1
|
Loeffler DA. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: a review of experimental approaches. Front Aging Neurosci 2024; 16:1368200. [PMID: 38872626 PMCID: PMC11170721 DOI: 10.3389/fnagi.2024.1368200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Clearance of amyloid-beta (Aβ) from the brain is impaired in both early-onset and late-onset Alzheimer's disease (AD). Mechanisms for clearing cerebral Aβ include proteolytic degradation, antibody-mediated clearance, blood brain barrier and blood cerebrospinal fluid barrier efflux, glymphatic drainage, and perivascular drainage. ATP-binding cassette (ABC) transporters are membrane efflux pumps driven by ATP hydrolysis. Their functions include maintenance of brain homeostasis by removing toxic peptides and compounds, and transport of bioactive molecules including cholesterol. Some ABC transporters contribute to lowering of cerebral Aβ. Mechanisms suggested for ABC transporter-mediated lowering of brain Aβ, in addition to exporting of Aβ across the blood brain and blood cerebrospinal fluid barriers, include apolipoprotein E lipidation, microglial activation, decreased amyloidogenic processing of amyloid precursor protein, and restricting the entrance of Aβ into the brain. The ABC transporter superfamily in humans includes 49 proteins, eight of which have been suggested to reduce cerebral Aβ levels. This review discusses experimental approaches for increasing the expression of these ABC transporters, clinical applications of these approaches, changes in the expression and/or activity of these transporters in AD and transgenic mouse models of AD, and findings in the few clinical trials which have examined the effects of these approaches in patients with AD or mild cognitive impairment. The possibility that therapeutic upregulation of ABC transporters which promote clearance of cerebral Aβ may slow the clinical progression of AD merits further consideration.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, United States
| |
Collapse
|
2
|
Chang M, Lei Y, Zhang J, Xu J, Wu H, Tang S, Yang H. Effect of Naoxintong Capsule on Microglia and Proteomics of Cortex After Myocardial Infarction in Rats. Mol Neurobiol 2024; 61:2904-2920. [PMID: 37948003 DOI: 10.1007/s12035-023-03724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Neuroinflammation caused by microglia in the central nervous system (CNS) is observed after myocardial infarction (MI). However, the inflammatory response mechanism remains unclear. BuChang Naoxintong capsule (NXT) is a Chinese medicine for treating ischemic cardio-cerebrovascular diseases, requiring more studies to understand the pharmacodynamic mechanism. Permanent ligation of the left anterior descending coronary artery (LAD) was performed in rats. Additionally, histopathological staining in the left ventricular (LV) and immunofluorescence within the brain cortex after 1 d and 7 d of MI were performed to determine the NXT pharmacodynamic action and best administration dosage. Proteomics helped obtain the essential proteins related to neuroinflammation and MI in the heart and brain tissue after 7 d of MI. Based on TTC, HE, Masson, and immunofluorescence staining results of CD206 and IBA-1, NXT demonstrated a better pharmacodynamic action towards myocardial injury and neuroinflammation after 7 d of MI. Moreover, the human equivalent dosage of NXT (220 mg/kg) became the best administration dose. The proteome bioinformatics analysis in the LV and brain cortex was performed. Thus, the elongation of very long-chain fatty acids protein 5 (ELOVL5) and ATP-binding cassette subfamily G member 4 (ABCG4) became critical proteins related to MI and neuroinflammation. The western blotting results indicated that ABCG4 expression possessed the same trend as the proteomics results. The auto-dock results revealed that ABCG4 had a good binding ability with Ferulic acid, Paeoniflorin, and Tanshinone II A, the key ingredients of NXT. The cellular thermal shift assay results demonstrated that ABCG4 showed better thermal stability post-NXT treatment. NXT can improve myocardial injury, such as heart infarct size, pathological injury, myocardial fibrosis, and inflammatory cell infiltration. Additionally, brain neuroinflammation induced by microglia after MI affects the expression and structure of ABCG4. Thus, ABCG4 could be the key protein associated with MI and neuroinflammation.
Collapse
Affiliation(s)
- Mengli Chang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuxin Lei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shihuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Fong V, Kanuri B, Traubert O, Lui M, Patel SB. Behavioral and Metabolic Effects of ABCG4 KO in the APP swe,Ind (J9) Mouse Model of Alzheimer's Disease. J Mol Neurosci 2024; 74:49. [PMID: 38668787 PMCID: PMC11052713 DOI: 10.1007/s12031-024-02214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/21/2024] [Indexed: 04/29/2024]
Abstract
The pathogenesis of Alzheimer's disease (AD) is complex and involves an imbalance between production and clearance of amyloid-ß peptides (Aß), resulting in accumulation of Aß in senile plaques. Hypercholesterolemia is a major risk factor for developing AD, with cholesterol shown to accumulate in senile plaques and increase production of Aß. ABCG4 is a member of the ATP-binding cassette transporters predominantly expressed in the CNS and has been suggested to play a role in cholesterol and Aß efflux from the brain. In this study, we bred Abcg4 knockout (KO) with the APPSwe,Ind (J9) mouse model of AD to test the hypothesis that loss of Abcg4 would exacerbate the AD phenotype. Unexpectedly, no differences were observed in novel object recognition (NOR) and novel object placement (NOP) behavioral tests, or on histologic examinations of brain tissues for senile plaque numbers. Furthermore, clearance of radiolabeled Aß from the brains did not differ between Abcg4 KO and control mice. Metabolic testing by indirect calorimetry, glucose tolerance test (GTT), and insulin tolerance test (ITT) were also mostly similar between groups with only a few mild metabolic differences noted. Overall, these data suggest that the loss of ABCG4 did not exacerbate the AD phenotype.
Collapse
Affiliation(s)
- Vincent Fong
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Babunageswararao Kanuri
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Owen Traubert
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Min Lui
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Shailendra B Patel
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Villa M, Wu J, Hansen S, Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024; 13:740. [PMID: 38727275 PMCID: PMC11083179 DOI: 10.3390/cells13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.
Collapse
Affiliation(s)
- Maria Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Stefanie Hansen
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv IL-6997801, Israel
| |
Collapse
|
5
|
Chang M, Wang H, Lei Y, Yang H, Xu J, Tang S. Proteomic study of left ventricle and cortex in rats after myocardial infarction. Sci Rep 2024; 14:6866. [PMID: 38514755 PMCID: PMC10958002 DOI: 10.1038/s41598-024-56816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Myocardial infarction (MI) induces neuroinflammation indirectly, chronic neuroinflammation may cause neurodegenerative diseases. Changes in the proteomics of heart and brain tissue after MI may shed new light on the mechanisms involved in neuroinflammation. This study explored brain and heart protein changes after MI with a data-independent acquisition (DIA) mode proteomics approach. Permanent ligation of the left anterior descending coronary artery (LAD) was performed in the heart of rats, and the immunofluorescence of microglia in the brain cortex was performed at 1d, 3d, 5d, and 7d after MI to detect the neuroinflammation. Then proteomics was accomplished to obtain the vital proteins in the heart and brain post-MI. The results show that the number of microglia was significantly increased in the Model-1d group, the Model-3d group, the Model-5d group, and the Model-7d group compared to the Sham group. Various proteins were obtained through DIA proteomics. Linking to key targets of brain disease, 14 proteins were obtained in the brain cortex. Among them, elongation of very long chain fatty acids protein 5 (ELOVL5) and ATP-binding cassette subfamily G member 4 (ABCG4) were verified through western blotting (WB). The results of WB were consistent with the proteomics results. Therefore, these proteins may be related to the pathogenesis of neuroinflammation after MI.
Collapse
Affiliation(s)
- Mengli Chang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huanhuan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuxin Lei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shihuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
6
|
Chaves JCS, Dando SJ, White AR, Oikari LE. Blood-brain barrier transporters: An overview of function, dysfunction in Alzheimer's disease and strategies for treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166967. [PMID: 38008230 DOI: 10.1016/j.bbadis.2023.166967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
The blood-brain-barrier (BBB) has a major function in maintaining brain homeostasis by regulating the entry of molecules from the blood to the brain. Key players in BBB function are BBB transporters which are highly expressed in brain endothelial cells (BECs) and critical in mediating the exchange of nutrients and waste products. BBB transporters can also influence drug delivery into the brain by inhibiting or facilitating the entry of brain targeting therapeutics for the treatment of brain disorders, such as Alzheimer's disease (AD). Recent studies have shown that AD is associated with a disrupted BBB and transporter dysfunction, although their roles in the development in AD are not fully understand. Modulation of BBB transporter activity may pose a novel approach to enhance the delivery of drugs to the brain for enhanced treatment of AD. In this review, we will give an overview of key functions of BBB transporters and known changes in AD. In addition, we will discuss current strategies for transporter modulation for enhanced drug delivery into the brain.
Collapse
Affiliation(s)
- Juliana C S Chaves
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Samantha J Dando
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Lotta E Oikari
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Fong V, Kanuri B, Traubert O, Lui M, Patel SB. Behavioral and metabolic and effects of ABCG4 KO in the APPswe,Ind (J9) mouse model of Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-3014093. [PMID: 37333297 PMCID: PMC10275060 DOI: 10.21203/rs.3.rs-3014093/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) is complex and involves an imbalance between production and clearance of amyloid-ß peptides (Aß), resulting in accumulation of Aß in senile plaques. Hypercholesterolemia is a major risk factor for developing AD, with cholesterol shown to accumulate in senile plaques and increase production of Aß. ABCG4 is a member of the ATP-binding cassette transporters predominantly expressed in the CNS, and has been suggested to play a role in cholesterol and Aß efflux from the brain. In this study, we bred Abcg4 knockout (KO) with the APPSwe,Ind (J9) mouse model of AD to test the hypothesis that loss of Abcg4 would exacerbate the AD phenotype. Unexpectedly, no differences were observed in Novel object recognition (NOR) and Novel object placement (NOP) behavioral tests, or on histologic examinations of brain tissues for senile plaque numbers. Furthermore, clearance of radiolabeled Aß from the brains did not differ between Abcg4 KO and control mice. Metabolic testing by indirect calorimetry, glucose tolerance test (GTT) and insulin tolerance test (ITT), were also mostly similar between groups with only a few mild metabolic differences noted. Overall these data suggest that the loss of ABCG4 did not exacerbate the AD phenotype.
Collapse
Affiliation(s)
- Vincent Fong
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati
| | - Babunageswararao Kanuri
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati
| | - Owen Traubert
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati
| | - Min Lui
- Department of Pathology & Laboratory Medicine, University of Cincinnati
| | - Shailendra B Patel
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati
| |
Collapse
|
8
|
Komatsu T, Abe S, Nakashima S, Sasaki K, Higaki Y, Saku K, Miura SI, Uehara Y. Dipeptidyl Peptidase-4 Inhibitor Sitagliptin Phosphate Accelerates Cellular Cholesterol Efflux in THP-1 Cells. Biomolecules 2023; 13:228. [PMID: 36830597 PMCID: PMC9953524 DOI: 10.3390/biom13020228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Cholesterol efflux is a major atheroprotective function of high-density lipoproteins (HDLs) which removes cholesterol from the foam cells of lipid-rich plaques in Type 2 diabetes. The dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin phosphate increases plasma glucagon-like peptide-1 (GLP-1) concentrations and is used to treat Type 2 diabetes. GLP-1 plays an important role in regulating insulin secretion and expression via the GLP-1 receptor (GLP-1R), which is expressed in pancreatic islets as well as freshly isolated human monocytes and THP-1 cells. Here, we identified a direct role of GLP-1 and DPP-4 inhibition in HDL function. Cholesterol efflux was measured in cultivated phorbol 12-myristate 13-acetate-treated THP-1 cells radiolabeled with 3H-cholesterol and stimulated with liver X receptor/retinoid X receptor agonists. Contrary to vildagliptin, sitagliptin phosphate together with GLP-1 significantly (p < 0.01) elevated apolipoprotein (apo)A1-mediated cholesterol efflux in a dose-dependent manner. The sitagliptin-induced increase in cholesterol efflux did not occur in the absence of GLP-1. In contrast, adenosine triphosphate-binding cassette transporter A1 (ABCA1) mRNA and protein expressions in the whole cell fraction were not changed by sitagliptin in the presence of GLP-1, although sitagliptin treatment significantly increased ABCA1 protein expression in the membrane fraction. Furthermore, the sitagliptin-induced, elevated efflux in the presence of GLP-1 was significantly decreased by a GLP-1R antagonist, an effect that was not observed with a protein kinase A inhibitor. To our knowledge, the present study reports for the first time that sitagliptin elevates cholesterol efflux in cultivated macrophages and may exert anti-atherosclerotic actions that are independent of improvements in glucose metabolism. Our results suggest that sitagliptin enhances HDL function by inducing a de novo HDL synthesis via cholesterol efflux.
Collapse
Affiliation(s)
- Tomohiro Komatsu
- Research Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
- Center for Preventive, Anti-Aging and Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Satomi Abe
- Research Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Shihoko Nakashima
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Kei Sasaki
- Center for Preventive, Anti-Aging and Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Yasuki Higaki
- Research Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Keijiro Saku
- Department of Cardiology, Fukuoka University Hospital, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Shin-ichiro Miura
- Department of Cardiology, Fukuoka University Hospital, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | - Yoshinari Uehara
- Research Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
- Center for Preventive, Anti-Aging and Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
- Department of Cardiology, Fukuoka University Hospital, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
9
|
Mammalian ABCG-transporters, sterols and lipids: To bind perchance to transport? Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158860. [PMID: 33309976 DOI: 10.1016/j.bbalip.2020.158860] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/15/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
Members of the ATP binding cassette (ABC) transporter family perform a critical function in maintaining lipid homeostasis in cells as well as the transport of drugs. In this review, we provide an update on the ABCG-transporter subfamily member proteins, which include the homodimers ABCG1, ABCG2 and ABCG4 as well as the heterodimeric complex formed between ABCG5 and ABCG8. This review focusses on progress made in this field of research with respect to their function in health and disease and the recognised transporter substrates. We also provide an update on post-translational regulation, including by transporter substrates, and well as the involvement of microRNA as regulators of transporter expression and activity. In addition, we describe progress made in identifying structural elements that have been recognised as important for transport activity. We furthermore discuss the role of lipids such as cholesterol on the transport function of ABCG2, traditionally thought of as a drug transporter, and provide a model of potential cholesterol binding sites for ABCG2.
Collapse
|
10
|
The Interplay of ABC Transporters in Aβ Translocation and Cholesterol Metabolism: Implicating Their Roles in Alzheimer's Disease. Mol Neurobiol 2020; 58:1564-1582. [PMID: 33215389 DOI: 10.1007/s12035-020-02211-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The occurrence of Alzheimer's disease (AD) worldwide has been progressively accelerating at an alarming rate, without any successful therapeutic strategy for the disease mitigation. The complexity of AD pathogenesis needs to be targeted with an alternative approach, as provided by the superfamily of ATP-binding cassette (ABC) transporters, which constitutes an extensive range of proteins, capable of transporting molecular entities across biological membranes. These protein moieties have been implicated in AD, based upon their potential in lipid transportation, resulting in maintenance of cholesterol homeostasis. These transporters have been reported to target the primary hallmark of AD pathogenesis, namely, beta-amyloid hypothesis, which is associated with accumulation of beta-amyloid (Aβ) plaques in AD patients. The ABC transporters have been observed to be localized to the capillary endothelial cells of the blood-brain barrier and neural parenchymal cells, where they exhibit different roles, consequently influencing the neuronal expression of Aβ peptides. The review highlights different families of ABC transporters, ABCB1 (P-glycoprotein), ABCA (ABCA1, ABCA2, and ABCA7), ABCG2 (BCRP; breast cancer resistance protein), ABCG1 and ABCG4, as well as ABCC1 (MRP; multidrug resistance protein) in the CNS, and their interplay in regulating cholesterol metabolism and Aβ peptide load in the brain, simultaneously exerting protective effects against neurotoxic substrates and xenobiotics. The authors aim to establish the significance of this alternative approach as a novel therapeutic target in AD, to provide the researchers an opportunity to evaluate the potential aspects of ABC transporters in AD treatment.
Collapse
|
11
|
Jia Y, Wang N, Zhang Y, Xue D, Lou H, Liu X. Alteration in the Function and Expression of SLC and ABC Transporters in the Neurovascular Unit in Alzheimer's Disease and the Clinical Significance. Aging Dis 2020; 11:390-404. [PMID: 32257549 PMCID: PMC7069460 DOI: 10.14336/ad.2019.0519] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022] Open
Abstract
The neurovascular unit (NVU) plays an important role in maintaining the function of the central nervous system (CNS). Emerging evidence has indicated that the NVU changes function and molecules at the early stage of Alzheimer’s disease (AD), which initiates multiple pathways of neurodegeneration. Cell types in the NVU have become attractive targets in the interventional treatment of AD. The NVU transportation system contains a variety of proteins involved in compound transport and neurotransmission. Brain transporters can be classified as members of the solute carrier (SLC) and ATP-binding cassette (ABC) families in the NVU. Moreover, the transporters can regulate both endogenous toxins, including amyloid-beta (Aβ) and xenobiotic homeostasis, in the brains of AD patients. Genome-wide association studies (GWAS) have identified some transporter gene variants as susceptibility loci for late-onset AD. Therefore, the present study summarizes changes in blood-brain barrier (BBB) permeability in AD, identifies the location of SLC and ABC transporters in the brain and focuses on major SLC and ABC transporters that contribute to AD pathology.
Collapse
Affiliation(s)
- Yongming Jia
- 1Department of Neuropharmacology, College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Na Wang
- 2Department of Pathophysiology, Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Yingbo Zhang
- 3College of Pathology, Qiqihar Medical University, Qiqihar, China
| | - Di Xue
- 1Department of Neuropharmacology, College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Haoming Lou
- 4Department of Medicinal Chemistry and Chemistry of Chinese Materia Medica, School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xuewei Liu
- 1Department of Neuropharmacology, College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
12
|
Madadi S, Schwarzenbach H, Saidijam M, Mahjub R, Soleimani M. Potential microRNA-related targets in clearance pathways of amyloid-β: novel therapeutic approach for the treatment of Alzheimer's disease. Cell Biosci 2019; 9:91. [PMID: 31749959 PMCID: PMC6852943 DOI: 10.1186/s13578-019-0354-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Imbalance between amyloid-beta (Aβ) peptide synthesis and clearance results in Aβ deregulation. Failure to clear these peptides appears to cause the development of Alzheimer's disease (AD). In recent years, microRNAs have become established key regulators of biological processes that relate among others to the development and progression of neurodegenerative diseases, such as AD. This review article gives an overview on microRNAs that are involved in the Aβ cascade and discusses their inhibitory impact on their target mRNAs whose products participate in Aβ clearance. Understanding of the mechanism of microRNA in the associated signal pathways could identify novel therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Massoud Saidijam
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
13
|
Jha NK, Kar R, Niranjan R. ABC Transporters in Neurological Disorders: An Important Gateway for Botanical Compounds Mediated Neuro-Therapeutics. Curr Top Med Chem 2019; 19:795-811. [PMID: 30977450 DOI: 10.2174/1568026619666190412121811] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/27/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022]
Abstract
Neurodegeneration is a distinguishing feature of many age related disorders and other vector borne neuroinflammatory diseases. There are a number of factors that can modulate the pathology of these disorders. ATP-binding cassette (ABC) transporters are primarily involved in the maintenance of normal brain homeostasis by eliminating toxic peptides and compounds from the brain. Also, ABC transporters protect the brain from the unwanted effects of endogenous and exogenous toxins that can enter the brain parenchyma. Therefore, these transporters have the ability to determine the pathological outcomes of several neurological disorders. For instance, ABC transporters like P-glycoprotein (ABCB1), and BCRP (ABCG2) have been reported to facilitate the clearance of peptides such as amyloid-β (Aβ) that accumulate in the brain during Alzheimer's disease (AD) progression. Other members such as ABCA1, ABCA2, ABCC8, ABCC9, ABCG1 and ABCG4 also have been reported to be involved in the progression of various brain disorders such as HIV-associated dementia, Multiple sclerosis (MS), Ischemic stroke, Japanese encephalitis (JE) and Epilepsy. However, these defective transporters can be targeted by numerous botanical compounds such as Verapamil, Berberine and Fascalpsyn as a therapeutic target to treat these neurological outcomes. These compounds are already reported to modulate ABC transporter activity in the CNS. Nonetheless, the exact mechanisms involving the ABC transporters role in normal brain functioning, their role in neuronal dysfunction and how these botanical compounds ensure and facilitate their therapeutic action in association with defective transporters still remain elusive. This review therefore, summarizes the role of ABC transporters in neurological disorders, with a special emphasis on its role in AD brains. The prospect of using botanical/natural compounds as modulators of ABC transporters in neurological disorders is discussed in the latter half of the article.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India
| | - Rohan Kar
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India
| | - Rituraj Niranjan
- Unit of Microbiology and Molecular Biology, ICMR-Vector Control Research Center, Puducherry-605006, India
| |
Collapse
|
14
|
Alrosan A, Aleidi SM, Yang A, Brown AJ, Gelissen IC. The Adaptor Protein Alix is Involved in the Interaction Between the Ubiquitin Ligase NEDD4-1 and its Targets, ABCG1 and ABCG4. Int J Mol Sci 2019; 20:E2714. [PMID: 31159502 PMCID: PMC6600606 DOI: 10.3390/ijms20112714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 01/07/2023] Open
Abstract
Several ATP-Binding Cassette (ABC) transporters, including ABCG1 and the related ABCG4, are essential regulators of cellular lipid homeostasis. ABCG1 is expressed ubiquitously and is functional in the context of atherosclerosis. However, ABCG4 is expressed almost exclusively in brain and has been linked to Alzheimer's disease (AD). These transporters are highly regulated post-translationally by E3 ubiquitin ligases, with the ligase NEDD4-1 (Neural precursor cell-expressed developmentally downregulated gene 4) implicated in their protein stability. In this study, we investigated interacting partners of ABCG1 using peptide-mass spectrometry and identified the potential adaptor protein, Alix (apoptosis-linked gene 2-interacting protein X). In this paper, we hypothesized and investigated whether Alix could facilitate the interaction between NEDD4-1 and the ABC transporters. We showed that Alix and NEDD4-1 proteins were co-expressed in several commonly used cell lines. Knockdown of Alix in cells overexpressing ABCG1 or ABCG4 increased transporter protein expression while co-immunoprecipitation experiments showed interaction between NEDD4-1, Alix, and ABC transporters. In summary, we provide evidence that Alix serves as a co-factor for the interaction between the E3-ubiquitin ligase NEDD4-1 and the ABC transporter targets, ABCG1 and ABCG4.
Collapse
Affiliation(s)
- Amjad Alrosan
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Shereen M Aleidi
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan.
| | - Alryel Yang
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ingrid C Gelissen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
15
|
Pereira CD, Martins F, Wiltfang J, da Cruz e Silva OA, Rebelo S. ABC Transporters Are Key Players in Alzheimer’s Disease. J Alzheimers Dis 2017; 61:463-485. [DOI: 10.3233/jad-170639] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Cátia D. Pereira
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Jens Wiltfang
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Odete A.B. da Cruz e Silva
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Sandra Rebelo
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
16
|
Expression and function of Abcg4 in the mouse blood-brain barrier: role in restricting the brain entry of amyloid-β peptide. Sci Rep 2017; 7:13393. [PMID: 29042617 PMCID: PMC5645361 DOI: 10.1038/s41598-017-13750-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/27/2017] [Indexed: 12/04/2022] Open
Abstract
ABCG4 is an ATP-binding cassette transmembrane protein which has been shown, in vitro, to participate in the cellular efflux of desmosterol and amyloid-β peptide (Aβ). ABCG4 is highly expressed in the brain, but its localization and function at the blood-brain barrier (BBB) level remain unknown. We demonstrate by qRT-PCR and confocal imaging that mouse Abcg4 is expressed in the brain capillary endothelial cells. Modelling studies of the Abcg4 dimer suggested that desmosterol showed thermodynamically favorable binding at the putative sterol-binding site, and this was greater than for cholesterol. Additionally, unbiased docking also showed Aβ binding at this site. Using a novel Abcg4-deficient mouse model, we show that Abcg4 was able to export Aβ and desmosterol at the BBB level and these processes could be inhibited by probucol and L-thyroxine. Our assay also showed that desmosterol antagonized the export of Aβ, presumably as both bind at the sterol-binding site on Abcg4. We show for the first time that Abcg4 may function in vivo to export Aβ at the BBB, in a process that can be antagonized by its putative natural ligand, desmosterol (and possibly cholesterol).
Collapse
|
17
|
Do TM, Dodacki A, Alata W, Calon F, Nicolic S, Scherrmann JM, Farinotti R, Bourasset F. Age-Dependent Regulation of the Blood-Brain Barrier Influx/Efflux Equilibrium of Amyloid-β Peptide in a Mouse Model of Alzheimer's Disease (3xTg-AD). J Alzheimers Dis 2016; 49:287-300. [PMID: 26484906 DOI: 10.3233/jad-150350] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The involvement of transporters located at the blood-brain barrier (BBB) has been suggested in the control of cerebral Aβ levels, and thereby in Alzheimer's disease (AD). However, little is known about the regulation of these transporters at the BBB in animal models of AD. In this study, we investigated the BBB expression of Aβ influx (Rage) and efflux (Abcb1-Abcg2-Abcg4-Lrp-1) transporters and cholesterol transporter (Abca1) in 3-18-month-old 3xTg-AD and control mice. The age-dependent effect of BBB transporters regulation on the brain uptake clearance (Clup) of [3H]cholesterol and [3H]Aβ1 - 40 was then evaluated in these mice, using the in situ brain perfusion technique. Our data suggest that transgenes expression led to the BBB increase in Aβ influx receptor (Rage) and decrease in efflux receptor (Lrp-1). Our data also indicate that mice have mechanisms counteracting this increased net influx. Indeed, Abcg4 and Abca1 are up regulated in 3- and 3/6-month-old 3xTg-AD mice, respectively. Our data show that the balance between the BBB influx and efflux of Aβ is maintained in 3 and 6-month-old 3xTg-AD mice, suggesting that Abcg4 and Abca1 control the efflux of Aβ through the BBB by a direct (Abcg4) or indirect (Abca1) mechanism. At 18 months, the BBB Aβ efflux is significantly increased in 3xTg-AD mice compared to controls. This could result from the significant up-regulation of both Abcg2 and Abcb1 in 3xTg-AD mice compared to control mice. Thus, age-dependent regulation of several Aβ and cholesterol transporters at the BBB could ultimately limit the brain accumulation of Aβ.
Collapse
Affiliation(s)
- Tuan Minh Do
- Laboratoire de Pharmacie Clinique et pharmacocinétique, EA 4123, Université Paris-Sud 11, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Agnès Dodacki
- Inserm UMR-S1144, Paris, F 75006, France.,Université Paris Descartes, Paris, France.,Université Paris Diderot, Paris, France
| | - Wael Alata
- Faculty of Pharmacy, Laval University, Quebec (QC), Canada
| | - Frederic Calon
- Faculty of Pharmacy, Laval University, Quebec (QC), Canada
| | - Sophie Nicolic
- Inserm UMR-S1144, Paris, F 75006, France.,Université Paris Descartes, Paris, France.,Université Paris Diderot, Paris, France
| | - Jean-Michel Scherrmann
- Inserm UMR-S1144, Paris, F 75006, France.,Université Paris Descartes, Paris, France.,Université Paris Diderot, Paris, France
| | - Robert Farinotti
- Laboratoire de Pharmacie Clinique et pharmacocinétique, EA 4123, Université Paris-Sud 11, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Fanchon Bourasset
- Inserm UMR-S1144, Paris, F 75006, France.,Université Paris Descartes, Paris, France.,Université Paris Diderot, Paris, France
| |
Collapse
|
18
|
Hegyi Z, Homolya L. Functional Cooperativity between ABCG4 and ABCG1 Isoforms. PLoS One 2016; 11:e0156516. [PMID: 27228027 PMCID: PMC4882005 DOI: 10.1371/journal.pone.0156516] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022] Open
Abstract
ABCG4 belongs to the ABCG subfamily, the members of which are half transporters composed of a single transmembrane and a single nucleotide-binding domain. ABCG proteins have a reverse domain topology as compared to other mammalian ABC transporters, and have to form functional dimers, since the catalytic sites for ATP binding and hydrolysis, as well as the transmembrane domains are composed of distinct parts of the monomers. Here we demonstrate that ABCG4 can form homodimers, but also heterodimers with its closest relative, ABCG1. Both the full-length and the short isoforms of ABCG1 can dimerize with ABCG4, whereas the ABCG2 multidrug transporter is unable to form a heterodimer with ABCG4. We also show that contrary to that reported in some previous studies, ABCG4 is predominantly localized to the plasma membrane. While both ABCG1 and ABCG4 have been suggested to be involved in lipid transport or regulation, in accordance with our previous results regarding the long version of ABCG1, here we document that the expression of both the short isoform of ABCG1 as well as ABCG4 induce apoptosis in various cell types. This apoptotic effect, as a functional read-out, allowed us to demonstrate that the dimerization between these half transporters is not only a physical interaction but functional cooperativity. Given that ABCG4 is predominantly expressed in microglial-like cells and endothelial cells in the brain, our finding of ABCG4-induced apoptosis may implicate a new role for this protein in the clearance mechanisms within the central nervous system.
Collapse
Affiliation(s)
- Zoltán Hegyi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
19
|
Sano O, Tsujita M, Shimizu Y, Kato R, Kobayashi A, Kioka N, Remaley AT, Michikawa M, Ueda K, Matsuo M. ABCG1 and ABCG4 Suppress γ-Secretase Activity and Amyloid β Production. PLoS One 2016; 11:e0155400. [PMID: 27196068 PMCID: PMC4872999 DOI: 10.1371/journal.pone.0155400] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 04/28/2016] [Indexed: 11/19/2022] Open
Abstract
ATP-binding cassette G1 (ABCG1) and ABCG4, expressed in neurons and glia in the central nervous system, mediate cholesterol efflux to lipid acceptors. The relationship between cholesterol level in the central nervous system and Alzheimer's disease has been reported. In this study, we examined the effects of ABCG1 and ABCG4 on amyloid precursor protein (APP) processing, the product of which, amyloid β (Aβ), is involved in the pathogenesis of Alzheimer's disease. Expression of ABCG1 or ABCG4 in human embryonic kidney 293 cells that stably expressed Swedish-type mutant APP increased cellular and cell surface APP levels. Products of cleavage from APP by α-secretase and by β-secretase also increased. The levels of secreted Aβ, however, decreased in the presence of ABCG1 and ABCG4, but not ABCG4-KM, a nonfunctional Walker-A lysine mutant. In contrast, secreted Aβ levels increased in differentiated SH-SY5Y neuron-like cells in which ABCG1 and ABCG4 were suppressed. Furthermore, Aβ42 peptide in the cerebrospinal fluid from Abcg1 null mice significantly increased compared to the wild type mice. To examine the underlying mechanism, we analyzed the activity and distribution of γ-secretase. ABCG1 and ABCG4 suppressed γ-secretase activity and disturbed γ-secretase localization in the raft domains where γ-secretase functions. These results suggest that ABCG1 and ABCG4 alter the distribution of γ-secretase on the plasma membrane, leading to the decreased γ-secretase activity and suppressed Aβ secretion. ABCG1 and ABCG4 may inhibit the development of Alzheimer's disease and can be targets for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Osamu Sano
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, 606–8502, Japan
| | - Maki Tsujita
- Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467–8601, Japan
| | - Yuji Shimizu
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, 606–8502, Japan
| | - Reiko Kato
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, 606–8502, Japan
| | - Aya Kobayashi
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, 606–8502, Japan
| | - Noriyuki Kioka
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, 606–8502, Japan
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, NHLBI, National Institutes of Health, Bethesda, MD, 20892–1508, United States of America
| | - Makoto Michikawa
- Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467–8601, Japan
| | - Kazumitsu Ueda
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, 606–8502, Japan
- iCeMS, Kyoto University, Kyoto, 606–8502, Japan
| | - Michinori Matsuo
- iCeMS, Kyoto University, Kyoto, 606–8502, Japan
- Department of Food and Nutrition, Faculty of Home Economics, Kyoto Women’s University, Kyoto, 605–8501, Japan
- * E-mail:
| |
Collapse
|
20
|
Al-Qadi S, Schiøtt M, Hansen SH, Nielsen PA, Badolo L. An invertebrate model for CNS drug discovery: Transcriptomic and functional analysis of a mammalian P-glycoprotein ortholog. Biochim Biophys Acta Gen Subj 2015; 1850:2439-51. [PMID: 26363463 DOI: 10.1016/j.bbagen.2015.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/28/2015] [Accepted: 09/02/2015] [Indexed: 11/18/2022]
Affiliation(s)
- Sonia Al-Qadi
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark; Faculty of Nursing, Pharmacy and Health professions, Birzeit University, PO Box 14, Birzeit, West Bank, Palestine. Telephone: +972-2-298-2000, Fax: +972-2-281-0656..
| | - Morten Schiøtt
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 København Ø, Denmark
| | - Steen Honoré Hansen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Peter Aadal Nielsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Lassina Badolo
- Division of Discovery Chemistry, H. Lundbeck A/S, Copenhagen, Denmark; Division of Drug Metabolism and Pharmacokinetics, H. Lundbeck A/S, Copenhagen, Denmark.
| |
Collapse
|
21
|
Abuznait AH, Kaddoumi A. Role of ABC transporters in the pathogenesis of Alzheimer's disease. ACS Chem Neurosci 2012. [PMID: 23181169 DOI: 10.1021/cn300077c] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of age-related dementia that begins with memory loss and progresses to include severe cognitive impairment. A major pathological hallmark of AD is the accumulation of beta amyloid peptide (Aβ) in senile plaques in the brain of AD patients. The exact mechanism by which AD takes place remains unknown. However, an increasing number of studies suggests that ATP-binding cassette (ABC) transporters, which are localized on the surface of brain endothelial cells of the blood-brain barrier (BBB) and brain parenchyma, may contribute to the pathogenesis of AD. Recent studies have unraveled important roles of ABC transporters including ABCB1 (P-glycoprotein, P-gp), ABCG2 (breast cancer resistant protein, BCRP), ABCC1 (multidrug resistance protein 1, MRP1), and the cholesterol transporter ABCA1 in the pathogenesis of AD and Aβ peptides deposition inside the brain. Therefore, understanding the mechanisms by which these transporters contribute to Aβ deposition in the brain is important for the development of new therapeutic strategies against AD. This review summarizes and highlights the accumulating evidence in the literature which describe the role of altered function of various ABC transporters in the pathogenesis and progression of AD and the implications of modulating their functions for the treatment of AD.
Collapse
Affiliation(s)
- Alaa H. Abuznait
- Department of Basic Pharmaceutical
Sciences, College
of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Amal Kaddoumi
- Department of Basic Pharmaceutical
Sciences, College
of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| |
Collapse
|
22
|
Kang J, Rivest S. Lipid metabolism and neuroinflammation in Alzheimer's disease: a role for liver X receptors. Endocr Rev 2012; 33:715-46. [PMID: 22766509 DOI: 10.1210/er.2011-1049] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver X receptors (LXR) are nuclear receptors that have emerged as key regulators of lipid metabolism. In addition to their functions as cholesterol sensors, LXR have also been found to regulate inflammatory responses in macrophages. Alzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive cognitive decline associated with inflammation. Evidence indicates that the initiation and progression of AD is linked to aberrant cholesterol metabolism and inflammation. Activation of LXR can regulate neuroinflammation and decrease amyloid-β peptide accumulation. Here, we highlight the role of LXR in orchestrating lipid homeostasis and neuroinflammation in the brain. In addition, diabetes mellitus is also briefly discussed as a significant risk factor for AD because of the appearing beneficial effects of LXR on glucose homeostasis. The ability of LXR to attenuate AD pathology makes them potential therapeutic targets for this neurodegenerative disease.
Collapse
Affiliation(s)
- Jihong Kang
- Department of Physiology and Pathophysiology and Key Laboratory of Molecular Cardiovascular Sciences, State Education Ministry, Peking University Health Science Center, Beijing 100191, China
| | | |
Collapse
|
23
|
Phang YL, Soga T, Kitahashi T, Parhar IS. Cloning and functional expression of novel cholesterol transporters ABCG1 and ABCG4 in gonadotropin-releasing hormone neurons of the tilapia. Neuroscience 2011; 203:39-49. [PMID: 22198513 DOI: 10.1016/j.neuroscience.2011.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/07/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
Abstract
In addition to reproduction, gonadotropin-releasing hormone (GnRH) has been postulated to control cholesterol metabolism via cholesterol transport, which is carried out partly by the members of ATP-binding cassette (ABC) transporters G1 (ABCG1) and G4 (ABCG4). However, there is yet to be evidence demonstrating the relationship between these transporters with reference to GnRH neurons. In the present study, we cloned two ABCG1 messenger RNA (mRNA) variants and one ABCG4 mRNA and examined their expression in the brain including GnRH neurons (GnRH1, GnRH2, and GnRH3) in the cichlid tilapia (Oreochromis niloticus). Comparison of nucleotide sequences of the tilapia ABCG1 and ABCG4 with that of other fish species showed that both of these genes are evolutionarily conserved among fishes. ABCG1 and ABCG4 were shown to have high mRNA expressions in the CNS, pituitary, and gonads. In the brain, real-time polymerase chain reaction (PCR) showed that ABCG4 mRNA was higher than ABCG1a in all brain regions including the olfactory bulb (ABCG1=13.34, ABCG4=6796.35; P<0.001), dorsal telencephalon (ABCG1=8.64, ABCG4=10149.13; P=0.001), optic tectum (ABCG1=22.12, ABCG4=13931.04; P<0.01), cerebellum (ABCG1=8.68, ABCG4=12382.90; P<0.01), and preoptic area-midbrain-hypothalamus (ABCG1=21.36, ABCG4=13255.41; P=0.001). Similarly, although ABCG1 mRNA level is much higher in the pituitary compared with the brain, it was still significantly lower compared with ABCG4 (ABCG1=337.73, ABCG4=1157.87; P=0.01). The differential pattern of expression of ABCG1 and ABCG4 in the brain versus pituitary suggests that the two transporters are regulated by different mechanisms. Furthermore, ABCG1 and ABCG4 mRNA expressions were found in all three types of laser-captured GnRH neurons with highly similar percentage of expressions, suggesting that cholesterol efflux from GnRH neurons may require heterodimerization of both ABCG1 and ABCG4.
Collapse
Affiliation(s)
- Y L Phang
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150 Petaling Jaya, Selangor, Malaysia
| | | | | | | |
Collapse
|
24
|
Hayashi H. Lipid metabolism and glial lipoproteins in the central nervous system. Biol Pharm Bull 2011; 34:453-61. [PMID: 21467629 DOI: 10.1248/bpb.34.453] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipoproteins in the central nervous system (CNS) are not incorporated from the blood but are formed mainly by glial cells within the CNS. In addition, cholesterol in the CNS is synthesized endogenously because the blood-brain barrier segregates the CNS from the peripheral circulation. Apolipoprotein (apo) E is a major apo in the CNS. In normal condition, apo E is secreted from glia, mainly from astrocytes, and forms cholesterol-rich lipoproteins by ATP-binding cassette transporters. Subsequently, apo E-containing glial lipoproteins supply cholesterol and other components to neurons via a receptor-mediated process. Recent findings demonstrated that receptors of the low density lipoprotein (LDL) receptor family not only internalize lipoproteins into the cells but also, like signaling receptors, transduce signals upon binding the ligands. In this review, the regulation of lipid homeostasis will be discussed as well as roles of lipoproteins and functions of receptors of LDL receptor family in the CNS. Furthermore, the relation between lipid metabolism and Alzheimer's disease (AD) is discussed.
Collapse
Affiliation(s)
- Hideki Hayashi
- Priority Organization for Innovation and Excellence, Kumamoto University, Honjo, Japan.
| |
Collapse
|
25
|
Moitra K, Silverton L, Limpert K, Im K, Dean M. Moving out: from sterol transport to drug resistance - the ABCG subfamily of efflux pumps. ACTA ACUST UNITED AC 2011; 26:105-11. [PMID: 21942345 DOI: 10.1515/dmdi.2011.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ATP binding cassette (ABC) proteins are typically ATP-driven transmembrane pumps that have been evolutionarily conserved from bacteria to humans. In humans these transporters are subdivided into seven subfamilies, ranging from A to G. The ABCG subfamily of transporters is the primary focus of this review. This subfamily of proteins has been conserved throughout evolution and plays a central role in several cellular processes, such as sterol homeostasis and multidrug resistance. Functional polymorphisms/mutations in some of these G-subfamily transporters have clinical consequences in humans.
Collapse
|
26
|
Kellner-Weibel G, de la Llera-Moya M. Update on HDL receptors and cellular cholesterol transport. Curr Atheroscler Rep 2011; 13:233-41. [PMID: 21302003 DOI: 10.1007/s11883-011-0169-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Efflux is central to maintenance of tissue and whole body cholesterol homeostasis. The discovery of cell surface receptors that bind high-density lipoprotein (HDL) with high specificity and affinity to promote cholesterol release has significantly advanced our understanding of cholesterol efflux. We now know that 1) cells have several mechanisms to promote cholesterol release, including a passive mechanism that depends on the physico-chemical properties of cholesterol molecules and their interactions with phospholipids; 2) a variety of HDL particles can interact with receptors to promote cholesterol transport from tissues to the liver for excretion; and 3) interactions between HDL and receptors show functional synergy. Therefore, efflux efficiency depends both on the arrays of receptors on tissue cells and HDL particles in serum.
Collapse
Affiliation(s)
- Ginny Kellner-Weibel
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., ARC1102G, Philadelphia, PA 19104-4318, USA.
| | | |
Collapse
|
27
|
Abstract
Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.
Collapse
|
28
|
ATP-binding cassette proteins involved in glucose and lipid homeostasis. Biosci Biotechnol Biochem 2010; 74:899-907. [PMID: 20460728 DOI: 10.1271/bbb.90921] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glucose and lipids are essential to the body, but excess glucose or lipids lead to metabolic syndrome. ATP-binding cassette (ABC) proteins are involved in the homeostasis of glucose and lipid in that they regulate insulin secretion and remove excess cholesterol from the body. Sulfonylurea receptor (SUR) is a subunit of the ATP-sensitive potassium channels, which regulate insulin secretion from pancreatic beta-cells by sensing cellular metabolic levels. ABCG1 removes excess cholesterol from peripheral tissues and functions in reverse cholesterol transport to the liver. ABCG5 and ABCG8 suppress the absorption of cholesterol in the intestine and exclude cholesterol from the liver to the bile duct. ABCG1 and ABCG4, expressed in the central nervous system, play roles in lipid metabolism in the brain. These ABC proteins are targets of drugs and functional foods to cure and prevent diabetes, hyperlipidemia, and neurodegenerative diseases. In this review, recent knowledge of the physiological function and regulation of ABC proteins in the homeostasis of glucose and lipids is discussed.
Collapse
|
29
|
Bojanic DD, Tarr PT, Gale GD, Smith DJ, Bok D, Chen B, Nusinowitz S, Lövgren-Sandblom A, Björkhem I, Edwards PA. Differential expression and function of ABCG1 and ABCG4 during development and aging. J Lipid Res 2010. [PMID: 19633360 DOI: 10.1194/jlr.m900250-jlr200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABCG1 and ABCG4 are highly homologous members of the ATP binding cassette (ABC) transporter family that regulate cellular cholesterol homeostasis. In adult mice, ABCG1 is known to be expressed in numerous cell types and tissues, whereas ABCG4 expression is limited to the central nervous system (CNS). Here, we show significant differences in expression of these two transporters during development. Examination of beta-galactosidase-stained tissue sections from Abcg1(-/-)LacZ and Abcg4(-/-)LacZ knockin mice shows that ABCG4 is highly but transiently expressed both in hematopoietic cells and in enterocytes during development. In contrast, ABCG1 is expressed in macrophages and in endothelial cells of both embryonic and adult liver. We also show that ABCG1 and ABCG4 are both expressed as early as E12.5 in the embryonic eye and developing CNS. Loss of both ABCG1 and ABCG4 results in accumulation in the retina and/or brain of oxysterols, in altered expression of liver X receptor and sterol-regulatory element binding protein-2 target genes, and in a stress response gene. Finally, behavioral tests show that Abcg4(-/-) mice have a general deficit in associative fear memory. Together, these data indicate that loss of ABCG1 and/or ABCG4 from the CNS results in changes in metabolic pathways and in behavior.
Collapse
Affiliation(s)
- Dragana D Bojanic
- Department of Biological Chemistry at UCLA Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN. Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease. J Neurochem 2010; 111:1275-308. [PMID: 20050287 DOI: 10.1111/j.1471-4159.2009.06408.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting millions of people worldwide. Apart from age, the major risk factor identified so far for the sporadic form of AD is possession of the epsilon4 allele of apolipoprotein E (APOE), which is also a risk factor for coronary artery disease (CAD). Other apolipoproteins known to play an important role in CAD such as apolipoprotein B are now gaining attention for their role in AD as well. AD and CAD share other risk factors, such as altered cholesterol levels, particularly high levels of low density lipoproteins together with low levels of high density lipoproteins. Statins--drugs that have been used to lower cholesterol levels in CAD, have been shown to protect against AD, although the protective mechanism(s) involved are still under debate. Enzymatic production of the beta amyloid peptide, the peptide thought to play a major role in AD pathogenesis, is affected by membrane cholesterol levels. In addition, polymorphisms in several proteins and enzymes involved in cholesterol and lipoprotein transport and metabolism have been linked to risk of AD. Taken together, these findings provide strong evidence that changes in cholesterol metabolism are intimately involved in AD pathogenic processes. This paper reviews cholesterol metabolism and transport, as well as those aspects of cholesterol metabolism that have been linked with AD.
Collapse
Affiliation(s)
- Ian J Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, Australia.
| | | | | | | | | | | |
Collapse
|
31
|
Tarr PT, Tarling EJ, Bojanic DD, Edwards PA, Baldán Á. Emerging new paradigms for ABCG transporters. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:584-93. [PMID: 19416657 PMCID: PMC2698934 DOI: 10.1016/j.bbalip.2009.01.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 12/14/2022]
Abstract
Every cell is separated from its external environment by a lipid membrane. Survival depends on the regulated and selective transport of nutrients, waste products and regulatory molecules across these membranes, a process that is often mediated by integral membrane proteins. The largest and most diverse of these membrane transport systems is the ATP binding cassette (ABC) family of membrane transport proteins. The ABC family is a large evolutionary conserved family of transmembrane proteins (>250 members) present in all phyla, from bacteria to Homo sapiens, which require energy in the form of ATP hydrolysis to transport substrates against concentration gradients. In prokaryotes the majority of ABC transporters are involved in the transport of nutrients and other macromolecules into the cell. In eukaryotes, with the exception of the cystic fibrosis transmembrane conductance regulator (CFTR/ABCC7), ABC transporters mobilize substrates from the cytoplasm out of the cell or into specific intracellular organelles. This review focuses on the members of the ABCG subfamily of transporters, which are conserved through evolution in multiple taxa. As discussed below, these proteins participate in multiple cellular homeostatic processes, and functional mutations in some of them have clinical relevance in humans.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G
- ATP Binding Cassette Transporter, Subfamily G, Member 1
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP Binding Cassette Transporter, Subfamily G, Member 5
- ATP Binding Cassette Transporter, Subfamily G, Member 8
- ATP-Binding Cassette Transporters/classification
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- ATP-Binding Cassette Transporters/physiology
- Animals
- Biological Transport
- Lipoproteins/genetics
- Lipoproteins/metabolism
- Lipoproteins/physiology
- Mice
- Mice, Knockout
Collapse
Affiliation(s)
- Paul T. Tarr
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elizabeth J. Tarling
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Dragana D. Bojanic
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Peter A. Edwards
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Ángel Baldán
- Edward A. Doisy Department of Biochemistry and Molecular Biology, DRC 321, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA
| |
Collapse
|
32
|
Furuyama S, Uehara Y, Zhang B, Baba Y, Abe S, Iwamoto T, Miura SI, Saku K. Genotypic Effect of ABCG1 Gene Promoter -257T>G Polymorphism on Coronary Artery Disease Severity in Japanese Men. J Atheroscler Thromb 2009; 16:194-200. [DOI: 10.5551/jat.e380] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
33
|
Abstract
Mammalian cells have developed various responses to minimize accumulation of unesterified cholesterol, as the latter can result in cell toxicity and death [reviewed in this edition by Björkhem (Björkhem, I. 2009. Are side-chain oxidized oxysterols regulators also in vivo? J. Lipid Res. In press)]. These responses include esterification to sequester excess sterol in intracellular lipid droplets, repression of both cholesterol synthesis and LDL receptor expression (thus reducing endocytosis of LDL), and induction of a panoply of genes that promote sterol efflux and affect lipid metabolism. The nuclear receptor liver-X-receptor (LXR) functions as a cellular "sterol sensor" and plays a critical role in these latter transcriptional changes [reviewed in this edition by Glass (Shibata, N., and Glass C, K. 2009. Regulation of macrophage function in inflammation and atherosclerosis. J. Lipid Res. In press)]. Activation of LXR by either endogenous oxysterols or synthetic agonists induces the expression of many genes, including those encoding ATP-binding cassette (ABC) transporters ABCA1, ABCG1, ABCG5, and ABCG8. As discussed below, these four proteins function to promote sterol efflux from cells.
Collapse
Affiliation(s)
- Angel Baldán
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|