1
|
Feng J, Lu Y, Wu H, Ma W, Zhang Y, Guo N. Knockdown of TSP-4 alleviates MI/RI-induced myocardial injury and improves brain inflammation by enhancing blood-brain barrier stability. Hum Mol Genet 2025; 34:934-944. [PMID: 40156906 DOI: 10.1093/hmg/ddaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
Myocardial ischemia-reperfusion injury (MI/RI) not only affects cardiac function but also has significant implications for neurological health, potentially leading to cognitive and behavioral impairments. At present, the regulatory role of thrombospondin-4 (TSP-4) in MI/RI has not been reported. A MI/RI mouse model was constructed, and primary cardiomyocytes were isolated. An MI/RI in vitro cell model was constructed using hypoxia/reoxygenation (H/R)-induced H9c2 cells. Haematoxylin and eosin and Masson staining were performed to observe morphological differentiation and fibrosis in myocardial tissues. Evans blue staining was used to analyse blood-brain barrier (BBB) permeability. Behavioural experiments were conducted to assess the learning and cognitive functions of mice. The results showed that the expression of TSP-4 was significantly increased in the blood of patients with ischemic cardiomyopathy and in the myocardial tissue of MI/RI mice. Functional studies showed that TSP knockdown alleviated H/R-induced H9c2 cell injury, including inflammation and oxidative stress. Importantly, interference with TSP-4 alleviated myocardial dysfunction in MI/RI mice. Mechanistically, by improving BBB stability, TSP-4 knockdown alleviated neuronal injury and the inflammatory response in mice induced by MI/RI. Further research found that silencing TSP-4 alleviated cognitive impairment and improved learning in MI/RI mice. Knockdown of TSP-4 improved MI/RI-induced functional cardiomyocyte injury. In addition, by enhancing BBB stability, TSP-4 silencing alleviated MI/RI-induced neurological injury and cognitive impairment in mice.
Collapse
Affiliation(s)
- Jiahao Feng
- The First Affiliated Hospital of Xi'an Jiaotong University, Department of Cardiology, No. 277, Yanta West Road, Yanta District, Xi'an, Shaanxi 710061, China
| | - Yanfeng Lu
- The First Affiliated Hospital of Xi'an Jiaotong University, Department of Cardiology, No. 277, Yanta West Road, Yanta District, Xi'an, Shaanxi 710061, China
| | - Haoyu Wu
- The First Affiliated Hospital of Xi'an Jiaotong University, Department of Cardiology, No. 277, Yanta West Road, Yanta District, Xi'an, Shaanxi 710061, China
| | - Wangge Ma
- The First Affiliated Hospital of Xi'an Jiaotong University, Department of Cardiology, No. 277, Yanta West Road, Yanta District, Xi'an, Shaanxi 710061, China
| | - Yong Zhang
- The First Affiliated Hospital of Xi'an Jiaotong University, Department of Cardiology, No. 277, Yanta West Road, Yanta District, Xi'an, Shaanxi 710061, China
| | - Ning Guo
- The First Affiliated Hospital of Xi'an Jiaotong University, Department of Cardiology, No. 277, Yanta West Road, Yanta District, Xi'an, Shaanxi 710061, China
| |
Collapse
|
2
|
Ho YS, Cheng WY, Lai MSL, Lau CF, Wong GTC, Yeung WF, Chang RCC. Postoperative Electroacupuncture Boosts Cognitive Function Recovery after Laparotomy in Mice. Biomolecules 2024; 14:1274. [PMID: 39456207 PMCID: PMC11506768 DOI: 10.3390/biom14101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication that affects memory, executive function, and processing speed postoperatively. The pathogenesis of POCD is linked to excessive neuroinflammation and pre-existing Alzheimer's disease (AD) pathology. Previous studies have shown that acupuncture improves cognition in the early phase of POCD. However, POCD can last for longer periods (up to weeks and years). The long-term effects of acupuncture are unknown. In this study, we hypothesized that electroacupuncture (EA) could reduce inflammation and cognitive dysfunction induced by laparotomy over a longer period. We characterized the effects of postoperative EA on cognitive changes and investigated the underlying molecular mechanisms in mice. Laparotomy was performed in 3-month-old mice followed by daily EA treatment for 2 weeks. Our data indicated that laparotomy induced prolonged impairment in memory and executive functions, which were mitigated by postoperative EA. EA also reduced tau phosphorylation and suppressed the activation of tau-related kinases and glia, with effects comparable to ibuprofen. These findings demonstrate the beneficial effects of EA in a mouse model of POCD, suggesting that EA's ability to suppress neuroinflammation may contribute to its protective effects. In conclusion, EA may be a viable non-pharmacological intervention for managing POCD in different phases of the medical condition.
Collapse
Affiliation(s)
- Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (M.S.-L.L.); (C.-F.L.); (W.-F.Y.)
| | - Wai-Yin Cheng
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China;
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Michael Siu-Lun Lai
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (M.S.-L.L.); (C.-F.L.); (W.-F.Y.)
| | - Chi-Fai Lau
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (M.S.-L.L.); (C.-F.L.); (W.-F.Y.)
| | - Gordon Tin-Chun Wong
- Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China;
| | - Wing-Fai Yeung
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (M.S.-L.L.); (C.-F.L.); (W.-F.Y.)
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
3
|
Yang W, Yu J, Wang H, He J, Pei R. Relationship between high-mobility group box-l and cognitive impairments induced by myocardial ischemia-reperfusion in elderly rats. Exp Gerontol 2024; 195:112540. [PMID: 39122228 DOI: 10.1016/j.exger.2024.112540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Myocardial ischemia-reperfusion (MI/R) can lead to structural and functional abnormalities in the hippocampal neurons of the brain. High-mobility group box-l (HMGB1) is implicated in the activation of immune cells and the stimulation of inflammatory responses. However, the specific role of HMGB1 in cognitive impairment induced by MI/R in elderly rats has yet to be elucidated. METHODS Elderly rats underwent surgical procedures to induce MI/R. To evaluate the learning and memory abilities of these rats, a water maze test and a new-object recognition test were administered. Nissl staining was utilised to examine hippocampal neuron damage. Enzyme-linked immunosorbent assay, western blotting, and real-time quantitative polymerase chain reaction (RT-qPCR) analyses were conducted to measure the expression levels of HMGB1, inflammatory cytokines, and molecular pathways. RESULTS The study found that MI/R induced cognitive impairment in elderly rats. There was an observed increase in serum HMGB1 levels, along with elevated concentrations of pro-inflammatory cytokines in the plasma and hippocampus, accompanied by a decrease in anti-inflammatory cytokines. Moreover, substantial damage was evident in the hippocampal neurons of rats exposed to MI/R. In the brains of these rats, there was an increased expression of HMGB1, the receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR4), phosphorylated p65, interleukin-1β (IL-1β), IL-6, IL-23, tumour necrosis factor-α (TNF-α), caspase-3, and Bax. In contrast, the expression of B-cell lymphoma 2 was decreased. The RT-qPCR analyses indicated elevated levels of HMGB1, RAGE, TLR4, IL-1β, IL-6, IL-23, TNF-α, caspase-3, and Bax mRNA. CONCLUSION The increased concentration of serum and hippocampal inflammatory factors in the brains of elderly rats subjected to MI/R suggests that cognitive impairment may be induced through the activation of the HMGB1/TLR4/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Wenqu Yang
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China.
| | - Jing Yu
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Hui Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Jiandong He
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Ruomeng Pei
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| |
Collapse
|
4
|
Peng Y, Wei X, Sun L, Wang K, Zhou J. Electroacupuncture and Transcutaneous Electrical Acupoint Stimulation for Perioperative Neurocognitive Disorder in Older Patients Undergoing Cardiac Surgery: Protocol for Systematic Review and Meta-Analysis. JMIR Res Protoc 2024; 13:e55996. [PMID: 39208417 PMCID: PMC11393506 DOI: 10.2196/55996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/06/2024] [Accepted: 07/07/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Perioperative neurocognitive disorder (PND) is a critical concern for older patients undergoing cardiac surgery, impacting cognitive function and quality of life. Electroacupuncture and transcutaneous electrical acupoint stimulation (TEAS) hold promise for mitigating PND. This protocol outlines a systematic review and meta-analysis to thoroughly assess the efficacy of electroacupuncture and TEAS in older patients undergoing cardiac surgery with PND, providing up-to-date evidence for PND prevention and treatment. OBJECTIVE This study aimed to thoroughly assess the efficacy of electroacupuncture and TEAS in older patients undergoing cardiac surgery with PND, providing up-to-date evidence for PND prevention and treatment. METHODS A comprehensive and systematic approach will be used to identify eligible studies from a diverse range of electronic databases, including 9 major sources such as PubMed (NLM) and Cochrane (Wiley), as well as 2 clinical trial registration websites. These studies will focus on investigating the effects of electroacupuncture and TEAS on PND in older patients undergoing cardiac surgery. The study selection will adhere to the criteria outlined in the patient, intervention, comparison, outcome, and studies (PICOS) format. Data extraction will be carried out by 2 independent researchers (YP and LS), using established tools to evaluate the risk of bias. The primary outcome will be PND incidence, with secondary outcomes including Mini Mental State Examination scores, neuron-specific enolase, S100β, interleukin-1β, interleukin-6, tumor necrosis factor-α, time to first flatus, first defecation, bowel sound recovery, and hospitalization duration to be selectively reported. Adverse events linked to acupuncture, such as bleeding, needle site pain, and local reactions, rather than serious adverse events, will also be considered. Meta-analysis will be performed using appropriate statistical methods to assess the overall effect of electroacupuncture and TEAS on PND prevention, treatment, or other relevant outcomes. The Cochrane Collaboration Risk of Bias tool will be used for assessment, and data synthesis will be executed using the RevMan 5.4 software (Cochrane). RESULTS We plan to summarize the eligible studies through the use of a PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart. The findings will be showcased in the form of a summary table of evidence. Figures and forest plots will be used to illustrate the outcomes of the meta-analysis. CONCLUSIONS The impacts of electroacupuncture and TEAS interventions on PND in older patients undergoing cardiac surgery have not yet been established. This protocol addresses a critical gap by thoroughly assessing electroacupuncture and TEAS for PND in older patients undergoing cardiac surgery, enhancing understanding of nonpharmacological interventions, and guiding future research and clinical practices in this field. Its strength lies in rigorous methodology, including comprehensive search strategies, independent review processes, and thorough assessments of the risk of bias. TRIAL REGISTRATION PROSPERO CRD42023411927; https://tinyurl.com/39xdz6jb. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/55996.
Collapse
Affiliation(s)
- Yanbin Peng
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuqiang Wei
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linxi Sun
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Wang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Office of National Clinical Research Base of TCM, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Zhou
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Office of National Clinical Research Base of TCM, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Zhao L, Guo Y, Zhou X, Mao W, Zhu H, Chen L, Liu X, Zhang L, Xie Y, Li L. The research progress of perioperative non-pharmacological interventions on postoperative cognitive dysfunction: a narrative review. Front Neurol 2024; 15:1369821. [PMID: 38751891 PMCID: PMC11094646 DOI: 10.3389/fneur.2024.1369821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common neurological complication in elderly patients after surgery and general anesthesia. The occurrence of POCD seriously affects the postoperative recovery of patients, and leads to prolonged hospital stay, reduced quality of life, increased medical costs, and even higher mortality. There is no definite and effective drug treatment for POCD. More evidence shows that perioperative non-pharmacological intervention can improve postoperative cognitive function and reduce the incidence of POCD. Therefore, our studies summarize the current non-pharmacological interventions of POCD from the aspects of cognitive training, physical activity, transcutaneous electrical acupoint stimulation, noninvasive brain stimulation, non-pharmacological sleep improvement, music therapy, environment, and multimodal combination Interventions, to provide more data for clinical application and research.
Collapse
Affiliation(s)
- Li Zhao
- Department of Anesthesiology, The Second Clinical Medical College, North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Yiping Guo
- School of Humanities and Management, Key Laboratory for Quality of Life and Psychological Assessment and Intervention, Guangdong Medical University, Dongguan, China
- Nanchong Center for Disease Control and Prevention, Nanchong, China
| | - Xuelei Zhou
- Department of Anesthesiology, The Second Clinical Medical College, North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Wei Mao
- Department of Anesthesiology, The Second Clinical Medical College, North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Hongyu Zhu
- Department of Anesthesiology, The Second Clinical Medical College, North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Linlin Chen
- Department of Anesthesiology, The Second Clinical Medical College, North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Xianchun Liu
- Department of Anesthesiology, The Second Clinical Medical College, North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Longyi Zhang
- Department of Anesthesiology, The Second Clinical Medical College, North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Ying Xie
- Department of Anesthesiology, The Second Clinical Medical College, North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Linji Li
- Department of Anesthesiology, The Second Clinical Medical College, North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| |
Collapse
|
6
|
Zhao W, Zou W. Effects of electroacupuncture on postoperative cognitive dysfunction and its underlying mechanisms: a literature review of rodent studies. Front Aging Neurosci 2024; 16:1384075. [PMID: 38596595 PMCID: PMC11002135 DOI: 10.3389/fnagi.2024.1384075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
With the aging of the population, the health of the elderly has become increasingly important. Postoperative cognitive dysfunction (POCD) is a common neurological complication in elderly patients following general anesthesia or surgery. It is characterized by cognitive decline that may persist for weeks, months, or even longer. Electroacupuncture (EA), a novel therapy that combines physical nerve stimulation with acupuncture treatment from traditional Chinese medicine, holds potential as a therapeutic intervention for preventing and treating POCD, particularly in elderly patients. Although the beneficial effects of EA on POCD have been explored in preclinical and clinical studies, the reliability of EA is limited by methodological shortcomings, and the underlying mechanisms remain largely unexplored. Therefore, we have synthesized existing evidence and proposed potential biological mechanisms underlying the effects of EA on neuroinflammation, oxidative stress, autophagy, the microbiota-gut-brain axis, and epigenetic modification. This review summarizes recent advances in EA and POCD, provides a theoretical foundation, explores potential molecular mechanisms for the prevention and treatment of POCD, and offers a basis for conducting relevant clinical trials.
Collapse
Affiliation(s)
- Wenbo Zhao
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Chang H, Chen E, Zhu T, Liu J, Chen C. Communication Regarding the Myocardial Ischemia/Reperfusion and Cognitive Impairment: A Narrative Literature Review. J Alzheimers Dis 2024; 97:1545-1570. [PMID: 38277294 PMCID: PMC10894588 DOI: 10.3233/jad-230886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/28/2024]
Abstract
Coronary artery disease is a prevalent ischemic disease that results in insufficient blood supply to the heart muscle due to narrowing or occlusion of the coronary arteries. Various reperfusion strategies, including pharmacological thrombolysis and percutaneous coronary intervention, have been developed to enhance blood flow restoration. However, these interventions can lead to myocardial ischemia/reperfusion injury (MI/RI), which can cause unpredictable complications. Recent research has highlighted a compelling association between MI/RI and cognitive function, revealing pathophysiological mechanisms that may explain altered brain cognition. Manifestations in the brain following MI/RI exhibit pathological features resembling those observed in Alzheimer's disease (AD), implying a potential link between MI/RI and the development of AD. The pro-inflammatory state following MI/RI may induce neuroinflammation via systemic inflammation, while impaired cardiac function can result in cerebral under-perfusion. This review delves into the role of extracellular vesicles in transporting deleterious substances from the heart to the brain during conditions of MI/RI, potentially contributing to impaired cognition. Addressing the cognitive consequence of MI/RI, the review also emphasizes potential neuroprotective interventions and pharmacological treatments within the MI/RI model. In conclusion, the review underscores the significant impact of MI/RI on cognitive function, summarizes potential mechanisms of cardio-cerebral communication in the context of MI/RI, and offers ideas and insights for the prevention and treatment of cognitive dysfunction following MI/RI.
Collapse
Affiliation(s)
- Haiqing Chang
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Erya Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Zhang J, Cairen Z, Shi L, Zhang M, Yang M, Wang Y, Lu Z. Acupuncture-related techniques for postoperative cognitive complications: a systemic review and meta-analysis. Perioper Med (Lond) 2023; 12:14. [PMID: 37138357 PMCID: PMC10155419 DOI: 10.1186/s13741-023-00303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Postoperative cognitive complications are major challenges for postoperative recovery. Acupuncture-related techniques have been used for treating neurocognitive dysfunctions. However, whether they help to prevent postoperative cognitive complicationss remains unclear. We intend to evaluate the effect of acupuncture-related techniques on the incidence of postoperative cognitive complications (PCC) in patients undergoing surgery under general anesthesia. METHODS Based on PRISMA guidelines, a search of PubMed, EMBASE, Web of Science, and the Cochrane Central Register of Controlled Trials and ClinicalTrials.gov was performed to identify eligible trials published from inception to June 6, 2021. The search was performed in June 2021. The inclusion criteria were prospective, randomized, controlled clinical trials that compared acupuncture-related techniques with other techniques or non-acupuncture treatment in patients undergoing surgery under general anesthesia. Pooled odds ratios (ORs), 95% CIs, and P values were estimated for end points using fixed and random effects statistical models. RESULTS The analysis included 12 studies with 1058 patients. Compared with patients not receiving acupuncture, patients treated with acupuncture-related techniques had a lower incidence of PCCs (OR, 0.44; 95% CI, 0.33 to 0.59; P < 0.001; n = 968) and lower levels of biomarkers, including IL-6, TNF-α, and S100β. Acupuncture with needles and without needles showed similar effects on the prevention of PCCs. The effects of acupuncture-related techniques on PCCs were observed in both English and non-English articles. Subgroup analyses showed that both agitation and/or delirium (OR, 0.51; 95% CI, 0.34 to 0.76; P < 0.001; n = 490) and delayed cognitive recovery (OR, 0.33; 95% CI, 0.21 to 0.51; P < 0.001; n = 478) were reduced after treatment with acupuncture-related techniques. In adult studies evaluating MMSE scores, the scores were not different between groups (SMD, - 0.71; 95% CI, - 1.72 to 0.3; P = 0.17; n = 441). CONCLUSIONS Acupuncture-related techniques, including needle techniques and electrical techniques, are associated with fewer postoperative cognitive complications, suggesting that acupuncture could be considered a potential option in the perioperative setting. Additional research is needed to develop higher-quality evidence and optimal regimens. TRIAL REGISTRATION PROSPERO (CRD42021258378).
Collapse
Affiliation(s)
- Junbao Zhang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhuoma Cairen
- Department of Anesthesiology, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, China
| | - Liwen Shi
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Minjuan Zhang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Manping Yang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yun Wang
- Department of Anesthesiology, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, China
| | - Zhihong Lu
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
9
|
Li X, Deng X, Huang Z, Kowark A, Coburn M, Zhang G, Duan X. Relationship between Heart Rate Variability and Postoperative Cognitive Dysfunction in Elderly Patients. Am J Health Behav 2023; 47:65-74. [PMID: 36945090 DOI: 10.5993/ajhb.47.1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Objectives: Postoperative cognitive dysfunction (POCD) is objectively measurable after anesthesia and surgery. Lower heart rate variability (HRV) is associated with poorer cognitive performance, but the relationship between HRV and POCD remains unclear. Methods: Elderly patients who underwent total hip replacement under general anesthesia from the Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University were enrolled. Neuropsychological tests, standard deviation of the interbeat interval (SDNN, a parameter of HRV), and plasma concentrations of glial cell line-derived neurotrophic factors (GDNF) were performed one day before (T-1) and 7 days after (T7) surgery. Results: POCD occurred in 35% of patients on 7 days after surgery. Lower SDNN(T7) (OR=.91) and longer surgery time (OR=1.33) were associated with POCD. Compared with patients without POCD, there was higher variation SDNN (Δ SDNN) and plasma GDNF (ΔGDNF) in those with POCD from T-1 to T7 period. ΔGDNF is positively correlated with ΔSDNN (r = .61, p<.001). Conclusions: Lower SDNN (T7) was associated with POCD and might be used as a warning indicator for the risk of POCD.
Collapse
Affiliation(s)
- Xuelian Li
- Associate Professor, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Department of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Xiren Deng
- Associate Professor, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Department of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Zhiwei Huang
- Professor, School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Ana Kowark
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Mark Coburn
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Guanpeng Zhang
- Department of Electrocardiogram, The Affiliated Hospital of Southwest Medical University, Luzhou, China;,
| | - Xiaoxia Duan
- Associate Professor, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Department of Anesthesiology, Southwest Medical University, Luzhou, China;,
| |
Collapse
|
10
|
Traub J, Frey A, Störk S. Chronic Neuroinflammation and Cognitive Decline in Patients with Cardiac Disease: Evidence, Relevance, and Therapeutic Implications. Life (Basel) 2023; 13:life13020329. [PMID: 36836686 PMCID: PMC9962280 DOI: 10.3390/life13020329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Acute and chronic cardiac disorders predispose to alterations in cognitive performance, ranging from mild cognitive impairment to overt dementia. Although this association is well-established, the factors inducing and accelerating cognitive decline beyond ageing and the intricate causal pathways and multilateral interdependencies involved remain poorly understood. Dysregulated and persistent inflammatory processes have been implicated as potentially causal mediators of the adverse consequences on brain function in patients with cardiac disease. Recent advances in positron emission tomography disclosed an enhanced level of neuroinflammation of cortical and subcortical brain regions as an important correlate of altered cognition in these patients. In preclinical and clinical investigations, the thereby involved domains and cell types of the brain are gradually better characterized. Microglia, resident myeloid cells of the central nervous system, appear to be of particular importance, as they are extremely sensitive to even subtle pathological alterations affecting their complex interplay with neighboring astrocytes, oligodendrocytes, infiltrating myeloid cells, and lymphocytes. Here, we review the current evidence linking cognitive impairment and chronic neuroinflammation in patients with various selected cardiac disorders including the aspect of chronic neuroinflammation as a potentially druggable target.
Collapse
Affiliation(s)
- Jan Traub
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University and University Hospital Würzburg, 97078 Würzburg, Germany
- Correspondence: ; Tel.: +4993120139216
| | - Anna Frey
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University and University Hospital Würzburg, 97078 Würzburg, Germany
| | - Stefan Störk
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University and University Hospital Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
11
|
Comparative Study of Different Acupoints for Treating Acute Myocardial Ischemia in Mice. J Cardiovasc Transl Res 2023:10.1007/s12265-022-10346-6. [PMID: 36689154 DOI: 10.1007/s12265-022-10346-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/09/2022] [Indexed: 01/24/2023]
Abstract
Acupuncture point specificity has been recognized as a key scientific issue in traditional Chinese medicine (TCM), but there is limited clinical trial or animal study to verify the characteristics of PC6, BL15, and ST36 in the protection from myocardial injury. We aimed to compare the effects among these three acupoints on the acute myocardial infarction mice model and to explore possible mechanisms for the first time. We found that PC6 is the most appropriate acupoint to deliver efficacy and safety to treat acute MI in mice. BL15 stimulation improved the systolic function, but increased the risk of arrhythmia. ST36 only slightly attenuated systolic function and had no effect on arrhythmia during MI. RNA profiles of skin tissue in local acupoints demonstrated that the most altered DEGs and related pathways may partly support its best effects of PC6 treatment on MI injury, and support the observed phenomenon of the acupoint specificity.
Collapse
|
12
|
Zhang Z, Chen L, Guo Y, Li D, Zhang J, Liu L, Fan W, Guo T, Qin S, Zhao Y, Xu Z, Chen Z. The neuroprotective and neural circuit mechanisms of acupoint stimulation for cognitive impairment. Chin Med 2023; 18:8. [PMID: 36670425 PMCID: PMC9863122 DOI: 10.1186/s13020-023-00707-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Cognitive impairment is a prevalent neurological disorder that burdens families and the healthcare system. Current conventional therapies for cognitive impairment, such as cholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists, are unable to completely stop or reverse the progression of the disease. Also, these medicines may cause serious problems with the digestive system, cardiovascular system, and sleep. Clinically, stimulation of acupoints has the potential to ameliorate the common symptoms of a variety of cognitive disorders, such as memory deficit, language dysfunction, executive dysfunction, reduced ability to live independently, etc. There are common acupoint stimulation mechanisms for treating various types of cognitive impairment, but few systematic analyses of the underlying mechanisms in this domain have been performed. This study comprehensively reviewed the basic research from the last 20 years and found that acupoint stimulation can effectively improve the spatial learning and memory of animals. The common mechanism may be that acupoint stimulation protects hippocampal neurons by preventing apoptosis and scavenging toxic proteins. Additionally, acupoint stimulation has antioxidant and anti-inflammatory effects, promoting neural regeneration, regulating synaptic plasticity, and normalizing neural circuits by restoring brain functional activity and connectivity. Acupoint stimulation also inhibits the production of amyloid β-peptide and the phosphorylation of Tau protein, suggesting that it may protect neurons by promoting correct protein folding and regulating the degradation of toxic proteins via the autophagy-lysosomal pathway. However, the benefits of acupoint stimulation still need to be further explored in more high-quality studies in the future.
Collapse
Affiliation(s)
- Zichen Zhang
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Liuyi Chen
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.257143.60000 0004 1772 1285First Clinical College, Hubei University of Chinese Medicine, Wuhan, 430065 People’s Republic of China
| | - Yi Guo
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| | - Dan Li
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| | - Jingyu Zhang
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Ling Liu
- grid.257143.60000 0004 1772 1285First Clinical College, Hubei University of Chinese Medicine, Wuhan, 430065 People’s Republic of China
| | - Wen Fan
- grid.412879.10000 0004 0374 1074Department of Rehabilitation Physical Therapy Course, Faculty of Health Science, Suzuka University of Medical Science, Suzuka City, 5100293 Japan
| | - Tao Guo
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Siru Qin
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Yadan Zhao
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Zhifang Xu
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| | - Zelin Chen
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| |
Collapse
|
13
|
Zeng R, Lai F, Huang M, Zhu D, Chen B, Tao L, Huang W, Lai C, Ding B. Feasibility of electroacupuncture at Baihui (GV20) and Zusanli (ST36) on survival with a favorable neurological outcome in patients with postcardiac arrest syndrome after in-hospital cardiac arrest: study protocol for a pilot randomized controlled trial. Pilot Feasibility Stud 2023; 9:8. [PMID: 36639647 PMCID: PMC9837931 DOI: 10.1186/s40814-023-01239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND At present, even the first-line medication epinephrine still shows no evidence of a favourable neurological outcome in patients with sudden cardiac arrest (SCA). The high mortality of patients with postcardiac arrest syndrome (PCAS) can be attributed to brain injury, myocardial dysfunction, systemic ischaemia/reperfusion response, and persistent precipitating pathology. Targeted temperature management, the only clinically proven method in the treatment of PCAS, is still associated with a series of problems that have not been completely resolved. Acupuncture is a crucial therapy in traditional Chinese medicine. On the basis of the results of previous studies, we hypothesize that electroacupuncture (EA) might provide therapeutic benefits in the treatment of PCAS. This study will explore the feasibility of EA on SCA patients. METHODS This is a prospective pilot, randomized controlled clinical trial. Eligible patients with PCAS after in-hospital cardiac arrest (IHCA) admitted to our department will be randomly allocated to the control group or the EA group. Both groups will receive standard therapy according to American Heart Association guidelines for cardiopulmonary resuscitation. However, the EA group will also receive acupuncture at the Baihui acupoint (GV20) and Zusanli acupoint (ST36) with EA stimulation for 30 min using a dense-dispersed wave at frequencies of 20 and 100 Hz, a current intensity of less than 10 mA, and a pulse width of 0.5 ms. EA treatment will be administered for up to 14 days (until either discharge or death). The primary endpoint is survival with a favourable neurological outcome. The secondary endpoints are neurological scores, cardiac function parameters, and other clinical parameters, including Sequential Organ Failure Assessment (SOFA) scores and Acute Physiology and Chronic Health Evaluation (APACHE) II scores, on days 0 to 28. DISCUSSION This study will provide crucial clinical evidence on the efficacy of EA in PCAS when used as an adjunctive treatment with AHA standard therapy. TRIAL REGISTRATION chictr.org.cn : ChiCTR2000040040. Registered on 19 November 2020. Retrospectively registered. http://www.chictr.org.cn/ .
Collapse
Affiliation(s)
- Ruifeng Zeng
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120 Guangdong China ,grid.413402.00000 0004 6068 0570Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120 Guangdong China
| | - Fang Lai
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120 Guangdong China ,grid.413402.00000 0004 6068 0570Fangcun Branch Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510145 Guangdong China
| | - Manhua Huang
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120 Guangdong China ,grid.413402.00000 0004 6068 0570Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120 Guangdong China
| | - Decai Zhu
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120 Guangdong China ,grid.413402.00000 0004 6068 0570Fangcun Branch Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510145 Guangdong China
| | - Baijian Chen
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120 Guangdong China ,grid.413402.00000 0004 6068 0570Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120 Guangdong China
| | - Lanting Tao
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120 Guangdong China ,grid.413402.00000 0004 6068 0570Ersha Branch Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510105 Guangdong China
| | - Wei Huang
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120 Guangdong China ,grid.413402.00000 0004 6068 0570Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120 Guangdong China
| | - Chengzhi Lai
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120 Guangdong China ,grid.413402.00000 0004 6068 0570Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120 Guangdong China
| | - Banghan Ding
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120 Guangdong China ,grid.413402.00000 0004 6068 0570Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120 Guangdong China
| |
Collapse
|
14
|
Li S, Jiang H, Liu W, Yin Y, Yin C, Chen H, Du Y, Zhao Q, Zhang Y, Li C. Transcutaneous electrical acupoint stimulation for the prevention of perioperative neurocognitive disorders in geriatric patients: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2022; 101:e32329. [PMID: 36550918 PMCID: PMC9771360 DOI: 10.1097/md.0000000000032329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To evaluate whether transcutaneous electrical acupoint stimulation (TEAS) decreases rates of perioperative neurocognitive disorders (PND) when used as an adjuvant method during perioperative period in geriatric patients since the new definition was released in 2018. METHODS Six databases [Chinese National Knowledge Infrastructure, VIP Database for Chinese Technical Periodicals, WanFang Database, PubMed, EMBASE, and Cochrane Library] were systematically searched. Data analysis was performed using RevMan 5.4.1 software (Copenhagen: The Nordic Cochrane Centre, the Cochrane Collaboration, 2020). Risk ratios (RR) with 95% confidence interval were calculated using a random effects model. Quality of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. RESULTS 13 randomized clinical trials (999 patients) in total were included. TEAS had positive effects on preventing the incidence of PND (RR: 0.43; 0.31, 0.61; P < .001; low certainty) [postoperative delirium within 7 days (RR: 0.39; 0.26, 0.59; P < .001), delayed neurocognitive recovery within 3 months (RR: 0.51; 0.33, 0.78; P = .002)]. TEAS could also improve the scores of the confusion assessment method (CAM) (Mean difference: -1.30; -2.14, -0.46; P = .003; low certainty). Limited evidence suggested that TEAS could reduce the serum levels of biochemical indicator (S100β) (SMD = -1.08, -1.67, -0.49, P < .001; I2 = 83%; very low certainty) as well as anesthetic requirements (remifentanil) (SMD: -1.58; -2.54, -0.63; P = .001; I2 = 87%; very low certainty). Subgroup analysis indicated that different protocols of TEAS had significant pooled benefits (TEAS used only in surgery and in combination with postoperative intervention) (RR: 0.45; 0.31, 0.63; P < .001). Acupoint combination (LI4 and PC6) in the TEAS group had more significantly advantages (RR: 0.34; 0.17, 0.67; P = .002). TEAS group had a lower incidence of PND in different surgery type (orthopedic surgery and abdominal surgery) (RR: 0.43; 0.30, 0.60; P < .001), as well as with different anesthetic modality (intravenous anesthesia and intravenous and inhalational combined anesthesia) (RR: 0.38; 0.23, 0.61; P < .001). CONCLUSION In terms of clinical effectiveness, TEAS appeared to be beneficial for prophylaxis of PND during a relatively recent period, noting the limitations of the current evidence.
Collapse
Affiliation(s)
- Shuying Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hailun Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yu Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chunsheng Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hao Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuzheng Du
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- * Correspondence: Yuzheng Du, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (e-mail: )
| | - Qi Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chen Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
15
|
Erythropoietin administration exerted neuroprotective effects against cardiac ischemia/reperfusion injury. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100124. [PMID: 36568264 PMCID: PMC9780068 DOI: 10.1016/j.crphar.2022.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/30/2022] [Accepted: 08/09/2022] [Indexed: 02/01/2023] Open
Abstract
Acute myocardial infarction (AMI) leads to cardiac dysfunction and also causes brain dysfunction and pathology. The neuroprotective effects of erythropoietin (EPO), the hormone controlling the production of red blood cells, have been shown in case of cerebral ischemic/reperfusion (I/R) injury. However, the effects of EPO on the brain pathologies induced by cardiac I/R injury have not been investigated. We hypothesized that the administration of EPO attenuates brain damage caused by cardiac I/R injury through decreasing peripheral and brain oxidative stress, preserving microglial morphology, attenuating hippocampal necroptosis, and decreasing hippocampal apoptosis, and hippocampal dysplasticity. Male Wistar rats (n = 38) were divided into two groups, sham (n = 6) and cardiac I/R (n = 32). All rats being subjected to the cardiac I/R operation were randomly divided into 4 subgroups (n = 8/group): vehicle, EPO pretreatment, EPO given during ischemia, and EPO given at the onset of reperfusion. The EPO was given at a dosage of 5000 units/kg via intravenous injection. Left ventricle function, oxidative stress, brain mitochondrial function, microglial morphology, hippocampal necroptosis, hippocampal apoptosis, and hippocampal plasticity were measured. EPO administration exerted beneficial anti-oxidative, anti-inflammatory, and anti-apoptotic effects on the brain against cardiac I/R. Giving EPO before cardiac ischemia conferred the greatest neuroprotection against cardiac I/R injury through the attenuation of LV dysfunction, decrease in peripheral and brain oxidative stress, and the attenuation of microglial activation, brain mitochondrial dysfunction, apoptosis, and necroptosis, leading to the improvement of hippocampal dysplasticity under cardiac I/R conditions. EPO pretreatment provided the greatest benefits on brain pathology induced by cardiac I/R.
Collapse
|
16
|
Chen X, Kong D, Du J, Ban Y, Xu H. Transcutaneous electrical acupoint stimulation affects older adults' cognition after general anesthesia: A meta-analysis. Geriatr Nurs 2022; 46:144-156. [PMID: 35700682 DOI: 10.1016/j.gerinurse.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
Perioperative neurocognitive dysfunction comprises pre-existing neurocognitive dysfunction, postoperative delirium (POD), and postoperative cognitive dysfunction (POCD). This meta-analysis aims to study the effects of transcutaneous electrical acupoint stimulation (TEAS) on postoperative cognitive function after general anesthesia in older adults. Eight databases were searched, from the establishment of the databases to January 2022. Eighteen randomized controlled trials were included. TEAS reduced POCD incidence on the 1st and 3rd but not on the 5th and 7th postoperative days (p<0.00001; p<0.00001; p = 0.20; p = 0.30). Owing to the limited number of original studies, POD incidence could not be analyzed. TEAS improved the MMSE scores on the 1st and 3rd but not on the 5th and 7th postoperative days. TEAS reduced the values of S100β at the end of the surgery and 1 day after surgery and IL-6 on the 1st postoperative day. TEAS can prevent early postoperative cognitive decline after general anesthesia in older adults.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Anesthesia, Bethune First Hospital of Jilin University, Changchun, Jilin130000, China
| | - Derui Kong
- Department of Radiology, Bethune First Hospital of Jilin University, Changchun, Jilin 130000, China
| | - Juan Du
- Department of Anesthesia, Bethune First Hospital of Jilin University, Changchun, Jilin130000, China
| | - Yuliang Ban
- Department of Anesthesia, Bethune First Hospital of Jilin University, Changchun, Jilin130000, China
| | - Haiyang Xu
- Department of Anesthesia, Bethune First Hospital of Jilin University, Changchun, Jilin130000, China.
| |
Collapse
|
17
|
Wang M, Pan W, Xu Y, Zhang J, Wan J, Jiang H. Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases. J Inflamm Res 2022; 15:3083-3094. [PMID: 35642214 PMCID: PMC9148574 DOI: 10.2147/jir.s350109] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/16/2022] [Indexed: 12/29/2022] Open
Abstract
Microglia are tissue-resident macrophages of the central nervous system (CNS). In the CNS, microglia play an important role in the monitoring and intervention of synaptic and neuron-level activities. Interventions targeting microglia have been shown to improve the prognosis of various neurological diseases. Recently, studies have observed the activation of microglia in different cardiovascular diseases. In addition, different approaches that regulate the activity of microglia have been shown to modulate the incidence and progression of cardiovascular diseases. The change in autonomic nervous system activity after neuroinflammation may be a potential intermediate link between microglia and cardiovascular diseases. Here, in this review, we will discuss recent updates on the regulatory role of microglia in hypertension, myocardial infarction and ischemia/reperfusion injury. We propose that microglia serve as neuroimmune modulators and potential targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
- Correspondence: Hong Jiang; Jun Wan, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China, Email ;
| |
Collapse
|
18
|
Visualization and Analysis of the Mapping Knowledge Domain of Acupuncture and Central Nervous System Cell Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1751702. [PMID: 35463084 PMCID: PMC9023158 DOI: 10.1155/2022/1751702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/02/2022] [Indexed: 11/17/2022]
Abstract
Chinese acupuncture therapy has demonstrated good clinical effects on neurological diseases and is widely used internationally. In the past 20 years, an increasing number of researchers around the world have devoted themselves to the study of the effect and mechanism of acupuncture for the treatment of central nervous system cell apoptosis. To discover the current research status of acupuncture-induced antiapoptosis in the central nervous system, we used the method of scientometric research and data visualization software to visually analyse 155 articles. The findings are as follows. First, the antiapoptosis effects of acupuncture in the central nervous system have received increasing attention overseas and domestically. China and the United States have leading positions in this research field. Second, 5 stable and high-yielding research teams have been formed in the field of acupuncture-induced antiapoptosis. The main research directions of these teams are electroacupuncture (EA) pretreatment for the central nervous system cell apoptosis, acupuncture for antineuronal apoptosis in vascular dementia, EA regulation of related signalling pathways, EA regulation of nerve cell apoptosis and autophagy after stroke, and EA regulation of the MAPK signalling pathway. Researchers on teams with more extensive cooperation have more research results and better research continuity. Third, there are diversified research hotspots. The original research hotspots are still receiving attention, and new hotspots have emerged in recent years.
Collapse
|
19
|
Surinkaew P, Apaijai N, Sawaddiruk P, Jaiwongkam T, Kerdphoo S, Chattipakorn N, Chattipakorn SC. Mitochondrial Fusion Promoter Alleviates Brain Damage in Rats with Cardiac Ischemia/Reperfusion Injury. J Alzheimers Dis 2021; 77:993-1003. [PMID: 32804148 DOI: 10.3233/jad-200495] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cardiac ischemia/reperfusion (I/R) injury induces brain damage through increased blood-brain barrier (BBB) breakdown, microglial hyperactivity, pro-inflammatory cytokines, amyloid-β deposition, loss of dendritic spines, brain mitochondrial dysfunction, and imbalanced mitochondrial dynamics. Previous studies demonstrated that mitochondrial fusion promoter reduced cardiac damage from cardiac I/R injury; however, following cardiac I/R injury, the roles of mitochondrial dynamics on the brain have not been investigated. OBJECTIVE To investigate the effects of pharmacological modulation using mitochondrial fusion promoter (M1) in the brain of rats following cardiac I/R injury. METHODS Twenty-four male Wistar rats were separated into two groups; 1) sham-operation (n = 8) and 2) cardiac I/R injury (n = 16). Rats in the cardiac I/R injury group were randomly received either normal saline solution as a vehicle or a mitochondrial fusion promoter (M1, 2 mg/kg) intravenously. Both treatments were given to the rats 15 minutes before cardiac I/R injury. At the end of the reperfusion protocol, the brain was rapidly removed to investigate brain mitochondrial function, mitochondrial dynamics proteins, microglial activity, and Alzheimer's disease (AD) related proteins. RESULTS Cardiac I/R injury induced brain mitochondrial dynamics imbalance as indicated by reduced mitochondrial fusion proteins expression without alteration in mitochondrial fission, brain mitochondrial dysfunction, BBB breakdown, increased macrophage infiltration, apoptosis, and AD-related proteins. Pretreatment with M1 effectively increased the expression of mitofusin 2, a mitochondrial outer membrane fusion protein, reduced brain mitochondrial dysfunction, BBB breakdown, macrophage infiltration, apoptosis, and AD-related proteins in rats following cardiac I/R injury. CONCLUSION This mitochondrial fusion promoter significantly protected rats with cardiac I/R injury against brain damage.
Collapse
Affiliation(s)
- Poomarin Surinkaew
- Department of Anesthesiology, Lamphun Hospital, Lamphun, Thailand.,Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Passakorn Sawaddiruk
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thidarat Jaiwongkam
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
20
|
Shi Y, Dai Q, Ji B, Huang L, Zhuang X, Mo Y, Wang J. Electroacupuncture Pretreatment Prevents Cognitive Impairment Induced by Cerebral Ischemia-Reperfusion via Adenosine A1 Receptors in Rats. Front Aging Neurosci 2021; 13:680706. [PMID: 34413765 PMCID: PMC8369428 DOI: 10.3389/fnagi.2021.680706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
A previous study has demonstrated that pretreatment with electroacupuncture (EA) induces rapid tolerance to focal cerebral ischemia. In the present study, we investigated whether adenosine receptor 1 (A1 R) is involved in EA pretreatment-induced cognitive impairment after focal cerebral ischemia in rats. Two hours after EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion for 120 min in male Sprague-Dawley rats. The neurobehavioral score, cognitive function [as determined by the Morris water maze (MWM) test], neuronal number, and the Bax/Bcl-2 ratio was evaluated at 24 h after reperfusion in the presence or absence of CCPA (a selective A1 receptor agonist), DPCPX (a selective A1 receptor antagonist) into left lateral ventricle, or A1 short interfering RNA into the hippocampus area. The expression of the A1 receptor in the hippocampus was also investigated. The result showed that EA pretreatment upregulated the neuronal expression of the A1 receptor in the rat hippocampus at 90 min. And EA pretreatment reversed cognitive impairment, improved neurological outcome, and inhibited apoptosis at 24 h after reperfusion. Pretreatment with CCPA could imitate the beneficial effects of EA pretreatment. But the EA pretreatment effects were abolished by DPCPX. Furthermore, A1 receptor protein was reduced by A1 short interfering RNA which attenuated EA pretreatment-induced cognitive impairment.
Collapse
Affiliation(s)
- Yiyi Shi
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qinxue Dai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binbin Ji
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luping Huang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiuxiu Zhuang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Tang Y, Wang T, Yang L, Zou X, Zhou J, Wu J, Yang J. Acupuncture for post-operative cognitive dysfunction: a systematic review and meta-analysis of randomized controlled trials. Acupunct Med 2020; 39:423-431. [PMID: 33280396 DOI: 10.1177/0964528420961393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Post-operative cognitive dysfunction (POCD) is a common post-surgical complication, which is associated with increased costs and extended hospital stays. Recently, interest in acupuncture as a potential therapy for POCD has grown. The objective of this meta-analysis was to assess the effectiveness of acupuncture for POCD. METHODS PubMed, Embase, CENTRAL, Medline, Web of Science, CNKI, Wanfang, and VIP databases were searched through March 2018. Randomized controlled trials (RCTs) in which patients with POCD treated with acupuncture (acupuncture group) were compared with those receiving a no treatment control were included. Meta-analyses were conducted using Review Manager 5.3. RESULTS Sixteen studies containing 1241 participants were included. POCD incidence in the acupuncture group was significantly lower than that in the control groups on the first (odds ratio (OR) = 0.32, 95% confidence interval (CI) = 0.23-0.45) and third (OR = 0.41, 95% CI = 0.30-0.56) post-operative days, with no statistically significant difference on the seventh day (OR = 0.58, 95% CI = 0.32-1.04). Acupuncture therapy also improved mini-mental state examination (MMSE) scores on the first (mean difference (MD) = 3.28, 95% CI = 2.79-3.77) and third (MD = 2.52, 95% CI = 2.18-2.87) post-operative days, with no effect on the seventh (MD = 0.14, 95% CI = -0.24 to 0.51). Visual analogue scale (VAS) scores on the first post-operative day were not impacted by acupuncture but were likely associated with post-operative nausea and vomiting on the seventh post-operative day. With respect to methodological quality, most RCTs were found to have an unclear risk of bias. CONCLUSION Acupuncture may successfully treat/prevent POCD. However, the current evidence is limited and further research is needed.
Collapse
Affiliation(s)
- Yidan Tang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Tao Wang
- Laboratory of Molecular and Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Lei Yang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xuemei Zou
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianxiong Zhou
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Junmei Wu
- School of traditional Chinese medicine, the University of Hong Kong, Pokfulam, P.R. China
| | - Jing Yang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
22
|
Li C, Yu TY, Zhang Y, Wei LP, Dong SA, Shi J, Du SH, Yu JB. Electroacupuncture Improves Cognition in Rats With Sepsis-Associated Encephalopathy. J Surg Res 2020; 256:258-266. [PMID: 32712439 DOI: 10.1016/j.jss.2020.06.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a common complication of sepsis. Although sepsis is effectively managed with the administration of antibiotics and source control, which may include surgical intervention, SAE usually leads to prolonged cognitive dysfunction affecting the quality of life of the patients. In this study, we investigated the possible effect of electroacupuncture (EA) on cognition in a model of SAE induced by cecal ligation and puncture (CLP). MATERIALS AND METHODS The rats were randomly divided into four groups: the control group, the CLP group, the CLP with EA treatment group (CLP + EA), and the CLP with sham EA treatment group (CLP + sham EA). EA at DU20, LI11, and ST36 or sham EA was performed 30 min daily for 10 consecutive days starting from 2 days before CLP. Then cognitive function was examined by the Morris water maze test. On day 14 after CLP surgery, the synaptic injury, neuron loss, and oxidative stress were studied. RESULTS Rats with EA treatment showed improved survival rate, spatial learning, and memory abilities. The dendritic spine density, the synaptic proteins, and the hippocampal neuron number were also increased after EA treatment. Furthermore, EA suppressed oxidative stress through regulating the level of malondialdehyde and superoxide dismutase and enhanced the expression of antioxidant nuclear factor erythroid-2-related factor-2 and hemeoxygenase-1. But sham EA did not have the same effect. CONCLUSIONS EA may protect against SAE-induced cognitive dysfunction by inhibiting synaptic injury, neuronal loss, and oxidative stress, and the nuclear factor erythroid-2-related factor-2/hemeoxygenase-1 signaling pathway may be involved in this effect.
Collapse
Affiliation(s)
- Cui Li
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital, Tianjin, China; Department of Anesthesiology, Tianjin NanKai Hospital, Tianjin, China
| | - Tian-Yu Yu
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital, Tianjin, China
| | - Yuan Zhang
- Department of Anesthesiology, Tianjin NanKai Hospital, Tianjin, China
| | - Liang-Peng Wei
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital, Tianjin, China
| | - Shu-An Dong
- Department of Anesthesiology, Tianjin NanKai Hospital, Tianjin, China
| | - Jia Shi
- Department of Anesthesiology, Tianjin NanKai Hospital, Tianjin, China
| | - Shi-Han Du
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital, Tianjin, China
| | - Jian-Bo Yu
- Department of Anesthesiology, Tianjin NanKai Hospital, Tianjin, China.
| |
Collapse
|
23
|
Benjanuwattra J, Apaijai N, Chunchai T, Kerdphoo S, Jaiwongkam T, Arunsak B, Wongsuchai S, Chattipakorn N, Chattipakorn SC. Metformin preferentially provides neuroprotection following cardiac ischemia/reperfusion in non-diabetic rats. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165893. [PMID: 32621957 DOI: 10.1016/j.bbadis.2020.165893] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022]
Abstract
Following acute myocardial infarction, re-establishment of coronary perfusion aggravates further injuries in the heart and remote organs including the brain as a consequence of ischemia/reperfusion (I/R) injury. Since pretreatment with metformin attenuated both cardiac and cerebral I/R injury via AMP-activated protein kinase (AMPK) pathways, we hypothesized that metformin given after ischemia mitigates both cardiac and brain pathologies following cardiac I/R. Male Wistar rats were subjected to either cardiac I/R (30 min-ischemia/120 min-reperfusion; n = 30) or sham operation (n = 5). Metformin 200 mg/kg was given intravenously to the cardiac I/R group (n = 10/group), either during ischemia (D-MET) or at the onset of reperfusion (R-MET). Left ventricular ejection fraction (LVEF) and arrhythmia scores were determined. The heart and brain tissues were collected to determine the extent of injury, mitochondrial function, and apoptosis. Additionally, microglial morphology, Alzheimer's proteins, and dendritic spine density were determined in the brain. Cardiac I/R led to not only reduced LVEF, cardiac mitochondrial dysfunction, and arrhythmias, but also brain mitochondrial dysfunction, apoptosis, Alzheimer's protein aggregation, microglial activation, and dendritic spine loss. A single dose of metformin did not alter p-AMPK/AMPK in both organs. In the heart, impaired LVEF, arrhythmias, infarct size expansion, mitochondrial dysfunction, and apoptosis were not alleviated. On the contrary, metformin attenuated brain mitochondrial dysfunction, apoptosis, and Alzheimer's protein levels. Microglial morphology and dendritic spine density were additionally preserved in D-MET group. In conclusion, metformin given during ischemia preferentially provides neuroprotection against brain mitochondrial dysfunction, apoptosis, microglial activation, and dendritic spine loss in an AMPK-independent manner following cardiac I/R injury.
Collapse
Affiliation(s)
- Juthipong Benjanuwattra
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwan Kerdphoo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thidarat Jaiwongkam
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bussarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supawit Wongsuchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
24
|
Xiao QX, Liu Q, Deng R, Gao ZW, Zhang Y. Postoperative cognitive dysfunction in elderly patients undergoing hip arthroplasty. Psychogeriatrics 2020; 20:501-509. [PMID: 31976614 DOI: 10.1111/psyg.12516] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/01/2019] [Accepted: 01/04/2020] [Indexed: 12/13/2022]
Abstract
Even after successful hip arthroplasty, elderly patients who have undergone this procedure remain subject to cognitive decline and may collectively develop postoperative cognitive dysfunction (POCD). However, no consensus exists as to the risk factors resulting in a higher likelihood that a patient may present with this complication, and the aetiology of POCD is not well understood. We conducted a systematic review of papers concerning the influence of POCD-related risk factors in patients undergoing hip arthroplasty but limited the literature search to papers in English. A systematic and electronic search for manuscripts in the PubMed database was performed in order to identify all studies in which the risk factors for POCD were investigated. Articles were also obtained from the authors' files. Keywords for the search were postoperative cognitive dysfunction/change/impairment/decline/deficit, elderly/older/aged patients, and hip arthroplasty/replacement surgery. The evidence published to date suggests that POCD is a multifactorial disease, which includes an individual patient's characteristics, surgery, type of anaesthesia, and pain levels. All of these factors can increase the risk of POCD incidence. There are a number of factors that appear to influence the risk of early cognitive dysfunction after hip arthroplasty. Nevertheless, the specific mechanism and explicit risk factors associated with this cognitive dysfunction are not completely understood. Hip arthroplasty has made it possible for older patients to find relief from pain and improve their function, whereas it also increases the risk for suffering POCD that may affect these patients' quality of life and increase their mortality. Therefore, it is worthwhile investigating the mechanism of POCD in future studies in order to prevent and treat this condition.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Qing Liu
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Rui Deng
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Zhi-Wei Gao
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ying Zhang
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
25
|
Qin J, Ma Q, Ma D. Low-dose Sevoflurane Attenuates Cardiopulmonary Bypass (CPB)- induced Postoperative Cognitive Dysfunction (POCD) by Regulating Hippocampus Apoptosis via PI3K/AKT Pathway. Curr Neurovasc Res 2020; 17:232-240. [PMID: 32400333 DOI: 10.2174/1567202617666200513085403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cardiopulmonary bypass (CPB) caused postoperative cognitive dysfunction (POCD) was characterized by hippocampus apoptosis, which seriously limited the therapeutic efficacy and utilization of CPB in clinic. Recent data indicated that sevoflurane anesthesia might alleviate CPB-induced POCD, however, the underlying mechanisms are still unclear. METHODS In the present study, the in vivo CPB-POCD models were established by using aged Sprague-Dawley (SD) male rats and the in vitro hypoxia/reoxygenation (H/R) models were inducted by using the primary hippocampus neuron (PHN) cells. RESULTS The results showed that CPB impaired cognitive functions and induced hippocampus apoptosis in rat models, which were alleviated by pre-treating rats with low-dose sevoflurane. In addition, the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signal pathway was inactivated in the hippocampus tissues of CPB-POCD rats, which were rescued by low-dose sevoflurane treatment. Of note, the PI3K/AKT inhibitor (LY294002) abrogated the protective effects of low-dose sevoflurane on CPB-POCD rats. Consistently, the in vitro results showed that H/R treatment induced cell apoptosis and inhibited cell viability in PHN cells, which were attenuated by low-dose sevoflurane. Similarly, LY294002 abrogated the inhibiting effects of low-dose sevoflurane on H/R-induced PHN cell death. CONCLUSION Taken together, low-dose sevoflurane attenuated CPB-induced POCD by inhibiting hippocampus apoptosis through activating PI3K/AKT signal pathway.
Collapse
Affiliation(s)
- Jianhua Qin
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianchi Road 91, Urumchi 830001, Xinjiang, China
| | - Qingjun Ma
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianchi Road 91, Urumchi 830001, Xinjiang, China
| | - Dongmei Ma
- Department of Anesthesiology, The Fourth Affiliated Hospital of Zhejiang University, Shangcheng Road N1, Yiwu 322000, Jinhua, Zhejiang, China
| |
Collapse
|
26
|
Xiao Y, Chen W, Zhong Z, Ding L, Bai H, Chen H, Zhang H, Gu Y, Lu S. Electroacupuncture preconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting mitophagy mediated by the mTORC1-ULK1-FUNDC1 pathway. Biomed Pharmacother 2020; 127:110148. [PMID: 32344255 DOI: 10.1016/j.biopha.2020.110148] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) is an important complication of reperfusion therapy for myocardial infarction, and trimetazidine is used successfully for treatment of ischemic cardiomyopathy by regulating mitochondrial function. Moreover, electroacupuncture (EA) preconditioning was demonstrated to be cardioprotective in both in vivo rodent models and in patients undergoing heart valve replacement surgery. However, the mechanisms have not been well elucidated. Mitophagy, mediated by the mTORC1-ULK1-FUNDC1 (mTOR complex 1-unc-51-like autophagy-activating kinase 1-FUN14 domain-containing 1) pathway, can regulate mitochondrial mass and cell survival effectively to restrain the development of myocardial ischemia/reperfusion injury (MIRI). In this study, we hypothesized that EA preconditioning ameliorated MIRI via mitophagy. To test this, rapamycin, an mTOR inhibitor, was used. The results showed that EA preconditioning could reduce the infarct size and risk size, and decrease the ventricular arrhythmia score and serum creatine kinase-myocardial band isoenzyme (CK-MB), lactate dehydrogenase (LDH), and cardiac troponin T (cTnT) in MIRI rats. Moreover, it also attenuated MIRI-induced apoptosis and mitophagy accompanied by elevated mTORC1 level and decreased ULK1 and FUNDC1 levels. However, these effects of EA preconditioning were blocked by rapamycin, which aggravated MIRI, reduced adenosine triphosphate (ATP) production, and antagonized infarct size reduction. In conclusion, our results indicated that EA preconditioning protected the myocardium against I/R injury by inhibiting mitophagy mediated by the mTORC1-ULK1-FUNDC1 pathway.
Collapse
Affiliation(s)
- Yan Xiao
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Wanying Chen
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Zehao Zhong
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Liang Ding
- Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, 39 Xiashatang Road, Wuzhong District, Suzhou, Jiangsu, 215101, China
| | - Hua Bai
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hao Chen
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hongru Zhang
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yihuang Gu
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Shengfeng Lu
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
27
|
Ho YS, Zhao FY, Yeung WF, Wong GTC, Zhang HQ, Chang RCC. Application of Acupuncture to Attenuate Immune Responses and Oxidative Stress in Postoperative Cognitive Dysfunction: What Do We Know So Far? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9641904. [PMID: 32148660 PMCID: PMC7044481 DOI: 10.1155/2020/9641904] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a common sequela following surgery and hospitalization. The prevention and management of POCD are important during clinical practice. POCD more commonly affects elderly patients who have undergone major surgery and can result in major decline in quality of life for both patients and their families. Acupuncture has been suggested as an effective intervention for many neurological disorders. In recent years, there are increasing interest in the use of acupuncture to prevent and treat POCD. In this review, we summarized the clinical and preclinical evidence of acupuncture on POCD using a narrative approach and discussed the potential mechanisms involved. The experimental details and findings of studies were summarized in tables and analyzed. Most of the clinical studies suggested that acupuncture before surgery could reduce the incidence of POCD and reduce the levels of systematic inflammatory markers. However, their reliability is limited by methodological flaws. Animal studies showed that acupuncture reduced cognitive impairment and the associated pathology after various types of surgery. It is possible that acupuncture modulates inflammation, oxidative stress, synaptic changes, and other cellular events to mitigate POCD. In conclusion, acupuncture is a potential intervention for POCD. More clinical studies with good research design are required to confirm its effectiveness. At the same time, findings from animal studies will help reveal the protective mechanisms, in which systematic inflammation is likely to play a major role.
Collapse
Affiliation(s)
- Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Fei-Yi Zhao
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
| | - Wing-Fai Yeung
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Gordon Tin-Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hong-Qi Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
28
|
Yu X, Zhang F, Chen B. The effect of TEAS on the quality of early recovery in patients undergoing gynecological laparoscopic surgery: a prospective, randomized, placebo-controlled trial. Trials 2020; 21:43. [PMID: 31915045 PMCID: PMC6951027 DOI: 10.1186/s13063-019-3892-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 11/06/2019] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION In current study we assessed the effect of transcutaneous electrical acupoint stimulation (TEAS) on the quality of early recovery in patients undergoing gynecological laparoscopic surgery. METHODS Sixty patients undergoing gynecological laparoscopic surgery were randomly assigned to TEAS (TEAS group) or control group (Con group). TEAS consisted of 30 min of stimulation (12-15 mA, 2/100 Hz) at the acupoints of Baihui (GV20), Yingtang (EX-HN-3), Zusanli (ST36) and Neiguan (PC6) before anesthesia. The patients in the Con group had the electrodes applied, but received no stimulation. Quality of recovery was assessed using a 40-item questionnaire as a measure of quality of recovery (QoR-40; maximum score 200) scoring system performed on preoperative day 1 (T0), postoperative day 1 (T1) and postoperative day 2 (T2); 100-mm visual analogue scale (VAS) scores at rest, mini-mental state examination (MMSE) scores, the incidence of nausea and vomiting, postoperative pain medications, and antiemetics were also recorded. RESULTS QoR-40 and MMSE scores of T0 showed no difference between two groups (QoR-40: 197.50 ± 2.57 vs. 195.83 ± 5.17), (MMSE: 26.83 ± 2.74 vs. 27.53 ± 2.88). Compared with the Con group, QoR-40 and MMSE scores of T1 and T2 were higher in the TEAS group (P < 0.05) (QoR-40: T1, 166.07 ± 8.44 vs. 175.33 ± 9.66; T2, 187.73 ± 5.47 vs. 191.40 ± 5.74), (MMSE: T1, 24.60 ± 2.35 vs. 26.10 ± 2.78; T2, 26.53 ± 2.94 vs. 27.83 ± 2.73). VAS scores of T1 and T2 were lower (P < 0.05) in the TEAS group (T1, 4.73 ± 1.53 vs. 3.70 ± 1.41; T2, 2.30 ± 0.95 vs. 1.83 ± 0.88); the incidence of postoperative nausea and vomiting (PONV), remedial antiemetics and remedial analgesia was lower in the TEAS group (P < 0.05) (PONV: 56.7% vs. 23.3%; incidence of remedial antiemetics: 53.3% vs. 23.3%; incidence of remedial analgesia: 80% vs. 43.3%). CONCLUSION The use of TEAS significantly promoted the quality of early recovery, improved MMSE scores and reduced the incidence of pain, nausea and vomiting in patients undergoing gynecological laparoscopic surgery. TRIAL REGISTRATION ClinicalTrials.gov, NCT02619578. Registered on 2 December 2015. Trial registry name: https://clinicaltrials.gov.
Collapse
Affiliation(s)
- Xiangdi Yu
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, No. 83 Zhongshan Road Nanming district, Guiyang City, Guizhou Province China
| | - Fangxiang Zhang
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, No. 83 Zhongshan Road Nanming district, Guiyang City, Guizhou Province China
| | - Bingning Chen
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, No. 83 Zhongshan Road Nanming district, Guiyang City, Guizhou Province China
| |
Collapse
|
29
|
Yong Y, Guo J, Zheng D, Li Y, Chen W, Wang J, Chen W, Wang K, Wang Y. Electroacupuncture pretreatment attenuates brain injury in a mouse model of cardiac arrest and cardiopulmonary resuscitation via the AKT/eNOS pathway. Life Sci 2019; 235:116821. [PMID: 31476306 DOI: 10.1016/j.lfs.2019.116821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/16/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
AIMS This study aims to examine the effects of electroacupuncture (EA) pretreatment on brain injury after cardiac arrest and cardiopulmonary resuscitation (CA/CPR) and its underlying mechanisms. MATERIALS AND METHODS Adult male C57BL/6 mice were subjected to 6 min of cardiac arrest induced with a potassium chloride infusion and resuscitated by chest compressions and an epinephrine infusion. During the 3 days prior to CA/CRP, mice received EA pretreatment (1 mA, 2 Hz; daily session of 30 min) at the Baihui acupoint (GV20) once daily. Stimulation at a nonacupoint served as a control. In mechanistic studies, mice received the AKT inhibitor LY294002 or endothelial nitric oxide synthase (eNOS) inhibitor L-NIO 30 min before EA pretreatment. A neurological assessment was conducted 24 h after CA/CRP, followed by animal sacrifice and evaluation of physiological brain damage. KEY FINDINGS CA/CPR resulted in severe brain injury as evidenced by neurological deficits and increased neuronal apoptosis, oxidative stress and the proinflammatory cytokines TNF-α and IL-6. EA pretreatment at the GV20 acupoint but not at a nonacupoint attenuated the neurological deficits and the pathological changes induced by CA/CPR. LY294002 or L-NIO eliminated the neuroprotective effects of the EA pretreatment. SIGNIFICANCE This study showed that EA pretreatment at the GV20 acupoint can protect the brain from damage associated with globalized ischemia followed by reperfusion and that these protective effects occur via the AKT/eNOS signaling pathway.
Collapse
Affiliation(s)
- Yue Yong
- Department of Anesthesiology & Research Institute for Acupuncture Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Guo
- Department of Anesthesiology & Research Institute for Acupuncture Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongyu Zheng
- Department of Anesthesiology, Changzheng Hospital Second Military Medical University, Shanghai, China
| | - Yonghua Li
- Department of Anesthesiology, Changzheng Hospital Second Military Medical University, Shanghai, China
| | - Wei Chen
- Department of Anesthesiology, Changzheng Hospital Second Military Medical University, Shanghai, China
| | - Jian Wang
- Department of Anesthesiology & Research Institute for Acupuncture Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenting Chen
- Department of Anesthesiology & Research Institute for Acupuncture Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Wang
- Institute of Clinical Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yongqiang Wang
- Department of Anesthesiology & Research Institute for Acupuncture Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
30
|
Chen Y, Sun JX, Chen WK, Wu GC, Wang YQ, Zhu KY, Wang J. miR-124/VAMP3 is a novel therapeutic target for mitigation of surgical trauma-induced microglial activation. Signal Transduct Target Ther 2019; 4:27. [PMID: 31637007 PMCID: PMC6799846 DOI: 10.1038/s41392-019-0061-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Activation of microglia and the subsequently elevated inflammatory cytokine release in the brain during surgery predispose individuals to cognitive dysfunction, also known as postoperative cognitive dysfunction (POCD). miR-124 is one of the most abundant microRNAs in the brain that regulates microglial function. Elucidating the role of miR-124 in microglial activation in the context of surgery may therefore promote understanding of as well as therapeutic development for post-surgical disorders involving microglial activation. The downstream targets of miR-124 were investigated using bioinformatic screening and dual-luciferase reporter assay validation, and vesicle-associated membrane protein 3 (VAMP3) was identified as a potential target. The kinetics of miR-124/VAMP3 expression was first examined in vitro in microglial cells (primary microglia and BV2 microglial cells) following lipopolysaccharide (LPS) stimulation. LPS induced a time-dependent decrease of miR-124 and upregulated the expression of VAMP3. Manipulating miR-124/VAMP3 expression by using miR-124 mimics or VAMP3-specific siRNA in LPS-stimulated BV2 microglial cells inhibited BV2 microglial activation-associated inflammatory cytokine release. To further examine the role of miR-124/VAMP3 in a surgical setting, we employed a rat surgical trauma model. Significant microglial activation and altered miR-124/VAMP3 expression were observed following surgical trauma. We also altered miR-124/VAMP3 expression in the rat surgical trauma model by administration of exogenous miR-124 and by using electroacupuncture, which is a clinically applicable treatment that modulates microglial function and minimizes postoperative disorders. We determined that electroacupuncture treatment specifically increases the expression of miR-124 in the hypothalamus and hippocampus. Increased miR-124 expression with a concomitant decrease in VAMP3 expression resulted in decreased inflammatory cytokine release related to microglial activation post-surgery. Our study indicates that miR-124/VAMP3 is involved in surgery-induced microglial activation and that targeting miR-124/VAMP3 could be a potential therapeutic strategy for postoperative disorders involving microglial activation.
Collapse
Affiliation(s)
- Yan Chen
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Fudan University, 200032 Shanghai, China
- Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, 200032 Shanghai, China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, 200032 Shanghai, China
| | - Jing-xian Sun
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Fudan University, 200032 Shanghai, China
- Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, 200032 Shanghai, China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, 200032 Shanghai, China
| | - Wan-kun Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Gen-cheng Wu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Fudan University, 200032 Shanghai, China
- Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, 200032 Shanghai, China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, 200032 Shanghai, China
| | - Yan-qing Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Fudan University, 200032 Shanghai, China
- Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, 200032 Shanghai, China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, 200032 Shanghai, China
| | - Ke-ying Zhu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Fudan University, 200032 Shanghai, China
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Jun Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Fudan University, 200032 Shanghai, China
- Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, 200032 Shanghai, China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, 200032 Shanghai, China
| |
Collapse
|
31
|
Abstract
Objective: To confirm that acupuncture applied to patients would improve the clinical curative effect and accelerate the patient's recovery by introducing the application of acupuncture in pre-operation, during operation, and post-operation. Data sources: Literature cited in this review was retrieved from PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI) and was primarily published in English or Chinese from 2010 to 2018, with keywords of “acupuncture,” “electroacupuncture,” “perioperative period,” “sedation,” “analgesia,” and “recovery.” Relevant citations in the retrieved articles were also screened to include more data. Study selection: All retrieved literature was scrutinized, most typical articles related on perioperative acupuncture application in clinical study were reviewed. Results: Acupuncture could relieve anxiety and stress during the preoperative stage. It reduces the usage of narcotics and stress response, and maintains the respiratory stability and homeostasis during surgery. It also exerts a protective effect on vital organs, and during the postoperative stages, enhances the recovery while effectively alleviating the postoperative pain. This phenomenon prevents common postoperative discomforts such as nausea and vomiting. In addition, it might improve the patients’ long-term prognosis. Conclusions: The novel concept “perioperative acupuncture medicine” is to focus on the optimal treatment in the perioperative period of surgical patients. The review reveals the important role of acupuncture in enhancing rapid recovery of patients during the perioperative period.
Collapse
|
32
|
Surinkaew P, Sawaddiruk P, Apaijai N, Chattipakorn N, Chattipakorn SC. Role of microglia under cardiac and cerebral ischemia/reperfusion (I/R) injury. Metab Brain Dis 2018; 33:1019-1030. [PMID: 29656335 DOI: 10.1007/s11011-018-0232-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/06/2018] [Indexed: 12/27/2022]
Abstract
Both cerebral and cardiac ischemia causes loss of cerebral blood flow, which may lead to neuronal cell damage, neurocognitive impairment, learning and memory difficulties, neurological deficits, and brain death. Although reperfusion is required immediately to restore the blood supply to the brain, it could lead to several detrimental effects on the brain. Several studies demonstrate that microglia activity increases following cerebral and cardiac ischemic/reperfusion (I/R) injury. However, the effects of microglial activation in the brain following I/R remains unclear. Some reports demonstrated that microglia were involved in neurodegeneration and oxidative stress generation, whilst others showed that microglia did not respond to I/R injury. Moreover, microglia are activated in a time-dependent manner, and in a specific brain region following I/R. Recently, several therapeutic approaches including pharmacological interventions and electroacupuncture showed the beneficial effects, while some interventions such as hyperthermia and hyperoxic resuscitation, demonstrated the deteriorated effects on the microglial activity after I/R. Therefore, the present review summarized and discussed those studies regarding the effects of global and focal cerebral as well as cardiac I/R injury on microglia activation, and the therapeutic interventions.
Collapse
Affiliation(s)
- Poomarin Surinkaew
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Anesthesiology, Lamphun Hospital, Lamphun, 51000, Thailand
| | - Passakorn Sawaddiruk
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
33
|
Park JY, Namgung U. Electroacupuncture therapy in inflammation regulation: current perspectives. J Inflamm Res 2018; 11:227-237. [PMID: 29844696 PMCID: PMC5963483 DOI: 10.2147/jir.s141198] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although acupuncture therapy is increasingly used to treat diverse symptoms and disorders in humans, its underlying mechanism is not known well. Only recently have experimental studies begun to provide insights into how acupuncture stimulation generates and relates to pathophysiological responsiveness. Acupuncture intervention is frequently used to control pathologic symptoms in several visceral organs, and a growing number of studies using experimental animal models suggest that acupuncture stimulation may be involved in inducing anti-inflammatory responses. The vagus nerve, a principal parasympathetic nerve connecting neurons in the central nervous system to cardiovascular systems and a majority of visceral organs, is known to modulate neuroimmune communication and anti-inflammatory responses in target organs. Here, we review a broad range of experimental studies demonstrating anti-inflammatory effects of electroacupuncture in pathologic animal models of cardiovascular and visceral organs and also ischemic brains. Then, we provide recent progress on the role of autonomic nerve activity in anti-inflammation mediated by electroacupuncture. We also discuss a perspective on the role of sensory signals generated by acupuncture stimulation, which may induce a neural code unique to acupuncture in the central nervous system.
Collapse
Affiliation(s)
- Ji-Yeun Park
- Department of Oriental Medicine, Daejeon University, Daejeon, South Korea
| | - Uk Namgung
- Department of Oriental Medicine, Daejeon University, Daejeon, South Korea
| |
Collapse
|
34
|
Chi L, Du K, Liu D, Bo Y, Li W. Electroacupuncture brain protection during ischemic stroke: A role for the parasympathetic nervous system. J Cereb Blood Flow Metab 2018; 38:479-491. [PMID: 28281385 PMCID: PMC5851138 DOI: 10.1177/0271678x17697988] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/09/2017] [Accepted: 02/07/2017] [Indexed: 12/19/2022]
Abstract
The demand for using parasympathetic activation for stroke therapy is unmet. In the current study, we investigated whether the neuroprotection provided by electroacupuncture (EA) in an experimental stroke model was associated with activation of the parasympathetic nervous system (PNS). The results showed that parasympathetic dysfunction (PD), performed as unilateral vagotomy combined with peripheral atropine, attenuated both the functional benefits of EA and its effects in improving cerebral perfusion, reducing infarct volume, and hindering apoptosis, neuronal and peripheral inflammation, and oxidative stress. Most importantly, EA rats showed a dramatically less reduction in the mRNA level of choline acetyltransferase, five subtypes of muscarinic receptors and α7nAChR, suggesting the inhibition of the impairment of the central cholinergic system; EA also activated dorsal motor nucleus of the vagus, the largest source of parasympathetic pre-ganglionic neurons in the lower brainstem (detected by c-fos immunohistochemistry), and PD suppressed these changes. These findings indicated EA may serve as an alternative modality of PNS activation for stroke therapy.
Collapse
Affiliation(s)
- Laiting Chi
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin, China
| | - Kairong Du
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin, China
| | - Dongdong Liu
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin, China
| | - Yulong Bo
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin, China
| | - Wenzhi Li
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin, China
| |
Collapse
|
35
|
Huang J, You X, Liu W, Song C, Lin X, Zhang X, Tao J, Chen L. Electroacupuncture ameliorating post-stroke cognitive impairments via inhibition of peri-infarct astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:480. [PMID: 29017492 PMCID: PMC5635586 DOI: 10.1186/s12906-017-1974-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
Background During ischemic stroke (IS), adenosine 5′-triphosphate (ATP) is released from damaged nerve cells of the infract core region to the extracellular space, invoking peri-infarct glial cellular P2 purinoceptors singling, and causing pro-inflammatory cytokine secretion, which is likely to initiate or aggravate motor and cognitive impairment. It has been proved that electroacupuncture (EA) is an effective and safe strategy used in anti-inflammation. However, EA for the role of purine receptors in the central nervous system has not yet been reported. Methods Ischemia-reperfusion injured rat model was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). EA treatment at the DU 20 and DU 24 acupoints treatment were conducted to rats from the 12 h after MCAO/R injury for consecutive 7 days. The neurological outcomes, infarction volumes and the level of astroglial and microglial/macrophage hyperplasia, inflammatory cytokine and P2X7R and P2Y1R expression in the peri-infarct hippocampal CA1and sensorimotor cortex were investigated after IS to evaluate the MCAO/R model and therapeutic mechanism of EA treatment. Results EA effectively reduced the level of pro-inflammatory cytokine interleukin-1β (IL-1β) as evidenced by reduction in astroglial and microglial/macrophage hyperplasia and the levels of P2X7R and ED1, P2X7R and GFAP, P2Y1R and ED1, P2Y1R and GFAP co-expression in peri-infarct hippocampal CA1 and sensorimotor cortex compared with that of MCAO/R model and Non-EA treatment, accompanied by the improved neurological deficit and the motor and memory impairment outcomes. Therefore, our data support the hypothesis that EA could exert its anti-inflammatory effect via inhibiting the astroglial and microglial/macrophage P2 purinoceptors (P2X7R and P2Y1R)-mediated neuroinflammation after MCAO/R injury. Conclusion Astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia in peri-infarct hippocampal CA1 and sensorimotor cortex were attenuated by EA treatment after ischemic stroke accompanied by the improved motor and memory behavior performance. Electronic supplementary material The online version of this article (10.1186/s12906-017-1974-y) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Wu X, Chen H, Huang C, Gu X, Wang J, Xu D, Yu X, Shuai C, Chen L, Li S, Xu Y, Gao T, Ye M, Su W, Liu H, Zhang J, Wang C, Chen J, Wang Q, Cui W. Curcumin attenuates surgery-induced cognitive dysfunction in aged mice. Metab Brain Dis 2017; 32:789-798. [PMID: 28224377 DOI: 10.1007/s11011-017-9970-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
Abstract
Post-operative cognitive dysfunction (POCD) is associated with elderly patients undergoing surgery. However, pharmacological treatments for POCD are limited. In this study, we found that curcumin, an active compound derived from Curcuma longa, ameliorated the cognitive dysfunction following abdominal surgery in aged mice. Further, curcumin prevented surgery-induced anti-oxidant enzyme activity. Curcumin also increased brain-derived neurotrophic factor (BDNF)-positive area and expression of pAkt in the brain, suggesting that curcumin activated BDNF signaling in aged mice. Furthermore, curcumin neutralized cholinergic dysfunction involving choline acetyltransferase expression induced by surgery. These results strongly suggested that curcumin prevented cognitive impairments via multiple targets, possibly by increasing the activity of anti-oxidant enzymes, activation of BDNF signaling, and neutralization of cholinergic dysfunction, concurrently. Based on these novel findings, curcumin might be a potential agent in POCD prophylaxis and treatment.
Collapse
Affiliation(s)
- Xiang Wu
- Anaesthesia Department of the Affiliated Hospital of Medical College, Ningbo University, Ningbo, 315211, China.
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China.
- Ningbo Medical centre Lihuili Eastern Hospital, Ningbo, 315211, China.
| | - Huixin Chen
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Chunhui Huang
- School of Marine Sciences, Ningbo University, Ningbo, Ningbo, 315211, China
| | - Xinmei Gu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jialing Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Dilin Xu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Xin Yu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Chu Shuai
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Liping Chen
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Shun Li
- Pain Department of Zhejiang Provincial People's Hospital, Hangzhou, 310006, China
| | - Yiguo Xu
- Anaesthesia Department of the Affiliated Hospital of Medical College, Ningbo University, Ningbo, 315211, China
| | - Tao Gao
- Anaesthesia Department of the Affiliated Hospital of Medical College, Ningbo University, Ningbo, 315211, China
| | - Mingrui Ye
- Ningbo XiaoShi High School, Ningbo, 315020, China
| | - Wei Su
- Ningbo XiaoShi High School, Ningbo, 315020, China
| | - Haixiong Liu
- Ningbo Institute of Medical Sciences, Ningbo, 315211, China
| | - Jinrong Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Ningbo, 315211, China
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Junping Chen
- Department of Anaesthesiology, Ningbo No. 2 Hospital, Ningbo, 315010, China
| | - Qinwen Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Wei Cui
- Anaesthesia Department of the Affiliated Hospital of Medical College, Ningbo University, Ningbo, 315211, China.
- Department of Physiology, School of Medicine, Ningbo University, Zhejiang, China.
| |
Collapse
|
37
|
Schreuder L, Eggen BJ, Biber K, Schoemaker RG, Laman JD, de Rooij SE. Pathophysiological and behavioral effects of systemic inflammation in aged and diseased rodents with relevance to delirium: A systematic review. Brain Behav Immun 2017; 62:362-381. [PMID: 28088641 DOI: 10.1016/j.bbi.2017.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/26/2016] [Accepted: 01/10/2017] [Indexed: 01/20/2023] Open
Abstract
Delirium is a frequent outcome for aged and demented patients that suffer a systemic inflammatory insult. Animal models that reconstruct these etiological processes have potential to provide a better understanding of the pathophysiology of delirium. Therefore, we systematically reviewed animal studies in which systemic inflammation was superimposed on aged or diseased animal models. In total, 77 studies were identified. Aged animals were challenged with a bacterial endotoxin in 29 studies, 25 studies superimposed surgery on aged animals, and in 6 studies a bacterial infection, Escherichia coli (E. coli), was used. Diseased animals were challenged with a bacterial endotoxin in 15 studies, two studies examined effects of the cytokine IL-1β, and one study used polyinosinic:polycytidilic acid (poly I:C). This systematic review analyzed the impact of systemic inflammation on the production of inflammatory and neurotoxic mediators in peripheral blood, cerebrospinal fluid (CSF), and on the central nervous system (CNS). Moreover, concomitant behavioral and cognitive symptoms were also evaluated. Finally, outcomes of behavioral and cognitive tests from animal studies were compared to features and symptoms present in delirious patients.
Collapse
Affiliation(s)
- Leroy Schreuder
- University of Groningen, University Medical Center Groningen, University Center for Geriatric Medicine, Groningen, The Netherlands.
| | - B J Eggen
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Knut Biber
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Psychiatry and Psychotherapy, Section of Molecular Psychiatry, University of Freiburg, Freiburg, Germany.
| | - Regien G Schoemaker
- Department of Neurobiology, GELIFES, University of Groningen, Groningen, The Netherlands.
| | - Jon D Laman
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Sophia E de Rooij
- University of Groningen, University Medical Center Groningen, University Center for Geriatric Medicine, Groningen, The Netherlands.
| |
Collapse
|
38
|
Qiu LL, Luo D, Zhang H, Shi YS, Li YJ, Wu D, Chen J, Ji MH, Yang JJ. Nox-2-Mediated Phenotype Loss of Hippocampal Parvalbumin Interneurons Might Contribute to Postoperative Cognitive Decline in Aging Mice. Front Aging Neurosci 2016; 8:234. [PMID: 27790135 PMCID: PMC5062642 DOI: 10.3389/fnagi.2016.00234] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/23/2016] [Indexed: 01/24/2023] Open
Abstract
Postoperative cognitive decline (POCD) is a common complication following anesthesia and surgery, especially in elderly patients; however, the precise mechanisms of POCD remain unclear. Here, we investigated whether nicotinamide adenine dinucleotide phosphate (NADPH) oxidase mediated-abnormalities in parvalbumin (PV) interneurons play an important role in the pathophysiology of POCD. The animal model was established using isoflurane anesthesia and exploratory laparotomy in 16-month-old male C57BL/6 mice. For interventional experiments, mice were chronically treated with the NADPH oxidase inhibitor apocynin (APO). Open field and fear conditioning behavioral tests were performed on day 6 and 7 post-surgery, respectively. In a separate experiment, brain tissue was harvested and subjected to biochemical analysis. Primary hippocampal neurons challenged with lipopolysaccharide (LPS) in vitro were used to investigate the mechanisms underlying the oxidative stress-induced abnormalities in PV interneurons. Our results showed that anesthesia and surgery induced significant hippocampus-dependent memory impairment, which was accompanied by PV interneuron phenotype loss and increased expression of interleukin-1β (IL-1β), markers of oxidative stress and NADPH oxidase 2 (Nox2) in the hippocampus. In addition, LPS exposure increased Nox2 level and decreased the expression of PV and the number of excitatory synapses onto PV interneurons in the primary hippocampal neurons. Notably, treatment with APO reversed these abnormalities. Our study suggests that Nox2-derived reactive oxygen species (ROS) production triggers, at least in part, anesthesia- and surgery-induced hippocampal PV interneuron phenotype loss and consequent cognitive impairment in aging mice.
Collapse
Affiliation(s)
- Li-Li Qiu
- Zhongda Hospital, School of Medicine, Southeast University Nanjing, China
| | - Dan Luo
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University Nanjing, China
| | - Hui Zhang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University Nanjing, China
| | - Yun S Shi
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University Nanjing, China
| | - Yan-Jun Li
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University Nanjing, China
| | - Dan Wu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University Nanjing, China
| | - Jiang Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University Nanjing, China
| | - Mu-Huo Ji
- Zhongda Hospital, School of Medicine, Southeast University Nanjing, China
| | - Jian-Jun Yang
- Zhongda Hospital, School of Medicine, Southeast University Nanjing, China
| |
Collapse
|
39
|
Lee YJ, Zhao RJ, Kim YW, Kang SJ, Lee EK, Kim NJ, Chang S, Kim JM, Lee JE, Ku SK, Lee BH. Acupuncture inhibits liver injury induced by morphine plus acetaminophen through antioxidant system. Eur J Integr Med 2016. [DOI: 10.1016/j.eujim.2015.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Hovens IB, van Leeuwen BL, Mariani MA, Kraneveld AD, Schoemaker RG. Postoperative cognitive dysfunction and neuroinflammation; Cardiac surgery and abdominal surgery are not the same. Brain Behav Immun 2016; 54:178-193. [PMID: 26867718 DOI: 10.1016/j.bbi.2016.02.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/25/2016] [Accepted: 02/07/2016] [Indexed: 12/21/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a debilitating surgical complication, with cardiac surgery patients at particular risk. To gain insight in the mechanisms underlying the higher incidence of POCD after cardiac versus non-cardiac surgery, systemic and central inflammatory changes, alterations in intraneuronal pathways, and cognitive performance were studied after cardiac and abdominal surgery in rats. Male Wistar rats were subjected to ischemia reperfusion of the upper mesenteric artery (abdominal surgery) or the left coronary artery (cardiac surgery). Control rats remained naïve, received anesthesia only, or received thoracic sham surgery. Rats were subjected to affective and cognitive behavioral tests in postoperative week 2. Plasma concentrations of inflammatory factors, and markers for neuroinflammation (NGAL and microglial activity) and the BDNF pathway (BDNF, p38MAPK and DCX) were determined. Spatial memory was impaired after both abdominal and cardiac surgery, but only cardiac surgery impaired spatial learning and object recognition. While all surgical procedures elicited a pronounced acute systemic inflammatory response, NGAL and TNFα levels were particularly increased after abdominal surgery. Conversely, NGAL in plasma and the paraventricular nucleus of the hypothalamus and microglial activity in hippocampus and prefrontal cortex on postoperative day 14 were increased after cardiac, but not abdominal surgery. Both surgery types induced hippocampal alterations in BDNF signaling. These results suggest that POCD after cardiac surgery, compared to non-cardiac surgery, affects different cognitive domains and hence may be more extended rather than more severe. Moreover, while abdominal surgery effects seem limited to hippocampal brain regions, cardiac surgery seems associated with more wide spread alterations in the brain.
Collapse
Affiliation(s)
- Iris B Hovens
- Department of Molecular Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; Department of Surgery and Surgical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Barbara L van Leeuwen
- Department of Surgery and Surgical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Massimo A Mariani
- Department of Cardio-Thoracic Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
41
|
Zhu J, Chen Z, Zhu L, Meng Z, Wu G, Tian Z. Arginine Vasopressin and Arginine Vasopressin Receptor 1b Involved in Electroacupuncture-Attenuated Hypothalamic-Pituitary-Adrenal Axis Hyperactivity in Hepatectomy Rats. Neuromodulation 2015; 19:498-506. [PMID: 26573696 PMCID: PMC5063097 DOI: 10.1111/ner.12366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/21/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022]
Abstract
Objective The study aims to know the effect of electroacupuncture (EA) in maintenance of the homeostasis of the neuroendocrine system in hepatectomy rats and the involvement of arginine vasopressin (AVP) signaling in hypothalamus after EA was observed. Materials and Methods Rats were randomly assigned to four groups, including the intact group, model group, sham‐EA group, and EA group. EA was given during the perioperative period at the Zusanli (ST36) and Sanyinjiao (SP6) points after hepatectomy. The serum adrenocorticotropic hormone (ACTH) and corticosterone (CORT) levels were detected via radioimmunoassay. The expression of AVP, arginine vasopressin receptor 1a (AVPR1a), arginine vasopressin receptor 1b (AVPR1b), and glucocorticoid receptor (GR) was detected by Western blot after surgery. Results Compared with the intact group, the ACTH and CORT levels in the serum of model group were increased, whereas the ACTH and CORT levels were decreased in the EA group compared with the model group. Moreover, AVP and AVPR1b protein levels in the pituitary gland were increased in the model group and decreased in the EA group. Further, a distinct increase in the AVP and AVPR1a protein levels was observed in the model group, whereas they were significantly decreased in the EA group. Blockade of AVPR1b by nelivaptan reduced the increase of ACTH and CORT. D [Leu4, Lys8] vasopressin can inhibit the effect of EA in rectification of the hyperactivity of the hypothalamic‐pituitary‐adrenal (HPA) axis. Conclusions EA application at ST36 and SP6 can ameliorate the hyperactivity of the HPA axis via AVP signaling during the perioperative period.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institute of Acupuncture Research, WHO Collaborating Centre for Traditional Medicine, Fudan University, Shanghai, China
| | - Zhejun Chen
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institute of Acupuncture Research, WHO Collaborating Centre for Traditional Medicine, Fudan University, Shanghai, China
| | - LiTing Zhu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institute of Acupuncture Research, WHO Collaborating Centre for Traditional Medicine, Fudan University, Shanghai, China
| | - ZeHui Meng
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institute of Acupuncture Research, WHO Collaborating Centre for Traditional Medicine, Fudan University, Shanghai, China
| | - GenCheng Wu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institute of Acupuncture Research, WHO Collaborating Centre for Traditional Medicine, Fudan University, Shanghai, China
| | - ZhanZhuang Tian
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institute of Acupuncture Research, WHO Collaborating Centre for Traditional Medicine, Fudan University, Shanghai, China
| |
Collapse
|