1
|
Cheng Y, He X, Huang X, Mao F, Qin F, Wang Y. Researching the causal relationship between immune cells and frontotemporal Dementia: A Mendelian Randomization analysis. Brain Res 2025; 1857:149608. [PMID: 40185222 DOI: 10.1016/j.brainres.2025.149608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/21/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Frontotemporal dementia (FTD) is a prevalent dementia syndrome with poorly understood immunological underpinnings. Despite the widespread adoption of high-density genotyping technologies like SNPs and CNVs, and advances in genome-wide association studies (GWAS), the immunological mechanisms underlying FTD remain elusive. This study aims to elucidate the causal relationships between immune cell traits and FTD using Mendelian randomization (MR). METHODS We utilized summary data for FTD (cases = 129, controls = 392,463) from the FinnGen dataset and summary statistics for 731 immune cell traits from the GWAS catalog. These traits included morphological parameters (MP = 32), median fluorescence intensity (MFI = 389), absolute cell counts (AC = 118), and relative cell counts (RC = 192). Our approach encompassed forward MR (immune cell traits as exposure) and reverse MR (FTD as exposure), accompanied by rigorous sensitivity analyses to assess the robustness and heterogeneity of the findings. RESULTS FTD did not have a statistically significant impact on immune phenotypes. Notably, we identified 13 immune phenotypes as protective against FTD, including various T cell and B cell markers. Conversely, 8 phenotypes were associated with increased FTD risk, involving markers on myeloid cells and subsets of T and B cells; CONCLUSION: This MR study identifies specific immune phenotypes associated with FTD, highlighting potential pathways for future clinical research and therapeutic intervention.
Collapse
Affiliation(s)
- Yueming Cheng
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Xia He
- Sichuan Provincial Rehabilitation Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Xialian Huang
- Sichuan Provincial Rehabilitation Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Fengle Mao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Fuli Qin
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Yanqiu Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|
2
|
Chong ZZ, Souayah N. Targeting Gene C9orf72 Pathogenesis for Amyotrophic Lateral Sclerosis. Int J Mol Sci 2025; 26:4276. [PMID: 40362512 PMCID: PMC12072292 DOI: 10.3390/ijms26094276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult neurodegenerative disorder. Since no cure has been found, finding effective therapeutic targets for ALS remains a major challenge. Gene C9orf72 mutations with the formation of hexanucleotide repeat (GGGGCC) expansion (HRE) have been considered the most common genetic pathogenesis of ALS. The literature review indicates that the C9orf72 HRE causes both the gain-of-function toxicity and loss of function of C9ORF72. The formation of RNA foci and dipeptide repeats (DPRs) resulting from HRE is responsible for toxic function gain. The RNA foci can interfere with RNA processing, while DPRs directly bind to and sequester associated proteins to disrupt processes of rRNA synthesis, mRNA translation, autophagy, and nucleocytoplasmic transport. The mutations of C9orf72 and HRE result in the loss of functional C9ORF72. Under physiological conditions, C9ORF72 binds to Smith-Magenis chromosome region 8 and WD repeat-containing protein and forms a protein complex. Loss of C9ORF72 leads to autophagic impairment, increased oxidative stress, nucleocytoplasmic transport impairment, and inflammatory response. The attempted treatments for ALS have been tried by targeting C9orf72 HRE; however, the outcomes are far from satisfactory yet. More studies should be performed on pharmacological and molecular modulators against C9orf72 HRE to evaluate their efficacy by targeting HRE.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, New Jersey Medical School, Rutgers University, 185 S Orange, Newark, NJ 07103, USA
| | - Nizar Souayah
- Department of Neurology, New Jersey Medical School, Rutgers University, 90 Bergen Street DOC 8100, Newark, NJ 07101, USA
| |
Collapse
|
3
|
Mirceta M, Schmidt MHM, Shum N, Prasolava TK, Meikle B, Lanni S, Mohiuddin M, Mckeever PM, Zhang M, Liang M, van der Werf I, Scheers S, Dion PA, Wang P, Wilson MD, Abell T, Philips EA, Sznajder ŁJ, Swanson MS, Mehkary M, Khan M, Yokoi K, Jung C, de Jong PJ, Freudenreich CH, McGoldrick P, Yuen RKC, Abrahão A, Keith J, Zinman L, Robertson J, Rogaeva E, Rouleau GA, Kooy RF, Pearson CE. C9orf72 expansion creates the unstable folate-sensitive fragile site FRA9A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.26.620312. [PMID: 39569145 PMCID: PMC11577248 DOI: 10.1101/2024.10.26.620312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The hyper-unstable Chr9p21 locus, harbouring the interferon gene cluster, oncogenes and C9orf72, is linked to multiple diseases. C9orf72 (GGGGCC)n expansions ( C9orf72 Exp) are associated with incompletely penetrant amyotrophic lateral sclerosis, frontotemporal dementia and autoimmune disorders. C9orf72 Exp patients display hyperactive cGAS-STING-linked interferon immune and DNA damage responses, but the source of immuno-stimulatory or damaged DNA is unknown. Here, we show C9orf72 Exp in pre-symptomatic and ALS-FTD patient cells and brains cause the folate-sensitive chromosomal fragile site, FRA9A. FRA9A centers on >33kb of C9orf72 as highly-compacted chromatin embedded in an 8.2Mb fragility zone spanning 9p21, encompassing 46 genes, making FRA9A one of the largest fragile sites. C9orf72 Exp cells show chromosomal instability, heightened global- and Chr9p-enriched sister-chromatid exchanges, truncated-Chr9s, acentric-Chr9s and Chr9-containing micronuclei, providing endogenous sources of damaged and immunostimulatory DNA. Cells from one C9orf72 Exp patient contained highly-rearranged FRA9A-expressing Chr9 with Chr9-wide dysregulated gene expression. Somatic C9orf72 Exp repeat instability and chromosomal fragility are sensitive to folate-deficiency. Age-dependent repeat instability, chromosomal fragility, and chromosomal instability can be transferred to CNS and peripheral tissues of transgenic C9orf72 Exp mice, implicating C9orf72 Exp as the source. Our results highlight unappreciated effects of C9orf72 expansions that trigger vitamin-sensitive chromosome fragility, adding structural variations to the disease-enriched 9p21 locus, and likely elsewhere.
Collapse
|
4
|
Mirceta M, Schmidt MM, Shum N, Prasolava T, Meikle B, Lanni S, Mohiuddin M, McKeever P, Zhang M, Liang M, van der Werf I, Scheers S, Dion P, Wang P, Wilson M, Abell T, Philips E, Sznajder Ł, Swanson M, Mehkary M, Khan M, Yokoi K, Jung C, de Jong P, Freudenreich C, McGoldrick P, Yuen RC, Abrahão A, Keith J, Zinman L, Robertson J, Rogaeva E, Rouleau G, Kooy R, Pearson C. C9orf72 repeat expansion creates the unstable folate-sensitive fragile site FRA9A. NAR MOLECULAR MEDICINE 2024; 1:ugae019. [PMID: 39669124 PMCID: PMC11632612 DOI: 10.1093/narmme/ugae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
The hyper-unstable Chr9p21 locus, harbouring the interferon gene cluster, oncogenes and C9orf72, is linked to multiple diseases. C9orf72 (GGGGCC)n expansions (C9orf72Exp) are associated with incompletely penetrant amyotrophic lateral sclerosis, frontotemporal dementia and autoimmune disorders. C9orf72Exp patients display hyperactive cGAS-STING-linked interferon immune and DNA damage responses, but the source of immunostimulatory or damaged DNA is unknown. Here, we show C9orf72Exp in pre-symptomatic and amyotrophic lateral sclerosis-frontotemporal dementia patient cells and brains cause the folate-sensitive chromosomal fragile site, FRA9A. FRA9A centers on >33 kb of C9orf72 as highly compacted chromatin embedded in an 8.2 Mb fragility zone spanning 9p21, encompassing 46 genes, making FRA9A one of the largest fragile sites. C9orf72Exp cells show chromosomal instability, heightened global- and Chr9p-enriched sister-chromatid exchanges, truncated-Chr9s, acentric-Chr9s and Chr9-containing micronuclei, providing endogenous sources of damaged and immunostimulatory DNA. Cells from one C9orf72Exp patient contained a highly rearranged FRA9A-expressing Chr9 with Chr9-wide dysregulated gene expression. Somatic C9orf72Exp repeat instability and chromosomal fragility are sensitive to folate deficiency. Age-dependent repeat instability, chromosomal fragility and chromosomal instability can be transferred to CNS and peripheral tissues of transgenic C9orf72Exp mice, implicating C9orf72Exp as the source. Our results highlight unappreciated effects of C9orf72 expansions that trigger vitamin-sensitive chromosome fragility, adding structural variations to the disease-enriched 9p21 locus, and likely elsewhere.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Monika H M Schmidt
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Tanya K Prasolava
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Bryanna Meikle
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Stella Lanni
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Paul M McKeever
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ming Zhang
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, 200090, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Advanced Study, Tongji University, Shanghai, 200092, China
| | - Minggao Liang
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | | | - Stefaan Scheers
- Department of Medical Genetics, University of Antwerp, Belgium
| | - Patrick A Dion
- Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
| | - Peixiang Wang
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Michael D Wilson
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Theresa Abell
- Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Elliot A Philips
- Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
- Department of Chemistry and Biochemistry, University of Nevada, 4003-4505 South Maryland Parkway, Las Vegas, NV 89154, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
| | - Mustafa Mehkary
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Mahreen Khan
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Katsuyuki Yokoi
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Christine Jung
- BACPAC Resource Center, Children’s Hospital Oakland Research Institute, 25129 NE 42nd Pl, Redmond, WA 98053, USA
| | - Pieter J de Jong
- BACPAC Resource Center, Children’s Hospital Oakland Research Institute, 25129 NE 42nd Pl, Redmond, WA 98053, USA
| | | | - Philip McGoldrick
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Agessandro Abrahão
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Julia Keith
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Janice Robertson
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Human Genetics, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Belgium
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| |
Collapse
|
5
|
Chong ZZ, Menkes DL, Souayah N. Pathogenesis underlying hexanucleotide repeat expansions in C9orf72 gene in amyotrophic lateral sclerosis. Rev Neurosci 2024; 35:85-97. [PMID: 37525497 DOI: 10.1515/revneuro-2023-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/07/2023] [Indexed: 08/02/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder. Mutations in C9orf72 and the resulting hexanucleotide repeat (GGGGCC) expansion (HRE) has been identified as a major cause of familial ALS, accounting for about 40 % of familial and 6 % of sporadic cases of ALS in Western patients. The pathological outcomes of HRE expansion in ALS have been recognized as the results of two mechanisms that include both the toxic gain-of-function and loss-of-function of C9ORF72. The gain of toxicity results from RNA and dipeptide repeats (DPRs). The HRE can be bidirectionally transcribed into RNA foci, which can bind to and disrupt RNA splicing, transport, and translation. The DPRs that include poly-glycine-alanine, poly-glycine-proline, poly-glycine- arginine, poly-proline-alanine, and poly-proline-arginine can induce toxicity by direct binding and sequestrating other proteins to interfere rRNA synthesis, ribosome biogenesis, translation, and nucleocytoplasmic transport. The C9ORF72 functions through binding to its partners-Smith-Magenis chromosome regions 8 (SMCR8) and WD repeat-containing protein (WDR41). Loss of C9ORF72 function results in impairment of autophagy, deregulation of autoimmunity, increased stress, and disruption of nucleocytoplasmic transport. Further insight into the mechanism in C9ORF72 HRE pathogenesis will facilitate identifying novel and effective therapeutic targets for ALS.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, Rutgers University, New Jersey Medical School, 185 S. Orange Ave, Newark, NJ 07103, USA
| | - Daniel L Menkes
- Department of Neurology, Oakland University William Beaumont School of Medicine, 3555 West 13 Mile Road, Suite N120, Royal Oak, MI 48073, USA
| | - Nizar Souayah
- Department of Neurology, Rutgers University, New Jersey Medical School, 90 Bergen Street DOC 8100, Newark, NJ 07101, USA
| |
Collapse
|
6
|
Gallo JM, Nishimura A, Haapasalo A. Editorial: Molecular mechanisms underlying C9orf72 neurodegeneration, volume II. Front Cell Neurosci 2024; 17:1357319. [PMID: 38259506 PMCID: PMC10800391 DOI: 10.3389/fncel.2023.1357319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Affiliation(s)
- Jean-Marc Gallo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Agnes Nishimura
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Sattler R, Traynor BJ, Robertson J, Van Den Bosch L, Barmada SJ, Svendsen CN, Disney MD, Gendron TF, Wong PC, Turner MR, Boxer A, Babu S, Benatar M, Kurnellas M, Rohrer JD, Donnelly CJ, Bustos LM, Van Keuren-Jensen K, Dacks PA, Sabbagh MN. Roadmap for C9ORF72 in Frontotemporal Dementia and Amyotrophic Lateral Sclerosis: Report on the C9ORF72 FTD/ALS Summit. Neurol Ther 2023; 12:1821-1843. [PMID: 37847372 PMCID: PMC10630271 DOI: 10.1007/s40120-023-00548-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023] Open
Abstract
A summit held March 2023 in Scottsdale, Arizona (USA) focused on the intronic hexanucleotide expansion in the C9ORF72 gene and its relevance in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS; C9ORF72-FTD/ALS). The goal of this summit was to connect basic scientists, clinical researchers, drug developers, and individuals affected by C9ORF72-FTD/ALS to evaluate how collaborative efforts across the FTD-ALS disease spectrum might break down existing disease silos. Presentations and discussions covered recent discoveries in C9ORF72-FTD/ALS disease mechanisms, availability of disease biomarkers and recent advances in therapeutic development, and clinical trial design for prevention and treatment for individuals affected by C9ORF72-FTD/ALS and asymptomatic pathological expansion carriers. The C9ORF72-associated hexanucleotide repeat expansion is an important locus for both ALS and FTD. C9ORF72-FTD/ALS may be characterized by loss of function of the C9ORF72 protein and toxic gain of functions caused by both dipeptide repeat (DPR) proteins and hexanucleotide repeat RNA. C9ORF72-FTD/ALS therapeutic strategies discussed at the summit included the use of antisense oligonucleotides, adeno-associated virus (AAV)-mediated gene silencing and gene delivery, and engineered small molecules targeting RNA structures associated with the C9ORF72 expansion. Neurofilament light chain, DPR proteins, and transactive response (TAR) DNA-binding protein 43 (TDP-43)-associated molecular changes were presented as biomarker candidates. Similarly, brain imaging modalities (i.e., magnetic resonance imaging [MRI] and positron emission tomography [PET]) measuring structural, functional, and metabolic changes were discussed as important tools to monitor individuals affected with C9ORF72-FTD/ALS, at both pre-symptomatic and symptomatic disease stages. Finally, summit attendees evaluated current clinical trial designs available for FTD or ALS patients and concluded that therapeutics relevant to FTD/ALS patients, such as those specifically targeting C9ORF72, may need to be tested with composite endpoints covering clinical symptoms of both FTD and ALS. The latter will require novel clinical trial designs to be inclusive of all patient subgroups spanning the FTD/ALS spectrum.
Collapse
Affiliation(s)
- Rita Sattler
- Barrow Neurological Institute, 2910 N Third Ave, Phoenix, AZ, 85013, USA.
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Ludo Van Den Bosch
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology and KU Leuven, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), University of Leuven, Leuven, Belgium
| | - Sami J Barmada
- Department of Neurology, Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Matthew D Disney
- Department of Chemistry, The Herbert Wertheim UF-Scripps Institute for Biomedical Research and Innovation, The Scripps Research Institute, Jupiter, FL, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Philip C Wong
- Departments of Pathology and Neuroscience, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Adam Boxer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of San Francisco, San Francisco, CA, USA
| | - Suma Babu
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital-Harvard Medical School, Boston, MA, USA
| | - Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33129, USA
| | | | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Christopher J Donnelly
- LiveLikeLou Center for ALS Research, Brain Institute, University of Pittsburgh, Pittsburgh, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lynette M Bustos
- Barrow Neurological Institute, 2910 N Third Ave, Phoenix, AZ, 85013, USA
| | | | - Penny A Dacks
- The Association for Frontotemporal Degeneration and FTD Disorders Registry, King of Prussia, PA, USA
| | - Marwan N Sabbagh
- Barrow Neurological Institute, 2910 N Third Ave, Phoenix, AZ, 85013, USA.
| |
Collapse
|
8
|
Dane TL, Gill AL, Vieira FG, Denton KR. Reduced C9orf72 expression exacerbates polyGR toxicity in patient iPSC-derived motor neurons and a Type I protein arginine methyltransferase inhibitor reduces that toxicity. Front Cell Neurosci 2023; 17:1134090. [PMID: 37138766 PMCID: PMC10149854 DOI: 10.3389/fncel.2023.1134090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Intronic repeat expansions in the C9orf72 gene are the most frequent known single genetic causes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These repeat expansions are believed to result in both loss-of-function and toxic gain-of-function. Gain-of-function results in the production of toxic arginine-rich dipeptide repeat proteins (DPRs), namely polyGR and polyPR. Small-molecule inhibition of Type I protein arginine methyltransferases (PRMTs) has been shown to protect against toxicity resulting from polyGR and polyPR challenge in NSC-34 cells and primary mouse-derived spinal neurons, but the effect in human motor neurons (MNs) has not yet been explored. Methods To study this, we generated a panel of C9orf72 homozygous and hemizygous knockout iPSCs to examine the contribution of C9orf72 loss-of-function toward disease pathogenesis. We differentiated these iPSCs into spinal motor neurons (sMNs). Results We found that reduced levels of C9orf72 exacerbate polyGR15 toxicity in a dose-dependent manner. Type I PRMT inhibition was able to partially rescue polyGR15 toxicity in both wild-type and C9orf72-expanded sMNs. Discussion This study explores the interplay of loss-of-function and gain-of-function toxicity in C9orf72 ALS. It also implicates type I PRMT inhibitors as a possible modulator of polyGR toxicity.
Collapse
|
9
|
McGoldrick P, Lau A, You Z, Durcan TM, Robertson J. Loss of C9orf72 perturbs the Ran-GTPase gradient and nucleocytoplasmic transport, generating compositionally diverse Importin β-1 granules. Cell Rep 2023; 42:112134. [PMID: 36821445 DOI: 10.1016/j.celrep.2023.112134] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/05/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
A hexanucleotide (GGGGCC)n repeat expansion in C9orf72 causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), eliciting toxic effects through generation of RNA foci, dipeptide repeat proteins, and/or loss of C9orf72 protein. Defects in nucleocytoplasmic transport (NCT) have been implicated as a pathogenic mechanism underlying repeat expansion toxicity. Here, we show that loss of C9orf72 disrupts the Ran-GTPase gradient and NCT in vitro and in vivo. NCT disruption in vivo is enhanced by the presence of compositionally different types of cytoplasmic Importin β-1 granule that exhibit neuronal subtype-specific properties. We show that the abundance of Importin β-1 granules is increased in the context of C9orf72 deficiency, disrupting interactions with nuclear pore complex proteins. These granules appear to associate with the nuclear envelope and are co-immunoreactive for G3BP1 and K63-ubiquitin. These findings link loss of C9orf72 protein to gain-of-function mechanisms and defects in NCT.
Collapse
Affiliation(s)
- Philip McGoldrick
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.
| | - Agnes Lau
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Zhipeng You
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Thomas M Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, 27 King's College Circle, Toronto, ON M5S 1A1, Canada.
| |
Collapse
|
10
|
Lopez-Herdoiza MB, Bauché S, Wilmet B, Le Duigou C, Roussel D, Frah M, Béal J, Devely G, Boluda S, Frick P, Bouteiller D, Dussaud S, Guillabert P, Dalle C, Dumont M, Camuzat A, Saracino D, Barbier M, Bruneteau G, Ravassard P, Neumann M, Nicole S, Le Ber I, Brice A, Latouche M. C9ORF72 knockdown triggers FTD-like symptoms and cell pathology in mice. Front Cell Neurosci 2023; 17:1155929. [PMID: 37138765 PMCID: PMC10149765 DOI: 10.3389/fncel.2023.1155929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
The GGGGCC intronic repeat expansion within C9ORF72 is the most common genetic cause of ALS and FTD. This mutation results in toxic gain of function through accumulation of expanded RNA foci and aggregation of abnormally translated dipeptide repeat proteins, as well as loss of function due to impaired transcription of C9ORF72. A number of in vivo and in vitro models of gain and loss of function effects have suggested that both mechanisms synergize to cause the disease. However, the contribution of the loss of function mechanism remains poorly understood. We have generated C9ORF72 knockdown mice to mimic C9-FTD/ALS patients haploinsufficiency and investigate the role of this loss of function in the pathogenesis. We found that decreasing C9ORF72 leads to anomalies of the autophagy/lysosomal pathway, cytoplasmic accumulation of TDP-43 and decreased synaptic density in the cortex. Knockdown mice also developed FTD-like behavioral deficits and mild motor phenotypes at a later stage. These findings show that C9ORF72 partial loss of function contributes to the damaging events leading to C9-FTD/ALS.
Collapse
Affiliation(s)
| | - Stephanie Bauché
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Baptiste Wilmet
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Caroline Le Duigou
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Delphine Roussel
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Magali Frah
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Jonas Béal
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Gabin Devely
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Susana Boluda
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Petra Frick
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Sébastien Dussaud
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Pierre Guillabert
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Carine Dalle
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Magali Dumont
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Agnes Camuzat
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Dario Saracino
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Mathieu Barbier
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Gaelle Bruneteau
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | | | - Manuela Neumann
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neuropathology, Tübingen University Hospital, Tübingen, Germany
| | - Sophie Nicole
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Isabelle Le Ber
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Alexis Brice
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Morwena Latouche
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
- EPHE, Neurogenetics Team, PSL Research University, Paris, France
- *Correspondence: Morwena Latouche,
| |
Collapse
|
11
|
Zhang J, Wen A, Chai W, Liang H, Tang C, Gan W, Xu R. Potential proteomic alteration in the brain of Tg(SOD1*G93A)1Gur mice: A new pathogenesis insight of amyotrophic lateral sclerosis. Cell Biol Int 2022; 46:1378-1398. [PMID: 35801511 DOI: 10.1002/cbin.11842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Abstract
The pathogenesis of amyotrophic lateral sclerosis (ALS) remains unclear. The recent studies have suggested that the protein abnormalities could play some important roles in ALS because several protein mutations were found in individuals with this disease. However, proteins that are currently known to be associated with ALS only explain the pathogenesis of this disease in a minority of cases, thus, further screening is needed to identify other ALS-related proteins. In this study, we systematically analyzed and compared the brain proteomic alterations between a mouse model of ALS, the Tg(SOD1*G93A)1Gur model, and wild-type mice using isobaric tags for relative and absolute quantitation (iTRAQ) as well as bioinformatics methods. The results revealed some significant up- and downregulated proteins at the different developmental stages in the ALS-like mice as well as the possibly related cellular components, molecular functions, biological processes, and pathways in the development of ALS. Our results identified some possible proteins that participate in the pathogenesis of ALS as well as the cellular components that are damaged by these proteins, we additionally identified the molecular functions, the biological processes, and the pathways of these proteins as well as the molecules that are associated with these pathways. This study represents an important preliminary investigation of the role of proteomic abnormalities in the pathogenesis of ALS, both in human patients and other animal models. We present some novel findings that may serve as a basis for further investigation of abnormal proteins that are involved in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - An Wen
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wen Chai
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huiting Liang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chunyan Tang
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Weiming Gan
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Root J, Merino P, Nuckols A, Johnson M, Kukar T. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2021; 154:105360. [PMID: 33812000 PMCID: PMC8113138 DOI: 10.1016/j.nbd.2021.105360] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative disorders that are thought to exist on a clinical and pathological spectrum. FTD and ALS are linked by shared genetic causes (e.g. C9orf72 hexanucleotide repeat expansions) and neuropathology, such as inclusions of ubiquitinated, misfolded proteins (e.g. TAR DNA-binding protein 43; TDP-43) in the CNS. Furthermore, some genes that cause FTD or ALS when mutated encode proteins that localize to the lysosome or modulate endosome-lysosome function, including lysosomal fusion, cargo trafficking, lysosomal acidification, autophagy, or TFEB activity. In this review, we summarize evidence that lysosomal dysfunction, caused by genetic mutations (e.g. C9orf72, GRN, MAPT, TMEM106B) or toxic-gain of function (e.g. aggregation of TDP-43 or tau), is an important pathogenic disease mechanism in FTD and ALS. Further studies into the normal function of many of these proteins are required and will help uncover the mechanisms that cause lysosomal dysfunction in FTD and ALS. Mutations or polymorphisms in genes that encode proteins important for endosome-lysosome function also occur in other age-dependent neurodegenerative diseases, including Alzheimer's (e.g. APOE, PSEN1, APP) and Parkinson's (e.g. GBA, LRRK2, ATP13A2) disease. A more complete understanding of the common and unique features of lysosome dysfunction across the spectrum of neurodegeneration will help guide the development of therapies for these devastating diseases.
Collapse
Affiliation(s)
- Jessica Root
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Paola Merino
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Austin Nuckols
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Michelle Johnson
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia; Department of Neurology, Emory University, School of Medicine, Atlanta 30322, Georgia.
| |
Collapse
|
13
|
Smeyers J, Banchi EG, Latouche M. C9ORF72: What It Is, What It Does, and Why It Matters. Front Cell Neurosci 2021; 15:661447. [PMID: 34025358 PMCID: PMC8131521 DOI: 10.3389/fncel.2021.661447] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
When the non-coding repeat expansion in the C9ORF72 gene was discovered to be the most frequent cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) in 2011, this gene and its derived protein, C9ORF72, were completely unknown. The mutation appeared to produce both haploinsufficiency and gain-of-function effects in the form of aggregating expanded RNAs and dipeptide repeat proteins (DPRs). An unprecedented effort was then unleashed to decipher the pathogenic mechanisms and the functions of C9ORF72 in order to design therapies. A decade later, while the toxicity of accumulating gain-of-function products has been established and therapeutic strategies are being developed to target it, the contribution of the loss of function starts to appear more clearly. This article reviews the current knowledge about the C9ORF72 protein, how it is affected by the repeat expansion in models and patients, and what could be the contribution of its haploinsufficiency to the disease in light of the most recent findings. We suggest that these elements should be taken into consideration to refine future therapeutic strategies, compensating for the decrease of C9ORF72 or at least preventing a further reduction.
Collapse
Affiliation(s)
- Julie Smeyers
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neuroscience 6, Paris, France
- PSL Research university, EPHE, Neurogenetics team, Paris, France
| | - Elena-Gaia Banchi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neuroscience 6, Paris, France
| | - Morwena Latouche
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neuroscience 6, Paris, France
- PSL Research university, EPHE, Neurogenetics team, Paris, France
| |
Collapse
|
14
|
Braems E, Swinnen B, Van Den Bosch L. C9orf72 loss-of-function: a trivial, stand-alone or additive mechanism in C9 ALS/FTD? Acta Neuropathol 2020; 140:625-643. [PMID: 32876811 PMCID: PMC7547039 DOI: 10.1007/s00401-020-02214-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
A repeat expansion in C9orf72 is responsible for the characteristic neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in a still unresolved manner. Proposed mechanisms involve gain-of-functions, comprising RNA and protein toxicity, and loss-of-function of the C9orf72 gene. Their exact contribution is still inconclusive and reports regarding loss-of-function are rather inconsistent. Here, we review the function of the C9orf72 protein and its relevance in disease. We explore the potential link between reduced C9orf72 levels and disease phenotypes in postmortem, in vitro, and in vivo models. Moreover, the significance of loss-of-function in other non-coding repeat expansion diseases is used to clarify its contribution in C9orf72 ALS/FTD. In conclusion, with evidence pointing to a multiple-hit model, loss-of-function on itself seems to be insufficient to cause neurodegeneration in C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Elke Braems
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium
- Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N4, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Bart Swinnen
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium
- Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N4, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.
- Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N4, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| |
Collapse
|
15
|
Yang Q, Jiao B, Shen L. The Development of C9orf72-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Disorders. Front Genet 2020; 11:562758. [PMID: 32983232 PMCID: PMC7492664 DOI: 10.3389/fgene.2020.562758] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
The expanded GGGGCC hexanucleotide repeat in the non-coding region of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). There are three main disease mechanisms: loss of function of C9ORF72 protein, gain of function from the accumulation of sense and antisense (GGGGCC)n in RNA, and from the production of toxic dipeptides repeat proteins (DPRs) by non-AUG initiated translation. While many of the downstream mechanisms have been identified, the specific pathogenic pathway is still unclear. In this article, we provide an overview on the currently available literature and propose several hypotheses: (1) The pathogenesis of C9orf72-associated ALS/FTD, which cannot be explained by a single mechanism, involves a dual mechanism of both loss and gain of function. (2) The loss of function and gain of function can cause TDP-43 aggregation and damage nucleocytoplasmic transport. (3) Neurodegeneration can be caused by an accumulation of toxic substances in neurons themselves. In addition, we suggest that microglia may cause neurodegeneration by releasing inflammatory factors to neurons. Finally, we summarize several of the most promising treatment strategies.
Collapse
Affiliation(s)
- Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| |
Collapse
|
16
|
Amick J, Tharkeshwar AK, Talaia G, Ferguson SM. PQLC2 recruits the C9orf72 complex to lysosomes in response to cationic amino acid starvation. J Cell Biol 2020; 219:132798. [PMID: 31851326 PMCID: PMC7039192 DOI: 10.1083/jcb.201906076] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022] Open
Abstract
This study reveals that PQLC2, a lysosomal transporter of cationic amino acids, coordinates cellular responses to cationic amino acid availability via the regulated recruitment of a heterotrimeric protein complex containing C9orf72, SMCR8, and WDR41 to the surface of lysosomes. The C9orf72 protein is required for normal lysosome function. In support of such functions, C9orf72 forms a heterotrimeric complex with SMCR8 and WDR41 that is recruited to lysosomes when amino acids are scarce. These properties raise questions about the identity of the lysosomal binding partner of the C9orf72 complex and the amino acid–sensing mechanism that regulates C9orf72 complex abundance on lysosomes. We now demonstrate that an interaction with the lysosomal cationic amino acid transporter PQLC2 mediates C9orf72 complex recruitment to lysosomes. This is achieved through an interaction between PQLC2 and WDR41. The interaction between PQLC2 and the C9orf72 complex is negatively regulated by arginine, lysine, and histidine, the amino acids that PQLC2 transports across the membrane of lysosomes. These results define a new role for PQLC2 in the regulated recruitment of the C9orf72 complex to lysosomes and reveal a novel mechanism that allows cells to sense and respond to changes in the availability of cationic amino acids within lysosomes.
Collapse
Affiliation(s)
- Joseph Amick
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Arun Kumar Tharkeshwar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Gabriel Talaia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
17
|
Goodier JL, Soares AO, Pereira GC, DeVine LR, Sanchez L, Cole RN, García-Pérez JL. C9orf72-associated SMCR8 protein binds in the ubiquitin pathway and with proteins linked with neurological disease. Acta Neuropathol Commun 2020; 8:110. [PMID: 32678027 PMCID: PMC7364817 DOI: 10.1186/s40478-020-00982-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 02/08/2023] Open
Abstract
A pathogenic GGGCCC hexanucleotide expansion in the first intron/promoter region of the C9orf72 gene is the most common mutation associated with amyotrophic lateral sclerosis (ALS). The C9orf72 gene product forms a complex with SMCR8 (Smith-Magenis Syndrome Chromosome Region, Candidate 8) and WDR41 (WD Repeat domain 41) proteins. Recent studies have indicated roles for the complex in autophagy regulation, vesicle trafficking, and immune response in transgenic mice, however a direct connection with ALS etiology remains unclear. With the aim of increasing understanding of the multi-functional C9orf72-SMCR8-WDR41 complex, we determined by mass spectrometry analysis the proteins that directly associate with SMCR8. SMCR8 protein binds many components of the ubiquitin-proteasome system, and we demonstrate its poly-ubiquitination without obvious degradation. Evidence is also presented for localization of endogenous SMCR8 protein to cytoplasmic stress granules. However, in several cell lines we failed to reproduce previous observations that C9orf72 protein enters these granules. SMCR8 protein associates with many products of genes associated with various Mendelian neurological disorders in addition to ALS, implicating SMCR8-containing complexes in a range of neuropathologies. We reinforce previous observations that SMCR8 and C9orf72 protein levels are positively linked, and now show in vivo that SMCR8 protein levels are greatly reduced in brain tissues of C9orf72 gene expansion carrier individuals. While further study is required, these data suggest that SMCR8 protein level might prove a useful biomarker for the C9orf72 expansion in ALS.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Alisha O. Soares
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Gavin C. Pereira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Lauren R. DeVine
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Laura Sanchez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jose Luis García-Pérez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh, UK
| |
Collapse
|
18
|
Boivin M, Pfister V, Gaucherot A, Ruffenach F, Negroni L, Sellier C, Charlet-Berguerand N. Reduced autophagy upon C9ORF72 loss synergizes with dipeptide repeat protein toxicity in G4C2 repeat expansion disorders. EMBO J 2020; 39:e100574. [PMID: 31930538 PMCID: PMC7024836 DOI: 10.15252/embj.2018100574] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Expansion of G4C2 repeats within the C9ORF72 gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Such repeats lead to decreased expression of the autophagy regulator C9ORF72 protein. Furthermore, sense and antisense repeats are translated into toxic dipeptide repeat (DPR) proteins. It is unclear how these repeats are translated, and in which way their translation and the reduced expression of C9ORF72 modulate repeat toxicity. Here, we found that sense and antisense repeats are translated upon initiation at canonical AUG or near‐cognate start codons, resulting in polyGA‐, polyPG‐, and to a lesser degree polyGR‐DPR proteins. However, accumulation of these proteins is prevented by autophagy. Importantly, reduced C9ORF72 levels lead to suboptimal autophagy, thereby impairing clearance of DPR proteins and causing their toxic accumulation, ultimately resulting in neuronal cell death. Of clinical importance, pharmacological compounds activating autophagy can prevent neuronal cell death caused by DPR proteins accumulation. These results suggest the existence of a double‐hit pathogenic mechanism in ALS/FTD, whereby reduced expression of C9ORF72 synergizes with DPR protein accumulation and toxicity.
Collapse
Affiliation(s)
- Manon Boivin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
| | - Véronique Pfister
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
| | - Angeline Gaucherot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
| | - Frank Ruffenach
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
| | - Chantal Sellier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
| | - Nicolas Charlet-Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
| |
Collapse
|
19
|
Xiao S, McKeever PM, Lau A, Robertson J. Synaptic localization of C9orf72 regulates post-synaptic glutamate receptor 1 levels. Acta Neuropathol Commun 2019; 7:161. [PMID: 31651360 PMCID: PMC6813971 DOI: 10.1186/s40478-019-0812-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
A hexanucleotide repeat expansion in a noncoding region of C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Reduction of select or total C9orf72 transcript and protein levels is observed in postmortem C9-ALS/FTD tissue, and loss of C9orf72 orthologues in zebrafish and C. elegans results in motor deficits. However, how the reduction in C9orf72 in ALS and FTD might contribute to the disease process remains poorly understood. It has been shown that C9orf72 interacts and forms a complex with SMCR8 and WDR41, acting as a guanine exchange factor for Rab GTPases. Given the known synaptosomal compartmentalization of C9orf72-interacting Rab GTPases, we hypothesized that C9orf72 localization to synaptosomes would be required for the regulation of Rab GTPases and receptor trafficking. This study combined synaptosomal and post-synaptic density preparations together with a knockout-confirmed monoclonal antibody for C9orf72 to assess the localization and role of C9orf72 in the synaptosomes of mouse forebrains. Here, we found C9orf72 to be localized to both the pre- and post-synaptic compartment, as confirmed by both post-synaptic immunoprecipitation and immunofluorescence labelling. In C9orf72 knockout (C9-KO) mice, we demonstrated that pre-synaptic Rab3a, Rab5, and Rab11 protein levels remained stable compared with wild-type littermates (C9-WT). Strikingly, post-synaptic preparations from C9-KO mouse forebrains demonstrated a complete loss of Smcr8 protein levels, together with a significant downregulation of Rab39b and a concomitant upregulation of GluR1 compared with C9-WT mice. We confirmed the localization of Rab39b downregulation and GluR1 upregulation to the dorsal hippocampus of C9-KO mice by immunofluorescence. These results indicate that C9orf72 is essential for the regulation of post-synaptic receptor levels, and implicates loss of C9orf72 in contributing to synaptic dysfunction and related excitotoxicity in ALS and FTD.
Collapse
|
20
|
Ho WY, Tai YK, Chang JC, Liang J, Tyan SH, Chen S, Guan JL, Zhou H, Shen HM, Koo E, Ling SC. The ALS-FTD-linked gene product, C9orf72, regulates neuronal morphogenesis via autophagy. Autophagy 2019; 15:827-842. [PMID: 30669939 PMCID: PMC6526867 DOI: 10.1080/15548627.2019.1569441] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 10/05/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in C9orf72 leading to hexanucleotide expansions are the most common genetic causes for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A phenotype resembling ALS and FTD is seen in transgenic mice overexpressing the hexanucleotide expansions, but is absent in C9orf72-deficient mice. Thus, the exact function of C9orf72 in neurons and how loss of C9orf72 may contribute to neuronal dysfunction remains to be clearly defined. Here, we showed that primary hippocampal neurons cultured from c9orf72 knockout mice have reduced dendritic arborization and spine density. Quantitative proteomic analysis identified C9orf72 as a component of the macroautophagy/autophagy initiation complex composed of ULK1-RB1CC1-ATG13-ATG101. The association was mediated through the direct interaction with ATG13 via the isoform-specific carboxyl-terminal DENN and dDENN domain of C9orf72. Furthermore, c9orf72 knockout neurons showed reduced LC3-II puncta accompanied by reduced ULK1 levels, suggesting that loss of C9orf72 impairs basal autophagy. Conversely, wild-type neurons treated with a ULK1 kinase inhibitor showed a dose-dependent reduction of dendritic arborization and spine density. Furthermore, expression of the long isoform of human C9orf72 that interacts with the ULK1 complex, but not the short isoform, rescues autophagy and the dendritic arborization phenotypes of c9orf72 knockout neurons. Taken together, our data suggests that C9orf72 has a cell-autonomous role in neuronal and dendritic morphogenesis through promotion of ULK1-mediated autophagy.
Collapse
Affiliation(s)
- Wan Yun Ho
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Yee Kit Tai
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Jer-Cherng Chang
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Jason Liang
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Sheue-Houy Tyan
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Song Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Huilin Zhou
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Han-Ming Shen
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Edward Koo
- Department of Medicine, National University of Singapore, Singapore, Singapore
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA
| | - Shuo-Chien Ling
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Neurobiology/Ageing Programme, National University of Singapore, Singapore, Singapore
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
21
|
Andrés-Benito P, Gelpi E, Povedano M, Ausín K, Fernández-Irigoyen J, Santamaría E, Ferrer I. Combined Transcriptomics and Proteomics in Frontal Cortex Area 8 in Frontotemporal Lobar Degeneration Linked to C9ORF72 Expansion. J Alzheimers Dis 2019; 68:1287-1307. [DOI: 10.3233/jad-181123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pol Andrés-Benito
- Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital - Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Hospitalet de Llobregat, Spain
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Mónica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
| | - Karina Ausín
- IDISNA, Navarra Institute for Health Research, Pamplona, Spain
- Clinical Neuroproteomics group and Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Department of Health, Public University of Navarra, Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- IDISNA, Navarra Institute for Health Research, Pamplona, Spain
- Clinical Neuroproteomics group and Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Department of Health, Public University of Navarra, Pamplona, Spain
| | - Enrique Santamaría
- IDISNA, Navarra Institute for Health Research, Pamplona, Spain
- Clinical Neuroproteomics group and Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Department of Health, Public University of Navarra, Pamplona, Spain
| | - Isidro Ferrer
- Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital - Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Hospitalet de Llobregat, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Vatsavayai SC, Nana AL, Yokoyama JS, Seeley WW. C9orf72-FTD/ALS pathogenesis: evidence from human neuropathological studies. Acta Neuropathol 2019; 137:1-26. [PMID: 30368547 DOI: 10.1007/s00401-018-1921-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
What are the most important and treatable pathogenic mechanisms in C9orf72-FTD/ALS? Model-based efforts to address this question are forging ahead at a blistering pace, often with conflicting results. But what does the human neuropathological literature reveal? Here, we provide a critical review of the human studies to date, seeking to highlight key gaps or uncertainties in our knowledge. First, we engage the C9orf72-specific mechanisms, including C9orf72 haploinsufficiency, repeat RNA foci, and dipeptide repeat protein inclusions. We then turn to some of the most prominent C9orf72-associated features, such as TDP-43 loss-of-function, TDP-43 aggregation, and nuclear transport defects. Finally, we review potential disease-modifying epigenetic and genetic factors and the natural history of the disease across the lifespan. Throughout, we emphasize the importance of anatomical precision when studying how candidate mechanisms relate to neuronal, regional, and behavioral findings. We further highlight methodological approaches that may help address lingering knowledge gaps and uncertainties, as well as other logical next steps for the field. We conclude that anatomically oriented human neuropathological studies have a critical role to play in guiding this fast-moving field toward effective new therapies.
Collapse
Affiliation(s)
- Sarat C Vatsavayai
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Alissa L Nana
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA.
- Department of Pathology, University of California, San Francisco, Box 1207, San Francisco, CA, 94143-1207, USA.
| |
Collapse
|
23
|
Viodé A, Fournier C, Camuzat A, Fenaille F, Latouche M, Elahi F, Le Ber I, Junot C, Lamari F, Anquetil V, Becher F. New Antibody-Free Mass Spectrometry-Based Quantification Reveals That C9ORF72 Long Protein Isoform Is Reduced in the Frontal Cortex of Hexanucleotide-Repeat Expansion Carriers. Front Neurosci 2018; 12:589. [PMID: 30210275 PMCID: PMC6122177 DOI: 10.3389/fnins.2018.00589] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is a fatal neurodegenerative disease characterized by behavioral and language disorders. The main genetic cause of FTD is an intronic hexanucleotide repeat expansion (G4C2)n in the C9ORF72 gene. A loss of function of the C9ORF72 protein associated with the allele-specific reduction of C9ORF72 expression is postulated to contribute to the disease pathogenesis. To better understand the contribution of the loss of function to the disease mechanism, we need to determine precisely the level of reduction in C9ORF72 long and short isoforms in brain tissue from patients with C9ORF72 mutations. In this study, we developed a sensitive and robust mass spectrometry (MS) method for quantifying C9ORF72 isoform levels in human brain tissue without requiring antibody or affinity reagent. An optimized workflow based on surfactant-aided protein extraction and pellet digestion was established for optimal recovery of the two isoforms in brain samples. Signature peptides, common or specific to the isoforms, were targeted in brain extracts by multiplex MS through the parallel reaction monitoring mode on a Quadrupole-Orbitrap high resolution mass spectrometer. The assay was successfully validated and subsequently applied to frontal cortex brain samples from a cohort of FTD patients with C9ORF72 mutations and neurologically normal controls without mutations. We showed that the C9ORF72 short isoform in the frontal cortices is below detection threshold in all tested individuals and the C9ORF72 long isoform is significantly decreased in C9ORF72 mutation carriers.
Collapse
Affiliation(s)
- Arthur Viodé
- Service de Pharmacologie et Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Université Paris Saclay, Gif-sur-Yvette, France
| | - Clémence Fournier
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Èpinière, ICM, Sorbonne Université, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Agnès Camuzat
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Èpinière, ICM, Sorbonne Université, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| | - François Fenaille
- Service de Pharmacologie et Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Université Paris Saclay, Gif-sur-Yvette, France
| | | | - Morwena Latouche
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Èpinière, ICM, Sorbonne Université, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| | - Fanny Elahi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Isabelle Le Ber
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Èpinière, ICM, Sorbonne Université, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France.,National Reference Center for Rare or Early Dementias, Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Christophe Junot
- Service de Pharmacologie et Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Université Paris Saclay, Gif-sur-Yvette, France
| | - Foudil Lamari
- Assistance Publique - Hôpitaux de Paris, Service de Biochimie Métabolique, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Paris, France.,GRC 13 Neurométabolisme - UPMC, Sorbonne Université, Paris, France
| | - Vincent Anquetil
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Èpinière, ICM, Sorbonne Université, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - François Becher
- Service de Pharmacologie et Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Université Paris Saclay, Gif-sur-Yvette, France
| |
Collapse
|
24
|
Zhang J, Huang P, Wu C, Liang H, Li Y, Zhu L, Lu Y, Tang C, Xu R. Preliminary Observation about Alteration of Proteins and Their Potential Functions in Spinal Cord of SOD1 G93A Transgenic Mice. Int J Biol Sci 2018; 14:1306-1320. [PMID: 30123078 PMCID: PMC6097476 DOI: 10.7150/ijbs.26829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022] Open
Abstract
The protein abnormality participates in the development of ALS that meets with the widespread approval from major researchers. However, these currently found abnormal proteins aren't far enough to explain all pathogenesis of ALS. Therefore, the search of novel abnormal proteins participated in the pathogenesis of ALS is very necessary. In this study, we screened, compared and analyzed the differentially expressed proteins in the spinal cord of the SOD1 G93A transgenic and wild-type (WT) mice applying the isobaric tags for relative and absolute quantitation (iTRAQ) and the bioinformatics methods. The results revealed the details of significantly differentially expressed proteins between the SOD1 G93A transgenic and WT mice, and the damaged and/or regulated cellular components, molecular functions and biological processes and the significant enrichment pathways of these proteins. Our study comprehensively described the details of the possible abnormal proteins participated in the pathogenesis of SOD1 G93A transgenic mice, extensively explored their possible molecular mechanisms how to play the role in the development in this animal model, and provided some evidences and clues for further and deeply studying the relationship between the abnormal proteins and the pathogenesis of ALS in the other animal models and ALS patients.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Ping Huang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.,Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chengsi Wu
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Huiting Liang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yue Li
- Department of Health Statistics, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lei Zhu
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yi Lu
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chunyan Tang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
25
|
Amick J, Tharkeshwar AK, Amaya C, Ferguson SM. WDR41 supports lysosomal response to changes in amino acid availability. Mol Biol Cell 2018; 29:2213-2227. [PMID: 29995611 PMCID: PMC6249801 DOI: 10.1091/mbc.e17-12-0703] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
C9orf72 mutations are a major cause of amyotrophic lateral sclerosis and frontotemporal dementia. The C9orf72 protein undergoes regulated recruitment to lysosomes and has been broadly implicated in control of lysosome homeostasis. However, although evidence strongly supports an important function for C9orf72 at lysosomes, little is known about the lysosome recruitment mechanism. In this study, we identify an essential role for WDR41, a prominent C9orf72 interacting protein, in C9orf72 lysosome recruitment. Analysis of human WDR41 knockout cells revealed that WDR41 is required for localization of the protein complex containing C9orf72 and SMCR8 to lysosomes. Such lysosome localization increases in response to amino acid starvation but is not dependent on either mTORC1 inhibition or autophagy induction. Furthermore, WDR41 itself exhibits a parallel pattern of regulated association with lysosomes. This WDR41-dependent recruitment of C9orf72 to lysosomes is critical for the ability of lysosomes to support mTORC1 signaling as constitutive targeting of C9orf72 to lysosomes relieves the requirement for WDR41 in mTORC1 activation. Collectively, this study reveals an essential role for WDR41 in supporting the regulated binding of C9orf72 to lysosomes and solidifies the requirement for a larger C9orf72 containing protein complex in coordinating lysosomal responses to changes in amino acid availability.
Collapse
Affiliation(s)
- Joseph Amick
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Arun Kumar Tharkeshwar
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Catherine Amaya
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Shawn M Ferguson
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
26
|
Du Y, Wen Y, Guo X, Hao J, Wang W, He A, Fan Q, Li P, Liu L, Liang X, Zhang F. A Genome-wide Expression Association Analysis Identifies Genes and Pathways Associated with Amyotrophic Lateral Sclerosis. Cell Mol Neurobiol 2018; 38:635-639. [PMID: 28639078 PMCID: PMC11481841 DOI: 10.1007/s10571-017-0512-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/17/2017] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with strong genetic components. To identity novel risk variants for ALS, utilizing the latest genome-wide association studies (GWAS) and eQTL study data, we conducted a genome-wide expression association analysis by summary data-based Mendelian randomization (SMR) method. Summary data were derived from a large-scale GWAS of ALS, involving 12577 cases and 23475 controls. The eQTL annotation dataset included 923,021 cis-eQTL for 14,329 genes and 4732 trans-eQTL for 2612 genes. Genome-wide single gene expression association analysis was conducted by SMR software. To identify ALS-associated biological pathways, the SMR analysis results were further subjected to gene set enrichment analysis (GSEA). SMR single gene analysis identified one significant and four suggestive genes associated with ALS, including C9ORF72 (P value = 7.08 × 10-6), NT5C3L (P value = 1.33 × 10-5), GGNBP2 (P value = 1.81 × 10-5), ZNHIT3(P value = 2.94 × 10-5), and KIAA1600(P value = 9.97 × 10-5). GSEA identified 7 significant biological pathways, such as PEROXISOME (empirical P value = 0.006), GLYCOLYSIS_GLUCONEOGENESIS (empirical P value = 0.043), and ARACHIDONIC_ACID_ METABOLISM (empirical P value = 0.040). Our study provides novel clues for the genetic mechanism studies of ALS.
Collapse
Affiliation(s)
- Yanan Du
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Jingcan Hao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Wenyu Wang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Awen He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Qianrui Fan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Xiao Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Yan Ta West Road 76, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
27
|
Fernandes N, Eshleman N, Buchan JR. Stress Granules and ALS: A Case of Causation or Correlation? ADVANCES IN NEUROBIOLOGY 2018; 20:173-212. [PMID: 29916020 DOI: 10.1007/978-3-319-89689-2_7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. These aggregates are linked to ALS pathogenesis. Recent evidence has suggested that stress granules may aid the formation of ALS protein aggregates. Here, we summarize current understanding of stress granules, focusing on assembly and clearance. We also assess the evidence linking alterations in stress granule formation and dynamics to ALS protein aggregates and disease pathology.
Collapse
Affiliation(s)
- Nikita Fernandes
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Nichole Eshleman
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
28
|
Abstract
Through autophagy intracellular material is engulfed by double membrane vesicles and delivered to lysosomes for degradation. This process requires Rab GTPases, Rab GAPs and Rab GEFs for proper membrane trafficking, since they control vesicle budding, targeting and fusion. Deregulation of autophagy contributes to several human diseases including cancer, bacterial or viral infections and neurodegeneration. This review focuses on the complex roles of the newly identified protein SMCR8 and its interaction partners during formation and maturation of autophagosomes as well as regulation of lysosomal function and further discusses their implication in neurodegenerative diseases such as ALS and FTD.
Collapse
Affiliation(s)
- Jennifer Jung
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt, Germany
| | - Christian Behrends
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt, Germany.,Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
29
|
Davidson YS, Robinson AC, Rollinson S, Pickering-Brown S, Xiao S, Robertson J, Mann DMA. Immunohistochemical detection of C9orf72 protein in frontotemporal lobar degeneration and motor neurone disease: patterns of immunostaining and an evaluation of commercial antibodies. Amyotroph Lateral Scler Frontotemporal Degener 2017; 19:102-111. [PMID: 28766957 PMCID: PMC5836993 DOI: 10.1080/21678421.2017.1359304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have employed as ‘gold standards’ two in-house, well-characterised and validated polyclonal antibodies, C9-L and C9-S, which detect the longer and shorter forms of C9orf72, and have compared seven other commercially available antibodies with these in order to evaluate the utility of the latter as credible tools for the demonstration of C9orf72. C9-L and C9-S antibodies immunostained cytoplasmic ‘speckles’, and the nuclear membrane, respectively, in cerebellar Purkinje cells of the cerebellum in patients with behavioural variant frontotemporal dementia (bvFTD) with amyotrophic lateral sclerosis (ALS), and in patients with ALS alone. Similar staining was seen in Purkinje cells in healthy control tissues and in other neurodegenerative disorders, and in pyramidal cells of CA4 and dentate gyrus of hippocampus. However, in the spinal cord there was little cytoplasmic staining with C9-L antibody. C9-S antibody immunostained the nuclear membrane of anterior horn cells in healthy neurons. In patients with bvFTD + ALS, or ALS alone, this C9-S nuclear staining was redistributed to the plasma membrane. In those patients with bvFTD + ALS or ALS bearing an expansion in C9orf72, none of the commercially available antibodies detected TDP-43 inclusions in anterior horn cells, nor were dipeptide repeat proteins demonstrated. Five of the commercial antibodies provided immunohistochemical staining patterns similar in morphological appearance to the in-house C9-L antibody, but distinct from C9-S antibody. However, only three showed sufficient specificity and intensity of staining for C9orf72 at acceptably low concentrations, to make them of practical value and sufficiently reliable for the detection of at least the longer form of C9orf72 protein.
Collapse
Affiliation(s)
- Yvonne S Davidson
- a Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, Salford Royal Hospital , Salford , UK
| | - Andrew C Robinson
- a Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, Salford Royal Hospital , Salford , UK
| | - Sara Rollinson
- b Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, A V Hill Building, University of Manchester , Manchester , UK , and
| | - Stuart Pickering-Brown
- b Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, A V Hill Building, University of Manchester , Manchester , UK , and
| | - Shangxi Xiao
- c Tanz Centre for Research into Neurodegenerative Diseases University of Toronto , Toronto , Ontario , Canada
| | - Janice Robertson
- c Tanz Centre for Research into Neurodegenerative Diseases University of Toronto , Toronto , Ontario , Canada
| | - David M A Mann
- a Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, Salford Royal Hospital , Salford , UK
| |
Collapse
|
30
|
Barker HV, Niblock M, Lee YB, Shaw CE, Gallo JM. RNA Misprocessing in C9orf72-Linked Neurodegeneration. Front Cell Neurosci 2017; 11:195. [PMID: 28744202 PMCID: PMC5504096 DOI: 10.3389/fncel.2017.00195] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022] Open
Abstract
A large GGGGCC hexanucleotide repeat expansion in the first intron or promoter region of the C9orf72 gene is the most common genetic cause of familial and sporadic Amyotrophic lateral sclerosis (ALS), a devastating degenerative disease of motor neurons, and of Frontotemporal Dementia (FTD), the second most common form of presenile dementia after Alzheimer's disease. C9orf72-associated ALS/FTD is a multifaceted disease both in terms of its clinical presentation and the misregulated cellular pathways contributing to disease progression. Among the numerous pathways misregulated in C9orf72-associated ALS/FTD, altered RNA processing has consistently appeared at the forefront of C9orf72 research. This includes bidirectional transcription of the repeat sequence, accumulation of repeat RNA into nuclear foci sequestering specific RNA-binding proteins (RBPs) and translation of RNA repeats into dipeptide repeat proteins (DPRs) by repeat-associated non-AUG (RAN)-initiated translation. Over the past few years the true extent of RNA misprocessing in C9orf72-associated ALS/FTD has begun to emerge and disruptions have been identified in almost all aspects of the life of an RNA molecule, including release from RNA polymerase II, translation in the cytoplasm and degradation. Furthermore, several alterations have been identified in the processing of the C9orf72 RNA itself, in terms of its transcription, splicing and localization. This review article aims to consolidate our current knowledge on the consequence of the C9orf72 repeat expansion on RNA processing and draws attention to the mechanisms by which several aspects of C9orf72 molecular pathology converge to perturb every stage of RNA metabolism.
Collapse
Affiliation(s)
- Holly V. Barker
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| | - Michael Niblock
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| | - Youn-Bok Lee
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| | - Christopher E. Shaw
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| | - Jean-Marc Gallo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| |
Collapse
|
31
|
Shahheydari H, Ragagnin A, Walker AK, Toth RP, Vidal M, Jagaraj CJ, Perri ER, Konopka A, Sultana JM, Atkin JD. Protein Quality Control and the Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Continuum. Front Mol Neurosci 2017; 10:119. [PMID: 28539871 PMCID: PMC5423993 DOI: 10.3389/fnmol.2017.00119] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, has an important regulatory role in cellular function. Protein quality control mechanisms, including protein folding and protein degradation processes, have a crucial function in post-mitotic neurons. Cellular protein quality control relies on multiple strategies, including molecular chaperones, autophagy, the ubiquitin proteasome system, endoplasmic reticulum (ER)-associated degradation (ERAD) and the formation of stress granules (SGs), to regulate proteostasis. Neurodegenerative diseases are characterized by the presence of misfolded protein aggregates, implying that protein quality control mechanisms are dysfunctional in these conditions. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that are now recognized to overlap clinically and pathologically, forming a continuous disease spectrum. In this review article, we detail the evidence for dysregulation of protein quality control mechanisms across the whole ALS-FTD continuum, by discussing the major proteins implicated in ALS and/or FTD. We also discuss possible ways in which protein quality mechanisms could be targeted therapeutically in these disorders and highlight promising protein quality control-based therapeutics for clinical trials.
Collapse
Affiliation(s)
- Hamideh Shahheydari
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Audrey Ragagnin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Adam K Walker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Reka P Toth
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Marta Vidal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Cyril J Jagaraj
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Emma R Perri
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Anna Konopka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Jessica M Sultana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|
32
|
Moens TG, Partridge L, Isaacs AM. Genetic models of C9orf72: what is toxic? Curr Opin Genet Dev 2017; 44:92-101. [PMID: 28364657 DOI: 10.1016/j.gde.2017.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 12/11/2022]
Abstract
A hexanucleotide repeat expansion in the gene C9orf72 is the most common genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia. Pathogenesis may occur either due to loss of function of the C9orf72 gene, or a toxic gain of function, via the production of repetitive sense and antisense RNA and/or repetitive dipeptide repeat proteins. Recently, mouse knockouts have suggested that a loss of function of C9orf72 alone is insufficient to lead to neurodegeneration, whilst overexpression of hexanucleotide DNA is sufficient in a wide range of model systems. Additionally, models have now been created to attempt to study the effects of repetitive RNA and dipeptide proteins in isolation and thus determine their relevance to disease.
Collapse
Affiliation(s)
- Thomas G Moens
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK; Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London WC1E 6BT, UK
| | - Linda Partridge
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK.
| |
Collapse
|
33
|
Amick J, Ferguson SM. C9orf72: At the intersection of lysosome cell biology and neurodegenerative disease. Traffic 2017; 18:267-276. [PMID: 28266105 DOI: 10.1111/tra.12477] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 12/13/2022]
Abstract
The discovery that expansion of a hexanucleotide repeat within a noncoding region of the C9orf72 gene causes amyotrophic lateral sclerosis and frontotemporal dementia raised questions about C9orf72 protein function and potential disease relevance. The major predicted structural feature of the C9orf72 protein is a DENN (differentially expressed in normal and neoplastic cells) domain. As DENN domains are best characterized for regulation of specific Rab GTPases, it has been proposed that C9orf72 may also act through regulation of a GTPase target. Recent genetic and cell biological studies furthermore indicate that the C9orf72 protein functions at lysosomes as part of a larger complex that also contains the Smith-Magenis chromosome region 8 (SMCR8) and WD repeat-containing protein 41 (WDR41) proteins. An important role for C9orf72 at lysosomes is supported by defects in lysosome morphology and mTOR complex 1 (mTORC1) signaling arising from C9orf72 KO in diverse model systems. Collectively, these new findings define a C9orf72-containing protein complex and a lysosomal site of action as central to C9orf72 function and provide a foundation for the elucidation of direct physiological targets for C9orf72. Further elucidation of mechanisms whereby C9orf72 regulates lysosome function will help to determine how the reductions in C9orf72 expression levels that accompany hexanucleotide repeat expansions contribute to disease pathology.
Collapse
Affiliation(s)
- Joseph Amick
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
34
|
Jung J, Nayak A, Schaeffer V, Starzetz T, Kirsch AK, Müller S, Dikic I, Mittelbronn M, Behrends C. Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator. eLife 2017; 6. [PMID: 28195531 PMCID: PMC5323046 DOI: 10.7554/elife.23063] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Abstract
Autophagy is an intracellular recycling and degradation pathway that depends on membrane trafficking. Rab GTPases are central for autophagy but their regulation especially through the activity of Rab GEFs remains largely elusive. We employed a RNAi screen simultaneously monitoring different populations of autophagosomes and identified 34 out of 186 Rab GTPase, GAP and GEF family members as potential autophagy regulators, amongst them SMCR8. SMCR8 uses overlapping binding regions to associate with C9ORF72 or with a C9ORF72-ULK1 kinase complex holo-assembly, which function in maturation and formation of autophagosomes, respectively. While focusing on the role of SMCR8 during autophagy initiation, we found that kinase activity and gene expression of ULK1 are increased upon SMCR8 depletion. The latter phenotype involved association of SMCR8 with the ULK1 gene locus. Global mRNA expression analysis revealed that SMCR8 regulates transcription of several other autophagy genes including WIPI2. Collectively, we established SMCR8 as multifaceted negative autophagy regulator. DOI:http://dx.doi.org/10.7554/eLife.23063.001
Collapse
Affiliation(s)
- Jennifer Jung
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt, Germany
| | - Arnab Nayak
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt, Germany
| | - Véronique Schaeffer
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt, Germany
| | | | | | - Stefan Müller
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Department of Immunology and Medical Genetics, School of Medicine, University of Split, Split, Croatia
| | - Michel Mittelbronn
- Neurological Institute, Goethe University, Frankfurt, Germany.,German Cancer Consortium, Heidelberg, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Christian Behrends
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt, Germany.,Munich Cluster for Systems Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
35
|
D’Ovidio F, Rooney JPK, Visser AE, Vermeulen RCH, Veldink JH, Van Den Berg LH, Hardiman O, Logroscino G, Chiò A, Beghi E. Critical issues in ALS case-control studies: the case of the Euro-MOTOR study. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:411-418. [DOI: 10.1080/21678421.2017.1285939] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Fabrizio D’Ovidio
- “Rita Levi Montalcini” Department of Neurosciences, University of Turin, Turin, Italy,
| | - James P. K. Rooney
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland,
| | - Anne E. Visser
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,
| | - Roel C. H. Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands,
| | - Jan H. Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,
| | - Leonard H. Van Den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland,
| | - Giancarlo Logroscino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy, and
| | - Adriano Chiò
- “Rita Levi Montalcini” Department of Neurosciences, University of Turin, Turin, Italy,
| | - Ettore Beghi
- Neurological Diseases Laboratory, Department of Neurosciences, IRCCS Mario Negri, Milano, Italy
| | | |
Collapse
|
36
|
Wen X, Westergard T, Pasinelli P, Trotti D. Pathogenic determinants and mechanisms of ALS/FTD linked to hexanucleotide repeat expansions in the C9orf72 gene. Neurosci Lett 2016; 636:16-26. [PMID: 27619540 DOI: 10.1016/j.neulet.2016.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two apparently distinct neurodegenerative diseases, the former characterized by selective loss of motor neurons in the brain and spinal cord and the latter characterized by selective atrophy of frontal and temporal lobes. Over the years, however, growing evidence from clinical, pathological and genetic findings has suggested that ALS and FTD belong to the same clinic-pathological spectrum disorder. This concept has been further supported by the identification of the most common genetic cause for both diseases, an aberrantly expanded hexanucleotide repeat GGGGCC/ CCCCGG sequence located in a non-coding region of the gene C9orf72. Three hypotheses have been proposed to explain how this repeats expansion causes diseases: 1) C9orf72 haploinsufficiency-expanded repeats interfere with transcription or translation of the gene, leading to decreased expression of the C9orf72 protein; 2) RNA gain of function-RNA foci formed by sense and antisense transcripts of expanded repeats interact and sequester essential RNA binding proteins, causing neurotoxicity; 3) Repeat associated non-ATG initiated (RAN) translation of expanded sense GGGGCC and antisense CCCCGG repeats produces potential toxic dipeptide repeat protein (DPR). In this review, we assess current evidence supporting or arguing against each proposed mechanism in C9 ALS/FTD disease pathogenesis. Additionally, controversial findings are also discussed. Lastly, we discuss the possibility that the three pathogenic mechanisms are not mutually exclusive and all three might be involved in disease.
Collapse
Affiliation(s)
- Xinmei Wen
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Thomas Westergard
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
37
|
Amick J, Roczniak-Ferguson A, Ferguson SM. C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling. Mol Biol Cell 2016; 27:3040-3051. [PMID: 27559131 PMCID: PMC5063613 DOI: 10.1091/mbc.e16-01-0003] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022] Open
Abstract
C9orf72 interacts strongly with SMCR8 and depends on this interaction for its stability. Lysosomes are major sites of C9orf72 subcellular localization, and abnormal lysosome morphology is seen in its absence. Defects are found in the regulation of the lysosome-localized mTORC1 signaling pathway in C9orf72 KO cells. Hexanucleotide expansion in an intron of the C9orf72 gene causes amyotrophic lateral sclerosis and frontotemporal dementia. However, beyond bioinformatics predictions that suggested structural similarity to folliculin, the Birt-Hogg-Dubé syndrome tumor suppressor, little is known about the normal functions of the C9orf72 protein. To address this problem, we used genome-editing strategies to investigate C9orf72 interactions, subcellular localization, and knockout (KO) phenotypes. We found that C9orf72 robustly interacts with SMCR8 (a protein of previously unknown function). We also observed that C9orf72 localizes to lysosomes and that such localization is negatively regulated by amino acid availability. Analysis of C9orf72 KO, SMCR8 KO, and double-KO cell lines revealed phenotypes that are consistent with a function for C9orf72 at lysosomes. These include abnormally swollen lysosomes in the absence of C9orf72 and impaired responses of mTORC1 signaling to changes in amino acid availability (a lysosome-dependent process) after depletion of either C9orf72 or SMCR8. Collectively these results identify strong physical and functional interactions between C9orf72 and SMCR8 and support a lysosomal site of action for this protein complex.
Collapse
Affiliation(s)
- Joseph Amick
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Agnes Roczniak-Ferguson
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Shawn M Ferguson
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
38
|
Corbier C, Sellier C. C9ORF72 is a GDP/GTP exchange factor for Rab8 and Rab39 and regulates autophagy. Small GTPases 2016; 8:181-186. [PMID: 27494456 DOI: 10.1080/21541248.2016.1212688] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic Lateral Sclerosis and Frontotemporal Dementia (ALS-FTD) are devastating neurodegenerative disease affecting motoneurons from the spinal chord and neurons from the frontal and temporal cortex, respectively. The most common genetic cause for ALS-FTD is an expansion of GGGGCC repeats within the first intron of the C9ORF72 gene. However, little is known on the function of C9ORF72. Recently, other and we found that C9ORF72 forms a stable complex with the SMCR8 and WDR41 proteins. This complex acts as a GDP/GTP exchange factor for the small RAB GTPases Rab8a and Rab39b. Since Rab8 and Rab39 are involved in macroautophagy, we tested the role of C9ORF72 in this mechanism. Decrease expression of C9ORF72 in neuronal cultures leads to autophagy dysfunction characterized by accumulation of aggregates of p62/SQSTM1. However, loss of C9ORF72 expression does not cause major neuronal cell death, suggesting that a second stress may be required to promote cell toxicity. Intermediate size of polyglutamine repeats within Ataxin-2 (ATXN2) is an important genetic modifier of ALS-FTD. We found that decrease expression of C9ORF72 synergizes the toxicity and aggregation of ATXN2 with intermediate size of polyglutamine (30Q). Overall, our data suggest that reduce expression of C9ORF72 causes suboptimal autophagy that sensitizes neurons to a second stress. These data suggest that reduce expression of C9ORF72 may partly contribute to ALS-FTD pathogenesis.
Collapse
Affiliation(s)
- Camille Corbier
- a Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University , Illkirch , France
| | - Chantal Sellier
- a Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University , Illkirch , France
| |
Collapse
|
39
|
Mis MSC, Brajkovic S, Tafuri F, Bresolin N, Comi GP, Corti S. Development of Therapeutics for C9ORF72 ALS/FTD-Related Disorders. Mol Neurobiol 2016; 54:4466-4476. [PMID: 27349438 DOI: 10.1007/s12035-016-9993-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022]
Abstract
The identification of the hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in the non-coding region of the C9ORF72 gene as the most frequent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) has opened the path for advances in the knowledge and treatment of these disorders, which remain incurable. Recent evidence suggests that HRE RNA can cause gain-of-function neurotoxicity, but haploinsufficiency has also been hypothesized. In this review, we describe the recent developments in therapeutic targeting of the pathological expansion of C9ORF72 for ALS, FTD, and other neurodegenerative disorders. Three approaches are prominent: (1) an antisense oligonucleotides/RNA interference strategy; (2) using small compounds to counteract the toxic effects directly exerted by RNA derived from the repeat transcription (foci), by the translation of dipeptide repeat proteins (DPRs) from the repeated sequence, or by the sequestration of RNA-binding proteins from the C9ORF72 expansion; and (3) gene therapy, not only for silencing the toxic RNA/protein, but also for rescuing haploinsufficiency caused by the reduced transcription of the C9ORF72 coding sequence or by the diminished availability of RNA-binding proteins that are sequestered by RNA foci. Finally, with the perspective of clinical therapy, we discuss the most promising progress that has been achieved to date in the field.
Collapse
Affiliation(s)
- Maria Sara Cipolat Mis
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Simona Brajkovic
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Francesco Tafuri
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
40
|
Sullivan PM, Zhou X, Robins AM, Paushter DH, Kim D, Smolka MB, Hu F. The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway. Acta Neuropathol Commun 2016; 4:51. [PMID: 27193190 PMCID: PMC4870812 DOI: 10.1186/s40478-016-0324-5] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 12/12/2022] Open
Abstract
Hexanucleotide repeat expansion in the C9orf72 gene is a leading cause of frontotemporal lobar degeneration (FTLD) with amyotrophic lateral sclerosis (ALS). Reduced expression of C9orf72 has been proposed as a possible disease mechanism. However, the cellular function of C9orf72 remains to be characterized. Here we report the identification of two binding partners of C9orf72: SMCR8 and WDR41. We show that WDR41 interacts with the C9orf72/SMCR8 heterodimer and WDR41 is tightly associated with the Golgi complex. We further demonstrate that C9orf72/SMCR8/WDR41 associates with the FIP200/Ulk1 complex, which is essential for autophagy initiation. C9orf72 deficient mice, generated using the CRISPR/Cas9 system, show severe inflammation in multiple organs, including lymph node, spleen and liver. Lymph node enlargement and severe splenomegaly are accompanied with macrophage infiltration. Increased levels of autophagy and lysosomal proteins and autophagy defects were detected in both the spleen and liver of C9orf72 deficient mice, supporting an in vivo role of C9orf72 in regulating the autophagy/lysosome pathway. In summary, our study elucidates potential physiological functions of C9orf72 and disease mechanisms of ALS/FTLD.
Collapse
|