1
|
Noge S, Kumamoto K, Matsukawa H, Ando Y, Suto H, Kondo A, Kishino T, Oshima M, Suzuki Y, Okano K. Intravenous D‑allose administration improves blood glucose control by maintaining insulin secretion in diabetic mice with transplanted islets. Exp Ther Med 2025; 29:63. [PMID: 39991726 PMCID: PMC11843210 DOI: 10.3892/etm.2025.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
Although pancreatic islet transplantation outcomes have improved, further refinements are required to extend the insulin withdrawal period. The present study examined whether intravenous D-allose administration improves insulin secretion when pancreatic islets are transplanted into type 1 diabetes model mice. Alterations in casual blood glucose levels, intraperitoneal glucose tolerance test (IPGGT) results, the number of apoptotic cells in the engrafted cells, and caspase 3, heme oxygenase 1 and nitric oxide synthase 2 (NOS2) expression in the engrafted cells were examined using the following groups of type 1 diabetic model mice with transplanted pancreatic islets: Mice that received an intravenous injection of D-allose (D-group) and those that received physiological saline as a control (C-group). The mice in the D-group had significantly lower casual blood sugar levels for a longer duration than those in the C-group. Regarding IPGGT, mice treated with D-allose exhibited smaller changes in blood glucose levels compared with untreated mice. Consequently, the incremental area under the curve of glucose in D-allose-treated mice was significantly lower than that in D-allose-untreated mice. No difference was observed in the number of engrafted cells between the groups. NOS2 mRNA expression in the engrafted cells of the D-group tended to be higher than that in the C-group. In conclusion, intravenous administration of D-allose significantly improved hyperglycemia and maintained stable blood glucose levels in type 1 diabetic mice after islet transplantation. Since there was no difference in the number of engrafted cells or apoptotic cells with or without intravenous D-allose administration, D-allose was considered to be effective in maintaining the cellular function of insulin secretion.
Collapse
Affiliation(s)
- Seiji Noge
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Kensuke Kumamoto
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
- Department of Genome Medical Science and Medical Genetics, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Hiroyuki Matsukawa
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Yasuhisa Ando
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Hironobu Suto
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Akihiro Kondo
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Takayoshi Kishino
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Minoru Oshima
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Yasuyuki Suzuki
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
- Department of Surgery, Hyogo Prefectural Awaji Medical Center, Sumoto, Hyogo 656-0021, Japan
| | - Keiichi Okano
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| |
Collapse
|
2
|
Guo Q, Zhang MJ, Zheng LJ, Chen WX, Zheng H, Fan LH. Enhanced Synthesis of Rare d-Allose from d-Glucose by Positively Pulling and Forcing Reversible Epimerization in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6072-6080. [PMID: 40017091 DOI: 10.1021/acs.jafc.4c11883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
d-Allose has great potential for application in the food and pharmaceutical industries owing to its remarkable physiological properties. Most studies on d-allose production have primarily focused on enzyme catalysis using the Izumoring strategy, which typically requires the use of expensive d-allulose as a substrate. Herein, a metabolically engineered strain of Escherichia coli was developed to synthesize d-allose directly from inexpensive d-glucose. The synthesis pathway was systematically optimized through a modular metabolic engineering. The functionality of the isomerases involved in the conversion of d-allulose to d-allose was confirmed in vivo, while the byproduct and transporter pathways were blocked to positively pull the reversible epimerization. Gene knockouts were employed to weaken glycolytic pathways, redirecting the carbon flux toward product synthesis. Additionally, the nonphosphorylated transport of d-glucose was introduced to enhance substrate utilization. In fed-batch fermentation, the engineered strain achieved a d-allose titer of 4.17 g/L, with a yield of 0.103 g/g from d-glucose. Our achievements are expected to advance the industrial production of d-allose, and this strategy is also applicable for producing other rare sugars.
Collapse
Affiliation(s)
- Qiang Guo
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Meng-Jun Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Ling-Jie Zheng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Wei-Xiang Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Huidong Zheng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Li-Hai Fan
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| |
Collapse
|
3
|
Shintani T, Yanai S, Kanasaki A, Iida T, Endo S. Long-term d-allose administration ameliorates age-related cognitive impairment and loss of bone strength in male mice. Exp Gerontol 2024; 196:112555. [PMID: 39179160 DOI: 10.1016/j.exger.2024.112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Age-related physical and cognitive decline may be ameliorated by consuming functional foods. d-Allose, reported to have multiple health benefits, may temper aging phenotypes, particularly brain function. We investigated whether d-allose supplementation improves cognitive function. A standard battery of behavioral tests was administered to 18-month-old male mice after consuming diet containing 3 % d-allose for 6 months. Following a wire-hanging test, an open-field test, Morris water maze, fear-conditioning, and an analgesia test were sequentially performed. Bone density and strength were assessed afterwards. Possible mechanism(s) under-lying memory changes in hippocampus were also examined with a DNA microarray. d-Allose failed to influence muscle strength, locomotor activity and anxiety, fear memory, or pain sensitivity. However, d-allose improved hippocampus-dependent spatial learning and memory, and it may contribute to increase bone strength. d-Allose also changed the expression of some genes in hippocampus involved in cognitive functions. Long-term d-allose supplementation appears to modestly change aging phenotypes and improve spatial memory.
Collapse
Affiliation(s)
- Tomoya Shintani
- Research and Development, Matsutani Chemical Industry Co., Ltd., 5-3 Kita-Itami, Itami City, Hyogo 664-8508, Japan
| | - Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; Animal Facility, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Akane Kanasaki
- Research and Development, Matsutani Chemical Industry Co., Ltd., 5-3 Kita-Itami, Itami City, Hyogo 664-8508, Japan.
| | - Tetsuo Iida
- Research and Development, Matsutani Chemical Industry Co., Ltd., 5-3 Kita-Itami, Itami City, Hyogo 664-8508, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
4
|
Akumwami S, Rahman A, Funamoto M, Hossain A, Morishita A, Ikeda Y, Kitamura H, Kitada K, Noma T, Ogino Y, Nishiyama A. Effects of D-Allose on experimental cardiac hypertrophy. J Pharmacol Sci 2024; 156:142-148. [PMID: 39179333 DOI: 10.1016/j.jphs.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
The hallmark of pathological cardiac hypertrophy is the decline in myocardial contractility caused by an energy deficit resulting from metabolic abnormalities, particularly those related to glucose metabolism. Here, we aim to explore whether D-Allose, a rare sugar that utilizes the same transporters as glucose, may restore metabolic equilibrium and reverse cardiac hypertrophy. Isolated neonatal rat cardiomyocytes were stimulated with phenylephrine and treated with D-Allose simultaneously for 48 h. D-Allose treatment resulted in a pronounced reduction in cardiomyocyte size and cardiac remodelling markers accompanied with a dramatic reduction in the level of intracellular glucose in phenylephrine-stimulated cells. The metabolic flux analysis provided further insights revealing that D-Allose exerted a remarkable inhibition of glycolysis as well as glycolytic capacity. Furthermore, in mice subjected to a 14-day continuous infusion of isoproterenol (ISO) to induce cardiac hypertrophy, D-Allose treatment via drinking water notably reduced ISO-induced cardiac hypertrophy and remodelling markers, with minimal effects on ventricular wall thickness observed in echocardiographic analyses. These findings indicate that D-Allose has the ability to attenuate the progression of cardiomyocyte hypertrophy by decreasing intracellular glucose flux and inhibiting glycolysis.
Collapse
Affiliation(s)
- Steeve Akumwami
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan; Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Asadur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Masafumi Funamoto
- Department of Pharmacology, Tokushima University Graduate School of Biomedical Science, Tokushima, Japan
| | - Akram Hossain
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Tokushima University Graduate School of Biomedical Science, Tokushima, Japan
| | - Hiroaki Kitamura
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takahisa Noma
- Department of Cardiorenal Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yuichi Ogino
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
5
|
Hagemeyer H, Hellwinkel OJC, Plata-Bello J. Zonulin as Gatekeeper in Gut-Brain Axis: Dysregulation in Glioblastoma. Biomedicines 2024; 12:1649. [PMID: 39200114 PMCID: PMC11352073 DOI: 10.3390/biomedicines12081649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Novel biomarkers and therapeutic strategies for glioblastoma, the most common malignant brain tumor with an extremely unfavorable prognosis, are urgently needed. Recent studies revealed a significant upregulation of the protein zonulin in glioblastoma, which correlates with patient survival. Originally identified as pre-haptoglobin-2, zonulin modulates both the intestinal barrier and the blood-brain barrier by disassembling tight junctions. An association of zonulin with various neuroinflammatory diseases has been observed. It can be suggested that zonulin links a putative impairment of the gut-brain barrier with glioblastoma carcinogenesis, leading to an interaction of the gut microbiome, the immune system, and glioblastoma. We therefore propose three interconnected hypotheses: (I) elevated levels of zonulin in glioblastoma contribute to its aggressiveness; (II) upregulated (serum-) zonulin increases the permeability of the microbiota-gut-brain barrier; and (III) this creates a carcinogenic and immunosuppressive microenvironment preventing the host from an effective antitumor response. The role of zonulin in glioblastoma highlights a promising field of research that could yield diagnostic and therapeutic options for glioblastoma patients and other diseases with a disturbed microbiota-gut-brain barrier.
Collapse
Affiliation(s)
- Hannah Hagemeyer
- Institut für Neuroimmunologie und Multiple Sklerose, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany;
| | - Olaf J. C. Hellwinkel
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Julio Plata-Bello
- Department of Neurosurgery, Hospital Universitario de Canarias, S/C de Tenerife, 38320 La Laguna, Spain
| |
Collapse
|
6
|
Irie K, Nakamura-Maruyama E, Ishikawa M, Nakamura T, Miyake K. Effects of d-allose on anti-brain edema effects and reduction of tumor necrosis factor-alpha and interleukin-6 in the water intoxication model. Heliyon 2024; 10:e30700. [PMID: 38770322 PMCID: PMC11103412 DOI: 10.1016/j.heliyon.2024.e30700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Rare sugars, which exist only in very small quantities in nature, have recently attracted attention for their various biological functions in medicine. Among them, d-allose is known to have cytoprotective effects by antioxidant effects. In this study, we investigated whether the antioxidant effects of d-allose reduce brain edema in a water intoxication model of cytotoxic brain edema. Methods: Mice were injected intraperitoneally with distilled water (10 % of body weight) to create a model of brain edema. d-allose was administered orally at 400 mg/kg 30 min before the model was created. Two hours later, the degree of brain edema was measured by the dry-weight method to determine whether d-allose reduced brain edema. As an index of antioxidant effects, we measured changes over time in inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6) induced by the water intoxication model, and whether d-allose reduced inflammatory cytokines 4 h after model creation. Results: Administration of d-allose significantly suppressed brain edema formation of the water-intoxication model. And it significantly reduced inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6). These results suggest that the antioxidant effect of d-allose exerts an anti-inflammatory effect and reduces brain edema.
Collapse
Affiliation(s)
- Keiichiro Irie
- Department of Neurological Surgery, Kagawa University Faculty of Medicine, Miki, Japan
| | | | - Mai Ishikawa
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan
| | - Takehiro Nakamura
- Department of Physiology 2, Kawasaki Medical School, Kurashiki, Japan
| | - Keisuke Miyake
- Department of Neurological Surgery, Kagawa University Faculty of Medicine, Miki, Japan
| |
Collapse
|
7
|
Tang X, Ravikumar Y, Zhang G, Yun J, Zhao M, Qi X. D-allose, a typical rare sugar: properties, applications, and biosynthetic advances and challenges. Crit Rev Food Sci Nutr 2024; 65:2785-2812. [PMID: 38764407 DOI: 10.1080/10408398.2024.2350617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
D-allose, a C-3 epimer of D-glucose and an aldose-ketose isomer of D-allulose, exhibits 80% of sucrose's sweetness while being remarkably low in calories and nontoxic, making it an appealing sucrose substitute. Its diverse physiological functions, particularly potent anticancer and antitumor effects, render it a promising candidate for clinical treatment, garnering sustained attention. However, its limited availability in natural sources and the challenges associated with chemical synthesis necessitate exploring biosynthetic strategies to enhance production. This overview encapsulates recent advancements in D-allose's physicochemical properties, physiological functions, applications, and biosynthesis. It also briefly discusses the crucial role of understanding aldoketose isomerase structure and optimizing its performance in D-allose synthesis. Furthermore, it delves into the challenges and future perspectives in D-allose bioproduction. Early efforts focused on identifying and characterizing enzymes responsible for D-allose production, followed by detailed crystal structure analysis to improve performance through molecular modification. Strategies such as enzyme immobilization and implementing multi-enzyme cascade reactions, utilizing more cost-effective feedstocks, were explored. Despite progress, challenges remain, including the lack of efficient high-throughput screening methods for enzyme modification, the need for food-grade expression systems, the establishment of ordered substrate channels in multi-enzyme cascade reactions, and the development of downstream separation and purification processes.
Collapse
Affiliation(s)
- Xinrui Tang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
8
|
Mahmood S, Iqbal MW, Tang X, Zabed HM, Chen Z, Zhang C, Ravikumar Y, Zhao M, Qi X. A comprehensive review of recent advances in the characterization of L-rhamnose isomerase for the biocatalytic production of D-allose from D-allulose. Int J Biol Macromol 2024; 254:127859. [PMID: 37924916 DOI: 10.1016/j.ijbiomac.2023.127859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
D-Allose and D-allulose are two important rare natural monosaccharides found in meager amounts. They are considered to be the ideal substitutes for table sugar (sucrose) for, their significantly lower calorie content with around 80 % and 70 % of the sweetness of sucrose, respectively. Additionally, both monosaccharides have gained much attention due to their remarkable physiological properties and excellent health benefits. Nevertheless, D-allose and D-allulose are rare in nature and difficult to produce by chemical methods. Consequently, scientists are exploring bioconversion methods to convert D-allulose into D-allose, with a key enzyme, L-rhamnose isomerase (L-RhIse), playing a remarkable role in this process. This review provides an in-depth analysis of the extractions, physiological functions and applications of D-allose from D-allulose. Specifically, it provides a detailed description of all documented L-RhIse, encompassing their biochemical properties including, pH, temperature, stabilities, half-lives, metal ion dependence, molecular weight, kinetic parameters, specific activities and specificities of the substrates, conversion ratio, crystal structure, catalytic mechanism as well as their wide-ranging applications across diverse fields. So far, L-RhIses have been discovered and characterized experimentally by numerous mesophilic and thermophilic bacteria. Furthermore, the crystal forms of L-RhIses from E. coli and Stutzerimonas/Pseudomonas stutzeri have been previously cracked, together with their catalytic mechanism. However, there is room for further exploration, particularly the molecular modification of L-RhIse for enhancing its catalytic performance and thermostability through the directed evolution or site-directed mutagenesis.
Collapse
Affiliation(s)
- Shahid Mahmood
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Muhammad Waheed Iqbal
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Xinrui Tang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Ziwei Chen
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Cunsheng Zhang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yuvaraj Ravikumar
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Mei Zhao
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Xianghui Qi
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China; School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
9
|
Luo Y, Cheng J, Fu Y, Zhang M, Gou M, Li J, Li X, Bai J, Zhou Y, Zhang L, Gao D. D-allose Inhibits TLR4/PI3K/AKT Signaling to Attenuate Neuroinflammation and Neuronal Apoptosis by Inhibiting Gal-3 Following Ischemic Stroke. Biol Proced Online 2023; 25:30. [PMID: 38017376 PMCID: PMC10683335 DOI: 10.1186/s12575-023-00224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Ischemic stroke (IS) occurs when a blood vessel supplying the brain becomes obstructed, resulting in cerebral ischemia. This type of stroke accounts for approximately 87% of all strokes. Globally, IS leads to high mortality and poor prognosis and is associated with neuroinflammation and neuronal apoptosis. D-allose is a bio-substrate of glucose that is widely expressed in many plants. Our previous study showed that D-allose exerted neuroprotective effects against acute cerebral ischemic/reperfusion (I/R) injury by reducing neuroinflammation. Here, we aimed to clarify the beneficial effects D-allose in suppressing IS-induced neuroinflammation damage, cytotoxicity, neuronal apoptosis and neurological deficits and the underlying mechanism in vitro and in vivo. METHODS In vivo, an I/R model was induced by middle cerebral artery occlusion and reperfusion (MCAO/R) in C57BL/6 N mice, and D-allose was given by intraperitoneal injection within 5 min after reperfusion. In vitro, mouse hippocampal neuronal cells (HT-22) with oxygen-glucose deprivation and reperfusion (OGD/R) were established as a cell model of IS. Neurological scores, some cytokines, cytotoxicity and apoptosis in the brain and cell lines were measured. Moreover, Gal-3 short hairpin RNAs, lentiviruses and adeno-associated viruses were used to modulate Gal-3 expression in neurons in vitro and in vivo to reveal the molecular mechanism. RESULTS D-allose alleviated cytotoxicity, including cell viability, LDH release and apoptosis, in HT-22 cells after OGD/R, which also alleviated brain injury, as indicated by lesion volume, brain edema, neuronal apoptosis, and neurological functional deficits, in a mouse model of I/R. Moreover, D-allose decreased the release of inflammatory factors, such as IL-1β, IL-6 and TNF-α. Furthermore, the expression of Gal-3 was increased by I/R in wild-type mice and HT-22 cells, and this factor further bound to TLR4, as confirmed by three-dimensional structure prediction and Co-IP. Silencing the Gal-3 gene with shRNAs decreased the activation of TLR4 signaling and alleviated IS-induced neuroinflammation, apoptosis and brain injury. Importantly, the loss of Gal-3 enhanced the D-allose-mediated protection against I/R-induced HT-22 cell injury, inflammatory insults and apoptosis, whereas activation of TLR4 by the selective agonist LPS increased the degree of neuronal injury and abolished the protective effects of D-allose. CONCLUSIONS In summary, D-allose plays a crucial role in inhibiting inflammation after IS by suppressing Gal-3/TLR4/PI3K/AKT signaling pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Yaowen Luo
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Changle West Road NO.127, Xi'an, China
| | - Junkai Cheng
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Changle West Road NO.127, Xi'an, China
| | - Yihao Fu
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Changle West Road NO.127, Xi'an, China
| | - Min Zhang
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Changle West Road NO.127, Xi'an, China
| | - Maorong Gou
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Changle West Road NO.127, Xi'an, China
| | - Juan Li
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Changle West Road NO.127, Xi'an, China
| | - Xiaobing Li
- Department of Neurology, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, China
| | - Jing Bai
- Department of Neurology, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, China
| | - Yuefei Zhou
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Changle West Road NO.127, Xi'an, China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Changle West Road NO.127, Xi'an, China.
| | - Dakuan Gao
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Changle West Road NO.127, Xi'an, China.
| |
Collapse
|
10
|
Li J, Zhang T, Liu K, Hu G. Protective effects and mechanisms of Yi Qi Huo Xue Fang in cerebral ischemic stroke based on network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116611. [PMID: 37169318 DOI: 10.1016/j.jep.2023.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yi Qi Huo Xue Fang (YQHXF) is an effective formula for treating cerebral ischemic stroke (CIS). However, its active ingredients and mechanism of action remain unclear. AIM OF THE STUDY This study aimed to reveal the mechanism of action of YQHXF in the treatment of ischemic stroke based on network pharmacology and experimental validation. MATERIALS AND METHODS This study identified the chemical components in YQHXF and the components absorbed by rat serum based on UPLC-Q-TOF/MS technology and used network pharmacology to predict key candidate targets. A protein-protein-interaction (P-P-I) network was constructed using String 11.0 database and Cytoscape, and R software for gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Finally, molecular docking combined with animal experiments was used to verify network pharmacology results. RESULTS This study identified and confirmed 36 chemical components of YQHXF and five chemical ingredients that were absorbed into the blood of rats and screened 66 key candidate targets. All targets in the P-P-I network were mainly related to inflammation and vascular processes. KEGG enrichment results revealed that these 66 key candidate targets were primarily involved in the "AGE-RAGE signaling pathway," "TNF-α signaling pathway, and "T cell receptor signaling pathway." Molecular docking results revealed that Prostaglandin-endoperoxidase synthase 2(PTGS-2), Nitric oxide synthase, endothelial (NOS3), and peroxisome proliferator-activated receptor gamma (PPARG) were more stably bound to their active ingredients. Animal experiments demonstrated that YQHXF promoted M2 polarization, inhibited M1 polarization in microglia, and promoted angiogenesis, which may be related to the PPARG pathway. CONCLUSION This study revealed the key active components and effective targets of YQHXF, identified the mechanism of action of YQHXF, laid the foundation for further research on YQHXF, and provided ideas for developing new drugs for CIS.
Collapse
Affiliation(s)
- Jiamin Li
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, China; Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Tiantian Zhang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, China; Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Kan Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, China.
| | - Guoheng Hu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, China; Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
11
|
Veres-Székely A, Szász C, Pap D, Szebeni B, Bokrossy P, Vannay Á. Zonulin as a Potential Therapeutic Target in Microbiota-Gut-Brain Axis Disorders: Encouraging Results and Emerging Questions. Int J Mol Sci 2023; 24:ijms24087548. [PMID: 37108711 PMCID: PMC10139156 DOI: 10.3390/ijms24087548] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The relationship between dysbiosis and central nervous diseases has been proved in the last 10 years. Microbial alterations cause increased intestinal permeability, and the penetration of bacterial fragment and toxins induces local and systemic inflammatory processes, affecting distant organs, including the brain. Therefore, the integrity of the intestinal epithelial barrier plays a central role in the microbiota-gut-brain axis. In this review, we discuss recent findings on zonulin, an important tight junction regulator of intestinal epithelial cells, which is assumed to play a key role in maintaining of the blood-brain barrier function. In addition to focusing on the effect of microbiome on intestinal zonulin release, we also summarize potential pharmaceutical approaches to modulate zonulin-associated pathways with larazotide acetate and other zonulin receptor agonists or antagonists. The present review also addresses the emerging issues, including the use of misleading nomenclature or the unsolved questions about the exact protein sequence of zonulin.
Collapse
Affiliation(s)
- Apor Veres-Székely
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Csenge Szász
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Domonkos Pap
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Beáta Szebeni
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Péter Bokrossy
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Ádám Vannay
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|
12
|
d-allose protects brain microvascular endothelial cells from hypoxic/reoxygenated injury by inhibiting endoplasmic reticulum stress. Neurosci Lett 2023; 793:137000. [PMID: 36473686 DOI: 10.1016/j.neulet.2022.137000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Ischemic stroke is an acute brain disease with a high mortality rate. Currently, the only effective method is to restore the blood supply. But the inflammation and oxidative stress induced by this approach can damage the integrity of the endothelial system, which hampers the patient's outcome. d-allose has the biological activity to protect against ischemia-reperfusion injury, however, the underlying mechanism remains unclear. Here, brain microvascular endothelial cells (RBMECs) were used as the study material to establish an IR-injury model. Cell viability of RBMECs was suppressed after hypoxia/reoxygenation (H/R) treatment and significantly increased after d-allose supplementation. RNAseq results showed 180 differentially expressed genes (DEGs) between the therapy group (H/R + Dal) and the model group (H/R), of which 151 DEGs were restored to control levels by d-allose. Enrichment analysis revealed that DEGs were mainly involved in protein processing in endoplasmic reticulum. 6 DEGs in the unfolded protein response (UPR) pathway were verified by qRT-PCR. All of them were significantly down-regulated by d-allose, indicating that endoplasmic reticulum stress (ERS) was relieved. In addition, d-allose significantly inhibited the phosphorylation level of eIF2α, a marker of ERS. The downstream molecules of Phosphorylation of eIF2α, Gadd45a and Chac1, which trigger cycle arrest and apoptosis, respectively, were also significantly inhibited by d-allose. Thus, we conclude that d-allose inhibits the UPR pathway, attenuates eIF2α phosphorylation and ERS, restores the cell cycle, inhibits apoptosis, and thus enhances endothelial cell tolerance to H/R injury.
Collapse
|
13
|
Li W, Cao F, Takase H, Arai K, Lo EH, Lok J. Blood-Brain Barrier Mechanisms in Stroke and Trauma. Handb Exp Pharmacol 2022; 273:267-293. [PMID: 33580391 DOI: 10.1007/164_2020_426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The brain microenvironment is tightly regulated. The blood-brain barrier (BBB), which is composed of cerebral endothelial cells, astrocytes, and pericytes, plays an important role in maintaining the brain homeostasis by regulating the transport of both beneficial and detrimental substances between circulating blood and brain parenchyma. After brain injury and disease, BBB tightness becomes dysregulated, thus leading to inflammation and secondary brain damage. In this chapter, we overview the fundamental mechanisms of BBB damage and repair after stroke and traumatic brain injury (TBI). Understanding these mechanisms may lead to therapeutic opportunities for brain injury.
Collapse
Affiliation(s)
- Wenlu Li
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fang Cao
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hajime Takase
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Josephine Lok
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Yu Y, He L, Xu H, Zhang L, Zhang H, Li M. Mathematical model of the ratio of sucrose added to dangshan pear paste based on GC analysis of d-allose as the characteristic component. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Herrera EA, González-Candia A. Gestational Hypoxia and Blood-Brain Barrier Permeability: Early Origins of Cerebrovascular Dysfunction Induced by Epigenetic Mechanisms. Front Physiol 2021; 12:717550. [PMID: 34489733 PMCID: PMC8418233 DOI: 10.3389/fphys.2021.717550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 01/25/2023] Open
Abstract
Fetal chronic hypoxia leads to intrauterine growth restriction (IUGR), which is likely to reduce oxygen delivery to the brain and induce long-term neurological impairments. These indicate a modulatory role for oxygen in cerebrovascular development. During intrauterine hypoxia, the fetal circulation suffers marked adaptations in the fetal cardiac output to maintain oxygen and nutrient delivery to vital organs, known as the "brain-sparing phenotype." This is a well-characterized response; however, little is known about the postnatal course and outcomes of this fetal cerebrovascular adaptation. In addition, several neurodevelopmental disorders have their origins during gestation. Still, few studies have focused on how intrauterine fetal hypoxia modulates the normal brain development of the blood-brain barrier (BBB) in the IUGR neonate. The BBB is a cellular structure formed by the neurovascular unit (NVU) and is organized by a monolayer of endothelial and mural cells. The BBB regulates the entry of plasma cells and molecules from the systemic circulation to the brain. A highly selective permeability system achieves this through integral membrane proteins in brain endothelial cells. BBB breakdown and dysfunction in cerebrovascular diseases lead to leakage of blood components into the brain parenchyma, contributing to neurological deficits. The fetal brain circulation is particularly susceptible in IUGR and is proposed to be one of the main pathological processes deriving BBB disruption. In the last decade, several epigenetic mechanisms activated by IU hypoxia have been proposed to regulate the postnatal BBB permeability. However, few mechanistic studies about this topic are available, and little evidence shows controversy. Therefore, in this mini-review, we analyze the BBB permeability-associated epigenetic mechanisms in the brain exposed to chronic intrauterine hypoxia.
Collapse
Affiliation(s)
- Emilio A Herrera
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | | |
Collapse
|
16
|
Figueroa EG, González-Candia A, Caballero-Román A, Fornaguera C, Escribano-Ferrer E, García-Celma MJ, Herrera EA. Blood-brain barrier dysfunction in hemorrhagic transformation: a therapeutic opportunity for nanoparticles and melatonin. J Neurophysiol 2021; 125:2025-2033. [PMID: 33909508 DOI: 10.1152/jn.00638.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stroke is the second leading cause of death worldwide, estimated that one-sixth of the world population will suffer it once in their life. The most common type of this medical condition is the ischemic stroke (IS), produced by a thrombotic or embolic occlusion of a major cerebral artery or its branches, leading to the formation of a complex infarct region caused by oxidative stress, excitotoxicity, and endothelial dysfunction. Nowadays, the immediate treatment for IS involves thrombolytic agents or mechanical thrombectomy, depending on the integrity of the blood-brain barrier (BBB). A common stroke complication is the hemorrhagic transformation (HT), which consists of bleeding into the ischemic brain area. Currently, better treatments for IS are urgently needed. As such, the neurohormone melatonin has been proposed as a good candidate due to its antioxidant, anti-inflammatory, and neuroprotective effects, particularly against lipid peroxidation and oxidative stress during brain ischemia. Here, we proposed to develop intravenous or intranasal melatonin nanoformulation to specifically target the brain in patients with stroke. Nowadays, the challenge is to find a formulation able to cross the barriers and reach the target organ in an effective dose to generate the pharmacological effect. In this review, we discuss the current literature about stroke pathophysiology, melatonin properties, and its potential use in nanoformulations as a novel therapeutic approach for ischemic stroke.
Collapse
Affiliation(s)
- Esteban G Figueroa
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, R+D Associated Unit to Consejo Superior de Investigaciones Científicas (CSIC), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - Alejandro González-Candia
- Institute of Health Sciences, University of O'Higgins, Rancagua, Chile.,Laboratory of Vascular Function and Reactivity, Pathophysiology Program, Instituto de Ciencias Biomédicas (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Aitor Caballero-Román
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, R+D Associated Unit to Consejo Superior de Investigaciones Científicas (CSIC), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Elvira Escribano-Ferrer
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, R+D Associated Unit to Consejo Superior de Investigaciones Científicas (CSIC), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - María José García-Celma
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, R+D Associated Unit to Consejo Superior de Investigaciones Científicas (CSIC), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain.,Center for Biomedical Research Network in Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| | - Emilio A Herrera
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, Instituto de Ciencias Biomédicas (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile.,International Center for Andean Studies, University of Chile, Putre, Chile
| |
Collapse
|
17
|
Huang R, Zhang C, Wang X, Hu H. PPARγ in Ischemia-Reperfusion Injury: Overview of the Biology and Therapy. Front Pharmacol 2021; 12:600618. [PMID: 33995008 PMCID: PMC8117354 DOI: 10.3389/fphar.2021.600618] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a complex pathophysiological process that is often characterized as a blood circulation disorder caused due to various factors (such as traumatic shock, surgery, organ transplantation, burn, and thrombus). Severe metabolic dysregulation and tissue structure destruction are observed upon restoration of blood flow to the ischemic tissue. Theoretically, IRI can occur in various tissues and organs, including the kidney, liver, myocardium, and brain, among others. The advances made in research regarding restoring tissue perfusion in ischemic areas have been inadequate with regard to decreasing the mortality and infarct size associated with IRI. Hence, the clinical treatment of patients with severe IRI remains a thorny issue. Peroxisome proliferator-activated receptor γ (PPARγ) is a member of a superfamily of nuclear transcription factors activated by agonists and is a promising therapeutic target for ameliorating IRI. Therefore, this review focuses on the role of PPARγ in IRI. The protective effects of PPARγ, such as attenuating oxidative stress, inhibiting inflammatory responses, and antagonizing apoptosis, are described, envisaging certain therapeutic perspectives.
Collapse
Affiliation(s)
- Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xing Wang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Pongkan W, Jinawong K, Pratchayasakul W, Jaiwongkam T, Kerdphoo S, Tokuda M, Chattipakorn SC, Chattipakorn N. D-allulose provides cardioprotective effect by attenuating cardiac mitochondrial dysfunction in obesity-induced insulin-resistant rats. Eur J Nutr 2020; 60:2047-2061. [PMID: 33011844 DOI: 10.1007/s00394-020-02394-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Obesity-induced insulin resistant is associated with cardiovascular diseases via impairing cardiac mitochondria. Recently, D-allulose could protect β-islets and improve insulin resistance. However, the effects of D-allulose on the heart and cardiac mitochondrial function under obesity-induced insulin-resistant condition has not been investigated. In this study, we aimed to investigate the effects of D-allulose on metabolic parameters, cardiac function, heart rate variability (HRV), cardiac mitochondrial function, and apoptosis in the heart of obesity-induced insulin-resistant rats induced by chronic high fat diet consumption. METHODS Male Wistar rats (n = 24) received a normal fat diet (ND) or high fat diet (HFD) for 12 weeks. Then, HFD group was randomly divided into three subgroups to receive (1) HFD with distilled water, (2) HFD with 3% D-allulose 1.9 g/ kg·BW/ day (HFR), and (3) HFD with metformin 300 mg/kg·BW/ day (HFM) by diluted in drinking water daily for 12 weeks. At week 24, proposed study parameters were investigated. RESULTS Chronic HFD consumption induced obesity-induced insulin resistant in rats and high fat diet impaired cardiac function and HRV. HFR rats had improved insulin sensitivity as indicated by decreasing HOMA index, plasma insulin, whereas HFM decreased body weight, visceral fat, plasma cholesterol, and plasma LDL. HFR and HFM provided similar efficacy in improving HRV and attenuating cardiac mitochondrial dysfunction, leading to improved cardiac function. CONCLUSIONS Even though this is the first investigation of the D-allulose impact on the heart with a relatively small sample size, it clearly demonstrated a beneficial effect on the heart. D-allulose exerted a therapeutic effect on metabolic parameters except for body weight and lipid profiles and provided cardioprotective effects similar to metformin via attenuating cardiac mitochondrial function in obesity-induced insulin-resistant rats.
Collapse
Affiliation(s)
- Wanpitak Pongkan
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Kewarin Jinawong
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Masaaki Tokuda
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, 760-8521, Japan
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
19
|
|
20
|
Ju J, Hou R, Zhang P. D-allose alleviates ischemia/reperfusion (I/R) injury in skin flap via MKP-1. Mol Med 2020; 26:21. [PMID: 32046628 PMCID: PMC7014625 DOI: 10.1186/s10020-020-0138-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background D-allose was promising in the protection of ischemia/reperfusion (I/R) injury. We intended to investigate the function of D-allose in skin flap of rat followed by the injury of I/R and whether ERK signal pathway was involved in. Methods The back flap of Wistar rats was picked up with a vascular bundle of the lateral chest wall. I/R model was made by the venous clamp for 6 h. Rats received D-allose and PD-98059, the inhibitor of ERK1/2, 30 min before modeling. Morphology of tissue was observed by HE staining. Nitric oxide (NO), myeloperoxidase (MPO), malondialdehyde (MDA) and superoxide dismutase (SOD) levels in skin flap were determined by ELISA kits. mRNA and protein levels were determined by qPCR and Western blot respectively. Results D-allose alleviated the condition of pathological changes and raised the survival rate of skin flap injured by I/R. Moreover, D-allose suppressed NO, MPO and MDA while elevated SOD levels during I/R status. Furthermore, D-allose decreased MCP-1, TNF-α, IL-1β and IL-6 levels in skin flap injured by I/R. In addition, D-allose inhibited MKP-1 expression and activated ERK1/2 pathway in skin flap injured by I/R. PD-98059 partially counteracted D-allose effects on I/R injury. Conclusions D-allose exerted its protective function via inhibiting MKP-1expression and further activated ERK1/2 pathway to suppress the progress of oxidative stress, inflammation and necrosis, contributing to the survival of skin flap injured by I/R. Thus, D-allose was promising in the transplantation of skin flap.
Collapse
Affiliation(s)
- Jihui Ju
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, No. 5, Tayun Road, Suzhou, 215104, Jiangsu, China
| | - Ruixing Hou
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, No. 5, Tayun Road, Suzhou, 215104, Jiangsu, China.
| | - Ping Zhang
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, No. 5, Tayun Road, Suzhou, 215104, Jiangsu, China
| |
Collapse
|
21
|
Zhao Z, Zhang X, Dai Y, Pan K, Deng Y, Meng Y, Xu T. PPAR-γ promotes p38 MAP kinase-mediated endothelial cell permeability through activating Sirt3. BMC Neurol 2019; 19:289. [PMID: 31729962 PMCID: PMC6857342 DOI: 10.1186/s12883-019-1508-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
Background Ischemia-reperfusion (I/R)-induced vascular dysfunction is the main factor to acute ischemic stroke. Sirt3 is one of the sirtuin family members, which plays an important role in the development of neurological diseases. Methods In this study, we constructed I/R injury model on HBMEC cells and induced the overexpression of Sirt3 in model cells. Meanwhile, the p38 activator U-46619 was used to examine the connection between Sirt3 and p38. We also examined the level of endothelial associated proteins, including occluding, ZO-1 and claudin-4 by using qRT-PCR and western blot. Results Our findings indicated that overexpression of Sirt3 decreased the permeability of model cells and promoted in the growth of endothelial cells. However, the activation of p38 could antagonize the function of Sirt3 in HBMEC cells. Moreover, Our results indicated a positive correlation between Sirt3 and inter-endothelial junction proteins. Importantly, PPAR-γ agonist and inhibitor were utilized to investigate the role of PPAR-γ in Sirt3 mediated cell function. Sirt3 was targeted by PPAR-γ in model cells. Conclusions Taken together, this research not only demonstrated PPAR-γ might benefit to the growth of endothelial cell though activating Sirt3 but also indicated its potential value in the treatment for ischemic stroke.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- Department of Anesthesiology, Changhai hospital, Naval Medical University, Changhai Road NO.168, Shanghai City, 200433, People's Republic of China
| | - Xiaoxiu Zhang
- Department of Anesthesiology, Changhai hospital, Naval Medical University, Changhai Road NO.168, Shanghai City, 200433, People's Republic of China
| | - Yuanqiang Dai
- Department of Anesthesiology, Changhai hospital, Naval Medical University, Changhai Road NO.168, Shanghai City, 200433, People's Republic of China
| | - Ke Pan
- Department of Anesthesiology, Changhai hospital, Naval Medical University, Changhai Road NO.168, Shanghai City, 200433, People's Republic of China
| | - Yu Deng
- Department of Anesthesiology, Changhai hospital, Naval Medical University, Changhai Road NO.168, Shanghai City, 200433, People's Republic of China
| | - Yan Meng
- Department of Anesthesiology, Changhai hospital, Naval Medical University, Changhai Road NO.168, Shanghai City, 200433, People's Republic of China.
| | - Tao Xu
- Department of Anesthesiology, Changhai hospital, Naval Medical University, Changhai Road NO.168, Shanghai City, 200433, People's Republic of China.
| |
Collapse
|
22
|
王 虎, 樊 嘉, 陈 婉, 高 震, 张 桂, 吴 海, 俞 小. [Activation of PPARγ pathway enhances cellular anti-oxidant capacity to protect long-term cultured primary rat neural cells from apoptosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:23-29. [PMID: 30692062 PMCID: PMC6765588 DOI: 10.12122/j.issn.1673-4254.2019.01.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To study the protective effect of enhanced peroxisome proliferator activated receptor γ (PPARγ) pathway against apoptosis of long-term cultured primary nerve cells. METHODS A natural aging model was established in primary rat nerve cells by long-term culture for 22 days. The cells were divided into control group, 0.1, 1.0, 5.0, and 10 μmol/L GW9662 intervention groups, and 0.1, 1.0, 5.0, and 10 μmol/L pioglitazone intervention groups. The cell viability was assessed using MTT assay and the cell morphological changes were observed after the treatments to determine the optimal concentrations of GW9662 and pioglitazone. Double immunofluorescence labeling and flow cytometry were used to observe the changes in the number of viable cells and cell apoptosis following the treatments; immunocytochemical staining was used to assess the changes in the anti-oxidation ability of the treated cells. RESULTS The optimal concentrations of GW9662 and pioglitazone determined based on the cell viability and morphological changes were both 1 μmol/L. Compared with the control group, GW9662 treatment significantly lowered while pioglitazone significantly increased the total cell number and nerve cell counts (P < 0.05), and nerve cells in the cell cultures maintained a constant ratio at about 80% in all the groups (P > 0.05). GW9662 significantly enhanced while pioglitazone significantly lowered the cell apoptosis rates compared with the control group (P < 0.05). GW9662 obviously lowered SOD activity and GSH content in G group (P < 0.05) and increased MDA content in the cells (P < 0.05), and pioglitazone resulted in reverse changes in SOD, GSH and MDA contents in the cells (P < 0.05). CONCLUSIONS Activation of PPARγ pathway protects long-term cultured primary nerve cells by enhancing cellular anti-oxidant capacity and reducing cell apoptosis, suggesting a potential strategy for anti-aging treatment of the nervous system through intervention of the PPARγ pathway.
Collapse
Affiliation(s)
- 虎清 王
- 西安交通大学医学院第二附属医院神经内科,陕西 西安 710004Department of Neurology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an 710004, China
| | - 嘉欣 樊
- 西安交通大学医学院第二附属医院神经内科,陕西 西安 710004Department of Neurology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an 710004, China
| | - 婉莹 陈
- 西安交通大学医学院第二附属医院神经内科,陕西 西安 710004Department of Neurology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an 710004, China
| | - 震 高
- 西安交通大学医学院第二附属医院神经内科,陕西 西安 710004Department of Neurology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an 710004, China
| | - 桂莲 张
- 西安交通大学医学院第二附属医院神经内科,陕西 西安 710004Department of Neurology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an 710004, China
| | - 海琴 吴
- 西安交通大学医学院第二附属医院神经内科,陕西 西安 710004Department of Neurology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an 710004, China
| | - 小瑞 俞
- 西安交通大学医学院医学中心生物化学和分子生物学系,陕西 西安 710004Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710004, China
| |
Collapse
|
23
|
New progress in the approaches for blood–brain barrier protection in acute ischemic stroke. Brain Res Bull 2019; 144:46-57. [DOI: 10.1016/j.brainresbull.2018.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
|
24
|
Guo T, Wang Y, Guo Y, Wu S, Chen W, Liu N, Wang Y, Geng D. 1, 25-D 3 Protects From Cerebral Ischemia by Maintaining BBB Permeability via PPAR-γ Activation. Front Cell Neurosci 2018; 12:480. [PMID: 30618630 PMCID: PMC6304345 DOI: 10.3389/fncel.2018.00480] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/23/2018] [Indexed: 12/23/2022] Open
Abstract
The blood-brain barrier (BBB) is a physical and biochemical barrier that maintains cerebral homeostasis. BBB dysfunction in an ischemic stroke, results in brain injury and subsequent neurological impairment. The aim of this study was to determine the possible protective effects of 1, 25-dihydroxyvitamin D3 [1, 25(OH)2D3, 1, 25-D3, vit D] on BBB dysfunction, at the early stages of an acute ischemic brain injury. We analyzed the effects of 1, 25-D3 on BBB integrity in terms of histopathological changes, the neurological deficit, infarct size and the expression of brain derived neurotrophic factor (BDNF), in a middle cerebral artery occlusion/reperfusion (MCAO/R) rat model. BBB permeability and the expression of permeability-related proteins in the brain were also evaluated by Evans blue (EB) staining and Western blotting respectively. To determine the possible mechanism underlying the role of 1, 25-D3 in BBB maintenance, after MCAO/R, the rats were treated with the specific peroxisome proliferator-activated receptor gamma (PPARγ) inhibitor GW9662. Supplementation with 1, 25-D3 markedly improved the neurological scores of the rats, decreased the infarct volume, prevented neuronal deformation and upregulated the expression of the tight junction (TJ) and BDNF proteins in their brains. Furthermore, it activated PPARγ but downregulated neuro-inflammatory cytokines such as nuclear factor kappa-B (NF-κB) and tumor necrosis factor-α (TNF-α), after MCAO/R. Taken together, 1, 25-D3 protects against cerebral ischemia by maintaining BBB permeability, upregulating the level of BDNF and inhibiting PPARγ-mediated neuro-inflammation.
Collapse
Affiliation(s)
- Ting Guo
- Department of Neurology, Xuzhou Medical University, Xuzhou, China
| | - Yanqiang Wang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yuanfang Guo
- Department of Respiratory Medicine, Ganyu District People’s Hospital, Lianyungang, China
| | - Shuguang Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Chen
- Department of Neurology, The Central Hospital of Xuzhou, Xuzhou, China
| | - Na Liu
- Department of Neurology, Xuzhou Medical University, Xuzhou, China
| | - Yu Wang
- Department of Neurology, Xuzhou Medical University, Xuzhou, China
| | - Deqin Geng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
25
|
Moniruzzaman M, Mannan MA, Hossen Khan MF, Abir AB, Afroze M. The leaves of Crataeva nurvala Buch-Ham. modulate locomotor and anxiety behaviors possibly through GABAergic system. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:283. [PMID: 30340574 PMCID: PMC6194725 DOI: 10.1186/s12906-018-2338-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
Background Crataeva nurvala Buch-Hum is an indigenous herb, extensively used in traditional medicines of the South Asian countries to treat inflammation, rheumatic fever, gastric irritation, and constipation. Despite this wide range of uses, very little information is known regarding its effects on the central nervous system (CNS). Therefore, this study evaluated the neuropharmacological properties of methanolic extract of Crataeva nurvala leaves (MECN) using a number of behavioral models in animals. This study also identified potentially active phytochemicals in MECN. Methods Following MECN administration (at 50, 100 and 200 mg/kg; b.w.) the animals (male Swiss albino mice) were employed in hole-cross test (HCT), open field test (OFT), and rota-rod test (RRT) to evaluate sedative properties, where anxiolytic activities were investigated using elevated plus maze (EPM), light dark box (LDB), and marble burying test (MBT). The involvement of GABAergic system was evaluated using thiopental sodium (TS)-induced sleeping time determination test. Moreover, colorimetric phytochemical tests as well as GC/MS-MS were also conducted to define the phytochemical constituents of MECN. Results MECN possesses sedative properties indicated through the dose-dependent inhibition of locomotor activities of the animals in HCT and OFT and motor coordination in RRT. MECN also exhibited prominent anxiolytic properties through decreased burying behavior in MBT, increased time spent and transitions in open arm of EPM, and increased time spent in light compartment of LDB. In addition, the treatments potentiated TS-mediated hypnosis indicating a possible participation of GABAergic system in the observed sedative and anxiolytic activities. Phytochemical screening of MECN revealed 48 different compounds in it. We reviewed and conceive that the sedative and anxiolytic effects could be due to the presence of neuroactive compounds such as phytol, D-allose, and α-Tocopherol in MECN. Conclusion The present study showed that MECN possesses sedative and anxiolytic potential which could be beneficial in treatment of anxiety and insomnia associated with different psychological disorders.
Collapse
|
26
|
Abdullahi W, Tripathi D, Ronaldson PT. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol 2018; 315:C343-C356. [PMID: 29949404 DOI: 10.1152/ajpcell.00095.2018] [Citation(s) in RCA: 391] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a physical and biochemical barrier that precisely controls cerebral homeostasis. It also plays a central role in the regulation of blood-to-brain flux of endogenous and exogenous xenobiotics and associated metabolites. This is accomplished by molecular characteristics of brain microvessel endothelial cells such as tight junction protein complexes and functional expression of influx and efflux transporters. One of the pathophysiological features of ischemic stroke is disruption of the BBB, which significantly contributes to development of brain injury and subsequent neurological impairment. Biochemical characteristics of BBB damage include decreased expression and altered organization of tight junction constituent proteins as well as modulation of functional expression of endogenous BBB transporters. Therefore, there is a critical need for development of novel therapeutic strategies that can protect against BBB dysfunction (i.e., vascular protection) in the setting of ischemic stroke. Such strategies include targeting tight junctions to ensure that they maintain their correct structure or targeting transporters to control flux of physiological substrates for protection of endothelial homeostasis. In this review, we will describe the pathophysiological mechanisms in cerebral microvascular endothelial cells that lead to BBB dysfunction following onset of stroke. Additionally, we will utilize this state-of-the-art knowledge to provide insights on novel pharmacological strategies that can be developed to confer BBB protection in the setting of ischemic stroke.
Collapse
Affiliation(s)
- Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Dinesh Tripathi
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
27
|
XQ-1H protects against ischemic stroke by regulating microglia polarization through PPARγ pathway in mice. Int Immunopharmacol 2018; 57:72-81. [DOI: 10.1016/j.intimp.2018.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 01/01/2023]
|
28
|
Chen Z, Chen J, Zhang W, Zhang T, Guang C, Mu W. Recent research on the physiological functions, applications, and biotechnological production of D-allose. Appl Microbiol Biotechnol 2018; 102:4269-4278. [PMID: 29577167 DOI: 10.1007/s00253-018-8916-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023]
Abstract
D-Allose is a rare monosaccharide, which rarely appears in the natural environment. D-Allose has an 80% sweetness relative to table sugar but is ultra-low calorie and non-toxic and is thus an ideal candidate to take the place of table sugar in food products. It displays unique health benefits and physiological functions in various fields, including food systems, clinical treatment, and the health care fields. However, it is difficult to produce chemically. The biotechnological production of D-allose has become a research hotspot in recent years. Therefore, an overview of recent studies on the physiological functions, applications, and biotechnological production of D-allose is presented. In this review, the physiological functions of D-allose are introduced in detail. In addition, the different types of D-allose-producing enzymes are compared for their enzymatic properties and for the biotechnological production of D-allose. To date, very little information is available on the molecular modification and food-grade expression of D-allose-producing enzymes, representing a very large research space yet to be explored.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
29
|
Zhang DD, Jin C, Zhang YT, Gan XD, Zou MJ, Wang YY, Fu WL, Xu T, Xing WW, Xia WR, Xu DG. A novel IL-1RA-PEP fusion protein alleviates blood-brain barrier disruption after ischemia-reperfusion in male rats. J Neuroinflammation 2018; 15:16. [PMID: 29334965 PMCID: PMC5769540 DOI: 10.1186/s12974-018-1058-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/08/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Current options to treat clinical relapse in inflammatory central nervous system (CNS) conditions such as cerebral ischemia-reperfusion injury are limited, and agents that are more effective are required. Disruption of the blood-brain barrier is an early feature of lesion formation that correlates with clinical exacerbation and facilitates the entry of inflammatory medium and inflammatory cells. Interleukin-1 receptor antagonist (IL-1RA) is a naturally occurring anti-inflammatory antagonist of the interleukin-1 (IL-1) family. The broad-spectrum anti-inflammatory effects of IL-1RA have been investigated against various forms of neuroinflammation. However, the effect of IL-1RA on blood-brain barrier disruption following ischemia-reperfusion has not been reported. METHODS In this study, we investigated the effects of IL-1RA and a novel protein (IL-1RA-PEP) that was fused to IL-1RA with a cell penetrating peptide, on blood-brain barrier integrity, in male rats subjected to transient middle cerebral artery occlusion. RESULTS After intravenous administration, IL-1RA-PEP (50 mg/kg) penetrated cerebral tissues more effectively than IL-1RA. Moreover, it preserved blood-brain barrier integrity, attenuated changes in expression and localization of tight junction proteins and matrix metalloproteinases, and enhanced angiogenesis in ischemic brain tissue. Further study suggested that the effects of IL-1RA-PEP on preserving blood-brain barrier integrity might be closely correlated with the p65/NF-κB pathway, as evidenced by the effects of the inhibitor JSH-23. CONCLUSIONS Collectively, our results demonstrated that IL-1RA-PEP could effectively penetrate the brain of rats with middle cerebral artery occlusion and ameliorate blood-brain barrier disruption. This finding might represent its novel therapeutic potential in the treatment of the cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Dong-Dong Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China
| | - Chen Jin
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China
| | - Ya-Tao Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Xiang-Dong Gan
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Min-Ji Zou
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Yuan-Yuan Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Wen-Liang Fu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Tao Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Wei-Wei Xing
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Wen-Ron Xia
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Dong-Gang Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China. .,Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China. .,Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.
| |
Collapse
|
30
|
Zhao X, Liu J. Recognition of mechanisms in lung injury caused by cerebral ischemia reperfusion injury. IBRAIN 2018. [DOI: 10.1002/j.2769-2795.2018.tb00024.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiao‐Yan Zhao
- Department of AnesthesiologyWest China Hospital, Sichuan UniversityChengduSichuanChina
- Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jia Liu
- Animal Zoology DepartmentKunming medical UniversityKunmingYunnanChina
| |
Collapse
|
31
|
Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 2017; 163-164:144-171. [PMID: 28987927 DOI: 10.1016/j.pneurobio.2017.10.001] [Citation(s) in RCA: 636] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) plays a vital role in regulating the trafficking of fluid, solutes and cells at the blood-brain interface and maintaining the homeostatic microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the BBB can be disrupted, followed by the extravasation of blood components into the brain and compromise of normal neuronal function. This article reviews recent advances in our knowledge of the mechanisms underlying BBB dysfunction and recovery after ischemic stroke. CNS cells in the neurovascular unit, as well as blood-borne peripheral cells constantly modulate the BBB and influence its breakdown and repair after ischemic stroke. The involvement of stroke risk factors and comorbid conditions further complicate the pathogenesis of neurovascular injury by predisposing the BBB to anatomical and functional changes that can exacerbate BBB dysfunction. Emphasis is also given to the process of long-term structural and functional restoration of the BBB after ischemic injury. With the development of novel research tools, future research on the BBB is likely to reveal promising potential therapeutic targets for protecting the BBB and improving patient outcome after ischemic stroke.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | | | - Ling Zhu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael V L Bennett
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
32
|
Ginsenoside Rg1 attenuates adjuvant-induced arthritis in rats via modulation of PPAR-γ/NF-κB signal pathway. Oncotarget 2017; 8:55384-55393. [PMID: 28903427 PMCID: PMC5589666 DOI: 10.18632/oncotarget.19526] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/13/2017] [Indexed: 12/29/2022] Open
Abstract
Ginsenoside Rg1, the main active compound in Panax ginseng, has already been shown to have anti-inflammatory effects. However, the protective effects of Rg1 on rheumatoid arthritis (RA) remain unclear. The aim of the present study was to investigate the effects and mechanisms of Rg1 on adjuvant-induced arthritis (AIA) in rats. AIA rats were given Rg1 at doses of 5, 10, and 20 mg/kg intraperitoneally for 14 days to observe the anti-arthritic effects. The results showed that Rg1 significantly alleviated joint swelling and injuries. Rg1 can also significantly reduce the level of TNF-α and IL-6, increase PPAR-γ protein expression, inhibit IκBα phosphorylation and NF-κB nuclear translocation in the inflammatory joints of AIA rats and RAW264.7 cells stimulated by lipopolysaccharide (LPS). The results indicate that Rg1 has therapeutic effects on AIA rats, and the mechanism might be associated with its anti-inflammatory effects by up-regulating PPAR-γ and subsequent inhibition of NF-κB signal pathway.
Collapse
|
33
|
Moreira DRM, Santos DS, Espírito Santo RFD, Santos FED, de Oliveira Filho GB, Leite ACL, Soares MBP, Villarreal CF. Structural improvement of new thiazolidinones compounds with antinociceptive activity in experimental chemotherapy-induced painful neuropathy. Chem Biol Drug Des 2017; 90:297-307. [DOI: 10.1111/cbdd.12951] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 01/27/2023]
Affiliation(s)
| | | | - Renan Fernandes do Espírito Santo
- Centro de Pesquisas Gonçalo Moniz; FIOCRUZ; Salvador Bahia Brazil
- Faculdade de Farmácia; Universidade Federal da Bahia; Salvador Bahia Brazil
| | | | | | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas; Centro de Ciências da Saúde; Universidade Federal de Pernambuco; Recife PE Brazil
| | - Milena Botelho Pereira Soares
- Centro de Pesquisas Gonçalo Moniz; FIOCRUZ; Salvador Bahia Brazil
- Centro de Biotecnologia e Terapia Celular; Hospital São Rafael; Salvador Bahia Brazil
| | - Cristiane Flora Villarreal
- Centro de Pesquisas Gonçalo Moniz; FIOCRUZ; Salvador Bahia Brazil
- Faculdade de Farmácia; Universidade Federal da Bahia; Salvador Bahia Brazil
| |
Collapse
|
34
|
Xu G, Gu H, Hu B, Tong F, Liu D, Yu X, Zheng Y, Gu J. PEG- b-(PELG- g-PLL) nanoparticles as TNF-α nanocarriers: potential cerebral ischemia/reperfusion injury therapeutic applications. Int J Nanomedicine 2017; 12:2243-2254. [PMID: 28356740 PMCID: PMC5367577 DOI: 10.2147/ijn.s130842] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brain ischemia/reperfusion (I/R) injury (BI/RI) is a leading cause of death and disability worldwide. However, the outcome of pharmacotherapy for BI/RI remains unsatisfactory. Innovative approaches for enhancing drug sensitivity and recovering neuronal activity in BI/RI treatment are urgently needed. The purpose of this study was to evaluate the protective effects of tumor necrosis factor (TNF)-α-loaded poly(ethylene glycol)-b-(poly(ethylenediamine L-glutamate)-g-poly(L-lysine)) (TNF-α/PEG-b-(PELG-g-PLL)) nanoparticles on BI/RI. The particle size of PEG-b-(PELG-g-PLL) and the loading and release rates of TNF-α were determined. The nanoparticle cytotoxicity was evaluated in vitro using rat cortical neurons. Sprague Dawley rats were preconditioned with free TNF-α or TNF-α/PEG-b-(PELG-g-PLL) polyplexes and then subjected to 2 hours ischemia and 22 hours reperfusion. Brain edema was assessed using the brain edema ratio, and the antioxidative activity was assessed by measuring the superoxide dismutase (SOD) activity and the malondialdehyde (MDA) content in the brain tissue. We further estimated the inflammatory activity and apoptosis level by determining the levels of interleukin-4 (IL-4), IL-6, IL-8, IL-10, and nitric oxide (NO), as well as the expression of glial fibrillary acidic protein (GFAP), intercellular adhesion molecule-1 (ICAM-1), and cysteine aspartase-3 (caspase-3), in the brain tissue. We provide evidence that TNF-α preconditioning attenuated the oxidative stress injury, the inflammatory activity, and the apoptosis level in I/R-induced cerebral injury, while the application of block copolymer PEG-b-(PELG-g-PLL) as a potential TNF-α nanocarrier with sustained release significantly enhanced the bioavailability of TNF-α. We propose that the block copolymer PEG-b-(PELG-g-PLL) may function as a potent nanocarrier for augmenting BI/RI pharmacotherapy, with unprecedented clinical benefits. Further studies are needed to better clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Guangtao Xu
- Department of Pathology and Chemistry, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong
- Department of Pathology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, Zhejiang, People’s Republic of China
| | - Huan Gu
- Department of Pathology and Chemistry, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong
- Department of Physics, University of Maryland, College Park, Annapolis, MD, USA
| | - Bo Hu
- Department of Chemical Pathology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, Zhejiang, People’s Republic of China
| | - Fei Tong
- Department of Pathology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, Zhejiang, People’s Republic of China
| | - Daojun Liu
- Department of Pathology and Chemistry, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong
| | - Xiaojun Yu
- Department of Pathology and Chemistry, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong
| | - Yongxia Zheng
- Department of Pathology and Chemistry, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong
- Department of Pathology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, Zhejiang, People’s Republic of China
| | - Jiang Gu
- Department of Pathology and Chemistry, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong
- Correspondence: Jiang Gu, Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People’s Republic of China, Tel +86 754 8895 0207, Email
| |
Collapse
|