1
|
Hirota R, Sasaki M, Teramoto A, Yamashita T, Kocsis JD, Honmou O. Intravenous infusion of mesenchymal stem cells increased axonal signal intensity in the rubrospinal tract in spinal cord injury. Mol Brain 2025; 18:35. [PMID: 40241097 PMCID: PMC12004759 DOI: 10.1186/s13041-025-01210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/10/2025] [Indexed: 04/18/2025] Open
Abstract
Limited spontaneous recovery occurs after spinal cord injury (SCI). However, current knowledge indicates that multiple forms of axon growth in spared axons can lead to circuit reorganization. Intravenous infusion of mesenchymal stem cells (MSCs) provides functional improvements after SCI with an increased axonal network. In this study, we examined how intravenous infusion of MSCs facilitates axonal connections in the rubrospinal tract (RST), one of the significant descending tracts, using AAV neuronal tracing techniques. Our finding demonstrated that infused MSCs significantly enhanced axonal signal intensity in the RST, not only around the injury site but also in the rostral and caudal regions, suggesting that neural circuit reorganization is facilitated.
Collapse
Affiliation(s)
- Ryosuke Hirota
- Department of Neural Regenerative Medicine, Institute of Regenerative Medicine, Sapporo Medical University School of Medicine, S1W17, Chuo-ku, Sapporo, 060-8556, Hokkaido, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
- Department of Neurology, Yale University School of Medicine Neurology, PO BOX 208018, New Haven, Connecticut, 06510, USA
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Institute of Regenerative Medicine, Sapporo Medical University School of Medicine, S1W17, Chuo-ku, Sapporo, 060-8556, Hokkaido, Japan.
- Department of Neurology, Yale University School of Medicine Neurology, PO BOX 208018, New Haven, Connecticut, 06510, USA.
| | - Atsushi Teramoto
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine Neurology, PO BOX 208018, New Haven, Connecticut, 06510, USA
- Department of Neuroscience, Yale University School of Medicine Neurology, PO BOX 208018, New Haven, Connecticut, 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut, 06516, USA
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Institute of Regenerative Medicine, Sapporo Medical University School of Medicine, S1W17, Chuo-ku, Sapporo, 060-8556, Hokkaido, Japan
- Department of Neurology, Yale University School of Medicine Neurology, PO BOX 208018, New Haven, Connecticut, 06510, USA
| |
Collapse
|
2
|
An J, Chen B, Zhang R, Tian D, Shi K, Zhang L, Zhang G, Wang J, Yang H. Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in Spinal Cord Injury. Mol Neurobiol 2025; 62:1291-1315. [PMID: 39312070 DOI: 10.1007/s12035-024-04490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/10/2024] [Indexed: 01/04/2025]
Abstract
Spinal cord injury (SCI) can lead to severe motor and sensory dysfunction, with a high rate of disability and mortality. Due to the complicated pathological process of SCI, there is no effective clinical treatment strategy at present. Although mesenchymal stem cells (MSCs) are effective in the treatment of SCI, their application is limited by factors such as low survival rate, cell dedifferentiation, tumorigenesis, blood-brain barrier, and immune rejection. Fortunately, there is growing evidence that most of the biological and therapeutic effects of MSCs may be mediated by the release of paracrine factors, which are extracellular vesicles called exosomes. Exosomes are small endosomal vesicles with bilaminar membranes that have recently been recognized as key mediators for communication between cells and tissues through the transfer of proteins, lipids, nucleic acids, cytokines, and growth factors. Mesenchymal stem cell-derived exosomes (MSC-exos) play a critical role in SCI repair by promoting angiogenesis and axonal growth, regulating inflammation and immune response, inhibiting apoptosis, and maintaining the integrity of the blood-spinal cord barrier. Furthermore, they can be used to transport genetic material or drugs to target cells, and their relatively small size allows them to permeate the blood-brain barrier. Studies have demonstrated that some exosomal miRNAs derived from MSCs play a significant role in the treatment of SCI. In this review, we summarize recent research advances in MSC-exos and exosomal miRNAs in SCI therapy to better understand this emerging cell-free therapeutic strategy and discuss the advantages and challenges of MSC-exos in future clinical applications.
Collapse
Affiliation(s)
- Jing An
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Bo Chen
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China.
| | - Rui Zhang
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, 550081, Guizhou, China
| | - Ding Tian
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Kuohao Shi
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Lingling Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Gaorong Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Jingchao Wang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Hao Yang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
3
|
Jung JW, Jeong JH, Ko MJ, Lee BJ, Kwon WK, Jeon SR, Lee S. Induced Neural Stem Cell Transplantation in Spinal Cord Injury: Present Status and Next Steps. Korean J Neurotrauma 2024; 20:234-245. [PMID: 39803345 PMCID: PMC11711022 DOI: 10.13004/kjnt.2024.20.e45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Spinal cord injury (SCI) remains a significant clinical challenge, with no fully effective treatment available despite advancements in various therapeutic approaches. This review examines the emerging role of induced neural stem cells (iNSCs) as promising candidates for SCI treatment, highlighting their potential for direct neural regeneration and integration with host tissue. We explore the biology of iNSCs, their mechanisms of action, and their interactions with host tissue, including modulating inflammatory responses, promoting axonal growth, and reconstructing neural circuits. Additionally, the importance of administration route, optimal timing for transplantation, and potential adverse events are discussed to address key challenges in translating these therapies to clinical applications. The review also emphasizes recent innovations, such as combining iNSC transplantation with rehabilitative training and the integration of biomaterials and growth factors to enhance therapeutic efficacy. Although preclinical studies have demonstrated positive outcomes, larger, controlled trials and standardized protocols are essential for validating the safety and effectiveness of iNSC-based therapies for SCI patients.
Collapse
Affiliation(s)
- Jae-Woo Jung
- Department of Neurosurgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Je Hoon Jeong
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Myeong Jin Ko
- Department of Neurosurgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Byung-Jou Lee
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Woo-Keun Kwon
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Subum Lee
- Department of Neurosurgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Takahara E, Kamizato K, Kakinohana M, Sunami H, Kise Y, Furukawa K, Ntege EH, Shimizu Y. Subpial transplantation of adipose-derived stem cells alleviates paraplegia in a rat model of aortic occlusion/reperfusion-induced spinal cord infarction. Regen Ther 2024; 26:611-619. [PMID: 39263357 PMCID: PMC11387535 DOI: 10.1016/j.reth.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/21/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024] Open
Abstract
Background Thoracoabdominal periprocedural occlusion/reperfusion injury of the spinal cord (SCII/R) can lead to devastating paraplegia, underscoring the critical need for effective interventions. However, our knowledge of optimal medical strategies and their efficacy remains limited. Preclinical investigations have shown promise in harnessing adult stem cells, including pluripotent and multipotent stem cells such as mesenchymal stem cells (MSCs), to address SCII/R by enhancing neuro-inflammation, axonal growth, and myelination. Particularly, growth factors derived from adipose tissue-derived MSCs (ADSCs) have been proposed to facilitate recovery. Despite advancements, achieving complete recovery remains a formidable challenge. Therefore, gaining a more profound insight into the role of ADSCs in alleviating SCII/R-induced paraplegia, including optimizing the delivery systems for therapies, is imperative. Materials and methods In this study, we assessed the impact of subpial allogeneic rat adipose tissue-derived MSCs (rADSCs) transplantation on paraplegia using a rat SCII/R model induced by ephemeral aortic occlusion, known as the Taira-Marsala model. rADSCs were isolated from adipose tissue of male Sprague-Dawley rats, cultured, characterized, and cryopreserved. One week following the induction of paraplegia, rADSCs (n = 6) or physiological saline (n = 6) were transplanted. Hind limb motor function was evaluated before treatment and at 3-, 7-, and 14-days post-treatment using the Basso-Beattie-Bresnahan scoring system. Results The rADSC-treated group demonstrated a significant improvement in hind limb motor function compared to the saline-treated group (p < 0.05), with 5 out of 6 rats exhibiting enhanced motor function following treatment. Conclusions Our findings suggest that subpial rADSC engraftment may enhance SCII/R-induced paraplegia recovery. These initial results drive further research to validate this potential, understand the molecular mechanisms, and optimize therapies.
Collapse
Affiliation(s)
- Eisaku Takahara
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Kota Kamizato
- Department of Anesthesiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Manabu Kakinohana
- Department of Anesthesiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Yuya Kise
- Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Kojiro Furukawa
- Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| |
Collapse
|
5
|
Shimizu Y, Ntege EH, Takahara E, Matsuura N, Matsuura R, Kamizato K, Inoue Y, Sowa Y, Sunami H. Adipose-derived stem cell therapy for spinal cord injuries: Advances, challenges, and future directions. Regen Ther 2024; 26:508-519. [PMID: 39161365 PMCID: PMC11331855 DOI: 10.1016/j.reth.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Spinal cord injury (SCI) has limited treatment options for regaining function. Adipose-derived stem cells (ADSCs) show promise owing to their ability to differentiate into multiple cell types, promote nerve cell survival, and modulate inflammation. This review explores ADSC therapy for SCI, focusing on its potential for improving function, preclinical and early clinical trial progress, challenges, and future directions. Preclinical studies have demonstrated ADSC transplantation's effectiveness in promoting functional recovery, reducing cavity formation, and enhancing nerve regrowth and myelin repair. To improve ADSC efficacy, strategies including genetic modification and combination with rehabilitation are being explored. Early clinical trials have shown safety and feasibility, with some suggesting motor and sensory function improvements. Challenges remain for clinical translation, including optimizing cell survival and delivery, determining dosing, addressing tumor formation risks, and establishing standardized protocols. Future research should focus on overcoming these challenges and exploring the potential for combining ADSC therapy with other treatments, including rehabilitation and medication.
Collapse
Affiliation(s)
- Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Eisaku Takahara
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Naoki Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Rikako Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Kota Kamizato
- Department of Anesthesiology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshikazu Inoue
- Department of Plastic and Reconstructive Surgery, School of Medicine, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, 329-0498, Tochigi, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| |
Collapse
|
6
|
Hashimoto S, Nagoshi N, Nakamura M, Okano H. Regenerative medicine strategies for chronic complete spinal cord injury. Neural Regen Res 2024; 19:818-824. [PMID: 37843217 PMCID: PMC10664101 DOI: 10.4103/1673-5374.382230] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 10/17/2023] Open
Abstract
Spinal cord injury is a condition in which the parenchyma of the spinal cord is damaged by trauma or various diseases. While rapid progress has been made in regenerative medicine for spinal cord injury that was previously untreatable, most research in this field has focused on the early phase of incomplete injury. However, the majority of patients have chronic severe injuries; therefore, treatments for these situations are of fundamental importance. The reason why the treatment of complete spinal cord injury has not been studied is that, unlike in the early stage of incomplete spinal cord injury, there are various inhibitors of neural regeneration. Thus, we assumed that it is difficult to address all conditions with a single treatment in chronic complete spinal cord injury and that a combination of several treatments is essential to target severe pathologies. First, we established a combination therapy of cell transplantation and drug-releasing scaffolds, which contributes to functional recovery after chronic complete transection spinal cord injury, but we found that functional recovery was limited and still needs further investigation. Here, for the further development of the treatment of chronic complete spinal cord injury, we review the necessary approaches to the different pathologies based on our findings and the many studies that have been accumulated to date and discuss, with reference to the literature, which combination of treatments is most effective in achieving functional recovery.
Collapse
Affiliation(s)
- Shogo Hashimoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Aguado-Garrido M, García-Rama C, Romero-Ramírez L, Buzoianu-Anguiano V, Pérez-Rizo E, Kramer BW, Mey J. Improved Efficacy of Delayed Treatment with Human Bone Marrow-Derived Stromal Cells Evaluated in Rats with Spinal Cord Injury. Int J Mol Sci 2024; 25:1548. [PMID: 38338827 PMCID: PMC10855798 DOI: 10.3390/ijms25031548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
The treatment of spinal cord injury (SCI) with uncultivated human bone marrow-derived stromal cells (bmSCs) prepared by negative selection has been proposed to be therapeutically superior to treatment with stem cells that were expanded in vitro. To explore their use in clinical trials, we studied the functional effects of delayed application at 7 days after SCI by testing different doses of bmSCs. Spinal cord contusion injury was induced in adult male Wistar rats at the thoracic level T9. Human bmSCs were prepared by negative selection without expansion in vitro (NeuroCellsTM). Treatment consisted of one 150 µL injection into the cisterna magna containing 0.5 or 2.5 million fresh bmSCs or 2.5 million bmSCs. The recovery of motor functions was evaluated during a surveillance period of six weeks (6 W), during which spinal cords were assessed histologically. Treatment resulted in a significant, dose-dependent therapeutic effect on the recovery of motor performance. The histological analysis revealed a lower degree of axonal degeneration and better survival of neurons and oligodendrocytes in bmSCs treated rats. Our results support delayed intrathecal application of bmSCs prepared by negative selection without expansion in vitro as a treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jörg Mey
- Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
- EURON Graduate School of Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
8
|
Zipser CM, Curt A. Disease-specific interventions using cell therapies for spinal cord disease/injury. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:263-282. [PMID: 39341658 DOI: 10.1016/b978-0-323-90120-8.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Traumatic spinal cord injury (SCI) may occur across the lifespan and is of global relevance. Damage of the spinal cord results in para- or tetraplegia and is associated with neuropathic pain, spasticity, respiratory, and autonomic dysfunction (i.e., control of bladder-bowel function). While the acute surgical treatment aims at stabilizing the spine and decompressing the damaged spinal cord, SCI patients require neurorehabilitation to restore neural function and to compensate for any impairments including motor disability, pain treatment, and bladder/bowel management. However, the spinal cord has a limited capacity to regenerate and much of the disability may persist, depending on the initial lesion severity and level of injury. For this reason, and the lack of effective drug treatments, there is an emerging interest and urgent need in promoting axonal regeneration and remyelination after SCI through cell- and stem-cell based therapies. This review briefly summarizes the state-of the art management of acute SCI and its neurorehabilitation to critically appraise phase I/II trials from the last two decades that have investigated cell-based therapies (i.e., Schwann cells, macrophages, and olfactory ensheathing cells) and stem cell-based therapies (i.e., neural stem cells, mesenchymal, and hematopoietic stem cells). Recently, two large multicenter trials provided evidence for the safety and feasibility of neural stem cell transplantation into the injured cord, whilst two monocenter trials also showed this to be the case for the transplantation of Schwann cells into the posttraumatic cord cavity. These are milestone studies that will facilitate further interventional trials. However, the clinical adoption of such approaches remains unproven, as there is only limited encouraging data, often in single patients, and no proven trial evidence to support regulatory approval.
Collapse
Affiliation(s)
- Carl Moritz Zipser
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.
| |
Collapse
|
9
|
Vij R, Kim H, Park H, Cheng T, Lotfi D, Chang D. Functional recovery of a 41-year-old quadriplegic spinal cord injury patient following multiple intravenous infusions of autologous adipose-derived mesenchymal stem cells: a case report. FRONTIERS IN TRANSPLANTATION 2023; 2:1287508. [PMID: 38993875 PMCID: PMC11235215 DOI: 10.3389/frtra.2023.1287508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/23/2023] [Indexed: 07/13/2024]
Abstract
Spinal cord injury (SCI) is a debilitating disease with clinical manifestations ranging from incomplete neurological deficits affecting sensory and motor functions to complete paralysis. Recent advancements in stem cell research have elucidated the therapeutic potential of mesenchymal stem cells (MSCs) for the treatment of patients with SCI. Here, we present a case of a 41-year-old quadriplegic male individual who experienced a traumatic C-5 incomplete SCI, after slipping off a boat in Florida Keys on August 4, 2017. He was diagnosed with C5-C6 Grade 2 anterolisthesis with flexion teardrop fracture of the anterior C6 with jumped facet on the right and perched facet on the left at C5-C6 with spinal canal stenosis. On September 12, 2019, an Individual Expanded Access Protocol was approved for administration of multiple infusions of autologous, adipose-derived MSCs (adMSCs) for the treatment of this quadriplegic incomplete C5-6 SCI patient. Thirty-four (34) recurrent infusions each with 200 million cells were administered, over a period of ∼2.5 years, which resulted in significant improvements in his quality-of-life as demonstrated by substantial improvements in SCIM-III (Spinal Cord Independence Measure III) scores. Additionally, electromyography/nerve conduction velocity (EMG/NCV) studies showed improvements in the patient's motor and sensory function. No safety concerns were presented, and no serious adverse events were reported during the entire course of treatment. Multiple intravenous infusions of autologous HB-adMSCs for treatment of SCI demonstrated significant enhancements in the patient's neurological function with improved quality-of-life. Further research is needed to evaluate the results of this study.
Collapse
Affiliation(s)
- Ridhima Vij
- Clinical Research, Hope Biosciences Research Foundation, Sugar Land, TX, United States
| | - Hosu Kim
- Cell Production, Hope Biosciences, Sugar Land, TX, United States
| | - Hyeonggeun Park
- Cell Production, Hope Biosciences, Sugar Land, TX, United States
| | - Thanh Cheng
- Clinical Research, Hope Biosciences Research Foundation, Sugar Land, TX, United States
| | - Djamchid Lotfi
- Clinical Research, Hope Biosciences Research Foundation, Sugar Land, TX, United States
| | - Donna Chang
- Clinical Research, Hope Biosciences Research Foundation, Sugar Land, TX, United States
- Cell Production, Hope Biosciences, Sugar Land, TX, United States
| |
Collapse
|
10
|
Delcroix GJR, Hackett A, Schiller PC, Temple HT. Characterization of three washing/decellularization procedures for the production of bioactive human micronized neural tissue (hMINT). Cell Tissue Bank 2023; 24:693-703. [PMID: 36854877 DOI: 10.1007/s10561-023-10075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/29/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND We developed a novel, injectable and decellularized human peripheral nerve-based scaffold, named Micronized Human Neural Tissue (hMINT), designed to be used as a supportive matrix for stem cell transplantation in the context of spinal cord injury (SCI). MATERIALS AND METHODS Human donated sciatic nerves were micronized at liquid nitrogen temperature prior to decellularization using 3 different procedures of various harshness. hMINT were characterized in terms of particle size, DNA, sulfated glycosaminoglycans (sGAG) and growth factors content. To test the biocompatibility and bioactivity of the various preparations, we used a type of mesenchymal stromal cells (MSCs), termed MIAMI cells, which were placed in contact with hMINT to monitor cell attachment by confocal microscopy and gene expression by RT-qPCR in vitro. RESULTS The content of DNA, sGAG and growth factors left in the product after processing was highly dependent on the decellularization procedure used. We demonstrated that hMINT are biocompatible and promoted the attachment and long-term survival of MIAMI cells in vitro. Finally, combination with hMINT increased MIAMI cells mRNA expression of pro-survival and anti-inflammatory factors. Importantly, the strongest bioactivity on MIAMI cells was observed with the hMINT decellularized using the mildest decellularization procedure, therefore emphasizing the importance of achieving an adequate decellularization without losing the hMINT's bioactivity. PERSPECTIVES AND CLINICAL SIGNIFICANCE The capacity of hMINT/stem cells to facilitate protection of injured neural tissue, promote axon re-growth and improve functional recovery will be tested in an animal model of SCI and other neurodegenerative disorders in the future.
Collapse
Affiliation(s)
- Gaëtan J-R Delcroix
- College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.
| | - Amber Hackett
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paul C Schiller
- Geriatric Research Education and Clinical Center, Miami VA Healthcare System, Miami, FL, USA
| | | |
Collapse
|
11
|
Dong X, Hong H, Cui Z. Function of GSK‑3 signaling in spinal cord injury (Review). Exp Ther Med 2023; 26:541. [PMID: 37869638 PMCID: PMC10587879 DOI: 10.3892/etm.2023.12240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/10/2023] [Indexed: 10/24/2023] Open
Abstract
Spinal cord injury (SCI) is a major social problem with a heavy burden on patient physiology and psychology. Glial scar formation and irreversible neuron loss are the two key points during SCI progression. During the acute phase of spinal cord injury, glial scars form, limiting the progression of inflammation. However, in the subacute or chronic phase, glial scarring inhibits axon regeneration. Following spinal cord injury, irreversible loss of neurons leads to further aggravation of spinal cord injury. Several therapies have been developed to improve either glial scar or neuron loss; however, few therapies reach the stage of clinical trials and there are no mainstream therapies for SCI. Exploring the key mechanism of SCI is crucial for finding further treatments. Glycogen synthase kinase-3 (GSK-3) is a widely expressed kinase with important physiological and pathophysiological functions in vivo. Dysfunction of the GSK-3 signaling pathway during SCI has been widely discussed for controlling neurite growth in vitro and in vivo, improving the proliferation and neuronal differentiation of endogenous neural stem cells and functional recovery from spinal cord injury. SCI can decrease the phosphorylated (p)/total (t)-GSK-3β ratio, which leads to an increase in apoptosis, whereas treatment with GSK-3 inhibitors can promote neurogenesis. In addition, several therapies for the treatment of SCI involve signaling pathways associated with GSK-3. Furthermore, signaling pathways associated with GSK-3 also participate in the pathological process of neuropathic pain that remains following SCI. The present review summarized the roles of GSK-3 signaling in SCI to aid in the understanding of GSK-3 signaling during the pathological processes of SCI and to provide evidence for the development of comprehensive treatments.
Collapse
Affiliation(s)
- Xiong Dong
- Department of Spinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hongxiang Hong
- Department of Spinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhiming Cui
- Department of Spinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
12
|
Kurihara K, Sasaki M, Nagahama H, Obara H, Fukushi R, Hirota R, Yoshimoto M, Teramoto A, Kocsis JD, Yamashita T, Honmou O. Repeated intravenous infusion of mesenchymal stem cells enhances recovery of motor function in a rat model with chronic spinal cord injury. Brain Res 2023; 1817:148484. [PMID: 37442249 DOI: 10.1016/j.brainres.2023.148484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Spinal cord injury (SCI) can cause paralysis with a high disease burden with limited treatment options. A single intravenous infusion of mesenchymal stem cells (MSCs) improves motor function in rat SCI models, possibly through the induction of axonal sprouting and remyelination. Repeated infusions (thrice at weekly intervals) of MSCs were administered to rats with chronic SCI to determine if multiple-dosing regimens enhance motor improvement. Chronic SCI rats were randomized and infused with vehicle (vehicle), single MSC injection at week 6 (MSC-1) or repeatedly injections of MSCs at 6, 7, and 8 weeks (MSC-3) after SCI induction. In addition, a single high dose of MSCs (HD-MSC) equivalent to thrice the single dose was infused at week 6. Locomotor function, light and electron microscopy, immunohistochemistry and ex vivo diffusion tensor imaging were performed. Repeated infusion of MSCs (MSC-3) provided the greatest functional recovery compared to single and single high-dose infusions. The density of remyelinated axons in the injured spinal cord was the greatest in the MSC-3 group, followed by the MSC-1, HD-MSC and vehicle groups. Increased sprouting of the corticospinal tract and serotonergic axon density was the greatest in the MSC-3 group, followed by MSC-1, HD-MSC, and vehicle groups. Repeated infusion of MSCs over three weeks resulted in greater functional improvement than single administration of MSCs, even when the number of infused cells was tripled. MSC-treated rats showed axonal sprouting and remyelination in the chronic phase of SCI.
Collapse
Affiliation(s)
- Kota Kurihara
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Hiroshi Nagahama
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Division of Radioisotope Research, Biomedical Research, Education and Instrumentation Center, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Hisashi Obara
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Ryunosuke Fukushi
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Ryosuke Hirota
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Mitsunori Yoshimoto
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Atsushi Teramoto
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
13
|
Xie Y, Sun Y, Liu Y, Zhao J, Liu Q, Xu J, Qin Y, He R, Yuan F, Wu T, Duan C, Jiang L, Lu H, Hu J. Targeted Delivery of RGD-CD146 +CD271 + Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Promotes Blood-Spinal Cord Barrier Repair after Spinal Cord Injury. ACS NANO 2023; 17:18008-18024. [PMID: 37695238 DOI: 10.1021/acsnano.3c04423] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the BSCB integrity during SCI treatment. This study explores an alternative therapeutic approach for SCI by identifying a subpopulation of exosomes with stable BSCB function and achieving a specific targeted delivery. Specific subpopulations of CD146+CD271+ umbilical cord mesenchymal stem cells (UCMSCs) were isolated, from which engineered exosomes (RGD-CD146+CD271+ UCMSC-Exos) with targeted neovascularization function were obtained through gene transfection. In vivo and in vitro experiments were performed to explore the targeting and therapeutic effects of RGD-CD146+CD271+ UCMSC-Exos and the potential mechanisms underlying BSCB stabilization and neural function recovery. The results demonstrated that RGD-CD146+CD271+ UCMSC-Exos exhibited physical and chemical properties similar to those of regular exosomes. Notably, following intranasal administration, RGD-CD146+CD271+ UCMSC-Exos exhibited enhanced aggregation at the SCI center and demonstrated the specific targeting of neovascular endothelial cells. In the SCI model, intranasal administration of RGD-CD146+CD271+ UCMSC-Exos reduced Evans blue dye leakage, increased tight junction protein expression, and improved neurological function recovery. In vitro testing revealed that RGD-CD146+CD271+ UCMSC-Exos treatment significantly reduced the permeability of bEnd.3 cells subjected to oxygen-glucose deprivation, thereby restoring the integrity of tight junctions. Moreover, further exploration of the molecular mechanism underlying BSCB stabilization by CD146+CD271+ UCMSC-Exos identified the crucial role of the miR-501-5p/MLCK axis in this process. In conclusion, targeted delivery of RGD-CD146+CD271+ UCMSC-Exos presents a promising and effective treatment option for SCI.
Collapse
Affiliation(s)
- Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yi Sun
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jinyun Zhao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Quanbo Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yiming Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Rundong He
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Liyuan Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| |
Collapse
|
14
|
Hirota R, Sasaki M, Honmou O, Yamashita T. Mesenchymal Stem Cell Transplantation for Spinal Cord Injury: Current Status and Prospects. Spine Surg Relat Res 2023; 7:319-326. [PMID: 37636138 PMCID: PMC10447197 DOI: 10.22603/ssrr.2022-0234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 02/21/2023] Open
Abstract
Since the 1990s, our group has been conducting basic research on regenerative medicine using various cell types to treat several central nervous system diseases, including spinal cord injury (SCI). We have reported many positive effects of the intravenous administration of mesenchymal stem cells (MSCs) derived from the bone marrow. In the current study, MSCs were administered intravenously to a rat model of severe SCI (crush injury) during the acute to subacute stages-considerable motor function recovery was observed. Furthermore, MSC transplantation in a chronic-phase SCI model improved motor function. In this review, we discuss recent updates in basic research on the intravenous infusion of MSCs and prospects for SCI research.
Collapse
Affiliation(s)
- Ryosuke Hirota
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
15
|
Boulos RT, Nemer LI, Mansour VJ, Najjoum CF, Asmar EA, Abi Chahine NH. A case report: The first show phenomenon in the treatment of spinal cord injury with Regentime procedure using autologous bone marrow-derived stem cells. Clin Case Rep 2023; 11:e7568. [PMID: 37405041 PMCID: PMC10315442 DOI: 10.1002/ccr3.7568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 07/06/2023] Open
Abstract
Key Clinical Message Promising outcomes are shown in this case report using the Regentime procedure and autologous stem cells to treat spinal cord injury. The observed "First Show Phenomenon" provides valuable insights into the therapy's potential for spinal cord injury. Abstract This case report demonstrates "the first show phenomenon" following Regentime stem cell therapy applied to a spinal cord injury patient. A 40-year-old gentleman sustained a ballistic injury at the level of T9, resulting in complete bilateral motor and sensory loss from T9 and below. He was treated with autologous bone marrow-derived mononuclear stem cells injected into his spinal canal 2.5 years after his injury. Follow-up during the first-week posttransplantation showed early symptom improvement termed "the first show phenomenon." He regained sensation to light touch in his lower limbs by the end of week 1 and reported no serious implications or complications.
Collapse
Affiliation(s)
- Rita T. Boulos
- Stem Cell Transplantation/NeurologyACE Cells Lab LimitedBeirutLebanon
| | - Lea I. Nemer
- Stem Cell Transplantation/Molecular BiologyACE Cells Lab LimitedBeirutLebanon
| | - Vanessa J. Mansour
- Stem Cell Transplantation/Infectious Diseases/ImmunologyACE Cells Lab LimitedBeirutLebanon
| | - Cynthia F. Najjoum
- Stem Cell Transplantation/Infectious Diseases/ImmunologyACE Cells Lab LimitedBeirutLebanon
| | - Elsa A. Asmar
- Stem Cell Transplantation/Functional Genomics/ProteomicsACE Cells Lab LimitedBeirutLebanon
| | | |
Collapse
|
16
|
Sabouni N, Marzouni HZ, Palizban S, Meidaninikjeh S, Kesharwani P, Jamialahmadi T, Sahebkar A. Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells. J Drug Target 2023; 31:243-260. [PMID: 36305097 DOI: 10.1080/1061186x.2022.2141755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Curcumin from turmeric is a natural phenolic compound with a promising potential to regulate fundamental processes involved in neurological diseases, including inflammation, oxidative stress, protein aggregation, and apoptosis at the molecular level. In this regard, employing nanoformulation can improve curcumin efficiency by reducing its limitations, such as low bioavailability. Besides curcumin, growing data suggest that stem cells are a noteworthy candidate for neurodegenerative disorders therapy due to their anti-inflammatory, anti-oxidative, and neuronal-differentiation properties, which result in neuroprotection. Curcumin and stem cells have similar neurogenic features and can be co-administered in a cell-drug delivery system to achieve better combination therapeutic outcomes for neurological diseases. Based on the evidence, curcumin can induce the neuroprotective activity of stem cells by modulating their related signalling pathways. The present review is about the role of curcumin and its nanoformulations in the improvement of neurological diseases alone and through the effect on different categories of stem cells by discussing the underlying mechanisms to provide a roadmap for future investigations.
Collapse
Affiliation(s)
- Nasim Sabouni
- Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Zare Marzouni
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Sepideh Palizban
- Semnan Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.,Cancer Biomedical Center (CBC) Research Institute, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Armitage AJ, Miller JM, Sparks TH, Georgiou AE, Reid J. Efficacy of autologous mesenchymal stromal cell treatment for chronic degenerative musculoskeletal conditions in dogs: A retrospective study. Front Vet Sci 2023; 9:1014687. [PMID: 36713862 PMCID: PMC9880336 DOI: 10.3389/fvets.2022.1014687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction The objective of this study was to retrospectively analyze clinical data from a referral regenerative medicine practice, to investigate the efficacy of autologous mesenchymal stromal cells (MSC) in 245 dogs deemed unresponsive to conventional treatment by their referring vet. Methods Diagnostic imaging [radiology and musculoskeletal ultrasound (MSK-US)] identified musculoskeletal pathology holistically. MSCs, produced according to current guidelines, were initially administered with PRP by targeted injection to joints and/or tendons, with a second MSC monotherapy administered 12 weeks later to dogs with severe pathology and/or previous elbow arthroscopic interventions. Dogs with lumbosacral disease received epidural MSCs with additional intravenous MSCs administered to dogs with spondylosis of the cervical, thoracic and lumbar spine. All dogs received laser therapy at 10 J/cm2 at the time of treatment and for 5 sessions thereafter. Objective outcome measures (stance analysis, range of joint motion, pressure algometry) and validated subjective outcome measures (owner reported VetMetrica HRQL™ and veterinary pain and quality of life impact scores) were used to investigate short and long-term (6-104 weeks) efficacy. Outcome data were collected at predetermined time windows (0-6, 7-12, 13-18, 19-24, 25-48, 49-78, 79-104) weeks after initial treatment. Results There were statistically significant improvements in post compared with pre-treatment measures at all time windows in stance analysis, shoulder and hip range of motion, lumbosacral pressure algometry, and to 49-78 weeks in carpus and elbow range of motion. Improvements in 4 domains of quality of life as measured by VetMetricaTM were statistically significant, as were scores in vet-assessed pain and quality of life impact. In dogs receiving one initial treatment the mean time before a second treatment was required to maintain improvements in objective measures was 451 days. Diagnostic imaging confirmed the regenerative effects of MSCs in tendinopathies by demonstrating resolution of abnormal mineralization and restoration of normal fiber patterns. Discussion This represents the first study using "real-world" data to show that cell-based therapies, injected into multiple areas of musculoskeletal pathology in a targeted holistic approach, resulted in rapid and profound positive effects on the patient's pain state and quality of life which was maintained with repeat treatment for up to 2 years.
Collapse
Affiliation(s)
- Andrew J. Armitage
- Greenside Veterinary Practice, Part of Linnaeus Veterinary Limited, Melrose, United Kingdom
| | | | - Tim H. Sparks
- Waltham Petcare Science Institute, Melton Mowbray, United Kingdom
| | - Alex E. Georgiou
- Cell Therapy Sciences Ltd., Coventry, United Kingdom
- Coventry University, Coventry, United Kingdom
| | - Jacqueline Reid
- University of Glasgow, Glasgow, United Kingdom
- NewMetrica Research Ltd., Glasgow, United Kingdom
| |
Collapse
|
18
|
Hirota R, Sasaki M, Kataoka-Sasaki Y, Oshigiri T, Kurihara K, Fukushi R, Oka S, Ukai R, Yoshimoto M, Kocsis JD, Yamashita T, Honmou O. Enhanced Network in Corticospinal Tracts after Infused Mesenchymal Stem Cells in Spinal Cord Injury. J Neurotrauma 2022; 39:1665-1677. [PMID: 35611987 PMCID: PMC9734021 DOI: 10.1089/neu.2022.0106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although limited spontaneous recovery occurs after spinal cord injury (SCI), current knowledge reveals that multiple forms of axon growth in spared axons can lead to circuit reorganization and a detour or relay pathways. This hypothesis has been derived mainly from studies of the corticospinal tract (CST), which is the primary descending motor pathway in mammals. The major CST is the dorsal CST (dCST), being the major projection from cortex to spinal cord. Two other components often called "minor" pathways are the ventral and the dorsal lateral CSTs, which may play an important role in spontaneous recovery. Intravenous infusion of mesenchymal stem cells (MSCs) provides functional improvement after SCI with an enhancement of axonal sprouting of CSTs. Detailed morphological changes of CST pathways, however, have not been fully elucidated. The primary objective was to evaluate detailed changes in descending CST projections in SCI after MSC infusion. The MSCs were infused intravenously one day after SCI. A combination of adeno-associated viral vector (AAV), which is an anterograde and non-transsynaptic axonal tracer, was injected 14 days after SCI induction. The AAV with advanced tissue clearing techniques were used to visualize the distribution pattern and high-resolution features of the individual axons coursing from above to below the lesion. The results demonstrated increased observable axonal connections between the dCST and axons in the lateral funiculus, both rostral and caudal to the lesion core, and an increase in observable axons in the dCST below the lesion. This increased axonal network could contribute to functional recovery by providing greater input to the spinal cord below the lesion.
Collapse
Affiliation(s)
- Ryosuke Hirota
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Neurology, and Yale University School of Medicine, New Haven, Connecticut, USA.,Address correspondence to: Masanori Sasaki, MD, PhD, Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S1W17, Chuo-ku, Sapporo, Hokkaido 060-8556, Japan
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsutomu Oshigiri
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kota Kurihara
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryunosuke Fukushi
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shinichi Oka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryo Ukai
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsunori Yoshimoto
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Jeffery D. Kocsis
- Department of Neurology, and Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Neurology, and Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Kitagawa T, Nagoshi N, Okano H, Nakamura M. A Narrative Review of Advances in Neural Precursor Cell Transplantation Therapies for Spinal Cord Injury. Neurospine 2022; 19:935-945. [PMID: 36597632 PMCID: PMC9816589 DOI: 10.14245/ns.2244628.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/11/2022] [Indexed: 12/27/2022] Open
Abstract
A spinal cord injury (SCI) is a destructive event that causes a permanent deficit in neurological function because of poor regenerative potential. Transplantation therapies have attracted attention for restoration of the injured spinal cord, and transplantation of neural precursor cells (NPCs) has been studied worldwide. Several groups have demonstrated functional recovery via this therapeutic intervention due to the multiple beneficial effects of NPC transplantation, such as reconstruction of neuronal circuits, remyelination of axons, and neuroprotection by trophic factors. Our group developed a method to induce NPCs from human induced pluripotent stem cells (hiPSCs) and established a transplantation strategy for SCI. Functional improvement in SCI animals treated with hiPSC-NPCs was observed, and the safety of transplanting these cells was evaluated from multiple perspectives. With selection of a safe cell line and pretreatment of the cells to encourage maturation and differentiation, hiPSC-NPC transplantation therapy is now in the clinical phase of testing for subacute SCI. In addition, a research challenge will be to expand the efficacy of transplantation therapy for chronic SCI. More comprehensive strategies involving combination treatments are required to treat this problematic situation.
Collapse
Affiliation(s)
- Takahiro Kitagawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan,Corresponding Author Narihito Nagoshi Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Lu Y, Zhang W, Tian Z, Liang Q, Liu C, Wu Y, Zhang L, Rong L. The optimal transplantation strategy of umbilical cord mesenchymal stem cells in spinal cord injury: a systematic review and network meta-analysis based on animal studies. Stem Cell Res Ther 2022; 13:441. [PMID: 36056386 PMCID: PMC9438219 DOI: 10.1186/s13287-022-03103-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/31/2022] [Indexed: 12/09/2022] Open
Abstract
Objective Umbilical cord mesenchymal stem cells (UCMSCs) have great potential in the treatment of spinal cord injury. However, the specific therapeutic effect and optimal transplantation strategy are still unclear. Therefore, exploring the optimal treatment strategy of UCMSCs in animal studies by systematic review can provide reference for the development of animal studies and clinical research in the future. Methods Databases of PubMed, Ovid-Embase, Web of Science, CNKI, WanFang, VIP, and CBM were searched for the literature in February 11, 2022. Two independent reviewers performed the literature search, identification, screening, quality assessment, and data extraction. Results and Discussion A total of 40 animal studies were included for combined analysis. In different subgroups, the results of traditional meta-analysis and network meta-analysis were consistent, that is, the therapeutic effect of high-dose (≥ 1 × 106) transplantation of UCMSCs was significantly better than that of low dose (< 1 × 106), the therapeutic effect of local transplantation of UCMSCs was significantly better than that of intravenous transplantation, and the therapeutic effect of subacute transplantation of UCMSCs was significantly better than that of acute and chronic transplantation. However, in view of the inherent risk of bias and limited internal and external validity of the current animal studies, more high-quality, direct comparison studies are needed to further explore the optimal transplantation strategy for UCMSCs in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03103-8.
Collapse
Affiliation(s)
- Yubao Lu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China.,National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Wei Zhang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China.,National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Zhenming Tian
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China.,National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Qian Liang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China.,National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Chenrui Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China.,National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Yingjie Wu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China.,National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China. .,National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, 510630, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China. .,National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, 510630, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.
| |
Collapse
|
21
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Shang Z, Li D, Chen J, Wang R, Wang M, Zhang B, Wang X, Wanyan P. What Is the Optimal Timing of Transplantation of Neural Stem Cells in Spinal Cord Injury? A Systematic Review and Network Meta-Analysis Based on Animal Studies. Front Immunol 2022; 13:855309. [PMID: 35371014 PMCID: PMC8965614 DOI: 10.3389/fimmu.2022.855309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/15/2022] [Indexed: 01/13/2023] Open
Abstract
Objective The optimal transplantation timing of neural stem cells in spinal cord injury is fully explored in animal studies to reduce the risk of transformation to clinical practice and to provide valuable reference for future animal studies and clinical research. Method Seven electronic databases, namely, PubMed, Web of Science, Embase, Wanfang, Chinese Scientific Journal Database (CSJD-VIP), China Biomedical Literature Database (CBM), and China National Knowledge Infrastructure (CNKI), were searched. The studies were retrieved from inception to November 2021. Two researchers independently screened the literature, extracted data, and evaluated the methodological quality based on the inclusion criteria. Results and Discussion Thirty-nine studies were incorporated into the final analyses. Based on the subgroup of animal models and transplantation dose, the results of network meta-analysis showed that the effect of transplantation in the subacute phase might be the best. However, the results of traditional meta-analysis were inconsistent. In the moderate-dose group of moderate spinal cord injury model and the low-dose group of severe spinal cord injury model, transplantation in the subacute phase did not significantly improve motor function. Given the lack of evidence for direct comparison between different transplantation phases, the indirectness of our network meta-analysis, and the low quality of evidence in current animal studies, our confidence in recommending cell transplantation in the subacute phase is limited. In the future, more high-quality, direct comparative studies are needed to explore this issue in depth.
Collapse
Affiliation(s)
- Zhizhong Shang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Dongliang Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Jinlei Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - RuiRui Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Mingchuan Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Baolin Zhang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Xin Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China.,Chengren Institute of Traditional Chinese Medicine, Lanzhou, China.,Department of Spine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Pingping Wanyan
- Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, China.,Department of Nephrology, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
Shang Z, Wang R, Li D, Chen J, Zhang B, Wang M, Wang X, Wanyan P. Spinal Cord Injury: A Systematic Review and Network Meta-Analysis of Therapeutic Strategies Based on 15 Types of Stem Cells in Animal Models. Front Pharmacol 2022; 13:819861. [PMID: 35359872 PMCID: PMC8964098 DOI: 10.3389/fphar.2022.819861] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Objective: The optimal therapeutic strategies of stem cells for spinal cord injury (SCI) are fully explored in animal studies to promote the translation of preclinical findings to clinical practice, also to provide guidance for future animal experiments and clinical studies. Methods: PubMed, Web of Science, Embase, CNKI, Wangfang, VIP, and CBM were searched from inception to September 2021. Screening of search results, data extraction, and references quality evaluation were undertaken independently by two reviewers. Results and Discussion: A total of 188 studies were included for data analysis. Results of traditional meta-analysis showed that all 15 diverse types of stem cells could significantly improve locomotor function of animals with SCI, and results of further network meta-analysis showed that adipose-derived mesenchymal stem cells had the greatest therapeutic potential for SCI. Moreover, a higher dose (≥1 × 106) of stem cell transplantation had better therapeutic effect, transplantation in the subacute phase (3–14 days, excluding 3 days) was the optimal timing, and intralesional transplantation was the optimal route. However, the evidence of current animal studies is of limited quality, and more high-quality research is needed to further explore the optimal therapeutic strategies of stem cells, while the design and implementation of experiments, as well as measurement and reporting of results for animal studies, need to be further improved and standardized to reduce the risk when the results of animal studies are translated to the clinic. Systematic Review Registration: [website], identifier [registration number].
Collapse
Affiliation(s)
- Zhizhong Shang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Ruirui Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Dongliang Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Jinlei Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Baolin Zhang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Mingchuan Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Xin Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
- Chengren Institute of Traditional Chinese Medicine, Lanzhou, China
- Department of Spine, Changzheng Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Xin Wang, ; Pingping Wanyan,
| | - Pingping Wanyan
- Gansu University of Chinese Medicine, Lanzhou, China
- The Second Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Xin Wang, ; Pingping Wanyan,
| |
Collapse
|
24
|
Oka S, Yamaki T, Sasaki M, Ukai R, Takemura M, Yokoyama T, Kataoka-Sasaki Y, Onodera R, Ito YM, Kobayashi S, Kocsis JD, Iwadate Y, Honmou O. Intravenous infusion of auto serum-expanded autologous mesenchymal stem cells in chronic brain injury patients: a study protocol for a Phase II trial (Preprint). JMIR Res Protoc 2022; 11:e37898. [PMID: 35793128 PMCID: PMC9301565 DOI: 10.2196/37898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Objective Methods Results Conclusions Trial Registration International Registered Report Identifier (IRRID)
Collapse
Affiliation(s)
- Shinichi Oka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Advanced Regenerative Therapeutics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomohiro Yamaki
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, Chiba, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Advanced Regenerative Therapeutics, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Ryo Ukai
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsuhiro Takemura
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takahiro Yokoyama
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Advanced Regenerative Therapeutics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Rie Onodera
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoichi M Ito
- Data Science Center, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Shigeki Kobayashi
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, Chiba, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Yasuo Iwadate
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Advanced Regenerative Therapeutics, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
25
|
Farid MF, S Abouelela Y, Rizk H. Stem cell treatment trials of spinal cord injuries in animals. Auton Neurosci 2022; 238:102932. [PMID: 35016045 DOI: 10.1016/j.autneu.2021.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious neurological spinal cord damage that resulted in the loss of temporary or permanent function. However, there are even now no effective therapies for it. So, a new medical promising therapeutic hotspot over the previous decades appeared which was (Stem cell (SC) cure of SCI). Otherwise, animal models are considered in preclinical research as a model for humans to trial a potential new treatment. METHODOLOGY Following articles were saved from different databases (PubMed, Google scholar, Egyptian knowledge bank, Elsevier, Medline, Embase, ProQuest, BMC) on the last two decades, and data were obtained then analyzed. RESULTS This review discusses the type and grading of SCI. As well as different types of stem cells therapy for SCI, including mesenchymal stem cells (MSCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs). The review focuses on the transplantation pathways, clinical evaluation, and clinical signs of different types of SC on different animal models which are summarized in tables to give an easy to reach. CONCLUSION Pharmacological and physiotherapy have limited regenerative power in comparison with stem cells medication in the treatment of SCI. Among several sources of cell therapies, mesenchymal stromal/stem cell (MSC) one is being progressively developed as a trusted important energetic way to repair and regenerate. Finally, a wide-ranged animal models have been condensed that helped in human clinical trial therapies.
Collapse
Affiliation(s)
- Mariam F Farid
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Yara S Abouelela
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Hamdy Rizk
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
26
|
Kim WK, Kim WH, Kweon OK, Kang BJ. Heat-Shock Proteins Can Potentiate the Therapeutic Ability of Cryopreserved Mesenchymal Stem Cells for the Treatment of Acute Spinal Cord Injury in Dogs. Stem Cell Rev Rep 2022; 18:1461-1477. [PMID: 35001344 DOI: 10.1007/s12015-021-10316-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are applied in the treatment of spinal cord injury (SCI) because of their neural tissue restoring ability. In the clinical setting, intravenous injection of cryopreserved cells is essential for the immediate treatment of SCI, exhibiting the disadvantage of reduced cell properties. METHODS In this study, we potentiated the characteristics of cryopreserved MSCs by heat-shock (HS) treatment to induce the expression of HS protein (HSP) HSP70/HSP27 and further improved antioxidant capacity by overexpressing HSP32 (heme oxygenase-1 [HO-1]). We randomly assigned 12 beagle dogs with acute SCI into three groups and transplanted cells intravenously: (i) F-MSCs (MSCs in frozen/thawed conditions); (ii) F-HSP-MSCs (HS-treated MSCs in frozen/thawed conditions); and (iii) F-HSP-HO-MSCs (HO-1-overexpressing and HS-treated MSCs in frozen/thawed conditions). RESULTS The potentiated MSCs exhibited increased growth factor-, anti-inflammatory-, antioxidant-, homing- and stemness-related gene expression. In the animal experiments, the HSP-induced groups showed significant improvement in hind-limb locomotion, highly expressed neural markers, less intervened fibrotic changes, and improved myelination. In particular, the HO-1-overexpression group was more prominent, controlling the initial inflammatory response with high antioxidant capabilities, suggesting that antioxidation was important to prevent secondary injury. Accordingly, HSPs not only successfully increased the ability of frozen MSCs but also demonstrated excellent neural protection and regeneration capacity in the case of acute SCI. CONCLUSIONS The application of HSP-induced cryopreserved MSCs in first-aid treatment for acute SCI is considered to help early neural sparing and further hind-limb motor function restoration.
Collapse
Affiliation(s)
- Woo Keyoung Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.,BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Wan Hee Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.,BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Oh-Kyeong Kweon
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea. .,BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
27
|
Kim GU, Sung SE, Kang KK, Choi JH, Lee S, Sung M, Yang SY, Kim SK, Kim YI, Lim JH, Seo MS, Lee GW. Therapeutic Potential of Mesenchymal Stem Cells (MSCs) and MSC-Derived Extracellular Vesicles for the Treatment of Spinal Cord Injury. Int J Mol Sci 2021; 22:13672. [PMID: 34948463 PMCID: PMC8703906 DOI: 10.3390/ijms222413672] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a life-threatening condition that leads to permanent disability with partial or complete loss of motor, sensory, and autonomic functions. SCI is usually caused by initial mechanical insult, followed by a cascade of several neuroinflammation and structural changes. For ameliorating the neuroinflammatory cascades, MSC has been regarded as a therapeutic agent. The animal SCI research has demonstrated that MSC can be a valuable therapeutic agent with several growth factors and cytokines that may induce anti-inflammatory and regenerative effects. However, the therapeutic efficacy of MSCs in animal SCI models is inconsistent, and the optimal method of MSCs remains debatable. Moreover, there are several limitations to developing these therapeutic agents for humans. Therefore, identifying novel agents for regenerative medicine is necessary. Extracellular vesicles are a novel source for regenerative medicine; they possess nucleic acids, functional proteins, and bioactive lipids and perform various functions, including damaged tissue repair, immune response regulation, and reduction of inflammation. MSC-derived exosomes have advantages over MSCs, including small dimensions, low immunogenicity, and no need for additional procedures for culture expansion or delivery. Certain studies have demonstrated that MSC-derived extracellular vesicles (EVs), including exosomes, exhibit outstanding chondroprotective and anti-inflammatory effects. Therefore, we reviewed the principles and patho-mechanisms and summarized the research outcomes of MSCs and MSC-derived EVs for SCI, reported to date.
Collapse
Affiliation(s)
- Gang-Un Kim
- Department of Orthopedic Surgery, Hanil General Hospital, 308 Uicheon-ro, Dobong-gu, Seoul 01450, Korea;
| | - Soo-Eun Sung
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Kyung-Ku Kang
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Joo-Hee Choi
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Sijoon Lee
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Minkyoung Sung
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Seung Yun Yang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea;
| | - Seul-Ki Kim
- Efficacy Evaluation Team, Food Science R&D Center, KolmarBNH CO., LTD, 61Heolleungro 8-gil, Seocho-gu, Seoul 06800, Korea;
| | | | - Ju-Hyeon Lim
- New Drug Development Center, Osong Medical Innovation Foundation, Chungbuk 28160, Korea;
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea
| | - Min-Soo Seo
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Gun Woo Lee
- Cellexobio, Co. Ltd., Daegu 42415, Korea;
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea
| |
Collapse
|
28
|
Li H, Yuan F, Du Y, Pan T, Wen W, Li S, Wang L, Lu A. Umbilical cord blood stem cells transplantation in a patient with severe progressive supranuclear palsy: a case report. J Med Case Rep 2021; 15:574. [PMID: 34844635 PMCID: PMC8628425 DOI: 10.1186/s13256-021-03139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/01/2021] [Indexed: 12/05/2022] Open
Abstract
Background Progressive supranuclear palsy is a neurodegenerative condition that worsens over time. Given the lack of targeted treatments, patients with severe progressive supranuclear palsy have very low life expectancy. Case presentation We present a case of a 61-year-old Chinese man with severe progressive supranuclear palsy and treated with umbilical cord blood stem cells transplantation. After the umbilical cord blood stem cells therapy, his neurologic symptoms stopped deteriorating, his muscle rigidity was mildly improved, and he remains alive for more than 8 years. Conclusions Umbilical cord blood stem cells transplantation may be an alternative therapy for patients with severe progressive supranuclear palsy.
Collapse
Affiliation(s)
- Huiping Li
- Department of Neurocritical Care, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Fang Yuan
- Department of Neurocritical Care, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yaming Du
- Department of Neurocritical Care, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Tao Pan
- Department of Neurocritical Care, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Wanxin Wen
- Department of Neurocritical Care, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Shaoxue Li
- Department of Neurocritical Care, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Lixin Wang
- Department of Neurocritical Care, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Aili Lu
- Department of Neurocritical Care, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
29
|
Chung SJ, Lee TY, Lee YH, Baik K, Jung JH, Yoo HS, Shim CJ, Eom H, Hong JY, Kim DJ, Sohn YH, Lee PH. Phase I Trial of Intra-arterial Administration of Autologous Bone Marrow-Derived Mesenchymal Stem Cells in Patients with Multiple System Atrophy. Stem Cells Int 2021; 2021:9886877. [PMID: 34712335 PMCID: PMC8548132 DOI: 10.1155/2021/9886877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/05/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND This study is aimed at investigating the safety and tolerability of the intra-arterial administration of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in patients with multiple system atrophy- (MSA-) cerebellar type (MSA-C). METHODS This was a single-center, open-label phase I clinical trial in patients with MSA-C. A three-stage dose escalation scheme (low-dose, 3.0 × 105 cells/kg; medium-dose, 6.0 × 105 cells/kg; high-dose, 9.0 × 105 cells/kg) was applied to determine the maximum tolerated dose of intra-arterial administration of BM-MSCs based on the no-observed-adverse-effect level derived from the toxicity study. The occurrence of adverse events was evaluated 1 day before and 1, 14, and 28 days after BM-MSC therapy. Additionally, we assessed changes in the Unified MSA Rating Scale (UMSARS) score 3 months after BM-MSC treatment. RESULTS One serious adverse drug reaction (ADR) of leptomeningeal enhancement following the intra-arterial BM-MSC administration occurred in one patient in the low-dose group. The safety review of the Internal Monitoring Committee interpreted this as radiological evidence of the blood-brain barrier permeability for MSCs. No other ADRs were observed in the medium- or high-dose groups. In particular, no ischemic lesions on diffusion-weighted images were observed in any of the study participants. Additionally, the medium- and high-dose groups tended to show a slower increase in UMSARS scores than the low-dose group during the 3-month follow-up. CONCLUSION The present study confirmed that a single intra-arterial administration of autologous BM-MSCs is a safe and promising neuroprotective strategy in patients with MSA-C.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin 16995, Republic of Korea
| | - Tae Yong Lee
- Bioengineering Institute, CORESTEM Inc., Seoul 04763, Republic of Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - KyoungWon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chang Jae Shim
- Bioengineering Institute, CORESTEM Inc., Seoul 04763, Republic of Korea
| | - Hyojin Eom
- Bioengineering Institute, CORESTEM Inc., Seoul 04763, Republic of Korea
| | - Ji-Yeon Hong
- Bioengineering Institute, CORESTEM Inc., Seoul 04763, Republic of Korea
| | - Dong Joon Kim
- Department of Radiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young H. Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
30
|
Application of Mesenchymal Stem Cells in Targeted Delivery to the Brain: Potential and Challenges of the Extracellular Vesicle-Based Approach for Brain Tumor Treatment. Int J Mol Sci 2021; 22:ijms222011187. [PMID: 34681842 PMCID: PMC8538190 DOI: 10.3390/ijms222011187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Treating brain tumors presents enormous challenges, and there are still poor prognoses in both adults and children. Application of novel targets and potential drugs is hindered by the function of the blood-brain barrier, which significantly restricts therapeutic access to the tumor. Mesenchymal stem cells (MSCs) can cross biological barriers, migrate to sites of injuries to exert many healing effects, and be engineered to incorporate different types of cargo, making them an ideal vehicle to transport anti-tumor agents to the central nervous system. Extracellular vesicles (EVs) produced by MSCs (MSC-EVs) have valuable innate properties from parent cells, and are being exploited as cell-free treatments for many neurological diseases. Compared to using MSCs, targeted delivery via MSC-EVs has a better pharmacokinetic profile, yet avoids many critical issues of cell-based systems. As the field of MSC therapeutic applications is quickly expanding, this article aims to give an overall picture for one direction of EV-based targeting of brain tumors, with updates on available techniques, outcomes of experimental models, and critical challenges of this concept.
Collapse
|
31
|
Nakazaki M, Morita T, Lankford KL, Askenase PW, Kocsis JD. Small extracellular vesicles released by infused mesenchymal stromal cells target M2 macrophages and promote TGF-β upregulation, microvascular stabilization and functional recovery in a rodent model of severe spinal cord injury. J Extracell Vesicles 2021; 10:e12137. [PMID: 34478241 PMCID: PMC8408371 DOI: 10.1002/jev2.12137] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Intravenous (IV) infusion of bone marrow-derived mesenchymal stem/stromal cells (MSCs) stabilizes the blood-spinal cord barrier (BSCB) and improves functional recovery in experimental models of spinal cord injury (SCI). Although IV delivered MSCs do not traffic to the injury site, IV delivered small extracellular vesicles (sEVs) derived from MSCs (MSC-sEVs) do and are taken up by a subset of M2 macrophages. To test whether sEVs released by MSCs are responsible for the therapeutic effects of MSCs, we tracked sEVs produced by IV delivered DiR-labelled MSCs (DiR-MSCs) after transplantation into SCI rats. We found that sEVs were released by MSCs in vivo, trafficked to the injury site, associated specifically with M2 macrophages and co-localized with exosome markers. Furthermore, while a single MSC injection was sufficient to improve locomotor recovery, fractionated dosing of MSC-sEVs over 3 days (F-sEVs) was required to achieve similar therapeutic effects. Infusion of F-sEVs mimicked the effects of single dose MSC infusion on multiple parameters including: increased expression of M2 macrophage markers, upregulation of transforming growth factor-beta (TGF-β), TGF-β receptors and tight junction proteins, and reduction in BSCB permeability. These data suggest that release of sEVs by MSCs over time induces a cascade of cellular responses leading to improved functional recovery.
Collapse
Affiliation(s)
- Masahito Nakazaki
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Center for Neuroscience and Regeneration ResearchVA Connecticut Healthcare SystemWest HavenConnecticutUSA
- Department of Neural Regenerative MedicineResearch Institute for Frontier MedicineSapporo Medical University School of MedicineSapporoHokkaidoJapan
| | - Tomonori Morita
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Center for Neuroscience and Regeneration ResearchVA Connecticut Healthcare SystemWest HavenConnecticutUSA
- Department of Neural Regenerative MedicineResearch Institute for Frontier MedicineSapporo Medical University School of MedicineSapporoHokkaidoJapan
| | - Karen L. Lankford
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Center for Neuroscience and Regeneration ResearchVA Connecticut Healthcare SystemWest HavenConnecticutUSA
| | - Philip W Askenase
- Section of Rheumatology, Allergy and Clinical ImmunologyDepartment of Internal MedicineYale University School of MedicineConnecticutUSA
| | - Jeffery D. Kocsis
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Center for Neuroscience and Regeneration ResearchVA Connecticut Healthcare SystemWest HavenConnecticutUSA
| |
Collapse
|
32
|
Sykova E, Cizkova D, Kubinova S. Mesenchymal Stem Cells in Treatment of Spinal Cord Injury and Amyotrophic Lateral Sclerosis. Front Cell Dev Biol 2021; 9:695900. [PMID: 34295897 PMCID: PMC8290345 DOI: 10.3389/fcell.2021.695900] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023] Open
Abstract
Preclinical and clinical studies with various stem cells, their secretomes, and extracellular vesicles (EVs) indicate their use as a promising strategy for the treatment of various diseases and tissue defects, including neurodegenerative diseases such as spinal cord injury (SCI) and amyotrophic lateral sclerosis (ALS). Autologous and allogenic mesenchymal stem cells (MSCs) are so far the best candidates for use in regenerative medicine. Here we review the effects of the implantation of MSCs (progenitors of mesodermal origin) in animal models of SCI and ALS and in clinical studies. MSCs possess multilineage differentiation potential and are easily expandable in vitro. These cells, obtained from bone marrow (BM), adipose tissue, Wharton jelly, or even other tissues, have immunomodulatory and paracrine potential, releasing a number of cytokines and factors which inhibit the proliferation of T cells, B cells, and natural killer cells and modify dendritic cell activity. They are hypoimmunogenic, migrate toward lesion sites, induce better regeneration, preserve perineuronal nets, and stimulate neural plasticity. There is a wide use of MSC systemic application or MSCs seeded on scaffolds and tissue bridges made from various synthetic and natural biomaterials, including human decellularized extracellular matrix (ECM) or nanofibers. The positive effects of MSC implantation have been recorded in animals with SCI lesions and ALS. Moreover, promising effects of autologous as well as allogenic MSCs for the treatment of SCI and ALS were demonstrated in recent clinical studies.
Collapse
Affiliation(s)
- Eva Sykova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dasa Cizkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.,Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Sarka Kubinova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
33
|
Khodabandeh Z, Mehrabani D, Dehghani F, Gashmardi N, Erfanizadeh M, Zare S, Bozorg-Ghalati F. Spinal cord injury repair using mesenchymal stem cells derived from bone marrow in mice: A stereological study. Acta Histochem 2021; 123:151720. [PMID: 34083065 DOI: 10.1016/j.acthis.2021.151720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Transplantation of bone marrow stem cells (BMSCs) has shown to have a vital role in promoting nerve regeneration after SCI. The aim of this study was to investigate the effect of BMSCs transplantation in healing of spinal cord injury (SCI) in mice based on morphologic parameters. Forty two male mice were randomly divided into 3 groups of control with no intervention, experimental SCI without treatment, and experimental SCI transplanted with 2 × 105 BMSCs intravenously. To induce SCI bilaterally, T10 was compressed for 2 min. The animals were sacrificed 3 and 5 weeks after SCI and T7-T11 segments of spinal cord were removed and stained by Giemsa and H&E methods. Stereological assessment estimated the gray and white matter volume, the number of neurons and neuroglia and diameter of central canal. The average amount of gray matter in SCI injury group was significantly lower than control group. An increase in the number of neurons was noted after cell transplantation. The number of neurons in SCI injury group significantly decreased in comparison to the control group. In cell transplantation group, a significant increase in the number of neurons was visible when compared to SCI injury group. The increase in the number of neurons after cell transplantation denotes to the regenerative potential of BMSCs in SCI. These findings can be added to the literature and open a new window when targeting treatment of SCI.
Collapse
Affiliation(s)
- Zahra Khodabandeh
- Stem cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz, Iran; Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB, Canada.
| | - Farzaneh Dehghani
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Mahboobeh Erfanizadeh
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Bozorg-Ghalati
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Bayır Ö, Karagöz T, Alpaslan Pınarlı F, Sarıbaş GS, Özoğul C, Keseroğlu K, Saylam G, Çadallı Tatar E, Karahan S, Öcal B, Korkmaz MH. Impact of fetal brain tissue derived mesenchymal stem cell and fibrin glue on facial nerve crash injury. Turk J Med Sci 2021; 51:1481-1490. [PMID: 33244948 PMCID: PMC8283470 DOI: 10.3906/sag-2004-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 11/26/2020] [Indexed: 01/09/2023] Open
Abstract
Background/aim To evaluate the clinical and histopathological effects of fetal brain tissue derived mesenchymal stem cells (FBTMSC) and fibrin glue (FG) on the facial nerve (FN) regeneration in rats with traumatic FN injury. Materials and methods Twenty-eight Sprague Dawley rats were included in the study and divided into 4 groups. Traumatic FN injury (FP) was created by a surgical clamp compression to the main trunk of left FN in all groups. In the control group (group 1) no treatment was applied, in group 2 (FBTMSC group) 2 × 106 FBTMSC was injected, in group 3 (FG group) only FG was applied, in group 4 (FBTMSC and FG groups) both FBTMSC and FG were applied to the injured section of the nerve. The FN functions were evaluated clinically, immediately after the procedure and at 3rd, 5th, and 8th weeks postoperatively. The FNs of all subjects were excised after the 8th week; then the rats were sacrificed. The presence of stem cells in the injured zone was assessed using bromo-deoxyuridine (BrdU), and apoptosis was determined by the TUNEL method. Results After the damage, total FP was observed in all subjects. Statistically significant functional improvement was observed in group 4 compared to all other groups (P < 0.005). TUNEL-positive cell count was statistically significantly higher in the control group than the other groups (P < 0.001). TUNEL-positive cell count was statistically significantly lower in group 4 than the other groups. The proportion of BrdU-stained cells in group 4 (5%) was higher than group 2 (2%). Conclusion Clinically and histopathologically FBTMSC applied with FG may play a promising role as a regenerative treatment in posttraumatic FP.
Collapse
Affiliation(s)
- Ömer Bayır
- Department of Otolaryngology Head and Neck Surgery, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Tuğba Karagöz
- Department of Otorhinolaryngology and Head and Neck Surgery, Kaman State Hospital, Kırşehir, Turkey
| | | | - Gülistan Sanem Sarıbaş
- Department of Histology and Embryology, Faculty of Medicine, Ahi Evran University, Kırşehir, Turkey
| | - Candan Özoğul
- Department of Histology and Embryology, Faculty of Medicine, University of Kyrenia, Girne, Turkish Republic of Nothern Cyprus
| | - Kemal Keseroğlu
- Department of Otolaryngology Head and Neck Surgery, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Güleser Saylam
- Department of Otolaryngology Head and Neck Surgery, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Emel Çadallı Tatar
- Department of Otolaryngology Head and Neck Surgery, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Sevilay Karahan
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Bülent Öcal
- Department of Otolaryngology Head and Neck Surgery, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Mehmet Hakan Korkmaz
- Department of Otolaryngology Head and Neck Surgery, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
35
|
Yoon HH, Lee HJ, Min J, Kim JH, Park JH, Kim JH, Kim SW, Lee H, Jeon SR. Optimal Ratio of Wnt3a Expression in Human Mesenchymal Stem Cells Promotes Axonal Regeneration in Spinal Cord Injured Rat Model. J Korean Neurosurg Soc 2021; 64:705-715. [PMID: 34044494 PMCID: PMC8435649 DOI: 10.3340/jkns.2021.0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/07/2021] [Indexed: 01/07/2023] Open
Abstract
Objective Through our previous clinical trials, the demonstrated therapeutic effects of MSC in chronic spinal cord injury (SCI) were found to be not sufficient. Therefore, the need to develop stem cell agent with enhanced efficacy is increased. We transplanted enhanced Wnt3asecreting human mesenchymal stem cells (hMSC) into injured spines at 6 weeks after SCI to improve axonal regeneration in a rat model of chronic SCI. We hypothesized that enhanced Wnt3a protein expression could augment neuro-regeneration after SCI. Methods Thirty-six Sprague-Dawley rats were injured using an Infinite Horizon (IH) impactor at the T9-10 vertebrae and separated into five groups : 1) phosphate-buffered saline injection (injury only group, n=7); 2) hMSC transplantation (MSC, n=7); 3) hMSC transfected with pLenti vector (without Wnt3a gene) transplantation (pLenti-MSC, n=7); 4) hMSC transfected with Wnt3a gene transplantation (Wnt3a-MSC, n=7); and 5) hMSC transfected with enhanced Wnt3a gene (1.7 fold Wnt3a mRNA expression) transplantation (1.7 Wnt3a-MSC, n=8). Six weeks after SCI, each 5×105 cells/15 µL at 2 points were injected using stereotactic and microsyringe pump. To evaluate functional recovery from SCI, rats underwent Basso-Beattie-Bresnahan (BBB) locomotor test on the first, second, and third days post-injury and then weekly for 14 weeks. Axonal regeneration was assessed using growth-associated protein 43 (GAP43), microtubule-associated protein 2 (MAP2), and neurofilament (NF) immunostaining. Results Fourteen weeks after injury (8 weeks after transplantation), BBB score of the 1.7 Wnt3a-MSC group (15.0±0.28) was significantly higher than that of the injury only (10.0±0.48), MSC (12.57±0.48), pLenti-MSC (12.42±0.48), and Wnt3a-MSC (13.71±0.61) groups (p<0.05). Immunostaining revealed increased expression of axonal regeneration markers GAP43, MAP2, and NF in the Wnt3a-MSC and 1.7 Wnt3a-MSC groups. Conclusion Our results showed that enhanced gene expression of Wnt3a in hMSC can potentiate axonal regeneration and improve functional recovery in a rat model of chronic SCI.
Collapse
Affiliation(s)
- Hyung Ho Yoon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyang Ju Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Joongkee Min
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Hoon Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Hoon Park
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Hyun Kim
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Heuiran Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Pizzolato C, Gunduz MA, Palipana D, Wu J, Grant G, Hall S, Dennison R, Zafonte RD, Lloyd DG, Teng YD. Non-invasive approaches to functional recovery after spinal cord injury: Therapeutic targets and multimodal device interventions. Exp Neurol 2021; 339:113612. [DOI: 10.1016/j.expneurol.2021.113612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
|
37
|
Magota H, Sasaki M, Kataoka-Sasaki Y, Oka S, Ukai R, Kiyose R, Onodera R, Kocsis JD, Honmou O. Intravenous infusion of mesenchymal stem cells delays disease progression in the SOD1G93A transgenic amyotrophic lateral sclerosis rat model. Brain Res 2021; 1757:147296. [PMID: 33516815 DOI: 10.1016/j.brainres.2021.147296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/20/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
ALS is a devastating neurodegenerative disease with few curative strategies. Both sporadic and familial ALS display common clinical features that show progressive paralysis. The pathogenesis remains unclear, but disruption of the blood-spinal cord barrier (BSCB) may contribute to the degeneration of motor neurons. Thus, restoration of the disrupted BSCB and neuroprotection for degenerating motor neurons could be therapeutic targets. We tested the hypothesis that an intravenous infusion of MSCs would delay disease progression through the preservation of BSCB function and increased expression of a neurotrophic factor, neurturin, in SOD1G93A ALS rats. When the open-field locomotor function was under 16 on the Basso, Beattie, and Bresnahan (BBB) scoring scale, the rats were randomized into two groups; one received an intravenous infusion of MSCs, while the other received vehicle alone. Locomotor function was recorded using BBB scoring and rotarod testing. Histological analyses, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), were performed. The MSC group exhibited reduced deterioration of locomotor activity compared to the vehicle group, which displayed progressive deterioration of hind limb function. We observed the protection of motor neuron loss and preservation of microvasculature using Evans blue leakage and immunohistochemical analyses in the MSC group. Confocal microscopy revealed infused green fluorescent protein+ (GFP+) MSCs in the spinal cord, and the GFP gene was detected by nested PCR. Neurturin expression levels were significantly higher in the MSC group. Thus, restoration of the BSCB and the protection of motor neurons might be contributing mechanisms to delay disease progression in SOD1G93A ALS rats.
Collapse
Affiliation(s)
- Hirotoshi Magota
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan; Tominaga Hospital, Naniwa-ku, Osaka-shi, Osaka 556-0017, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, United States; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, United States.
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Shinichi Oka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Ryo Ukai
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Ryo Kiyose
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan; Tominaga Hospital, Naniwa-ku, Osaka-shi, Osaka 556-0017, Japan
| | - Rie Onodera
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, United States; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, United States
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, United States; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, United States
| |
Collapse
|
38
|
Kajitani T, Endo T, Iwabuchi N, Inoue T, Takahashi Y, Abe T, Niizuma K, Tominaga T. Association of intravenous administration of human Muse cells with deficit amelioration in a rat model of spinal cord injury. J Neurosurg Spine 2021; 34:648-655. [PMID: 33385996 DOI: 10.3171/2020.7.spine20293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Multilineage-differentiating stress-enduring (Muse) cells are pluripotent stem cells, which can be harvested from the bone marrow. After transplantation, Muse cells can migrate to an injured site of the body and exert repair effects. However, it remains unknown whether Muse cell transplantation can be an effective treatment in spinal cord injury (SCI). METHODS The authors used a rat model of thoracic spinal cord contusion injury. For Muse cell transplantation, the clinical product CL2020 containing 300,000 Muse cells was administered intravenously 1 day after midthoracic SCI. Animals were divided into CL2020 (n = 11) and vehicle-treated (n = 15) groups. Behavioral and histological evaluations were conducted over a period of 8 weeks to see whether intravenous CL2020 administration provided therapeutic effects for SCI. The effects of human-selective diphtheria toxin on reversion of the therapeutic effects of CL2020 were also investigated. RESULTS Hindlimb motor function significantly improved after CL2020 transplantations. Importantly, the effects were reverted by the human-selective diphtheria toxin. In immunohistochemical analyses, the cystic cavity formed after the injury was smaller in the CL2020 group. Furthermore, higher numbers of descending 5-hydroxytryptamine (5-HT) fibers were preserved distal to the injury site after CL2020 administration. Eight weeks after the injury, Muse cells in CL2020 were confirmed to differentiate most predominantly into neuronal cells in the injured spinal cord. CONCLUSIONS Following SCI, Muse cells in CL2020 can reach the injured spinal cord after intravenous administration and differentiate into neuronal cells. Muse cells in CL2020 facilitated nerve fiber preservation and exerted therapeutic potential for severe SCI.
Collapse
Affiliation(s)
- Takumi Kajitani
- 1Department of Neurosurgery, Tohoku University Graduate School of Medicine
| | - Toshiki Endo
- 1Department of Neurosurgery, Tohoku University Graduate School of Medicine
- 2Department of Neurosurgery, Sendai Medical Center
| | - Naoya Iwabuchi
- 1Department of Neurosurgery, Tohoku University Graduate School of Medicine
| | - Tomoo Inoue
- 2Department of Neurosurgery, Sendai Medical Center
| | | | - Takatsugu Abe
- 1Department of Neurosurgery, Tohoku University Graduate School of Medicine
| | - Kuniyasu Niizuma
- 1Department of Neurosurgery, Tohoku University Graduate School of Medicine
- 3Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Biomedical Engineering; and
- 4Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Teiji Tominaga
- 1Department of Neurosurgery, Tohoku University Graduate School of Medicine
| |
Collapse
|
39
|
Johnson LDV, Pickard MR, Johnson WEB. The Comparative Effects of Mesenchymal Stem Cell Transplantation Therapy for Spinal Cord Injury in Humans and Animal Models: A Systematic Review and Meta-Analysis. BIOLOGY 2021; 10:biology10030230. [PMID: 33809684 PMCID: PMC8001771 DOI: 10.3390/biology10030230] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
Animal models have been used in preclinical research to examine potential new treatments for spinal cord injury (SCI), including mesenchymal stem cell (MSC) transplantation. MSC transplants have been studied in early human trials. Whether the animal models represent the human studies is unclear. This systematic review and meta-analysis has examined the effects of MSC transplants in human and animal studies. Following searches of PubMed, Clinical Trials and the Cochrane Library, published papers were screened, and data were extracted and analysed. MSC transplantation was associated with significantly improved motor and sensory function in humans, and significantly increased locomotor function in animals. However, there are discrepancies between the studies of human participants and animal models, including timing of MSC transplant post-injury and source of MSCs. Additionally, difficulty in the comparison of functional outcome measures across species limits the predictive nature of the animal research. These findings have been summarised, and recommendations for further research are discussed to better enable the translation of animal models to MSC-based human clinical therapy.
Collapse
Affiliation(s)
- Louis D. V. Johnson
- Chester Medical School, University of Chester, Chester CH1 4BJ, UK
- Correspondence: (L.D.V.J.); (W.E.B.J.); Tel.: +44-7557-353206 (L.D.V.J.); +44-774-5616225 (W.E.B.J.)
| | - Mark R. Pickard
- University Centre Shrewsbury, University of Chester, Shrewsbury SY3 8HQ, UK;
| | - William E. B. Johnson
- Chester Medical School, University of Chester, Chester CH1 4BJ, UK
- University Centre Shrewsbury, University of Chester, Shrewsbury SY3 8HQ, UK;
- Correspondence: (L.D.V.J.); (W.E.B.J.); Tel.: +44-7557-353206 (L.D.V.J.); +44-774-5616225 (W.E.B.J.)
| |
Collapse
|
40
|
Kitamura Y, Kanaya N, Moleirinho S, Du W, Reinshagen C, Attia N, Bronisz A, Revai Lechtich E, Sasaki H, Mora JL, Brastianos PK, Falcone JL, Hofer AM, Franco A, Shah K. Anti-EGFR VHH-armed death receptor ligand-engineered allogeneic stem cells have therapeutic efficacy in diverse brain metastatic breast cancers. SCIENCE ADVANCES 2021; 7:7/10/eabe8671. [PMID: 33658202 PMCID: PMC7929513 DOI: 10.1126/sciadv.abe8671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/19/2021] [Indexed: 05/05/2023]
Abstract
Basal-like breast cancer (BLBC) shows brain metastatic (BM) capability and overexpresses EGFR and death-receptors 4/5 (DR4/5); however, the anatomical location of BM prohibits efficient drug-delivery to these targetable markers. In this study, we developed BLBC-BM mouse models featuring different patterns of BMs and explored the versatility of estem cell (SC)-mediated bi-functional EGFR and DR4/5-targeted treatment in these models. Most BLBC lines demonstrated a high sensitivity to EGFR and DR4/5 bi-targeting therapeutic protein, EVDRL [anti-EGFR VHH (EV) fused to DR ligand (DRL)]. Functional analyses using inhibitors and CRISPR-Cas9 knockouts revealed that the EV domain facilitated in augmenting DR4/5-DRL binding and enhancing DRL-induced apoptosis. EVDRL secreting stem cells alleviated tumor-burden and significantly increased survival in mouse models of residual-tumor after macrometastasis resection, perivascular niche micrometastasis, and leptomeningeal metastasis. This study reports mechanism based simultaneous targeting of EGFR and DR4/5 in BLBC and defines a new treatment paradigm for treatment of BM.
Collapse
Affiliation(s)
- Yohei Kitamura
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nobuhiko Kanaya
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susana Moleirinho
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wanlu Du
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Clemens Reinshagen
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nada Attia
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Agnieszka Bronisz
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Esther Revai Lechtich
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Joana Liliana Mora
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Jefferey L Falcone
- VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, West Roxbury, MA 02132, USA
| | - Aldebaran M Hofer
- VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, West Roxbury, MA 02132, USA
| | - Arnaldo Franco
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
41
|
Honmou O, Yamashita T, Morita T, Oshigiri T, Hirota R, Iyama S, Kato J, Sasaki Y, Ishiai S, Ito YM, Namioka A, Namioka T, Nakazaki M, Kataoka-Sasaki Y, Onodera R, Oka S, Sasaki M, Waxman SG, Kocsis JD. Intravenous infusion of auto serum-expanded autologous mesenchymal stem cells in spinal cord injury patients: 13 case series. Clin Neurol Neurosurg 2021; 203:106565. [PMID: 33667953 DOI: 10.1016/j.clineuro.2021.106565] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/12/2020] [Accepted: 02/16/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Although spinal cord injury (SCI) is a major cause of disability, current therapeutic options remain limited. Recent progress in cellular therapy with mesenchymal stem cells (MSCs) has provided improved function in animal models of SCI. We investigated the safety and feasibility of intravenous infusion of MSCs for SCI patients and assessed functional status after MSC infusion. METHODS In this phase 2 study of intravenous infusion of autologous MSCs cultured in auto-serum, a single infusion of MSCs under Good Manufacturing Practice (GMP) production was delivered in 13 SCI patients. In addition to assessing feasibility and safety, neurological function was assessed using the American Spinal Injury Association Impairment Scale (ASIA), International Standards for Neurological and Functional Classification of Spinal Cord (ISCSCI-92). Ability of daily living was assessed using Spinal Cord Independence Measure (SCIM-III). The study protocol was based on advice provided by the Pharmaceuticals and Medical Devices Agency in Japan. The trial was registered with the Japan Medical Association (JMA-IIA00154). RESULTS No serious adverse events were associated with MSC injection. There was neurologic improvement based on ASIA grade in 12 of the 13 patients at six months post-MSC infusion. Five of six patients classified as ASIA A prior to MSC infusion improved to ASIA B (3/6) or ASIA C (2/6), two ASIA B patients improved to ASIA C (1/2) or ASIA D (1/2), five ASIA C patients improved and reached a functional status of ASIA D (5/5). Notably, improvement from ASIA C to ASIA D was observed one day following MSC infusion for all five patients. Assessment of both ISCSCI-92, SCIM-III also demonstrated functional improvements at six months after MSC infusion, compared to the scores prior to MSC infusion in all patients. CONCLUSION While we emphasize that this study was unblinded, and does not exclude placebo effects or a contribution of endogenous recovery or observer bias, our observations provide evidence supporting the feasibility, safety and functional improvements of infused MSCs into patients with SCI.
Collapse
Affiliation(s)
- Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan; Department of Advanced Regenerative Therapeutics, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan
| | - Tomonori Morita
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan; Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan
| | - Tsutomu Oshigiri
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan; Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan
| | - Ryosuke Hirota
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan; Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan
| | - Satoshi Iyama
- Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan
| | - Junji Kato
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan
| | - Yuichi Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan; Department of Rehabilitation, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan
| | - Sumio Ishiai
- Department of Rehabilitation, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan
| | - Yoichi M Ito
- Biostatistics Division, Hokkaido University Hospital Clinical Research and Medical Innovation Center, Sapporo, Hokkaido, 060-8648, Japan
| | - Ai Namioka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan
| | - Takahiro Namioka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan
| | - Masahito Nakazaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan; Department of Advanced Regenerative Therapeutics, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan
| | - Rie Onodera
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan
| | - Shinichi Oka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan; Department of Advanced Regenerative Therapeutics, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan; Department of Advanced Regenerative Therapeutics, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Hokkaido, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
42
|
Zhu GQ, Jeon SH, Lee KW, Cho HJ, Ha US, Hong SH, Lee JY, Kwon EB, Kim HJ, Lee SM, Kim HY, Kim SW, Bae WJ. Engineered Stem Cells Improve Neurogenic Bladder by Overexpressing SDF-1 in a Pelvic Nerve Injury Rat Model. Cell Transplant 2021; 29:963689720902466. [PMID: 32067480 PMCID: PMC7444235 DOI: 10.1177/0963689720902466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There is still a lack of sufficient research on the mechanism behind neurogenic
bladder (NB) treatment. The aim of this study was to explore the effect of
overexpressed stromal cell-derived factor-1 (SDF-1) secreted by engineered
immortalized mesenchymal stem cells (imMSCs) on the NB. In this study, primary
bone marrow mesenchymal stem cells (BM-MSCs) were transfected into immortalized
upregulated SDF-1-engineered BM-MSCs (imMSCs/eSDF-1+) or immortalized normal SDF-1-engineered BM-MSCs
(imMSCs/eSDF-1−). NB rats induced by bilateral pelvic nerve (PN)
transection were treated with imMSCs/eSDF-1+, imMSCs/eSDF-1−, or sham. After a 4-week treatment, the bladder function was assessed by
cystometry and voiding pattern analysis. The PN and bladder tissues were
evaluated via immunostaining and western blotting analysis. We found that imMSCs/eSDF-1+ expressed higher levels of SDF-1 in vitro and in vivo. The treatment of imMSCs/eSDF-1+ improved NB and evidently stimulated the recovery of bladder wall in NB
rats. The recovery of injured nerve was more effective in the NB+imMSCs/eSDF-1+ group than in other groups. High SDF-1 expression improved the levels of
vascular endothelial growth factor and basic fibroblast growth factor. Apoptosis
was decreased after imMSCs injection, and was detected rarely in the NB+imMSCs/eSDF-1+ group. Injection of imMSCs boosted the expression of neuronal nitric
oxide synthase, p-AKT, and p-ERK in the NB+imMSCs/eSDF-1+ group than in other groups. Our findings demonstrated that overexpression
of SDF-1 induced additional MSC homing to the injured tissue, which improved the
NB by accelerating the restoration of injured nerve in a rat model.
Collapse
Affiliation(s)
- Guan Qun Zhu
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Hwan Jeon
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyu Won Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyuk Jin Cho
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - U-Syn Ha
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hoo Hong
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Youl Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Bi Kwon
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyo-Jin Kim
- Department of Stem Cell Therapy, SL BIGEN, Seongnam, Republic of Korea
| | - Soon Min Lee
- Department of Stem Cell Therapy, SL BIGEN, Seongnam, Republic of Korea
| | - Hey-Yon Kim
- Department of Stem Cell Therapy, SL BIGEN, Seongnam, Republic of Korea
| | - Sea Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
43
|
Mukhamedshina Y, Zhuravleva M, Sergeev M, Zakirova E, Gracheva O, Mukhutdinova D, Rizvanov A. Improving Culture Conditions, Proliferation, and Migration of Porcine Mesenchymal Stem Cells on Spinal Cord Contusion Injury Model in vitro. Cells Tissues Organs 2021; 209:236-247. [PMID: 33508824 DOI: 10.1159/000511865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/22/2020] [Indexed: 11/19/2022] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (AD-MSCs) are promising for cell therapy in spinal cord injury (SCI). The pig is one of the most approximate models of many human diseases, including SCI. In our study, we selected the optimal conditions for the culture of porcine AD-MSCs and developed an in vitro SCI model based on the culture of cells in injured spinal cord extracts (SCE) 3 days and 6 weeks after SCI. We show that Dulbecco's Modified Eagle Medium (DMEM) with 20% serum content, supplemented with a combination of 5 mM L-ascorbate-2-phosphate and nonessential amino acids, stimulated a typical fibroblast-like morphology and high proliferation of porcine AD-MSCs. SCE caused a higher proliferation of porcine AD-MSCs compared with extracts from an intact spinal cord. The optimal proliferating effect was achieved using rostral 3 days SCE, and proliferation was lower in caudal and central SCE. Porcine AD-MSCs migration to the 3 days and 6 weeks SCE was higher than to an intact one and preferred the rostral SCE, avoiding central and caudal SCE. We also studied 13 cytokines contained in SCE but did not observe any definite relationship between some analyte concentrations and a change in the behavior of AD-MSCs.
Collapse
Affiliation(s)
- Yana Mukhamedshina
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation, .,Department of Histology, Cytology, and Embryology, Kazan State Medical University, Kazan, Russian Federation,
| | - Margarita Zhuravleva
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Mikhail Sergeev
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.,Department of Veterinary Surgery, Obstetrics and Small Animal Pathology, Kazan State Academy of Veterinary, Kazan, Russian Federation
| | - Elena Zakirova
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Olga Gracheva
- Department of Therapy and Clinical Diagnostics with Radiology, Kazan State Academy of Veterinary, Kazan, Russian Federation
| | - Dina Mukhutdinova
- Department of Therapy and Clinical Diagnostics with Radiology, Kazan State Academy of Veterinary, Kazan, Russian Federation
| | - Albert Rizvanov
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
44
|
Fiani B, Kondilis A, Soula M, Tao A, Alvi MA. Novel Methods of Necroptosis Inhibition for Spinal Cord Injury Using Translational Research to Limit Secondary Injury and Enhance Endogenous Repair and Regeneration. Neurospine 2021; 18:261-270. [PMID: 33494555 PMCID: PMC8255772 DOI: 10.14245/ns.2040722.361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/02/2021] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injuries (SCIs) pose an immense challenge from a clinical perspective as current treatments and interventions have been found to provide marginal improvements in clinical outcome (with varying degrees of success) particularly in areas of motor and autonomic function. In this review, the pathogenesis of SCI will be described, particularly as it relates to the necroptotic pathway which has been implicated in limiting recovery of SCI via its roles in neuronal cell death, glial scarring, inflammation, and axonal demyelination and degeneration. Major mediators of the necroptotic pathway including receptor-interacting protein kinase 1, receptor-interacting protein kinase 3, and mixed-lineage kinase domain-like will be described in detail regarding their role in facilitating necroptosis. Additionally, due to the rapid accumulation of reactive oxygen species and inflammatory markers, the onset of necroptosis can begin within hours following SCI, thus developing therapeutics that readily cross the blood-brain barrier and inhibit necroptosis during these critical periods of inflammation are imperative in preventing irreversible damage. As such, current therapeutic interventions regarding SCI and targeting of the necroptotic pathway will be explored as will discussion of potential future therapeutics that show promise in minimizing long-term or permanent damage to the spinal cord following severe injury.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, CA, USA
| | - Athanasios Kondilis
- Michigan State University College of Osteopathic Medicine, East Lansing, MI, USA
| | - Marisol Soula
- New York University Grossman School of Medicine, New York, NY, USA
| | - Anthony Tao
- New York University Grossman School of Medicine, New York, NY, USA
| | | |
Collapse
|
45
|
Sadat-Ali M, Al-Dakheel DA, Ahmed A, Al-Turki HA, Al-Omran AS, Acharya S, Al-Bayat MI. Spinal cord injury regeneration using autologous bone marrow-derived neurocytes and rat embryonic stem cells: A comparative study in rats. World J Stem Cells 2020; 12:1591-1602. [PMID: 33505602 PMCID: PMC7789116 DOI: 10.4252/wjsc.v12.i12.1591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/24/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is an important cause of traumatic paralysis and is mainly due to motor vehicle accidents. However, there is no definite treatment for spinal cord damage. AIM To assess the outcome of rat embryonic stem cells (rESC) and autologous bone marrow-derived neurocytes (ABMDN) treatment in iatrogenic SCI created in rats, and to compare the efficacy of the two different cell types. METHODS The study comprised 45 male Wistar rats weighing between 250 and 300 g, which were divided into three groups, the control, rESC and ABMDN groups. The anesthetized animals underwent exposure of the thoracic 8th to lumbar 1st vertebrae. A T10-thoracic 12th vertebrae laminectomy was performed to expose the spinal cord. A drop-weight injury using a 10 g weight from a height of 25 cm onto the exposed spinal cord was conducted. The wound was closed in layers. The urinary bladder was manually evacuated twice daily and after each evacuation Ringer lactate 5 mL/100 g was administered, twice daily after each bladder evacuation for the first 7 postoperative days. On the 10th day, the rats underwent nerve conduction studies and behavioral assessment [Basso, Beattie, Brenham (BBB)] to confirm paraplegia. Rat embryonic stem cells, ABMDN and saline were injected on the 10th day. The animals were euthanized after 8 wk and the spinal cord was isolated, removed and placed in 2% formalin for histopathological analysis to assess the healing of neural tissues at the axonal level. RESULTS All the animals tolerated the procedure well. The BBB scale scoring showed that at the end of the first week no recovery was observed in the groups. Post-injection, there was a strong and significant improvement in rats receiving rESC and ABMDN as compared to the control group based on the BBB scale, and the Train-of-four-Watch SX acceleromyography device exhibited statistically significant (P < 0.0001) regeneration of neural tissue after SCI. Histological evaluation of the spinal cord showed maximum vacuolization and least gliosis in the control group compared to the rESC and ABMDN treated animals. In the ABMDN group, limited vacuolization and more prominent gliosis were observed in all specimens as compared to the control and rESC groups. CONCLUSION This study provided strong evidence to support that transplantation of rESC and ABMDN can improve functional recovery after iatrogenic SCI. The transplanted cells showed a beneficial therapeutic effect when compared to the control group.
Collapse
Affiliation(s)
- Mir Sadat-Ali
- Department of Orthopedic Surgery, Imam Abdulrahman Bin Faisal University and King Fahd Hospital of the University, Dammam 31952, Saudi Arabia.
| | - Dakheel A Al-Dakheel
- Department of Orthopedic Surgery, Imam Abdulrahman Bin Faisal University, AlKhobar 31952, Saudi Arabia
| | - Ayesha Ahmed
- Department of Pathology, Imam Abdulrahman Bin Faisal University, Dammam 31952, Saudi Arabia
| | - Haifa A Al-Turki
- Department of Obstetrics and Gynecology, Imam Abdulrahman Bin Faisal University, Dammam 31142, Saudi Arabia
| | - Abdallah S Al-Omran
- Department of Orthopedic Surgery, Imam Abdulrahman Bin Faisal University and King Fahd Hospital of the University, AlKhobar 31952, Saudi Arabia
| | - Sadananda Acharya
- Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Methal I Al-Bayat
- Department of Pathology, Imam Abdulrahman Bin Faisal University, Dammam 31952, Saudi Arabia
| |
Collapse
|
46
|
Shea GKH, Koljonen PA, Chan YS, Cheung KMC. Prospects of cell replacement therapy for the treatment of degenerative cervical myelopathy. Rev Neurosci 2020; 32:275-287. [PMID: 33661584 DOI: 10.1515/revneuro-2020-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/03/2020] [Indexed: 11/15/2022]
Abstract
Degenerative cervical myelopathy (DCM) presents insidiously during middle-age with deterioration in neurological function. It accounts for the most common cause of non-traumatic spinal cord injury in developed countries and disease prevalence is expected to rise with the aging population. Whilst surgery can prevent further deterioration, biological therapies may be required to restore neurological function in advanced disease. Cell replacement therapy has been inordinately focused on treatment of traumatic spinal cord injury yet holds immense promise in DCM. We build upon this thesis by reviewing the pathophysiology of DCM as revealed by cadaveric and molecular studies. Loss of oligodendrocytes and neurons occurs via apoptosis. The tissue microenvironment in DCM prior to end-stage disease is distinct from that following acute trauma, and in many ways more favourable to receiving exogenous cells. We highlight clinical considerations for cell replacement in DCM such as selection of cell type, timing and method of delivery, as well as biological treatment adjuncts. Critically, disease models often fail to mimic features of human pathology. We discuss directions for translational research towards clinical application.
Collapse
Affiliation(s)
- Graham Ka Hon Shea
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Paul Aarne Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Ying Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kenneth Man Chee Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| |
Collapse
|
47
|
Serra T, Santos F, Coelho M, Silva C, Melo F, Souza A, Primo J, Rodrigues D, Gomez M, Glória J, Ocarino N, Serakides R, Melo E. ω-Conotoxina MVIIC e células-tronco mesenquimais promovem recuperação motora em ratos Wistar após trauma medular agudo. ARQ BRAS MED VET ZOO 2020. [DOI: 10.1590/1678-4162-11875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO O objetivo deste estudo foi avaliar o efeito da ω-conotoxina MVIIC e das células-tronco mesenquimais (CTM) de forma isolada e sua associação nos ratos submetidos ao trauma medular agudo (TMA). Trinta Rattus novergicus, linhagem Wistar, três meses de idade, foram distribuídos igualmente em cinco grupos experimentais: controle negativo (CN), controle positivo (CP), ω-conotoxina MVIIC (MVIIC), células-tronco mesenquimais da medula óssea (CTM-MO) e associação (MVIIC + CTM-MO). O grupo CN foi submetido à laminectomia sem trauma medular, e os grupos CP, MVIIC, CTM-MO e MVIIC + CTM-MO foram submetidos ao trauma medular contusivo. O grupo CP recebeu, uma hora após o TMA, 10μL de PBS estéril, e os grupos MVIIC e MVIIC + CTM-MO receberam 10μL de PBS contendo 20pmol da ω-conotoxina MVIIC, todos por via intratecal. Os grupos CTM-MO e MVIIC + CTM-MO receberam, 24 horas após, 1x106 de CTM via intravenosa. Avaliou-se a recuperação da função locomotora até o sétimo dia pós-trauma. Os animais tratados com MVIIC + CTM-MO obtiveram recuperação motora após o trauma medular agudo (P<0,05). Conclui-se que essa associação apresentou efeito neuroprotetor com melhora na função locomotora em ratos Wistar.
Collapse
Affiliation(s)
- T.L. Serra
- Universidade Federal de Minas Gerais, Brazil
| | - F.E. Santos
- Universidade Federal de Minas Gerais, Brazil
| | | | - C.M.O. Silva
- Pontifícia Universidade Católica de Minas Gerais, Brazil
| | - F.G. Melo
- Universidade Federal de Minas Gerais, Brazil
| | | | | | | | | | - J.R. Glória
- Universidade Federal de Minas Gerais, Brazil
| | | | | | - E.G. Melo
- Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
48
|
Moinuddin FM, Yolcu YU, Wahood W, Siddiqui AM, Chen BK, Alvi MA, Goyal A, Nesbitt JJ, Windebank AJ, Yeh JC, Petrucci K, Bydon M. Early and sustained improvements in motor function in rats after infusion of allogeneic umbilical cord-derived mesenchymal stem cells following spinal cord injury. Spinal Cord 2020; 59:319-327. [PMID: 33139846 DOI: 10.1038/s41393-020-00571-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Animal study. OBJECTIVES Umbilical cord-derived mesenchymal stem cells (UC-MSCs) have recently been shown to hold great therapeutic potential for spinal cord injury (SCI). However, majority of the studies have been done using human cells transplanted into the rat with immunosuppression; this may not represent the outcomes that occur in humans. Herein, we present the therapeutic effect of using rat UC-MSCs (rUC-MSC) without immunosuppression in a rat model of SCI. SETTING Mayo Clinic, Rochester, MN, USA. METHODS Twelve female rats were randomly divided into two groups, control, and rUC-MSC group, and then subjected to a T9 moderate contusion SCI. Next, 2 × 106 rUC-MSCs or ringer-lactate solution were injected through the tail vein at 7 days post injury. Rats were assessed for 14 weeks by an open-field Basso, Beattie, and Bresnahan (BBB) motor score as well as postmortem quantification of axonal sparing/regeneration, cavity volume, and glial scar. RESULTS Animals treated with rUC-MSCs were found to have early and sustained motor improvement (BBB score of 14.6 ± 1.9 compared to 10.1 ± 1.7 in the control group) at 14 weeks post injury (mean difference: 4.55, 95% CI: 2.04 to 7.06; p value < 0.001). Total cavity volume in the injury epicenter was significantly reduced in the rUC-MSC group; control: 33.0% ± 2.1, rUC-MSC: 25.3% ± 3.8 (mean difference: -7.7% (95% CI: -12.3 to -2.98); p value < 0.05). In addition, spinal cords from rats treated with rUC-MSCs were found to have a significantly greater number of myelinated axons, decreased astrogliosis, and reduced glial scar formation compared to control rats. CONCLUSIONS Our study indicates that intravenous injection of allogenic UC-MSCs without immunosuppression exert beneficial effects in subacute SCI and thus could be a useful therapy to improve the functional capacity among patients with SCI.
Collapse
Affiliation(s)
- F M Moinuddin
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Yagiz U Yolcu
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Waseem Wahood
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Mohammed Ali Alvi
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Anshit Goyal
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Mohamad Bydon
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA. .,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
49
|
Intravenous delivery of mesenchymal stem cells protects both white and gray matter in spinal cord ischemia. Brain Res 2020; 1747:147040. [DOI: 10.1016/j.brainres.2020.147040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
|
50
|
Babajani A, Soltani P, Jamshidi E, Farjoo MH, Niknejad H. Recent Advances on Drug-Loaded Mesenchymal Stem Cells With Anti-neoplastic Agents for Targeted Treatment of Cancer. Front Bioeng Biotechnol 2020; 8:748. [PMID: 32793565 PMCID: PMC7390947 DOI: 10.3389/fbioe.2020.00748] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs), as an undifferentiated group of adult multipotent cells, have remarkable antitumor features that bring them up as a novel choice to treat cancers. MSCs are capable of altering the behavior of cells in the tumor microenvironment, inducing an anti-inflammatory effect in tumor cells, inhibiting tumor angiogenesis, and preventing metastasis. Besides, MSCs can induce apoptosis and inhibit the proliferation of tumor cells. The ability of MSCs to be loaded with chemotherapeutic drugs and release them in the site of primary and metastatic neoplasms makes them a preferable choice as targeted drug delivery procedure. Targeted drug delivery minimizes unexpected side effects of chemotherapeutic drugs and improves clinical outcomes. This review focuses on recent advances on innate antineoplastic features of MSCs and the effect of chemotherapeutic drugs on viability, proliferation, and the regenerative capacity of various kinds of MSCs. It also discusses the efficacy and mechanisms of drug loading and releasing procedures along with in vivo and in vitro preclinical outcomes of antineoplastic effects of primed MSCs for clinical prospection.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Soltani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|