfunction of the complement promotes a disease-specific response that may have either beneficial or detrimental effects. Despite recent advances, the explicit link between complement component regulation and brain disorders remains unclear. Therefore, a comprehensible understanding of such relationships at different stages of diseases could provide new insight into potential therapeutic targets to ameliorate or slow progression of currently intractable disorders in the nervous system. Hence, the aim of this review is to provide a summary of the literature on the emerging role of the complement system in certain brain disorders.
Collapse
Affiliation(s)
| | | | | | | | - Teresa Zalewska
- Mossakowski Medical Research Centre, NeuroRepair Department, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (K.Z.); (M.Z.-N.); (P.P.); (J.S.)
| |
Collapse
|
10
|
Xie H, Yang L, Hu Q, Song Y, Wang X, Zhou L, Li L. Effects of inducing apoptosis and inhibiting proliferation of siRNA on polyadenylate-binding protein-interacting protein 1 in tongue cell carcinoma. Head Neck 2020; 42:3623-3637. [PMID: 32827170 DOI: 10.1002/hed.26423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/15/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND It has been reported that the polyadenylate-binding protein-interacting protein 1 (PAIP1) pathway is closely connected with the progression of some malignant tumors. Here we examined the potential functional mechanism of PAIP1 in tongue squamous cell carcinoma (TSCC). METHODS PAIP1 was knocked down in TSCC cell lines and proliferation and apoptosis in vitro analyzed. The molecular features of TSCC were determined using quantitative proteome and succinylome analyses. The results were confirmed in the mouse model. RESULTS PAIP1 promoted cell proliferation and inhibited apoptosis. Its knockdown decreased Ki67 and Pcna expressions and increased Bax/Bcl2 index and Caspase-3 expression. Bioinformatics analysis for proteomics revealed that PAIP1 knockdown correlated with the changes in differential protein expression. CONCLUSIONS Upregulation of PAIP1 induces cell proliferation and inhibits apoptosis in TSCC; PAIP1 might be a diagnostic biomarker and a significant drug target.
Collapse
Affiliation(s)
- Huixu Xie
- State Key Laboratory of Oral Diseases, Department of Head and Neck Oncology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lisa Yang
- State Key Laboratory of Oral Diseases, Department of Head and Neck Oncology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Sun Yat-sen University, Guangzhou, China
| | - Qin Hu
- State Key Laboratory of Oral Diseases, Department of Head and Neck Oncology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingqi Song
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoyi Wang
- State Key Laboratory of Oral Diseases, Department of Head and Neck Oncology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liming Zhou
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, Department of Head and Neck Oncology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Waegaert R, Dirrig-Grosch S, Parisot F, Keime C, Henriques A, Loeffler JP, René F. Longitudinal transcriptomic analysis of altered pathways in a CHMP2B intron5-based model of ALS-FTD. Neurobiol Dis 2019; 136:104710. [PMID: 31837425 DOI: 10.1016/j.nbd.2019.104710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/28/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are two neurodegenerative diseases with currently no cure. These two diseases share a clinical continuum with overlapping genetic causes. Mutations in the CHMP2B gene are found in patients with ALS, FTD and ALS-FTD. To highlight deregulated mechanisms occurring in ALS-FTD linked to the CHMP2B gene, we performed a whole transcriptomic study on lumbar spinal cord from CHMP2Bintron5 mice, a model that develops progressive motor alterations associated with dementia symptoms reminiscent of both ALS and FTD. To gain insight into the transcriptomic changes taking place during disease progression this study was performed at three stages: asymptomatic, symptomatic and end stage. We showed that before appearance of motor symptoms, the major disrupted mechanisms were linked with the immune system/inflammatory response and lipid metabolism. These processes were progressively replaced by alterations of neuronal electric activity as motor symptoms appeared, alterations that could lead to motor neuron dysfunction. To investigate overlapping alterations in gene expression between two ALS-causing genes, we then compared the transcriptome of symptomatic CHMP2Bintron5 mice with the one of symptomatic SOD1G86R mice and found the same families deregulated providing further insights into common underlying dysfunction of biological pathways, disrupted or disturbed in ALS. Altogether, this study provides a database to explore potential new candidate genes involved in the CHMP2Bintron5-based pathogenesis of ALS, and provides molecular clues to further understand the functional consequences that diseased neurons expressing CHMP2B mutant may have on their neighbor cells.
Collapse
Affiliation(s)
- Robin Waegaert
- INSERM U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Université de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Sylvie Dirrig-Grosch
- INSERM U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Université de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Florian Parisot
- INSERM U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Université de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS, UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Alexandre Henriques
- INSERM U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Université de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Jean-Philippe Loeffler
- INSERM U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Université de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Frédérique René
- INSERM U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Université de Strasbourg, 11 rue Humann, Strasbourg, France.
| |
Collapse
|
12
|
Affiliation(s)
- Mehwish Saba Aslam
- Department of Microbiology and Immunology, School of Medicine, Southeast University, Nanjing, China
| | - Liudi Yuan
- Department of Microbiology and Immunology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Lee JD, Coulthard LG, Woodruff TM. Complement dysregulation in the central nervous system during development and disease. Semin Immunol 2019; 45:101340. [PMID: 31708347 DOI: 10.1016/j.smim.2019.101340] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
The complement cascade is an important arm of the immune system that plays a key role in protecting the central nervous system (CNS) from infection. Recently, it has also become clear that complement proteins have fundamental roles in the developing and aging CNS that are distinct from their roles in immunity. During neurodevelopment, complement signalling is involved in diverse processes including neural tube closure, neural progenitor proliferation and differentiation, neuronal migration, and synaptic pruning. In acute neurotrauma and ischamic brain injury, complement drives inflammation and neuronal death, but also neuroprotection and regeneration. In diseases of the aging CNS including dementias and motor neuron disease, chronic complement activation is associated with glial activation, and synapse and neuron loss. Proper regulation of complement is thus essential to allow for an appropriately developed CNS and prevention of excessive damage following neurotrauma or during neurodegeneration. This review provides a comprehensive overview of the evidence for functional roles of complement in brain formation, and its dysregulation during acute and chronic disease. We also provide working models for how complement can lead to neurodevelopmental disorders such as schizophrenia and autism, and either protect, or propagate neurodegenerative diseases including Alzheimer's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Liam G Coulthard
- Royal Brisbane and Women's Hospital, Herston, Australia; School of Clinical Medicine, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
14
|
Wang Q, Han A, Chen L, Sun J, Lin Z, Zhang X, Ren X. Paip1 overexpression is involved in the progression of gastric cancer and predicts shorter survival of diagnosed patients. Onco Targets Ther 2019; 12:6565-6576. [PMID: 31496746 PMCID: PMC6701649 DOI: 10.2147/ott.s202698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/10/2019] [Indexed: 01/06/2023] Open
Abstract
Background Gastric cancer (GC) is a major leading cause of cancer mortality worldwide. Polyadenylate (poly(A))-binding protein (PABP)-interacting protein 1 (Paip1) is a key regulator in the initiation of translation; however, its role in GC remains to be investigated. Purpose The purpose of this study is to determine Paip1 expression levels and investigate its underlying molecular mechanism in GC. Patients and methods In the present study, a total of 90 GC samples and 90 adjacent noncancerous tissues were used to examine the expression of Paip1. In order to gain a deep insight into the molecular mechanism of Paip1 in GC, the Paip1 siRNA sequences were transfected into GC cell lines (MGC-803 and SGC-7901), respectively. Meanwhile, Paip1 plasmid was used to mediate overexpression of Paip1. Cell proliferation were examined via colony formation assay, EdU assay and flow cytometry assay. Cell metastasis were discovered via wound healing assay and Transwell assays. In addition, key EMT makers were detected by Western blotting assay. Results In this study, Paip1 expression was observed to be upregulated in GC and was associated with shorter overall survival. Knockdown of Paip1 inhibited cell proliferation, migration and caused cell cycle arrest in GC cells, whereas its overexpression reversed these effects. Another mechanistic study showed that Paip1 overexpression promoted EMT progression and regulated its targets expression. Conclusion High expression of Paip1 plays a significant role in the progression of GC and may be a potential biomarker of poor prognosis as well as a therapeutic target.
Collapse
Affiliation(s)
- Qianrong Wang
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China
| | - Anna Han
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China
| | - Liyan Chen
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China.,Key Laboratory of the Science and Technology Department of Jilin Province, Yanji 133002, People's Republic of China
| | - Jie Sun
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China
| | - Zhenhua Lin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China.,Key Laboratory of the Science and Technology Department of Jilin Province, Yanji 133002, People's Republic of China
| | - Xianglan Zhang
- Department of Pathology, Yanbian University Hospital, Yanji City, Jilin Province, People's Republic of China.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Xiangshan Ren
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China.,Key Laboratory of the Science and Technology Department of Jilin Province, Yanji 133002, People's Republic of China
| |
Collapse
|
15
|
Parker SE, Hanton AM, Stefanou SN, Noakes PG, Woodruff TM, Lee JD. Revisiting the role of the innate immune complement system in ALS. Neurobiol Dis 2019; 127:223-232. [DOI: 10.1016/j.nbd.2019.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
|
16
|
Li N, Piao J, Wang X, Kim KY, Bae JY, Ren X, Lin Z. Paip1 Indicated Poor Prognosis in Cervical Cancer and Promoted Cervical Carcinogenesis. Cancer Res Treat 2019; 51:1653-1665. [PMID: 31010277 PMCID: PMC6790838 DOI: 10.4143/crt.2018.544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/17/2019] [Indexed: 12/30/2022] Open
Abstract
Purpose This study was aimed to investigate the role of poly(A)-binding protein-interacting protein 1 (Paip1) in cervical carcinogenesis. Materials and Methods The expression of Paip1 in normal cervical epithelial tissues and cervical cancer (CC) tissues were detected by immunohistochemistry. In vivo and in vitro assays were performed to validate effect of Paip1 on CC progression. Results Paip1 was found to be up-regulated in CC, which was linked with shorter survival. Knockdown of Paip1 inhibited cell growth, induced apoptosis and cell cycle arrest in CC cells, whereas its overexpression reversed these effects. The in vivo tumor model confirmed the pro-tumor role of Paip1 in CC growth. Conclusion Altogether, the investigation demonstrated the clinical significance of Paip1 expression, which prompted that the up-regulated of Paip1 can presumably be a potential prognostic and progression marker for CC.
Collapse
Affiliation(s)
- Nan Li
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of the Science and Technology, Department of Jilin Province, Yanji, China
| | - Junjie Piao
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of the Science and Technology, Department of Jilin Province, Yanji, China
| | - Xinyue Wang
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of the Science and Technology, Department of Jilin Province, Yanji, China
| | - Ki-Yeol Kim
- Brain Korea 21 Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Jung Yoon Bae
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Xiangshan Ren
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of the Science and Technology, Department of Jilin Province, Yanji, China
| | - Zhenhua Lin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of the Science and Technology, Department of Jilin Province, Yanji, China
| |
Collapse
|
17
|
Wu LS, Cheng WC, Chen CY, Wu MC, Wang YC, Tseng YH, Chuang TJ, Shen CKJ. Transcriptomopathies of pre- and post-symptomatic frontotemporal dementia-like mice with TDP-43 depletion in forebrain neurons. Acta Neuropathol Commun 2019; 7:50. [PMID: 30922385 PMCID: PMC6440020 DOI: 10.1186/s40478-019-0674-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
TAR DNA-binding protein (TDP-43) is a ubiquitously expressed nuclear protein, which participates in a number of cellular processes and has been identified as the major pathological factor in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here we constructed a conditional TDP-43 mouse with depletion of TDP-43 in the mouse forebrain and find that the mice exhibit a whole spectrum of age-dependent frontotemporal dementia-like behaviour abnormalities including perturbation of social behaviour, development of dementia-like behaviour, changes of activities of daily living, and memory loss at a later stage of life. These variations are accompanied with inflammation, neurodegeneration, and abnormal synaptic plasticity of the mouse CA1 neurons. Importantly, analysis of the cortical RNA transcripts of the conditional knockout mice at the pre-/post-symptomatic stages and the corresponding wild type mice reveals age-dependent alterations in the expression levels and RNA processing patterns of a set of genes closely associated with inflammation, social behaviour, synaptic plasticity, and neuron survival. This study not only supports the scenario that loss-of-function of TDP-43 in mice may recapitulate key behaviour features of the FTLD diseases, but also provides a list of TDP-43 target genes/transcript isoforms useful for future therapeutic research.
Collapse
Affiliation(s)
- Lien-Szu Wu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, Republic of China
| | - Wei-Cheng Cheng
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, Republic of China
| | - Chia-Ying Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Che Wu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, Republic of China
| | - Yi-Chi Wang
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | - C-K James Shen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, Republic of China.
| |
Collapse
|
18
|
Wang Y, Piao J, Wang Q, Cui X, Meng Z, Jin T, Lin Z. Paip1 predicts poor prognosis and promotes tumor progression through AKT/GSK-3β pathway in lung adenocarcinoma. Hum Pathol 2018; 86:233-242. [PMID: 30496797 DOI: 10.1016/j.humpath.2018.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022]
Abstract
The expression and biological function of Paip1 remain poorly understood in most human cancers. The objective of this research is to investigate its clinical significance and roles in lung adenocarcinoma (LADC). Immunohistochemistry was used to determine Paip1 expression in 58 cases of LADC patients with strict follow-up and 60 cases of adjacent normal lung tissues. Paip1 protein was upregulated in 77.6% (45/58) LADC tissues compared with adjacent normal lung tissues. The overexpression of Paip1 was significantly correlated with histologic grade, clinical stage, and poor prognosis. Small interfering RNA-mediated transfection was performed in A549 and H1299 cells. Paip1 depletion attenuated the proliferation and migration of A549 and H1299 cells. Paip1 also changed the expression of epithelial-to-mesenchymal transition markers including E-cadherin, Vimentin, Slug, and Snail. Furthermore, Paip1 regulated AKT/GSK-3β oncogenic signaling pathways. In conclusions, Paip1 expression is frequently upregulated in LADC, and its overexpression correlates with poor prognosis in LADC patients. Attenuated Paip1 expression suppresses proliferation and epithelial-to-mesenchymal transition-related migration of A549 and H1299 cells by regulating the AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, China; Key Laboratory of the Science and Technology Department of Jilin Province, Yanji 133002, China
| | - Junjie Piao
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, China; Key Laboratory of the Science and Technology Department of Jilin Province, Yanji 133002, China
| | - Qianrong Wang
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, China; Key Laboratory of the Science and Technology Department of Jilin Province, Yanji 133002, China
| | - Xuelian Cui
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, China; Key Laboratory of the Science and Technology Department of Jilin Province, Yanji 133002, China
| | - Ziqi Meng
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, China; Key Laboratory of the Science and Technology Department of Jilin Province, Yanji 133002, China
| | - Tiefeng Jin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, China; Key Laboratory of the Science and Technology Department of Jilin Province, Yanji 133002, China.
| | - Zhenhua Lin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, China; Key Laboratory of the Science and Technology Department of Jilin Province, Yanji 133002, China.
| |
Collapse
|
19
|
Hommyo R, Suzuki SO, Abolhassani N, Hamasaki H, Shijo M, Maeda N, Honda H, Nakabeppu Y, Iwaki T. Expression of CRYM in different rat organs during development and its decreased expression in degenerating pyramidal tracts in amyotrophic lateral sclerosis. Neuropathology 2018; 38:247-259. [PMID: 29603402 DOI: 10.1111/neup.12466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 11/30/2022]
Abstract
The protein μ-crystallin (CRYM) is a novel component of the marsupial lens that has two functions: it is a key regulator of thyroid hormone transportation and a reductase of sulfur-containing cyclic ketimines. In this study, we examined changes of the expression pattern of CRYM in different rat organs during development using immunohistochemistry and immunoblotting. As CRYM is reportedly expressed in the corticospinal tract, we also investigated CRYM expression in human cases of amyotrophic lateral sclerosis (ALS) using immunohistochemistry. In the rat brain, CRYM was expressed in the cerebral cortex, basal ganglia, hippocampus and corticospinal tract in the early postnatal period. As postnatal development progressed, CRYM expression was restricted to large pyramidal neurons in layers V and VI of the cerebral cortex and pyramidal cells in the deep layer of CA1 in the hippocampus. Even within the same regions, CRYM-positive and negative neurons were distributed in a mosaic pattern. In the kidney, CRYM was expressed in epithelial cells of the proximal tubule and mesenchymal cells of the medulla in the early postnatal period; however, CRYM expression in the medulla was lost as mesenchymal cell numbers decreased with the rapid growth of the medulla. In human ALS brains, we observed marked loss of CRYM in the corticospinal tract, especially distally. Our results suggest that CRYM may play roles in development of cortical and hippocampal pyramidal cells in the early postnatal period, and in the later period, performs cell-specific functions in selected neuronal populations. In the kidney, CRYM may play roles in maturation of renal function. The expression patterns of CRYM may reflect significance of its interactions with T3 or ketimines in these cells and organs. The results also indicate that CRYM may be used as a marker of axonal degeneration in the corticospinal tract.
Collapse
Affiliation(s)
- Reiji Hommyo
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi O Suzuki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Shijo
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norihisa Maeda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Toru Iwaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Piao J, Chen L, Jin T, Xu M, Quan C, Lin Z. Paip1 affects breast cancer cell growth and represents a novel prognostic biomarker. Hum Pathol 2017; 73:33-40. [PMID: 29258905 DOI: 10.1016/j.humpath.2017.10.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/09/2017] [Accepted: 10/18/2017] [Indexed: 11/26/2022]
Abstract
Polyadenylate-binding protein-interacting protein 1 (Paip1) regulates translational initiation. Increasing evidence suggests that Paip1 plays important roles in cancer development and progression. This study explored the role of Paip1 in breast cancer progression and evaluated its prognostic value. The cellular location of Paip1 protein was determined using immunofluorescence. Then, Paip1 protein expression was evaluated by immunohistochemical staining in 119 breast cancers and 40 normal breast tissues. The correlation between Paip1 expression and the clinicopathologic features of breast cancer was evaluated using the χ2 test, and differences in survival curves were analyzed using log-rank tests. The role of Paip1 in breast cancer proliferation and cell cycle progression was identified by siRNA transfection. Paip1 was expressed mainly in the cytoplasm of cancer cells and tissues. Expression was observed in 60.5% of the breast cancers (72/119), which was significantly higher than in normal breast tissues (17.5%; 7/40). High expression of Paip1 protein was associated with high histologic grade, late clinical stage, and a low survival rate. Multivariate analysis indicated that Paip1 was an independent prognostic factor. Additionally, Paip1 depletion by RNAi significantly decreased cell proliferation and induced cell cycle arrest. In conclusion, our study demonstrated that Paip1 promotes the growth of breast cancers and could be a prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Junjie Piao
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| | - Liyan Chen
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, China; Department of Biochemistry and Molecular Biology, Yanbian University Medical College, Yanji 133002, China
| | - Tiefeng Jin
- Department of Biochemistry and Molecular Biology, Yanbian University Medical College, Yanji 133002, China
| | - Ming Xu
- Department of Biochemistry and Molecular Biology, Yanbian University Medical College, Yanji 133002, China
| | - Chunji Quan
- Department of Biochemistry and Molecular Biology, Yanbian University Medical College, Yanji 133002, China
| | - Zhenhua Lin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, China.
| |
Collapse
|
21
|
Reciprocal Control of Thyroid Binding and the Pipecolate Pathway in the Brain. Neurochem Res 2016; 42:217-243. [DOI: 10.1007/s11064-016-2015-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/15/2016] [Accepted: 07/22/2016] [Indexed: 12/21/2022]
|
22
|
Creanza TM, Liguori M, Liuni S, Nuzziello N, Ancona N. Meta-Analysis of Differential Connectivity in Gene Co-Expression Networks in Multiple Sclerosis. Int J Mol Sci 2016; 17:E936. [PMID: 27314336 PMCID: PMC4926469 DOI: 10.3390/ijms17060936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022] Open
Abstract
Differential gene expression analyses to investigate multiple sclerosis (MS) molecular pathogenesis cannot detect genes harboring genetic and/or epigenetic modifications that change the gene functions without affecting their expression. Differential co-expression network approaches may capture changes in functional interactions resulting from these alterations. We re-analyzed 595 mRNA arrays from publicly available datasets by studying changes in gene co-expression networks in MS and in response to interferon (IFN)-β treatment. Interestingly, MS networks show a reduced connectivity relative to the healthy condition, and the treatment activates the transcription of genes and increases their connectivity in MS patients. Importantly, the analysis of changes in gene connectivity in MS patients provides new evidence of association for genes already implicated in MS by single-nucleotide polymorphism studies and that do not show differential expression. This is the case of amiloride-sensitive cation channel 1 neuronal (ACCN1) that shows a reduced number of interacting partners in MS networks, and it is known for its role in synaptic transmission and central nervous system (CNS) development. Furthermore, our study confirms a deregulation of the vitamin D system: among the transcription factors that potentially regulate the deregulated genes, we find TCF3 and SP1 that are both involved in vitamin D3-induced p27Kip1 expression. Unveiling differential network properties allows us to gain systems-level insights into disease mechanisms and may suggest putative targets for the treatment.
Collapse
Affiliation(s)
- Teresa Maria Creanza
- Institute of Intelligent Systems for Automation, National Research Council of Italy, 70126 Bari, Italy.
- Center for Complex Systems in Molecular Biology and Medicine, University of Turin, 10123 Turin, Italy.
| | - Maria Liguori
- Institute of Biomedical Technologies, National Research Council of Italy, 70126 Bari, Italy.
| | - Sabino Liuni
- Institute of Biomedical Technologies, National Research Council of Italy, 70126 Bari, Italy.
| | - Nicoletta Nuzziello
- Institute of Biomedical Technologies, National Research Council of Italy, 70126 Bari, Italy.
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70126 Bari, Italy.
| | - Nicola Ancona
- Institute of Intelligent Systems for Automation, National Research Council of Italy, 70126 Bari, Italy.
| |
Collapse
|
23
|
Brennan FH, Lee JD, Ruitenberg MJ, Woodruff TM. Therapeutic targeting of complement to modify disease course and improve outcomes in neurological conditions. Semin Immunol 2016; 28:292-308. [PMID: 27049459 DOI: 10.1016/j.smim.2016.03.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/14/2022]
Abstract
The recognition that complement proteins are abundantly present and can have pathological roles in neurological conditions offers broad scope for therapeutic intervention. Accordingly, an increasing number of experimental investigations have explored the potential of harnessing the unique activation pathways, proteases, receptors, complexes, and natural inhibitors of complement, to mitigate pathology in acute neurotrauma and chronic neurodegenerative diseases. Here, we review mechanisms of complement activation in the central nervous system (CNS), and explore the effects of complement inhibition in cerebral ischemic-reperfusion injury, traumatic brain injury, spinal cord injury, Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. We consider the challenges and opportunities arising from these studies. As complement therapies approach clinical translation, we provide perspectives on how promising complement-targeted therapeutics could become part of novel and effective future treatment options to improve outcomes in the initiation and progression stages of these debilitating CNS disorders.
Collapse
Affiliation(s)
- Faith H Brennan
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia; Trauma, Critical Care and Recovery, Brisbane Diamantina Health Partners, The University of Queensland, Brisbane 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
24
|
Baker DJ, Blackburn DJ, Keatinge M, Sokhi D, Viskaitis P, Heath PR, Ferraiuolo L, Kirby J, Shaw PJ. Lysosomal and phagocytic activity is increased in astrocytes during disease progression in the SOD1 (G93A) mouse model of amyotrophic lateral sclerosis. Front Cell Neurosci 2015; 9:410. [PMID: 26528138 PMCID: PMC4606544 DOI: 10.3389/fncel.2015.00410] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/25/2015] [Indexed: 12/12/2022] Open
Abstract
Astrocytes are key players in the progression of amyotrophic lateral sclerosis (ALS). Previously, gene expression profiling of astrocytes from the pre-symptomatic stage of the SOD1G93A model of ALS has revealed reduced lactate metabolism and altered trophic support. Here, we have performed microarray analysis of symptomatic and late-stage disease astrocytes isolated by laser capture microdissection (LCM) from the lumbar spinal cord of the SOD1G93A mouse to complete the picture of astrocyte behavior throughout the disease course. Astrocytes at symptomatic and late-stage disease show a distinct up-regulation of transcripts defining a reactive phenotype, such as those involved in the lysosome and phagocytic pathways. Functional analysis of hexosaminidase B enzyme activity in the spinal cord and of astrocyte phagocytic ability has demonstrated a significant increase in lysosomal enzyme activity and phagocytic activity in SOD1G93A vs. littermate controls, validating the findings of the microarray study. In addition to the increased reactivity seen at both stages, astrocytes from late-stage disease showed decreased expression of many transcripts involved in cholesterol homeostasis. Staining for the master regulator of cholesterol synthesis, SREBP2, has revealed an increased localization to the cytoplasm of astrocytes and motor neurons in late-stage SOD1G93A spinal cord, indicating that down-regulation of transcripts may be due to an excess of cholesterol in the CNS during late-stage disease possibly due to phagocytosis of neuronal debris. Our data reveal that SOD1G93A astrocytes are characterized more by a loss of supportive function than a toxic phenotype during ALS disease progression and future studies should focus upon restorative therapies.
Collapse
Affiliation(s)
- David J Baker
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | - Daniel J Blackburn
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | - Marcus Keatinge
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | - Dilraj Sokhi
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | - Paulius Viskaitis
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | - Paul R Heath
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | - Laura Ferraiuolo
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | - Janine Kirby
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| |
Collapse
|
25
|
Alves CJ, Maximino JR, Chadi G. Dysregulated expression of death, stress and mitochondrion related genes in the sciatic nerve of presymptomatic SOD1(G93A) mouse model of Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2015; 9:332. [PMID: 26339226 PMCID: PMC4555015 DOI: 10.3389/fncel.2015.00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022] Open
Abstract
Schwann cells are the main source of paracrine support to motor neurons. Oxidative stress and mitochondrial dysfunction have been correlated to motor neuron death in Amyotrophic Lateral Sclerosis (ALS). Despite the involvement of Schwann cells in early neuromuscular disruption in ALS, detailed molecular events of a dying-back triggering are unknown. Sciatic nerves of presymptomatic (60-day-old) SOD1(G93A) mice were submitted to a high-density oligonucleotide microarray analysis. DAVID demonstrated the deregulated genes related to death, stress and mitochondrion, which allowed the identification of Cell cycle, ErbB signaling, Tryptophan metabolism and Rig-I-like receptor signaling as the most representative KEGG pathways. The protein-protein interaction networks based upon deregulated genes have identified the top hubs (TRAF2, H2AFX, E2F1, FOXO3, MSH2, NGFR, TGFBR1) and bottlenecks (TRAF2, E2F1, CDKN1B, TWIST1, FOXO3). Schwann cells were enriched from the sciatic nerve of presymptomatic mice using flow cytometry cell sorting. qPCR showed the up regulated (Ngfr, Cdnkn1b, E2f1, Traf2 and Erbb3, H2afx, Cdkn1a, Hspa1, Prdx, Mapk10) and down-regulated (Foxo3, Mtor) genes in the enriched Schwann cells. In conclusion, molecular analyses in the presymptomatic sciatic nerve demonstrated the involvement of death, oxidative stress, and mitochondrial pathways in the Schwann cell non-autonomous mechanisms in the early stages of ALS.
Collapse
Affiliation(s)
- Chrystian J Alves
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Jessica R Maximino
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Gerson Chadi
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| |
Collapse
|
26
|
Insights into Enzyme Catalysis and Thyroid Hormone Regulation of Cerebral Ketimine Reductase/μ-Crystallin Under Physiological Conditions. Neurochem Res 2015; 40:1252-66. [PMID: 25931162 DOI: 10.1007/s11064-015-1590-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 04/10/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
Abstract
Mammalian ketimine reductase is identical to μ-crystallin (CRYM)-a protein that is also an important thyroid hormone binding protein. This dual functionality implies a role for thyroid hormones in ketimine reductase regulation and also a reciprocal role for enzyme catalysis in thyroid hormone bioavailability. In this research we demonstrate potent sub-nanomolar inhibition of enzyme catalysis at neutral pH by the thyroid hormones L-thyroxine and 3,5,3'-triiodothyronine, whereas other thyroid hormone analogues were shown to be far weaker inhibitors. We also investigated (a) enzyme inhibition by the substrate analogues pyrrole-2-carboxylate, 4,5-dibromopyrrole-2-carboxylate and picolinate, and (b) enzyme catalysis at neutral pH of the cyclic ketimines S-(2-aminoethyl)-L-cysteine ketimine (owing to the complex nomenclature trivial names are used for the sulfur-containing cyclic ketimines as per the original authors' descriptions) (AECK), Δ(1)-piperideine-2-carboxylate (P2C), Δ(1)-pyrroline-2-carboxylate (Pyr2C) and Δ(2)-thiazoline-2-carboxylate. Kinetic data obtained at neutral pH suggests that ketimine reductase/CRYM plays a major role as a P2C/Pyr2C reductase and that AECK is not a major substrate at this pH. Thus, ketimine reductase is a key enzyme in the pipecolate pathway, which is the main lysine degradation pathway in the brain. In silico docking of various ligands into the active site of the X-ray structure of the enzyme suggests an unusual catalytic mechanism involving an arginine residue as a proton donor. Given the critical importance of thyroid hormones in brain function this research further expands on our knowledge of the connection between amino acid metabolism and regulation of thyroid hormone levels.
Collapse
|
27
|
Francelle L, Galvan L, Gaillard MC, Guillermier M, Houitte D, Bonvento G, Petit F, Jan C, Dufour N, Hantraye P, Elalouf JM, De Chaldée M, Déglon N, Brouillet E. Loss of the thyroid hormone-binding protein Crym renders striatal neurons more vulnerable to mutant huntingtin in Huntington's disease. Hum Mol Genet 2014; 24:1563-73. [PMID: 25398949 PMCID: PMC4381754 DOI: 10.1093/hmg/ddu571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mechanisms underlying preferential atrophy of the striatum in Huntington's disease (HD) are unknown. One hypothesis is that a set of gene products preferentially expressed in the striatum could determine the particular vulnerability of this brain region to mutant huntingtin (mHtt). Here, we studied the striatal protein µ-crystallin (Crym). Crym is the NADPH-dependent p38 cytosolic T3-binding protein (p38CTBP), a key regulator of thyroid hormone (TH) T3 (3,5,3'-triiodo-l-thyronine) transportation. It has been also recently identified as the enzyme that reduces the sulfur-containing cyclic ketimines, which are potential neurotransmitters. Here, we confirm the preferential expression of the Crym protein in the rodent and macaque striatum. Crym expression was found to be higher in the macaque caudate than in the putamen. Expression of Crym was reduced in the BACHD and Knock-in 140CAG mouse models of HD before onset of striatal atrophy. We show that overexpression of Crym in striatal medium-size spiny neurons using a lentiviral-based strategy in mice is neuroprotective against the neurotoxicity of an N-terminal fragment of mHtt in vivo. Thus, reduction of Crym expression in HD could render striatal neurons more susceptible to mHtt suggesting that Crym may be a key determinant of the vulnerability of the striatum. In addition our work points to Crym as a potential molecular link between striatal degeneration and the THs deregulation reported in HD patients.
Collapse
Affiliation(s)
- Laetitia Francelle
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Laurie Galvan
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Martine Guillermier
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Diane Houitte
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Gilles Bonvento
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Fanny Petit
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Caroline Jan
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Noëlle Dufour
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Philippe Hantraye
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Jean-Marc Elalouf
- CEA, iBiTecS, F-91191 Gif-sur-Yvette Cedex, France, CNRS, FRE 3377, F-91191 Gif-sur-Yvette Cedex, France, Université Paris-Sud, FRE 3377, F-91191 Gif-sur-Yvette Cedex, France
| | - Michel De Chaldée
- CEA, iBiTecS, F-91191 Gif-sur-Yvette Cedex, France, CNRS, FRE 3377, F-91191 Gif-sur-Yvette Cedex, France, Université Paris-Sud, FRE 3377, F-91191 Gif-sur-Yvette Cedex, France
| | - Nicole Déglon
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France, Laboratory of Cellular and Molecular Neurotherapies, Department of Clinical Neurociences, Lausanne University Hospital, Lausanne, Switzerland
| | - Emmanuel Brouillet
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France,
| |
Collapse
|
28
|
Maximino JR, de Oliveira GP, Alves CJ, Chadi G. Deregulated expression of cytoskeleton related genes in the spinal cord and sciatic nerve of presymptomatic SOD1(G93A) Amyotrophic Lateral Sclerosis mouse model. Front Cell Neurosci 2014; 8:148. [PMID: 24904291 PMCID: PMC4033281 DOI: 10.3389/fncel.2014.00148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/08/2014] [Indexed: 12/11/2022] Open
Abstract
Early molecular events related to cytoskeleton are poorly described in Amyotrophic Lateral Sclerosis (ALS), especially in the Schwann cell (SC), which offers strong trophic support to motor neurons. Database for Annotation, Visualization and Integrated Discovery (DAVID) tool identified cytoskeleton-related genes by employing the Cellular Component Ontology (CCO) in a large gene profiling of lumbar spinal cord and sciatic nerve of presymptomatic SOD1(G93A) mice. One and five CCO terms related to cytoskeleton were described from the spinal cord deregulated genes of 40 days (actin cytoskeleton) and 80 days (microtubule cytoskeleton, cytoskeleton part, actin cytoskeleton, neurofilament cytoskeleton, and cytoskeleton) old transgene mice, respectively. Also, four terms were depicted from the deregulated genes of sciatic nerve of 60 days old transgenes (actin cytoskeleton, cytoskeleton part, microtubule cytoskeleton and cytoskeleton). Kif1b was the unique deregulated gene in more than one studied region or presymptomatic age. The expression of Kif1b [quantitative polymerase chain reaction (qPCR)] elevated in the lumbar spinal cord (40 days old) and decreased in the sciatic nerve (60 days old) of presymptomatic ALS mice, results that were in line to microarray findings. Upregulation (24.8 fold) of Kif1b was seen in laser microdissected enriched immunolabeled motor neurons from the spinal cord of 40 days old presymptomatic SOD1(G93A) mice. Furthermore, Kif1b was dowregulated in the sciatic nerve Schwann cells of presymptomatic ALS mice (60 days old) that were enriched by means of cell microdissection (6.35 fold), cell sorting (3.53 fold), and primary culture (2.70 fold) technologies. The gene regulation of cytoskeleton molecules is an important occurrence in motor neurons and Schwann cells in presymptomatic stages of ALS and may be relevant in the dying back mechanisms of neuronal death. Furthermore, a differential regulation of Kif1b in the spinal cord and sciatic nerve cells emerged as key event in ALS.
Collapse
Affiliation(s)
- Jessica R Maximino
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Gabriela P de Oliveira
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Chrystian J Alves
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Gerson Chadi
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| |
Collapse
|
29
|
Heath PR, Kirby J, Shaw PJ. Investigating cell death mechanisms in amyotrophic lateral sclerosis using transcriptomics. Front Cell Neurosci 2013; 7:259. [PMID: 24381542 PMCID: PMC3865770 DOI: 10.3389/fncel.2013.00259] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/28/2013] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by degeneration and loss of upper and lower motor neurons from the motor cortex, brainstem and spinal cord although evidence is suggesting that there is further involvement of other cell types in the surrounding tissue. Transcriptomic analysis by gene expression profiling using microarray technology has enabled the determination of patterns of cell death in the degenerating tissues. This work has examined gene expression at the level of the tissue and individual cell types in both sporadic and familial forms of the disease. In addition, further studies have examined the differential vulnerability of neuronal cells in different regions of the central nervous system. Model systems have also provided further information to help unravel the mechanisms that lead to death of the motor neurons in disease and also provided novel insights. In this review we shall describe the methods that have been used in these investigations and describe how they have contributed to our knowledge of the cell death mechanisms in ALS.
Collapse
Affiliation(s)
- Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| |
Collapse
|
30
|
C1q induction and global complement pathway activation do not contribute to ALS toxicity in mutant SOD1 mice. Proc Natl Acad Sci U S A 2013; 110:E4385-92. [PMID: 24170856 DOI: 10.1073/pnas.1318309110] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence from mice expressing ALS-causing mutations in superoxide dismutase (SOD1) has implicated pathological immune responses in motor neuron degeneration. This includes microglial activation, lymphocyte infiltration, and the induction of C1q, the initiating component of the classic complement system that is the protein-based arm of the innate immune response, in motor neurons of multiple ALS mouse models expressing dismutase active or inactive SOD1 mutants. Robust induction early in disease course is now identified for multiple complement components (including C1q, C4, and C3) in spinal cords of SOD1 mutant-expressing mice, consistent with initial intraneuronal C1q induction, followed by global activation of the complement pathway. We now test if this activation is a mechanistic contributor to disease. Deletion of the C1q gene in mice expressing an ALS-causing mutant in SOD1 to eliminate C1q induction, and complement cascade activation that follows from it, is demonstrated to produce changes in microglial morphology accompanied by enhanced loss, not retention, of synaptic densities during disease. C1q-dependent synaptic loss is shown to be especially prominent for cholinergic C-bouton nerve terminal input onto motor neurons in affected C1q-deleted SOD1 mutant mice. Nevertheless, overall onset and progression of disease are unaffected in C1q- and C3-deleted ALS mice, thus establishing that C1q induction and classic or alternative complement pathway activation do not contribute significantly to SOD1 mutant-mediated ALS pathogenesis in mice.
Collapse
|
31
|
Hallen A, Jamie JF, Cooper AJL. Lysine metabolism in mammalian brain: an update on the importance of recent discoveries. Amino Acids 2013; 45:1249-72. [PMID: 24043460 DOI: 10.1007/s00726-013-1590-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 12/23/2022]
Abstract
The lysine catabolism pathway differs in adult mammalian brain from that in extracerebral tissues. The saccharopine pathway is the predominant lysine degradative pathway in extracerebral tissues, whereas the pipecolate pathway predominates in adult brain. The two pathways converge at the level of ∆(1)-piperideine-6-carboxylate (P6C), which is in equilibrium with its open-chain aldehyde form, namely, α-aminoadipate δ-semialdehyde (AAS). A unique feature of the pipecolate pathway is the formation of the cyclic ketimine intermediate ∆(1)-piperideine-2-carboxylate (P2C) and its reduced metabolite L-pipecolate. A cerebral ketimine reductase (KR) has recently been identified that catalyzes the reduction of P2C to L-pipecolate. The discovery that this KR, which is capable of reducing not only P2C but also other cyclic imines, is identical to a previously well-described thyroid hormone-binding protein [μ-crystallin (CRYM)], may hold the key to understanding the biological relevance of the pipecolate pathway and its importance in the brain. The finding that the KR activity of CRYM is strongly inhibited by the thyroid hormone 3,5,3'-triiodothyronine (T3) has far-reaching biomedical and clinical implications. The inter-relationship between tryptophan and lysine catabolic pathways is discussed in the context of shared degradative enzymes and also potential regulation by thyroid hormones. This review traces the discoveries of enzymes involved in lysine metabolism in mammalian brain. However, there still remain unanswered questions as regards the importance of the pipecolate pathway in normal or diseased brain, including the nature of the first step in the pathway and the relationship of the pipecolate pathway to the tryptophan degradation pathway.
Collapse
Affiliation(s)
- André Hallen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia,
| | | | | |
Collapse
|
32
|
Carra S, Rusmini P, Crippa V, Giorgetti E, Boncoraglio A, Cristofani R, Naujock M, Meister M, Minoia M, Kampinga HH, Poletti A. Different anti-aggregation and pro-degradative functions of the members of the mammalian sHSP family in neurological disorders. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110409. [PMID: 23530259 DOI: 10.1098/rstb.2011.0409] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The family of the mammalian small heat-shock proteins consists of 10 members (sHSPs/HSPBs: HSPB1-HSPB10) that all share a highly conserved C-terminal alpha-crystallin domain, important for the modulation of both their structural and functional properties. HSPB proteins are biochemically classified as molecular chaperones and participate in protein quality control, preventing the aggregation of unfolded or misfolded proteins and/or assisting in their degradation. Thus, several members of the HSPB family have been suggested to be protective in a number of neurodegenerative and neuromuscular diseases that are characterized by protein misfolding. However, the pro-refolding, anti-aggregation or pro-degradative properties of the various members of the HSPB family differ largely, thereby influencing their efficacy and protective functions. Such diversity depends on several factors, including biochemical and physical properties of the unfolded/misfolded client, the expression levels and the subcellular localization of both the chaperone and the client proteins. Furthermore, although some HSPB members are inefficient at inhibiting protein aggregation, they can still exert neuroprotective effects by other, as yet unidentified, manners; e.g. by maintaining the proper cellular redox state or/and by preventing the activation of the apoptotic cascade. Here, we will focus our attention on how the differences in the activities of the HSPB proteins can influence neurodegenerative and neuromuscular disorders characterized by accumulation of aggregate-prone proteins. Understanding their mechanism of action may allow us to target a specific member in a specific cell type/disease for therapeutic purposes.
Collapse
Affiliation(s)
- Serena Carra
- Dipartimento di Scienze Biomediche, Universita' degli Studi di Modena e Reggio Emilia, , via G. Campi 287, Modena 41125, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hallen A, Jamie JF, Cooper AJL. Imine reductases: a comparison of glutamate dehydrogenase to ketimine reductases in the brain. Neurochem Res 2013; 39:527-41. [PMID: 23314864 DOI: 10.1007/s11064-012-0964-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/12/2012] [Accepted: 12/22/2012] [Indexed: 02/06/2023]
Abstract
A key intermediate in the glutamate dehydrogenase (GDH)-catalyzed reaction is an imine. Mechanistically, therefore, GDH exhibits similarities to the ketimine reductases. In the current review, we briefly discuss (a) the metabolic importance of the GDH reaction in liver and brain, (b) the mechanistic similarities between GDH and the ketimine reductases, (c) the metabolic importance of the brain ketimine reductases, and (d) the neurochemical consequences of defective ketimine reductases. Our review contains many historical references to the early work on amino acid metabolism. This work tends to be overlooked nowadays, but is crucial for a contemporary understanding of the central importance of ketimines in nitrogen and intermediary metabolism. The ketimine reductases are important enzymes linking nitrogen flow among several key amino acids, yet have been little studied. The cerebral importance of the ketimine reductases is an area of biomedical research that deserves far more attention.
Collapse
Affiliation(s)
- André Hallen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia,
| | | | | |
Collapse
|
34
|
Saris CGJ, Groen EJN, Koekkoek JAF, Veldink JH, Van Den Berg LH. Meta-analysis of gene expression profiling in amyotrophic lateral sclerosis: A comparison between transgenic mouse models and human patients. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:177-89. [DOI: 10.3109/21678421.2012.729842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Christiaan G. J. Saris
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht
| | - Ewout J. N. Groen
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht
| | - Johan A. F. Koekkoek
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht
| | - Jan H. Veldink
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht
| | - Leonard H. Van Den Berg
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht
| |
Collapse
|
35
|
Henriques A, Gonzalez De Aguilar JL. Can transcriptomics cut the gordian knot of amyotrophic lateral sclerosis? Curr Genomics 2012; 12:506-15. [PMID: 22547957 PMCID: PMC3219845 DOI: 10.2174/138920211797904043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 07/27/2011] [Accepted: 09/15/2011] [Indexed: 12/31/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset degenerative disease characterized by the loss of upper and lower motor neurons, progressive muscle atrophy, paralysis and death, which occurs within 2-5 years of diagnosis. Most cases appear sporadically but some are familial, usually inherited in an autosomal dominant pattern. It is postulated that the disease results from the combination of multiple pathogenic mechanisms, which affect not only motor neurons but also non-neuronal neighboring cells. Together with the understanding of this intriguing cell biology, important challenges in the field concern the design of effective curative treatments and the discovery of molecular biomarkers for early diagnosis and accurate monitoring of disease progression. During the last decade, transcriptomics has represented a promising approach to address these questions. In this review, we revisit the major findings of the numerous studies that analyzed global gene expression in tissues and cells from biopsy or post-mortem specimens of ALS patients and related animal models. These studies corroborated the implication of previously described disease pathways, and investigated the role of new genes in the pathological process. In addition, they also identified gene expression changes that could be used as candidate biomarkers for the diagnosis and follow-up of ALS. The limitations of these transcriptomics approaches will be also discussed.
Collapse
Affiliation(s)
- Alexandre Henriques
- INSERM, U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Strasbourg, France
| | | |
Collapse
|
36
|
Abstract
Reactive astrogliosis is characterized by a profound change in astrocyte phenotype in response to all CNS injuries and diseases. To better understand the reactive astrocyte state, we used Affymetrix GeneChip arrays to profile gene expression in populations of reactive astrocytes isolated at various time points after induction using two mouse injury models, ischemic stroke and neuroinflammation. We find reactive gliosis consists of a rapid, but quickly attenuated, induction of gene expression after insult and identify induced Lcn2 and Serpina3n as strong markers of reactive astrocytes. Strikingly, reactive astrocyte phenotype strongly depended on the type of inducing injury. Although there is a core set of genes that is upregulated in reactive astrocytes from both injury models, at least 50% of the altered gene expression is specific to a given injury type. Reactive astrocytes in ischemia exhibited a molecular phenotype that suggests that they may be beneficial or protective, whereas reactive astrocytes induced by LPS exhibited a phenotype that suggests that they may be detrimental. These findings demonstrate that, despite well established commonalities, astrocyte reactive gliosis is a highly heterogeneous state in which astrocyte activities are altered to respond to the specific injury. This raises the question of how many subtypes of reactive astrocytes exist. Our findings provide transcriptome databases for two subtypes of reactive astrocytes that will be highly useful in generating new and testable hypotheses of their function, as well as for providing new markers to detect different types of reactive astrocytes in human neurological diseases.
Collapse
|
37
|
Paratore S, Pezzino S, Cavallaro S. Identification of pharmacological targets in amyotrophic lateral sclerosis through genomic analysis of deregulated genes and pathways. Curr Genomics 2012; 13:321-33. [PMID: 23204922 PMCID: PMC3394120 DOI: 10.2174/138920212800793366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/30/2012] [Accepted: 04/04/2012] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive and disabling neurodegenerative disorder characterized by upper and lower motor neuron loss, leading to respiratory insufficiency and death after 3-5 years. Riluzole is currently the only FDA approved drug for ALS, but it has only modest effects on survival. The majority of ALS cases are sporadic and probably associated to a multifactorial etiology. With the completion of genome sequencing in humans and model organisms, together with the advent of DNA microarray technology, the transcriptional cascades and networks underlying neurodegeneration in ALS are being elucidated providing new potential pharmacological targets. The main challenge now is the effective screening of the myriad of targets to identify those with the most therapeutic utility. The present review will illustrate how the identification, prioritization and validation of preclinical therapeutics can be achieved through genomic analysis of critical pathways and networks deregulated in ALS pathology.
Collapse
Affiliation(s)
- Sabrina Paratore
- Functional Genomics Center, Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
- Policlinico-Vittorio Emanuele, University Hospital, Catania, Italy
| | - Salvatore Pezzino
- Functional Genomics Center, Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| | - Sebastiano Cavallaro
- Functional Genomics Center, Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
- Policlinico-Vittorio Emanuele, University Hospital, Catania, Italy
| |
Collapse
|
38
|
Alteration of protein folding and degradation in motor neuron diseases: Implications and protective functions of small heat shock proteins. Prog Neurobiol 2011; 97:83-100. [PMID: 21971574 DOI: 10.1016/j.pneurobio.2011.09.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/12/2022]
Abstract
Motor neuron diseases (MNDs) are neurodegenerative disorders that specifically affect the survival and function of upper and/or lower motor neurons. Since motor neurons are responsible for the control of voluntary muscular movement, MNDs are characterized by muscle spasticity, weakness and atrophy. Different susceptibility genes associated with an increased risk to develop MNDs have been reported and several mutated genes have been linked to hereditary forms of MNDs. However, most cases of MNDs occur in sporadic forms and very little is known on their causes. Interestingly, several molecular mechanisms seem to participate in the progression of both the inherited and sporadic forms of MNDs. These include cytoskeleton organization, mitochondrial functions, DNA repair and RNA synthesis/processing, vesicle trafficking, endolysosomal trafficking and fusion, as well as protein folding and protein degradation. In particular, accumulation of aggregate-prone proteins is a hallmark of MNDs, suggesting that the protein quality control system (molecular chaperones and the degradative systems: ubiquitin-proteasome-system and autophagy) are saturated or not sufficient to allow the clearance of these altered proteins. In this review we mainly focus on the MNDs associated with disturbances in protein folding and protein degradation and on the potential implication of a specific class of molecular chaperones, the small heat shock proteins (sHSPs/HSPBs), in motor neuron function and survival. How boosting of specific HSPBs may be a potential useful therapeutic approach in MNDs and how mutations in specific HSPBs can directly cause motor neuron degeneration is discussed.
Collapse
|
39
|
|
40
|
Lei J, Mesters JR, Brunn AV, Hilgenfeld R. Crystal structure of the middle domain of human poly(A)-binding protein-interacting protein 1. Biochem Biophys Res Commun 2011; 408:680-5. [DOI: 10.1016/j.bbrc.2011.04.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
|
41
|
Hallen A, Cooper AJL, Jamie JF, Haynes PA, Willows RD. Mammalian forebrain ketimine reductase identified as μ-crystallin; potential regulation by thyroid hormones. J Neurochem 2011; 118:379-87. [PMID: 21332720 DOI: 10.1111/j.1471-4159.2011.07220.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ketimine reductase (E.C. 1.5.1.25) was purified to apparent homogeneity from lamb forebrain by means of a rapid multi-step chromatography protocol. The purified enzyme was identified by MS/MS (mass spectrometry) as μ-crystallin. The identity was confirmed by heterologously expressing human μ-crystallin in Escherichia coli and subsequent chromatographic purification of the protein. The purified human μ-crystallin was confirmed to have ketimine reductase activity with a maximum specific activity similar to that of native ovine ketimine reductase, and was found to catalyse a sequential reaction. The enzyme substrates are putative neuromodulator/transmitters. The thyroid hormone 3,5,3'-l-triiodothyronine (T3) was found to be a strong reversible competitive inhibitor, and may have a novel role in regulating their concentrations. μ-Crystallin is also involved in intracellular T3 storage and transport. This research is the first to demonstrate an enzyme function for μ-crystallin. This newly demonstrated enzymatic activity identifies a new role for thyroid hormones in regulating mammalian amino acid metabolism, and a possible reciprocal role of enzyme activity regulating bioavailability of intracellular T3.
Collapse
Affiliation(s)
- André Hallen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | | | | | | | | |
Collapse
|
42
|
Tebbenkamp ATN, Borchelt DR. Analysis of chaperone mRNA expression in the adult mouse brain by meta analysis of the Allen Brain Atlas. PLoS One 2010; 5:e13675. [PMID: 21060842 PMCID: PMC2965669 DOI: 10.1371/journal.pone.0013675] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 10/04/2010] [Indexed: 12/18/2022] Open
Abstract
The pathology of many neurodegenerative diseases is characterized by the accumulation of misfolded and aggregated proteins in various cell types and regional substructures throughout the central and peripheral nervous systems. The accumulation of these aggregated proteins signals dysfunction of cellular protein homeostatic mechanisms such as the ubiquitin/proteasome system, autophagy, and the chaperone network. Although there are several published studies in which transcriptional profiling has been used to examine gene expression in various tissues, including tissues of neurodegenerative disease models, there has not been a report that focuses exclusively on expression of the chaperone network. In the present study, we used the Allen Brain Atlas online database to analyze chaperone expression levels. This database utilizes a quantitative in situ hybridization approach and provides data on 270 chaperone genes within many substructures of the adult mouse brain. We determined that 256 of these chaperone genes are expressed at some level. Surprisingly, relatively few genes, only 30, showed significant variations in levels of mRNA across different substructures of the brain. The greatest degree of variability was exhibited by genes of the DnaJ co-chaperone, Tetratricopeptide repeat, and the HSPH families. Our analysis provides a valuable resource towards determining how variations in chaperone gene expression may modulate the vulnerability of specific neuronal populations of mammalian brain.
Collapse
Affiliation(s)
- Andrew T. N. Tebbenkamp
- Department of Neuroscience, SantaFe Health Alzheimer's Disease Center, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - David R. Borchelt
- Department of Neuroscience, SantaFe Health Alzheimer's Disease Center, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
43
|
Vitner EB, Dekel H, Zigdon H, Shachar T, Farfel-Becker T, Eilam R, Karlsson S, Futerman AH. Altered expression and distribution of cathepsins in neuronopathic forms of Gaucher disease and in other sphingolipidoses. Hum Mol Genet 2010; 19:3583-90. [PMID: 20616152 DOI: 10.1093/hmg/ddq273] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The neuronopathic forms of the human inherited metabolic disorder, Gaucher disease (GD), are characterized by severe neuronal loss, astrogliosis and microglial proliferation, but the cellular and molecular pathways causing these changes are not known. Recently, a mouse model of neuronopathic GD was generated in which glucocerebrosidase deficiency is limited to neural and glial progenitor cells. We now show significant changes in the levels and in the distribution of cathepsins in the brain of this mouse model. Cathepsin mRNA expression was significantly elevated by up to approximately 10-fold, with the time-course of the increase correlating with the progression of disease severity. Cathepsin activity and protein levels were also elevated. Significant changes in cathepsin D distribution in the brain were detected, with cathepsin D elevated in areas where neuronal loss, astrogliosis and microgliosis were observed, such as in layer V of the cerebral cortex, the lateral globus pallidus and in various nuclei in the thalamus, brain regions known to be affected in the disease. Cathepsin D elevation was greatest in microglia and also noticeable in astrocytes. The distribution of cathepsin D was altered in neurons in a manner consistent with its release from the lysosome to the cytosol. Remarkably, ibubrofen treatment significantly reduced cathepsin D mRNA levels in the cortex of Gaucher mice. Finally, cathepsin levels were also altered in mouse models of a number of other sphingolipidoses. Our findings suggest the involvement of cathepsins in the neuropathology of neuronal forms of GD and of other lysosomal storage diseases, and are consistent with a crucial role for reactive microglia in neuronal degeneration in these diseases.
Collapse
Affiliation(s)
- Einat B Vitner
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kudo LC, Parfenova L, Vi N, Lau K, Pomakian J, Valdmanis P, Rouleau GA, Vinters HV, Wiedau-Pazos M, Karsten SL. Integrative gene-tissue microarray-based approach for identification of human disease biomarkers: application to amyotrophic lateral sclerosis. Hum Mol Genet 2010; 19:3233-53. [PMID: 20530642 DOI: 10.1093/hmg/ddq232] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Advances in genomics and proteomics permit rapid identification of disease-relevant genes and proteins. Challenges include biological differences between animal models and human diseases, high discordance between DNA and protein expression data and a lack of experimental models to study human complex diseases. To overcome some of these limitations, we developed an integrative approach using animal models, postmortem human material and a combination of high-throughput microarray methods to identify novel molecular markers of amyotrophic lateral sclerosis (ALS). We used laser capture microdissection coupled with microarrays to identify early transcriptome changes occurring in spinal cord motor neurons or surrounding glial cells. Two models of familial motor neuron disease, SOD1(G93A) and TAU(P301L), transgenic mice were used at the presymptomatic stage. Identified gene expression changes were predominantly model-specific. However, several genes were regulated in both models. The relevance of identified genes as clinical biomarkers was tested in the peripheral blood transcriptome of presymptomatic SOD1(G93A) animals using custom-designed ALS microarray. To confirm the relevance of identified genes in human sporadic ALS (SALS), selected corresponding protein products were examined by high-throughput immunoassays using tissue microarrays constructed from human postmortem spinal cord tissues. Genes that were identified by these experiments and located within a linkage region associated with familial ALS/frontotemporal dementia were sequenced in several families. This large-scale gene and protein expression study pointing to distinct molecular mechanisms of TAU- and SOD1-induced motor neuron degeneration identified several new SALS-relevant proteins (CNGA3, CRB1, OTUB2, MMP14, SLK, DDX58, RSPO2) and putative blood biomarkers, including Nefh, Prph and Mgll.
Collapse
Affiliation(s)
- Lili C Kudo
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
D'Arrigo A, Colavito D, Peña-Altamira E, Fabris M, Dam M, Contestabile A, Leon A. Transcriptional profiling in the lumbar spinal cord of a mouse model of amyotrophic lateral sclerosis: a role for wild-type superoxide dismutase 1 in sporadic disease? J Mol Neurosci 2010; 41:404-15. [PMID: 20177826 DOI: 10.1007/s12031-010-9332-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 01/14/2010] [Indexed: 02/06/2023]
Abstract
Mice bearing mutations of copper-zinc-superoxide dismutase recapitulate spinal cord motor neuron degeneration and disease progression occurring in human amyotrophic lateral sclerosis. We have investigated the relationship between disease progression and altered gene expression by comparing the transcriptional profiles in lumbar spinal cord, fronto-parietal cortex and hippocampus of mutant G93A-SOD1, wild-type SOD1 transgenic and non-transgenic mice. Gene expression was evaluated at 55 and 110 days of age, representing pre-symptomatic and advanced disease stages of G93A mice, respectively. Whereas no significant variations were detectable in cortical and hippocampal areas, several mutation-related changes were detected in the lumbar spinal cord at the symptomatic stage, consistent with a condition of neuronal distress. Also, at both ages, we found a number of transgene-related changes, i.e. variations occurring in both transgenic groups independently of the G93A mutation, with wild-type SOD1- and G93A-SOD1-overexpressing mice displaying global transcriptional similarity at 110 days of age. Some of the changes in common between the two transgenic groups involve genes implicated in oxidative stress, inflammation, spinocerebellar degeneration and other neurodegenerative disorders. The finding that gene expressional alterations potentially associated to cellular distress are shared by wild-type and mutant human SOD1-overexpressing mice raises the possibility that mutated (in familial ALS) or otherwise dysregulated (in sporadic ALS) SOD1 expression is a common pathogenetic substrate of the disease.
Collapse
|
46
|
Al-Kafaji G, Malik AN. Hyperglycemia induces elevated expression of thyroid hormone binding protein in vivo in kidney and heart and in vitro in mesangial cells. Biochem Biophys Res Commun 2010; 391:1585-91. [PMID: 20018174 DOI: 10.1016/j.bbrc.2009.12.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 12/10/2009] [Indexed: 11/25/2022]
Abstract
During a search for glucose-regulated abundant mRNAs in the diabetic rat kidney, we cloned thyroid hormone binding protein (THBP), also known as mu-crystallin or CRYM. The aim of this study was to investigate the effect of hyperglycemia/high glucose on the expression of THBP. THBP mRNA copy numbers were determined in kidneys and hearts of diabetic GK rats vs normoglycemic Wistar rats, and in human mesangial cells (HMCs) exposed to high glucose using real-time qPCR, and THBP protein levels were measured by Western blotting and immunofluorescence. Intracellular ROS was measured in THBP transfected cells using DCF fluorescence. Hyperglycemia significantly increased THBP mRNA in GK rat kidneys (326+/-50 vs 147+/-54, p<0.05), and hearts (1583+/-277 vs 191+/-63, p<0.05). Moreover, the levels of THBP mRNA increased with age and hyperglycemia in GK rat kidneys, whereas in normoglycemic Wistar rat kidneys there was a decline with age. High glucose significantly increased THBP mRNA (92+/-37 vs 18+/-4, p<0.005), and protein in HMCs. The expression of THBP as a fusion protein in transfected HMCs resulted in reduction of glucose-induced intracellular ROS. We have shown that THBP mRNA is increased in diabetic kidney and heart, is regulated by high glucose in renal cells, and appears to attenuate glucose-induced intracellular ROS. These data suggest that THBP may be involved in the cellular pathways activated in response to glucose. This is the first report linking hyperglycemia with THBP and suggests that the role of THBP in diabetic complications should be further investigated.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Diabetes Research Group, Division of Reproduction and Endocrinology, King's College London, UK
| | | |
Collapse
|
47
|
Kanaan AS, Frank F, Maedler-Kron C, Verma K, Sonenberg N, Nagar B. Crystallization and preliminary X-ray diffraction analysis of the middle domain of Paip1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1060-4. [PMID: 19851022 DOI: 10.1107/s1744309109036513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/09/2009] [Indexed: 11/10/2022]
Abstract
The poly(A)-binding protein (PABP) simultaneously interacts with the poly(A) tail of mRNAs and the scaffolding protein eIF4G to mediate mRNA circularization, resulting in stimulation of protein translation. PABP is regulated by the PABP-interacting protein Paip1. Paip1 is thought to act as a translational activator in 5' cap-dependent translation by interacting with PABP and the initiation factors eIF4A and eIF3. Here, the crystallization and preliminary diffraction analysis of the middle domain of Paip1 (Paip1M), which produces crystals that diffract to a resolution of 2.2 A, are presented.
Collapse
Affiliation(s)
- Ahmad Seif Kanaan
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Woodruff TM, Ager RR, Tenner AJ, Noakes PG, Taylor SM. The role of the complement system and the activation fragment C5a in the central nervous system. Neuromolecular Med 2009; 12:179-92. [PMID: 19763906 DOI: 10.1007/s12017-009-8085-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/25/2009] [Indexed: 12/28/2022]
Abstract
The complement system is a pivotal component of the innate immune system which protects the host from infection and injury. Complement proteins can be induced in all cell types within the central nervous system (CNS), where the pathway seems to play similar roles in host defense. Complement activation produces the C5 cleavage fragment C5a, a potent inflammatory mediator, which recruits and activates immune cells. The primary cellular receptor for C5a, the C5a receptor (CD88), has been reported to be on all CNS cells, including neurons and glia, suggesting a functional role for C5a in the CNS. A second receptor for C5a, the C5a-like receptor 2 (C5L2), is also expressed on these cells; however, little is currently known about its potential role in the CNS. The potent immune and inflammatory actions of complement activation are necessary for host defense. However, if over-activated, or left unchecked it promotes tissue injury and contributes to brain disease pathology. Thus, complement activation, and subsequent C5a generation, is thought to play a significant role in the progression of CNS disease. Paradoxically, complement may also exert a neuroprotective role in these diseases by aiding in the elimination of aggregated and toxic proteins and debris which are a principal hallmark of many of these diseases. This review will discuss the expression and known roles for complement in the CNS, with a particular focus on the pro-inflammatory end-product, C5a. The possible overarching role for C5a in diseases of the CNS is reviewed, and the therapeutic potential of blocking C5a/CD88 interaction is evaluated.
Collapse
Affiliation(s)
- Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, 4072, Australia.
| | | | | | | | | |
Collapse
|
49
|
Blackburn D, Sargsyan S, Monk PN, Shaw PJ. Astrocyte function and role in motor neuron disease: A future therapeutic target? Glia 2009; 57:1251-64. [DOI: 10.1002/glia.20848] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Chaerkady R, Kerr CL, Marimuthu A, Kelkar DS, Kashyap MK, Gucek M, Gearhart JD, Pandey A. Temporal analysis of neural differentiation using quantitative proteomics. J Proteome Res 2009; 8:1315-1326. [PMID: 19173612 PMCID: PMC2693473 DOI: 10.1021/pr8006667] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to derive neural progenitors, differentiated neurons and glial cells from human embryonic stem cells (hESCs) with high efficiency holds promise for a number of clinical applications. However, investigating the temporal events is crucial for defining the underlying mechanisms that drive this process of differentiation along different lineages. We carried out quantitative proteomic profiling using a multiplexed approach capable of analyzing eight different samples simultaneously to monitor the temporal dynamics of protein abundance as human embryonic stem cells differentiate into motor neurons or astrocytes. With this approach, a catalog of approximately 1200 proteins along with their relative quantitative expression patterns was generated. The differential expression of the large majority of these proteins has not previously been reported or studied in the context of neural differentiation. As expected, two of the widely used markers of pluripotency, alkaline phosphatase (ALPL) and LIN28, were found to be downregulated during differentiation, while S-100 and tenascin C were upregulated in astrocytes. Neurofilament 3 protein, doublecortin and CAM kinase-like 1 and nestin proteins were upregulated during motor neuron differentiation. We identified a number of proteins whose expression was largely confined to specific cell types, embryonic stem cells, embryoid bodies and differentiating motor neurons. For example, glycogen phosphorylase (PYGL) and fatty acid binding protein 5 (FABP5) were enriched in ESCs, while beta spectrin (SPTBN5) was highly expressed in embryoid bodies. Karyopherin, heat shock 27 kDa protein 1 and cellular retinoic acid binding protein 2 (CRABP2) were upregulated in differentiating motor neurons but were downregulated in mature motor neurons. We validated some of the novel markers of the differentiation process using immunoblotting and immunocytochemical labeling. To our knowledge, this is the first large-scale temporal proteomic profiling of human stem cell differentiation into neural cell types highlighting proteins with limited or undefined roles in neural fate.
Collapse
Affiliation(s)
- Raghothama Chaerkady
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- McKusick-Nathans Institute of Genetic Medicine and Departments of Biological Chemistry, Baltimore, MD, 21205, USA
| | - Candace L. Kerr
- Institute for Cell Engineering, Department of Obstetrics and Gynecology, Baltimore, MD, 21205, USA
| | - Arivusudar Marimuthu
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- McKusick-Nathans Institute of Genetic Medicine and Departments of Biological Chemistry, Baltimore, MD, 21205, USA
| | - Dhanashree S. Kelkar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Manoj Kumar Kashyap
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- McKusick-Nathans Institute of Genetic Medicine and Departments of Biological Chemistry, Baltimore, MD, 21205, USA
| | - Marjan Gucek
- Institute of Basic Biomedical Sciences, Baltimore, MD, 21205, USA
| | - John D. Gearhart
- Institute for Cell Engineering, Department of Obstetrics and Gynecology, Baltimore, MD, 21205, USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine and Departments of Biological Chemistry, Baltimore, MD, 21205, USA
- Department of Pathology and Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|