1
|
Küpeli Akkol E, Karatoprak GŞ, Dumlupınar B, Bahadır Acıkara Ö, Arıcı R, Yücel Ç, Aynal LC, Sobarzo Sánchez E. Stilbenes Against Alzheimer's Disease: A Comprehensive Review of Preclinical Studies of Natural and Synthetic Compounds Combined with the Contributions of Developed Nanodrug Delivery Systems. Molecules 2025; 30:1982. [PMID: 40363789 PMCID: PMC12073496 DOI: 10.3390/molecules30091982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
This review covers preclinical studies of stilbene derivative compounds (both natural and synthetic) with potential preventive and therapeutic effects against Alzheimer's disease (AD). AD is a worldwide neurodegenerative disease characterized by the destruction of nerve cells in the brain and the loss of cognitive function due to aging. Stilbenes are a unique class of natural phenolic compounds distinguished by a C6-C2-C6 (1,2-diphenylethylene) structure and two aromatic rings connected by an ethylene bridge. Stilbenes' distinct features make them an intriguing subject for pharmacological research and development. Several preclinical studies have suggested that stilbenes may have neuroprotective effects by reducing Aβ generation and oligomerization, enhancing Aβ clearance, and regulating tau neuropathology through the prevention of aberrant tau phosphorylation and aggregation, as well as scavenging reactive oxygen species. Synthetic stilbene derivatives also target multiple pathways involved in neuroprotection and have demonstrated promising biological activity in vitro. However, some properties of stilbenes, such as sensitivity to physiological conditions, low solubility, poor permeability, instability, and low bioavailability, limit their usefulness in clinical applications. To address this issue, current investigations have developed new drug delivery systems based on stilbene derivative molecules. This review aims to shed light on the development of next-generation treatment strategies by examining in detail the role of stilbenes in Alzheimer's pathophysiology and their therapeutic potential.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Türkiye;
| | - Berrak Dumlupınar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Okan University, İstanbul 34959, Türkiye;
| | - Özlem Bahadır Acıkara
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara 06560, Türkiye;
| | - Reyhan Arıcı
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara Medipol University, Ankara 06570, Türkiye;
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Türkiye;
| | - Leyli Can Aynal
- Etlik City Hospital, Department of Neurology, Ankara 06170, Türkiye;
| | - Eduardo Sobarzo Sánchez
- Centro de Investigación en Ingeniería de Materiales, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Oh JM, Kim SH, Pandey BP, Shin WH, Son HJ, Kwon YJ, Kim H. A stilbenoid, rhapontigenin, isolated from the root of Rheum palmatum L. acts as a potent BACE1 inhibitor. Fitoterapia 2025; 182:106484. [PMID: 40107427 DOI: 10.1016/j.fitote.2025.106484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Seven compounds, comprising three anthraquinones and four stilbenoids, were isolated from the roots of Rheum palmatum L. These compounds include chrysophanol (1), aloe-emodin (2), aloe-emodin 8-O-β-D-glucopyranoside (3), desoxyrhapontigenin (4), rhapontigenin (5), desoxyrhaponticin (6), and piceatannol 3'-O-β-D-glucopyranoside (7). Among these, compound 5 showed potent β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitory activity with an IC50 value of 0.256 ± 0.008 μM, making it the most effective inhibitor obtained from herbal extracts to date, followed by compounds 3 (1.164 ± 0.108 μM), 6 (1.213 ± 0.193 μM), 7 (1.270 ± 0.130 μM), and 4 (2.028 ± 0.108 μM). Furthermore, kinetic analysis revealed that compound 5 acted as a mixed type-I inhibitor with an inhibition constant Ki value of 0.28 ± 0.07 μM. Notably, compound 2 exhibited potent Aβ aggregation inhibition with an IC50 value of 3.56 ± 0.19 μM, whereas compound 5 showed low Aβ aggregation inhibition with an IC50 value of >40 μM. The docking simulations revealed that compound 5 had a high binding affinity and interacted with TYR132, predicting it as a key residue for inhibition via hydrophobic interaction, and with THR133 via hydrogen bonding, in the flap region of BACE1. These results suggest that stilbenoids generally exhibit higher BACE1 inhibitory activity than that of anthraquinones, and that compound 5 (rhapontigenin) could be a promising candidate for the treatment of Alzheimer's disease as a potent BACE1 inhibitor.
Collapse
Affiliation(s)
- Jong Min Oh
- Department of Pharmacy, College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Soo Hyun Kim
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea
| | - Bishnu Prasad Pandey
- Department of Pharmacy, College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; Department of Chemical Science and Engineering, Kathmandu University, PO Box No. 6250, Dhulikhel, Kavre, Nepal.
| | - Woong-Hee Shin
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul 02708, Republic of Korea
| | - Hyun Ju Son
- Department of Pharmacy, College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yun Ju Kwon
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea
| | - Hoon Kim
- Department of Pharmacy, College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
3
|
Lee S, Ju IG, Eo H, Kim JH, Choi Y, Oh MS. Rhei Undulati Rhizoma attenuates memory decline and reduces amyloid-β induced neuritic dystrophy in 5xFAD mouse. Chin Med 2024; 19:95. [PMID: 38965625 PMCID: PMC11223309 DOI: 10.1186/s13020-024-00966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a common type of dementia characterized by amyloid-β (Aβ) accumulation, lysosomal dysfunction, and tau hyperphosphorylation, leading to neurite dystrophy and memory loss. This study aimed to investigate whether Rhei Undulati Rhizoma (RUR), which has been reported to have anti-neuroinflammatory effect, attenuates Aβ-induced memory impairment, neuritic dystrophy, and tau hyperphosphorylation, and to reveal its mode of action. METHODS Five-month-old 5xFAD mice received RUR (50 mg/kg) orally for 2 months. The Y-maze test was used to assess working memory. After behavioral testing, brain tissue was analyzed using thioflavin S staining, western blotting, and immunofluorescence staining to investigate the mode of action of RUR. To confirm whether RUR directly reduces Aβ aggregation, a thioflavin T assay and dot blot were performed after incubating Aβ with RUR. RESULTS RUR administration attenuated the Aβ-induced memory impairment in 5xFAD mice. Furthermore, decreased accumulation of Aβ was observed in the hippocampus of the RUR-treated 5xFAD group compare to the vehicle-treated 5xFAD group. Moreover, RUR reduced the dystrophic neurites (DNs) that accumulate impaired endolysosomal organelles around Aβ. In particular, RUR treatment downregulated the expression of β-site amyloid precursor protein cleaving enzyme 1 and the hyperphosphorylation of tau within DNs. Additionally, RUR directly suppressed the aggregation of Aβ, and eliminated Aβ oligomers in vitro. CONCLUSIONS This study showed that RUR could attenuate Aβ-induced pathology and directly regulate the aggregation of Aβ. These results suggest that RUR could be an efficient material for AD treatment through Aβ regulation.
Collapse
Affiliation(s)
- Seungmin Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Yujin Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
4
|
Hajibabaie F, Abedpoor N, Taghian F, Safavi K. A Cocktail of Polyherbal Bioactive Compounds and Regular Mobility Training as Senolytic Approaches in Age-dependent Alzheimer's: the In Silico Analysis, Lifestyle Intervention in Old Age. J Mol Neurosci 2023; 73:171-184. [PMID: 36631703 DOI: 10.1007/s12031-022-02086-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/15/2022] [Indexed: 01/13/2023]
Abstract
Alzheimer's is a principal concern globally. Machine learning is a valuable tool to determine protective and diagnostic approaches for the elderly. We analyzed microarray datasets of Alzheimer's cases based on artificial intelligence by R statistical software. This study provided a screened pool of ncRNAs and coding RNAs related to Alzheimer's development. We designed hub genes as cut points in networks and predicted potential microRNAs and LncRNA to regulate protein networks in aging and Alzheimer's through in silico algorithms. Notably, we collected effective traditional herbal medicines. A list of bioactive compounds prepared including capsaicin, piperine, crocetin, safranal, saffron oil, coumarin, thujone, rosmarinic acid, sabinene, thymoquinone, ascorbic acid, vitamin E, cyanidin, rhaponticin, isovitexin, coumarin, nobiletin, evodiamine, gingerol, curcumin, quercetin, fisetin, and allicin as an effective fusion that potentially modulates hub proteins and molecular signaling pathways based on pharmacophore model screening and chemoinformatics survey. We identified profiles of 21 mRNAs, 272 microRNAs, and eight LncRNA in Alzheimer's based on prediction algorithms. We suggested a fusion of senolytic herbal ligands as an alternative therapy and preventive formulation in dementia. Also, we provided ncRNAs expression status as novel monitoring strategies in Alzheimer's and new cut-point proteins as novel therapeutic approaches. Synchronizing fusion drugs and lifestyle could reverse Alzheimer's hallmarks to amelioration via an offset of the signaling pathways, leading to increased life quality in the elderly.
Collapse
Affiliation(s)
- Fatemeh Hajibabaie
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Navid Abedpoor
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Kamran Safavi
- Department of Plant Biotechnology, Medicinal Plants Research Centre, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
5
|
Dirir AM, Daou M, Yousef AF, Yousef LF. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1049-1079. [PMID: 34421444 PMCID: PMC8364835 DOI: 10.1007/s11101-021-09773-1] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/27/2021] [Indexed: 05/02/2023]
Abstract
UNLABELLED Diabetes mellitus is a multifactorial global health disorder that is rising at an alarming rate. Cardiovascular diseases, kidney damage and neuropathy are the main cause of high mortality rates among individuals with diabetes. One effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes is to target alpha-amylase and alpha-glucosidase, enzymes that catalyzes starch hydrolysis in the intestine. At present, approved inhibitors for these enzymes are restricted to acarbose, miglitol and voglibose. Although these inhibitors retard glucose absorption, undesirable gastrointestinal side effects impede their application. Therefore, research efforts continue to seek novel inhibitors with improved efficacy and minimal side effects. Natural products of plant origin have been a valuable source of therapeutic agents with lesser toxicity and side effects. The anti-diabetic potential through alpha-glucosidase inhibition of plant-derived molecules are summarized in this review. Eight molecules (Taxumariene F, Akebonoic acid, Morusin, Rhaponticin, Procyanidin A2, Alaternin, Mulberrofuran K and Psoralidin) were selected as promising drug candidates and their pharmacokinetic properties and toxicity were discussed where available. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-021-09773-1.
Collapse
Affiliation(s)
- Amina M. Dirir
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| | - Marianne Daou
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| | - Ahmed F. Yousef
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
- Center for Membranes and Advances Water Technology, Khalifa University, Abu Dhabi, UAE
| | - Lina F. Yousef
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| |
Collapse
|
6
|
Echeverria V, Echeverria F, Barreto GE, Echeverría J, Mendoza C. Estrogenic Plants: to Prevent Neurodegeneration and Memory Loss and Other Symptoms in Women After Menopause. Front Pharmacol 2021; 12:644103. [PMID: 34093183 PMCID: PMC8172769 DOI: 10.3389/fphar.2021.644103] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In mammals, sexual hormones such as estrogens play an essential role in maintaining brain homeostasis and function. Estrogen deficit in the brain induces many undesirable symptoms such as learning and memory impairment, sleep and mood disorders, hot flushes, and fatigue. These symptoms are frequent in women who reached menopausal age or have had ovariectomy and in men and women subjected to anti-estrogen therapy. Hormone replacement therapy alleviates menopause symptoms; however, it can increase cardiovascular and cancer diseases. In the search for therapeutic alternatives, medicinal plants and specific synthetic and natural molecules with estrogenic effects have attracted widespread attention between the public and the scientific community. Various plants have been used for centuries to alleviate menstrual and menopause symptoms, such as Cranberry, Ginger, Hops, Milk Thistle, Red clover, Salvia officinalis, Soy, Black cohosh, Turnera diffusa, Ushuva, and Vitex. This review aims to highlight current evidence about estrogenic medicinal plants and their pharmacological effects on cognitive deficits induced by estrogen deficiency during menopause and aging.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, Unites States
| | | | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristhian Mendoza
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
| |
Collapse
|
7
|
Chen D, Liu JR, Cheng Y, Cheng H, He P, Sun Y. Metabolism of Rhaponticin and Activities of its Metabolite, Rhapontigenin: A Review. Curr Med Chem 2020; 27:3168-3186. [DOI: 10.2174/0929867326666190121143252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/22/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022]
Abstract
Rhaponticin is a stilbenoid glucoside compound, found in medicinal plant of rhubarb
rhizomes. Rhapontigenin (RHAG), the stilbene aglycone metabolite of rhaponticin, has
shown various biological activities including anticancer activities to act a potential human cytochrome
P450 inhibitor, antihyperlipidemic effect, anti-allergic action, antioxidant and antibacterial
activities. Moreover, it was reported to scavenge intracellular Reactive Oxygen Species
(ROS), the 1,1-Diphenyl-2-Picrylliydrazyl (DPPH) radical, and Hydrogen Peroxide
(H2O2). Meanwhile, RHAG exhibited the inhibitory activity for the synthesis of DNA, RNA
and protein, and also presented the capacity of inducing morphological changes and apoptosis
of C. albicans. Here, the structure, pharmacokinetics, pharmacological effects as well as underlying
mechanisms of rhaponticin and its metabolite, RHAG, have been extensively reviewed.
This review will provide a certain reference value for developing the therapeutic drug
of rhaponticin or RHAG.
Collapse
Affiliation(s)
- Dan Chen
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Jing-Ru Liu
- School of Life Science, Northwest University, Xi’an, Shaanxi 710069, China
| | - Yanjin Cheng
- School of Mathematics and Statistics, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Hua Cheng
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Ping He
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Yang Sun
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| |
Collapse
|
8
|
Wang LS, Tao X, Liu XM, Zhou YF, Zhang MD, Liao YH, Pan RL, Chang Q. Cajaninstilbene Acid Ameliorates Cognitive Impairment Induced by Intrahippocampal Injection of Amyloid-β 1-42 Oligomers. Front Pharmacol 2019; 10:1084. [PMID: 31680939 PMCID: PMC6798059 DOI: 10.3389/fphar.2019.01084] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β1-42 (Aβ1-42) oligomers play an important role at the early stage of Alzheimer's disease (AD) and have been a vital target in the development of therapeutic drugs for AD. Cajaninstilbene acid (CSA), a major bioactive stilbene isolated from pigeon pea (Cajanus cajan) leaves, exerted the neuroprotective property in our previous studies. The present study utilized a validated mouse model of early-stage AD induced by bilateral injection of Aβ1-42 oligomers into hippocampal CA1 regions (100 pmol/mouse) to investigate the cognitive enhancing effects of CSA and the underlying mechanism, by a combination of animal behavioral tests, immunohistochemistry, liquid chromatography-tandem mass spectrometry analysis, and Western blot methods. Intragastric administration of CSA (7.5, 15, and 30 mg/kg) attenuated the impairment of learning and memory induced by Aβ1-42 oligomers. CSA stimulated Aβ clearance and prevented microglial activation and astrocyte reactivity in the hippocampus of model mice. It also decreased the high levels of Glu but increased the low levels of GABA. In addition, CSA inhibited excessive expression of GluN2B-containing NMDARs and upregulated the downstream PKA/CREB/BDNF/TrkB signaling pathway. These results suggest that CSA could be a potential therapeutic agent at the early stage of AD.
Collapse
Affiliation(s)
- Li-Sha Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Tao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Min Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Key Laboratory of Human Factors Engineering and the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yun-Feng Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng-Di Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong-Hong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-Le Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Basavan D, Chalichem NSS, Kumar MKS. Phytoconstituents and their Possible Mechanistic Profile for Alzheimer's Disease - A Literature Review. Curr Drug Targets 2018; 20:263-291. [PMID: 30101703 DOI: 10.2174/1389450119666180813095637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/24/2018] [Accepted: 08/08/2018] [Indexed: 11/22/2022]
Abstract
Memory is an associated part of life without which livelihood of a human being becomes miserable. As the global aged population is increasing tremendously, time has come to concentrate on tail end life stage diseases. Alzheimer's disease (AD) is one of such diseases whose origin is enigmatic, having an impact on later stage of life drastically due to irreparable damage of cognition, characterised by the presence of neurotoxic amyloid-beta (Aβ) plaques and hyper phosphorylated Tau protein as fibrillary tangles. Existing therapeutic regimen mainly focuses on symptomatic relief by targeting neurotransmitters that are secondary to AD pathology. Plant derived licensed drugs, Galantamine and Huperzine-A were studied extensively due to their AChE inhibitory action for mild to moderate cases of AD. Although many studies have proved the efficacy of AChEIs as a preferable symptom reliever, they cannot offer long term protection. The future generation drugs of AD is expected to alter various factors that underlie the disease course with a symptomatic benefit promise. As AD involves complex pathology, it is essential to consider several molecular divergent factors apart from the events that result in the production of toxic plaques and neurofibrillary tangles. Even though several herbals have shown neuroprotective actions, we have mentioned about the phytoconstituents that have been tested experimentally against different Alzheimer's pathology models. These phytoconstituents need to be considered by the researchers for further drug development process to make them viable clinically, which is currently a lacuna.
Collapse
Affiliation(s)
- Duraiswamy Basavan
- Department of Pharmacognosy and Phytopharmacy, JSS College of pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), Ooty-643001, India
| | - Nehru S S Chalichem
- Department of Pharmacognosy and Phytopharmacy, JSS College of pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), Ooty-643001, India
| | - Mohan K S Kumar
- TIFAC CORE Herbal drugs, Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), ooty-643001, India
| |
Collapse
|
10
|
Eräsalo H, Hämäläinen M, Leppänen T, Mäki-Opas I, Laavola M, Haavikko R, Yli-Kauhaluoma J, Moilanen E. Natural Stilbenoids Have Anti-Inflammatory Properties in Vivo and Down-Regulate the Production of Inflammatory Mediators NO, IL6, and MCP1 Possibly in a PI3K/Akt-Dependent Manner. JOURNAL OF NATURAL PRODUCTS 2018; 81:1131-1142. [PMID: 29726680 DOI: 10.1021/acs.jnatprod.7b00384] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Stilbenoids are a group of polyphenolic compounds found in plants, trees, berries, and nuts. Stilbenoids have been shown to serve an antimicrobial and antifungal function in plants. There is also evidence that as a part of the human diet, stilbenoids play an important role as antioxidants and may have anti-inflammatory effects. The PI3K/Akt pathway is a well-characterized signaling pathway controlling cellular functions involved in growth and cell cycle and in metabolism. There is also increasing evidence to show the involvement of this pathway in the regulation of inflammatory responses. In the present study, an attempt was made to investigate the anti-inflammatory properties of the naturally occurring stilbenoids pinosylvin (1), monomethylpinosylvin (2), resveratrol (3), pterostilbene (4), piceatannol (5), and rhapontigenin (6). Glycosylated derivatives of piceatannol and rhapontigenin, namely, astringin (7) and rhaponticin (8), respectively, were also investigated. In addition to the natural stilbenoids, pinosylvin derivatives (9-13) were synthesized and subjected to the testing of their effects on the PI3K/Akt pathway in inflammatory conditions. The investigated natural stilbenoids (except the glycosylated derivatives) were found to down-regulate Akt phosphorylation, which is a well-acknowledged marker for PI3K activity. It was also found that all of the studied natural stilbenoids had anti-inflammatory effects in vitro. The three most potent stilbenoids, piceatannol, pinosylvin, and pterostilbene, were selected for in vivo testing and were found to suppress inflammatory edema and to down-regulate the production of inflammatory mediators IL6 and MCP1 in carrageenan-induced paw inflammation in mice. When compared to the commercial PI3K inhibitor LY294002, the anti-inflammatory effects appeared to be quite similar. The results reveal hitherto unknown anti-inflammatory effects of natural stilbenoids and suggest that those effects may be mediated via inhibition of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Heikki Eräsalo
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences , University of Tampere and Tampere University Hospital , FI-33014 Tampere , Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences , University of Tampere and Tampere University Hospital , FI-33014 Tampere , Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences , University of Tampere and Tampere University Hospital , FI-33014 Tampere , Finland
| | - Ilari Mäki-Opas
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences , University of Tampere and Tampere University Hospital , FI-33014 Tampere , Finland
| | - Mirka Laavola
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences , University of Tampere and Tampere University Hospital , FI-33014 Tampere , Finland
| | - Raisa Haavikko
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy , University of Helsinki , FI-00014 Helsinki , Finland
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy , University of Helsinki , FI-00014 Helsinki , Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences , University of Tampere and Tampere University Hospital , FI-33014 Tampere , Finland
| |
Collapse
|
11
|
Choi JG, Kim SY, Kim JW, Oh MS. Optimized-SopungSunkiwon, a Herbal Formula, Attenuates A β Oligomer-Induced Neurotoxicity in Alzheimer's Disease Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:7601486. [PMID: 29238386 PMCID: PMC5697377 DOI: 10.1155/2017/7601486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/28/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD), the most common form of dementia, is an age-related neurodegenerative disease that is characterized by memory dysfunction, neuronal cell damage, and neuroinflammation. It is believed that AD-related pathology is mostly due to the overproduction of Aβ, especially the oligomeric form (AβO), in the brain. Evidence of the effects of multifunctional medicinal herbs in the treatment of AD has been steadily increasing. Optimized-SopungSunkiwon (OSS), a multiherbal formulation that is composed of six medicinal herbs derived from SopungSunkiwon, is a traditional medicine that is prescribed for neurodegenerative disorders in elderly patients. We previously reported that OSS showed an antiamnesic and memory enhancing effect in mice, but it is unknown whether OSS has a protective effect against AβO neurotoxicity. In this study, we investigated the effects of OSS in AD models induced by AβO in vitro and in vivo. We found that OSS protected neuronal cells and inhibited the generation of nitric oxide and reactive oxygen species against AβO toxicity in vitro. These results were confirmed by in vivo data that oral administration of OSS for 14 days attenuated memory impairments and neuronal cell death by modulating gliosis, glutathione depletion, and synaptic damage in the mouse hippocampus induced by AβO.
Collapse
Affiliation(s)
- Jin Gyu Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Jong Woo Kim
- Department of Korean Neuropsychiatry, College of Korean Medicine and Institute of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Zhang SJ, Luo D, Li L, Tan RR, Xu QQ, Qin J, Zhu L, Luo NC, Xu TT, Zhang R, Yang L, Wang Q. Ethyl Acetate Extract Components of Bushen-Yizhi Formula Provides Neuroprotection against Scopolamine-induced Cognitive Impairment. Sci Rep 2017; 7:9824. [PMID: 28852153 PMCID: PMC5575143 DOI: 10.1038/s41598-017-10437-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder and there is no effective cure for this devastating disease to date. Bushen Yizhi Formula (BSYZ-F), a Chinese herbal compound, has proved to be effective for AD. In this study, we further investigate the effective part of BSYZ-F, ethyl acetate extract components of BSYZ-F (BSYZ-E), protects scopolamine (SCOP)-induced cognitive impairment, which shows a similar effect to BSYZ-F. We also find that BSYZ-E could protect against SCOP-induced cholinergic system dysfunction. In neuron function level, BSYZ-E remarkably elevates protein levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). BSYZ-E also significantly mitigates SCOP-induced apoptosis, oxidative stress and nitrosative stress. Conclusively, BSYZ-E, the effective part of BSYZ-F, can provide neuroprotection against SCOP-induced cognitive impairment through a multifunctional strategy. These findings suggest that BSYZ-E might be developed as a therapeutic drug for AD by targeting multiple pathways of the pathogenesis.
Collapse
Affiliation(s)
- Shi-Jie Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Luo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui-Rong Tan
- International Center for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Qing-Qing Xu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Qin
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Na-Chuan Luo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting-Ting Xu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Yang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
13
|
Tao L, Cao J, Wei W, Xie H, Zhang M, Zhang C. Protective role of rhapontin in experimental pulmonary fibrosis in vitro and in vivo. Int Immunopharmacol 2017; 47:38-46. [PMID: 28364627 DOI: 10.1016/j.intimp.2017.03.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/10/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pulmonary fibrosis is a scaring process related to chronic lung injury of all causes. The treatment options for pulmonary fibrosis are very limited. Rhapontin has anti-inflammatory effect and anti-proliferative activity which is widely distributed in the medicinal plants of Rheum genus in China. However, the anti-fibrotic activities of rhapontin have not been previously investigated. METHODS The effect of rhapontin on TGF-β1-mediated extracellular matrix (ECM) deposition in primary lung fibroblast (PLF) cells, on TGF-β1 secretion in LPS-stimulated human THP-1 derived macrophages in vitro, and on bleomycin (BLM)-induced pulmonary fibrosis was investigated in vivo. Fibrotic mice were induced by intratracheal instillation of bleomycin, and then treated with rhapontin (25, 50, or 100mg/kg/day) or prednisone (6.5mg/kg/day, positive drug) for 2weeks. RESULTS In TGF-β1 stimulated PLFs, treatment with rhapontin resulted in a reduction of ECM with a decrease in Lox2 and p-Smad2/3. In LPS activated macrophages, treatment with rhapontin reduced TGF-β1 production. However, in vitro the attenuated ECM deposition and inflammatory response by rhapontin were closely associated with AMPK activation, and these suppression of rhapontin were significantly abolished by the AMPK inhibitor. Treatment with rhapontin for 2weeks resulted in an amelioration of the BLM-induced pulmonary fibrosis in rats with a lower Lox2, whereas a higher AMPK expression, with reductions of the pathological score, collagen deposition, TGF-β1, α-SMA, Lox2, and HIF-1α expressions in lung tissues at fibrotic stage at 100mg/kg. CONCLUSION In summary, rhapontin reversed ECM, as well as Lox2 proliferation in vitro and prevented pulmonary fibrosis in vivo by modulating AMPK activation and suppressing the TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Lijun Tao
- Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Juan Cao
- Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Wencheng Wei
- Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Haifeng Xie
- Chengdu biopurity phytochemicals Ltd., Chengdu 611131, People's Republic of China
| | - Mian Zhang
- Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Chaofeng Zhang
- Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.
| |
Collapse
|
14
|
Rhapontin ameliorates colonic epithelial dysfunction in experimental colitis through SIRT1 signaling. Int Immunopharmacol 2017; 42:185-194. [PMID: 27930969 DOI: 10.1016/j.intimp.2016.11.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
|
15
|
Kumar A, Kumar V, Rattan V, Jha V, Bhattacharyya S. Secretome Cues Modulate the Neurogenic Potential of Bone Marrow and Dental Stem Cells. Mol Neurobiol 2016; 54:4672-4682. [PMID: 27422132 DOI: 10.1007/s12035-016-0011-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022]
Abstract
Dental tissue is emerging as a promising source of stem cells especially in nerve regeneration mainly due to their neural origin and ease of harvest. We isolated dental stem cells from three sources, namely, dental pulp (DPSCs), dental follicle (DFSCs), and apical papilla (SCAP), and explored the efficacy of each towards neural differentiation in comparison to bone marrow-derived stem cells. The neural differentiation potential was assessed by expression of various neural markers and neurosphere assay. We observed that DPSCs were inherently predisposed towards neural lineage. To further delineate the paracrine cues responsible for the differences in neural differentiation potential, we harvested the conditioned secretome from each of the stem cell population and observed their effect on colony formation, neurite extension, and neural gene expression of IMR-32, a pre-neuroblastic cell line. We found that neural differentiation was significantly enhanced when IMR-32 cells were treated with secretome derived from DMSCs as compared to the same from BMSCs. Th1/Th2/Th17 cytokine array revealed DPSC secretome had higher expression of the cytokines like GCSF, IFNγ, and TGFβ that promote neural differentiation. Thus, we concluded that DPSCs may be the preferred source of cells for obtaining neural lineage among the four sources of stem cells. Our results also indicate that the DPSC-secreted factors may be responsible for their propensity towards neural differentiation. This study suggests that DPSCs and their secretomes can be a potentially lucrative source for cell-based and "cell-free" (secretome) therapy for neural disorders and injury.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Biophysics, PGIMER, Chandigarh, 160012, India
| | - Vinod Kumar
- Department of Nephrology, PGIMER, Chandigarh, India
| | - Vidya Rattan
- Unit of Oral and Maxillofacial surgery, Oral health science centre, PGIMER, Chandigarh, India
| | | | | |
Collapse
|
16
|
Moosavi B, Mousavi B, Macreadie IG. Yeast Model of Amyloid-β and Tau Aggregation in Alzheimer's Disease. J Alzheimers Dis 2016; 47:9-16. [PMID: 26402750 DOI: 10.3233/jad-150173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The amyloid-β peptide (Aβ) and the phosphorylated protein tau have been widely implicated in Alzheimer's disease and are the focus of most research. Both agents have been extensively studied in mammalian cell culture and in animal studies, but new research is focusing on yeast models. Yeast are eukaryotes, just like us, and are amenable to effects and expression of Aβ and tau and appear able to 'report' with considerable relevance on the effects of these biomolecules. The use of yeast enables powerful new approaches to understanding how to overcome the effects of Aβ and tau, and such advances could lead to new therapies to prevent the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Behrooz Moosavi
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| | - Bibimaryam Mousavi
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, P.R. China
| | - Ian G Macreadie
- School of Applied Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
17
|
Adewusi EA, Steenkamp V. Medicinal plants and their derivatives with amyloid beta inhibitory activity as potential targets for drug discovery. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(15)60810-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Abstract
Protein misfolding and aggregation are associated with more than twenty diseases, such as neurodegenerative diseases and metabolic diseases. The amyloid oligomers and fibrils may induce cell membrane disruption and lead to cell apoptosis. A great number of studies have focused on discovery of amyloid inhibitors which may prevent or treat amyloidosis diseases. Polyphenols have been extensively studied as a class of amyloid inhibitors, with several polyphenols under clinical trials as anti-neurodegenerative drugs. As oxidative intermediates of natural polyphenols, quinones widely exist in medicinal plants or food. In this study, we used insulin as an amyloid model to test the anti-amyloid effects of four simple quinones and four natural anthraquinone derivatives from rhubarb, a traditional herbal medicine used for treating Alzheimer's disease. Our results demonstrated that all eight quinones show inhibitory effects to different extent on insulin oligomerization, especially for 1,4-benzoquinone and 1,4-naphthoquinone. Significantly attenuated oligomerization, reduced amount of amyloid fibrils and reduced hemolysis levels were found after quinones treatments, indicating quinones may inhibit insulin from forming toxic oligomeric species. The results suggest a potential action of native anthraquinone derivatives in preventing protein misfolding diseases, the quinone skeleton may thus be further explored for designing effective anti-amyloidosis compounds.
Collapse
|
19
|
Liang X, Sun Y, Zeng W, Liu L, Ma X, Zhao Y, Fan J. Synthesis and biological evaluation of a folate-targeted rhaponticin conjugate. Bioorg Med Chem 2013; 21:178-185. [PMID: 23177726 DOI: 10.1016/j.bmc.2012.10.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 10/11/2012] [Accepted: 10/25/2012] [Indexed: 12/21/2022]
Abstract
To improve the therapeutic effect of rhaponticin (RHA), a folate receptor (FR) targeted RHA conjugate was synthesized by utilizing a hydrophilic peptide spacer linked to folic acid (FA) via a releasable disulfide linker. This water-soluble conjugate was found to retain high affinity for FR-positive cells, and it produced specific, dose-responsive activity in vitro. Treatment of FRHA with a reducing agent indicated that the amino-reactive derivative of RHA would be released spontaneously following disulfide bond reduction within the endosomes. FRHA also proved to be active predominantly specific against FR-positive syngeneic and xenograft models in vivo, and possible curative activity resulted with minimal to moderate toxicity. The FRHA conjugate greatly enhanced the therapeutic effects and reduced the toxicity of RHA. In conclusion, FRHA represents a folate-targeted chemotherapeutic that can produce potent activity against established sc tumors. Hence, this report has a great significance in pharmacology and clinical medicine as well as methodology.
Collapse
Affiliation(s)
- Xuhua Liang
- School of Chemical Engineering, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhao YY, Su Q, Cheng XL, Tan XJ, Bai X, Lin RC. Pharmacokinetics, bioavailability and metabolism of rhaponticin in rat plasma by UHPLC-Q-TOF/MS and UHPLC-DAD-MSn. Bioanalysis 2012; 4:713-723. [PMID: 22452262 DOI: 10.4155/bio.12.24] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Rhaponticin (Rheum L.) demonstrates a variety of pharmacological activities, including antitumor, antithrombotic and antioxidant effect. However, there is no information describing the pharmacokinetics, bioavailability and metabolism of rhaponticin after intravenous administration. RESULTS UHPLC-Q-TOF/MS and UHPLC-multistage tandem MS methods were developed for the pharmacokinetics, bioavailability and metabolism of rhaponticin in rats. The metabolite of rhaponticin, rhapontigenin, a potent inhibitor of cytochrome P450, was confirmed by UHPLC-multistage tandem MS. The plasma profile of rhaponticin and rhapontigenin was determined by UHPLC-Q-TOF/MS. The results showed that rhaponticin was rapidly distributed and eliminated from rat plasma. The absolute oral bioavailability of rhaponticin was calculated to be 0.03%. The plasma concentrations of rhapontigenin rapidly increased and gradually eliminated after intravenous administration. CONCLUSION The present pharmacokinetics, bioavailability and metabolism studies of rhaponticin will provide helpful information for development of suitable dosage forms and clinical references on rational administration.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Department of Traditional Chinese Medicine, The College of Life Sciences, Northwest University, Xi'an, Shaanxi, PR China.
| | | | | | | | | | | |
Collapse
|
21
|
Gami-Chunghyuldan ameliorates memory impairment and neurodegeneration induced by intrahippocampal Aβ 1-42 oligomer injection. Neurobiol Learn Mem 2011; 96:306-14. [PMID: 21689771 DOI: 10.1016/j.nlm.2011.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 04/21/2011] [Accepted: 06/06/2011] [Indexed: 12/25/2022]
Abstract
Soluble oligomeric forms of amyloid beta (AβO) are regarded as a main cause of synaptic and cognitive dysfunction in Alzheimer's disease (AD) and have been a primary target in the development of drug treatments for AD. The present study utilized a mouse model of AD induced by intrahippocampal injection of AβO (10 μM) to investigate the effects of Gami-Chunghyuldan (GCD), a standardized multi-herbal medicinal formula, on the presentation of memory deficits and neurohistological pathogenesis. GCD (10 and 50mg/kg/day, 5 days, p.o.) improved AβO-induced memory impairment as well as reduced neuronal cell death, astrogliosis, and microgliosis in the hippocampus. In addition, GCD prevented AβO-triggered synaptic disruption and cholinergic fiber loss. These results suggest that GCD may be useful in the prevention and treatment of AD.
Collapse
|
22
|
Kim HG, Ju MS, Kim DH, Hong J, Cho SH, Cho KH, Park W, Lee EH, Kim SY, Oh MS. Protective effects of Chunghyuldan against ROS-mediated neuronal cell death in models of Parkinson's disease. Basic Clin Pharmacol Toxicol 2011; 107:958-64. [PMID: 20629656 DOI: 10.1111/j.1742-7843.2010.00612.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous reports have suggested that the herbal medicine Chunghyuldan (CHD, Qingxue-dan in Chinese and Daio-Orengedokuto in Japanese) has wide-ranging biological effects, including anti-hyperlipidaemic, anti-ischaemic, anti-inflammatory and antioxidant activities. Reactive oxygen species (ROS)-mediated mitochondrial dysfunction is thought to be one of the major pathological mechanisms responsible for Parkinson's disease (PD) and may underlie the selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) that is a hallmark of this disease. In this study, we examined the neuroprotective effects of CHD in PD models produced by treatment with neurotoxins that act via ROS-mediated mitochondrial dysfunction. In an in vitro PD model using 6-hydroxydopamine, CHD applied at concentrations of 10 and 100 μg/ml exhibited significant protective effects in PC12 cells by inhibiting intracellular ROS generation. CHD applied at 10 and 100 μg/ml also prevented 6-hydroxydopamine-induced mitochondrial depolarization and elevation of caspase-3 activity. At the same doses, CHD showed regulatory effects on the haem oxygenase-1 and gp91 phagocytic oxidase which have critical roles in generating ROS. In addition, CHD protected dopaminergic neurons in a primary mesencephalic culture against MPP+ neurotoxicity. In an in vivo PD model produced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment (20 mg/kg, 4 times, i.p.), co-administration of CHD (50 mg/kg, 5 days, p.o.) ameliorated PD-like behavioural symptoms (bradykinesia) and reduced dopaminergic neuronal damage in the SNpc and striatum as measured by immunocytochemistry. These results demonstrate the neuroprotective effects of CHD in PD models that are mediated through inhibition of ROS generation and associated mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hyo Geun Kim
- College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhao Y, Wang L, Miao H, Ho CC, Li J, Cheng X, Zhang Y, Lin R, Sun W. LC Method for the Determination of Rhaponticin in Rat Plasma, Faeces and Urine for Application to Pharmacokinetic Studies. Chromatographia 2011; 73:599-603. [DOI: 10.1007/s10337-011-1914-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Xu L, Wang Q, Li DQ, Li M, Jing XJ, Zhang LT. Simultaneous Determination of Seven Bioactive Ingredients in a Chinese Herbal Preparation by HPLC. J LIQ CHROMATOGR R T 2009. [DOI: 10.1080/10826070802711246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lei Xu
- a Department of Pharmaceutical Analysis , School of Pharmaceutical Science, Hebei Medical University , Shijiazhuang, Hebei, P. R. China
| | - Qiao Wang
- a Department of Pharmaceutical Analysis , School of Pharmaceutical Science, Hebei Medical University , Shijiazhuang, Hebei, P. R. China
| | - De-Qiang Li
- a Department of Pharmaceutical Analysis , School of Pharmaceutical Science, Hebei Medical University , Shijiazhuang, Hebei, P. R. China
| | - Min Li
- a Department of Pharmaceutical Analysis , School of Pharmaceutical Science, Hebei Medical University , Shijiazhuang, Hebei, P. R. China
| | - Xiu-Juan Jing
- a Department of Pharmaceutical Analysis , School of Pharmaceutical Science, Hebei Medical University , Shijiazhuang, Hebei, P. R. China
| | - Lan-Tong Zhang
- a Department of Pharmaceutical Analysis , School of Pharmaceutical Science, Hebei Medical University , Shijiazhuang, Hebei, P. R. China
| |
Collapse
|