1
|
Otero-Coronel S, Preuss T, Medan V. Multisensory integration enhances audiovisual responses in the Mauthner cell. eLife 2024; 13:RP99424. [PMID: 39636208 PMCID: PMC11620741 DOI: 10.7554/elife.99424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Multisensory integration (MSI) combines information from multiple sensory modalities to create a coherent perception of the world. In contexts where sensory information is limited or equivocal, it also allows animals to integrate individually ambiguous stimuli into a clearer or more accurate percept and, thus, react with a more adaptive behavioral response. Although responses to multisensory stimuli have been described at the neuronal and behavioral levels, a causal or direct link between these two is still missing. In this study, we studied the integration of audiovisual inputs in the Mauthner cell, a command neuron necessary and sufficient to trigger a stereotypical escape response in fish. We performed intracellular recordings in adult goldfish while presenting a diverse range of stimuli to determine which stimulus properties affect their integration. Our results show that stimulus modality, intensity, temporal structure, and interstimulus delay affect input summation. Mechanistically, we found that the distinct decay dynamics of FFI triggered by auditory and visual stimuli can account for certain aspects of input integration. Altogether, this is a rare example of the characterization of MSI in a cell with clear behavioral relevance, providing both phenomenological and mechanistic insights into how MSI depends on stimulus properties.
Collapse
Affiliation(s)
- Santiago Otero-Coronel
- Instituto de Fisiología y Biología Molecular y Celular, Consejo Nacional de Investigaciones Científicas y TecnológicasBuenos AiresArgentina
| | - Thomas Preuss
- Department Psychology, Hunter College, City University of New YorkNew YorkUnited States
| | - Violeta Medan
- Instituto de Fisiología y Biología Molecular y Celular, Consejo Nacional de Investigaciones Científicas y TecnológicasBuenos AiresArgentina
- Department Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
2
|
Michel JC, Grivette MMB, Harshfield AT, Huynh L, Komons AP, Loomis B, McKinnis K, Miller BT, Nguyen EQ, Huang TW, Lauf S, Michel ES, Michel ME, Kissinger JS, Marsh AJ, Crow WE, Kaye LE, Lasseigne AM, Lukowicz-Bedford RM, Farnsworth DR, Martin EA, Miller AC. Electrical synapse structure requires distinct isoforms of a postsynaptic scaffold. PLoS Genet 2023; 19:e1011045. [PMID: 38011265 PMCID: PMC10703405 DOI: 10.1371/journal.pgen.1011045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/07/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
Electrical synapses are neuronal gap junction (GJ) channels associated with a macromolecular complex called the electrical synapse density (ESD), which regulates development and dynamically modifies electrical transmission. However, the proteomic makeup and molecular mechanisms utilized by the ESD that direct electrical synapse formation are not well understood. Using the Mauthner cell of zebrafish as a model, we previously found that the intracellular scaffolding protein ZO1b is a member of the ESD, localizing postsynaptically, where it is required for GJ channel localization, electrical communication, neural network function, and behavior. Here, we show that the complexity of the ESD is further diversified by the genomic structure of the ZO1b gene locus. The ZO1b gene is alternatively initiated at three transcriptional start sites resulting in isoforms with unique N-termini that we call ZO1b-Alpha, -Beta, and -Gamma. We demonstrate that ZO1b-Beta and ZO1b-Gamma are broadly expressed throughout the nervous system and localize to electrical synapses. By contrast, ZO1b-Alpha is expressed mainly non-neuronally and is not found at synapses. We generate mutants in all individual isoforms, as well as double mutant combinations in cis on individual chromosomes, and find that ZO1b-Beta is necessary and sufficient for robust GJ channel localization. ZO1b-Gamma, despite its localization to the synapse, plays an auxiliary role in channel localization. This study expands the notion of molecular complexity at the ESD, revealing that an individual genomic locus can contribute distinct isoforms to the macromolecular complex at electrical synapses. Further, independent scaffold isoforms have differential contributions to developmental assembly of the interneuronal GJ channels. We propose that ESD molecular complexity arises both from the diversity of unique genes and from distinct isoforms encoded by single genes. Overall, ESD proteomic diversity is expected to have critical impacts on the development, structure, function, and plasticity of electrical transmission.
Collapse
Affiliation(s)
- Jennifer Carlisle Michel
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Margaret M. B. Grivette
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Amber T. Harshfield
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Lisa Huynh
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Ava P. Komons
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Bradley Loomis
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Kaitlan McKinnis
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Brennen T. Miller
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Ethan Q. Nguyen
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Tiffany W. Huang
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Sophia Lauf
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Elias S. Michel
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Mia E. Michel
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Jane S. Kissinger
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Audrey J. Marsh
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - William E. Crow
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Lila E. Kaye
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Abagael M. Lasseigne
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Rachel M. Lukowicz-Bedford
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Dylan R. Farnsworth
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - E. Anne Martin
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Adam C. Miller
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
3
|
Menelaou E, Kishore S, McLean DL. Mixed synapses reconcile violations of the size principle in zebrafish spinal cord. eLife 2022; 11:64063. [PMID: 36166290 PMCID: PMC9514842 DOI: 10.7554/elife.64063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Mixed electrical-chemical synapses potentially complicate electrophysiological interpretations of neuronal excitability and connectivity. Here, we disentangle the impact of mixed synapses within the spinal locomotor circuitry of larval zebrafish. We demonstrate that soma size is not linked to input resistance for interneurons, contrary to the biophysical predictions of the ‘size principle’ for motor neurons. Next, we show that time constants are faster, excitatory currents stronger, and mixed potentials larger in lower resistance neurons, linking mixed synapse density to resting excitability. Using a computational model, we verify the impact of weighted electrical synapses on membrane properties, synaptic integration and the low-pass filtering and distribution of coupling potentials. We conclude differences in mixed synapse density can contribute to excitability underestimations and connectivity overestimations. The contribution of mixed synaptic inputs to resting excitability helps explain ‘violations’ of the size principle, where neuron size, resistance and recruitment order are unrelated.
Collapse
Affiliation(s)
- Evdokia Menelaou
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Sandeep Kishore
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, United States
| |
Collapse
|
4
|
Vaughn MJ, Haas JS. On the Diverse Functions of Electrical Synapses. Front Cell Neurosci 2022; 16:910015. [PMID: 35755782 PMCID: PMC9219736 DOI: 10.3389/fncel.2022.910015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Electrical synapses are the neurophysiological product of gap junctional pores between neurons that allow bidirectional flow of current between neurons. They are expressed throughout the mammalian nervous system, including cortex, hippocampus, thalamus, retina, cerebellum, and inferior olive. Classically, the function of electrical synapses has been associated with synchrony, logically following that continuous conductance provided by gap junctions facilitates the reduction of voltage differences between coupled neurons. Indeed, electrical synapses promote synchrony at many anatomical and frequency ranges across the brain. However, a growing body of literature shows there is greater complexity to the computational function of electrical synapses. The paired membranes that embed electrical synapses act as low-pass filters, and as such, electrical synapses can preferentially transfer spike after hyperpolarizations, effectively providing spike-dependent inhibition. Other functions include driving asynchronous firing, improving signal to noise ratio, aiding in discrimination of dissimilar inputs, or dampening signals by shunting current. The diverse ways by which electrical synapses contribute to neuronal integration merits furthers study. Here we review how functions of electrical synapses vary across circuits and brain regions and depend critically on the context of the neurons and brain circuits involved. Computational modeling of electrical synapses embedded in multi-cellular models and experiments utilizing optical control and measurement of cellular activity will be essential in determining the specific roles performed by electrical synapses in varying contexts.
Collapse
Affiliation(s)
- Mitchell J Vaughn
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Julie S Haas
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
5
|
Echeverry FA, Ijaz S, Pereda AE. Recording Synaptic Transmission from Auditory Mixed Synapses on the Mauthner Cells of Developing Zebrafish. eNeuro 2022; 9:ENEURO.0021-22.2022. [PMID: 35641226 PMCID: PMC9215698 DOI: 10.1523/eneuro.0021-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/14/2022] [Accepted: 05/14/2022] [Indexed: 11/21/2022] Open
Abstract
The Mauthner cells are a pair of large reticulospinal neurons that organize sensory-evoked tail flip responses in fishes. An identifiable group of auditory "mixed" (electrical and chemical) synaptic contacts known as "Large Myelinated Club endings" on these cells have provided a valuable model for the study of synaptic transmission in the vertebrate brain. While most of studies were performed in adult fish, we describe here methods that make possible recording synaptic transmission from these contacts in developing zebrafish, a genetically tractable vertebrate species which is uniquely amenable for combining synaptic physiology with live imaging and behavioral analysis.
Collapse
Affiliation(s)
- Fabio A Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Sundas Ijaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
6
|
Lasseigne AM, Echeverry FA, Ijaz S, Michel JC, Martin EA, Marsh AJ, Trujillo E, Marsden KC, Pereda AE, Miller AC. Electrical synaptic transmission requires a postsynaptic scaffolding protein. eLife 2021; 10:e66898. [PMID: 33908867 PMCID: PMC8081524 DOI: 10.7554/elife.66898] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Electrical synaptic transmission relies on neuronal gap junctions containing channels constructed by Connexins. While at chemical synapses neurotransmitter-gated ion channels are critically supported by scaffolding proteins, it is unknown if channels at electrical synapses require similar scaffold support. Here, we investigated the functional relationship between neuronal Connexins and Zonula Occludens 1 (ZO1), an intracellular scaffolding protein localized to electrical synapses. Using model electrical synapses in zebrafish Mauthner cells, we demonstrated that ZO1 is required for robust synaptic Connexin localization, but Connexins are dispensable for ZO1 localization. Disrupting this hierarchical ZO1/Connexin relationship abolishes electrical transmission and disrupts Mauthner cell-initiated escape responses. We found that ZO1 is asymmetrically localized exclusively postsynaptically at neuronal contacts where it functions to assemble intercellular channels. Thus, forming functional neuronal gap junctions requires a postsynaptic scaffolding protein. The critical function of a scaffolding molecule reveals an unanticipated complexity of molecular and functional organization at electrical synapses.
Collapse
Affiliation(s)
| | - Fabio A Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Sundas Ijaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | | | - E Anne Martin
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Audrey J Marsh
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Elisa Trujillo
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Kurt C Marsden
- Department of Biological Sciences, NC State UniversityRaleighUnited States
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Adam C Miller
- Institute of Neuroscience, University of OregonEugeneUnited States
| |
Collapse
|
7
|
Bátora D, Zsigmond Á, Lőrincz IZ, Szegvári G, Varga M, Málnási-Csizmadia A. Subcellular Dissection of a Simple Neural Circuit: Functional Domains of the Mauthner-Cell During Habituation. Front Neural Circuits 2021; 15:648487. [PMID: 33828462 PMCID: PMC8019725 DOI: 10.3389/fncir.2021.648487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Sensorimotor integration is a pivotal feature of the nervous system for ensuring a coordinated motor response to external stimuli. In essence, such neural circuits can optimize behavioral performance based on the saliency of environmental cues. In zebrafish, habituation of the acoustic startle response (ASR) is a simple behavior integrated into the startle command neurons, called the Mauthner cells. Whereas the essential neuronal components that regulate the startle response have been identified, the principles of how this regulation is integrated at the subcellular regions of the Mauthner cell, which in turn modulate the performance of the behavior, is still not well understood. Here, we reveal mechanistically distinct dynamics of excitatory inputs converging onto the lateral dendrite (LD) and axon initial segment (AIS) of the Mauthner cell by in vivo imaging glutamate release using iGluSnFR, an ultrafast glutamate sensing fluorescent reporter. We find that modulation of glutamate release is dependent on NMDA receptor activity exclusively at the AIS, which is responsible for setting the sensitivity of the startle reflex and inducing a depression of synaptic activity during habituation. In contrast, glutamate-release at the LD is not regulated by NMDA receptors and serves as a baseline component of Mauthner cell activation. Finally, using in vivo calcium imaging at the feed-forward interneuron population component of the startle circuit, we reveal that these cells indeed play pivotal roles in both setting the startle threshold and habituation by modulating the AIS of the Mauthner cell. These results indicate that a command neuron may have several functionally distinct regions to regulate complex aspects of behavior.
Collapse
Affiliation(s)
- Dániel Bátora
- MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary
| | | | | | - Gábor Szegvári
- MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary
| | | | - András Málnási-Csizmadia
- MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary.,Motorpharma Limited, Budapest, Hungary
| |
Collapse
|
8
|
Yang JQ, Wang R, Ren Y, Mao JY, Wang ZP, Zhou Y, Han ST. Neuromorphic Engineering: From Biological to Spike-Based Hardware Nervous Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003610. [PMID: 33165986 DOI: 10.1002/adma.202003610] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The human brain is a sophisticated, high-performance biocomputer that processes multiple complex tasks in parallel with high efficiency and remarkably low power consumption. Scientists have long been pursuing an artificial intelligence (AI) that can rival the human brain. Spiking neural networks based on neuromorphic computing platforms simulate the architecture and information processing of the intelligent brain, providing new insights for building AIs. The rapid development of materials engineering, device physics, chip integration, and neuroscience has led to exciting progress in neuromorphic computing with the goal of overcoming the von Neumann bottleneck. Herein, fundamental knowledge related to the structures and working principles of neurons and synapses of the biological nervous system is reviewed. An overview is then provided on the development of neuromorphic hardware systems, from artificial synapses and neurons to spike-based neuromorphic computing platforms. It is hoped that this review will shed new light on the evolution of brain-like computing.
Collapse
Affiliation(s)
- Jia-Qin Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ruopeng Wang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yi Ren
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jing-Yu Mao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhan-Peng Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
9
|
Cachope R, Pereda AE. Regulatory Roles of Metabotropic Glutamate Receptors on Synaptic Communication Mediated by Gap Junctions. Neuroscience 2020; 456:85-94. [PMID: 32619474 DOI: 10.1016/j.neuroscience.2020.06.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022]
Abstract
Variations of synaptic strength are thought to underlie forms of learning and can functionally reshape neural circuits. Metabotropic glutamate receptors play key roles in regulating the strength of chemical synapses. However, information within neural circuits is also conveyed via a second modality of transmission: gap junction-mediated synapses. We review here evidence indicating that metabotropic glutamate receptors also play important roles in the regulation of synaptic communication mediated by neuronal gap junctions, also known as 'electrical synapses'. Activity-driven interactions between metabotropic glutamate receptors and neuronal gap junctions can lead to long-term changes in the strength of electrical synapses. Further, the regulatory action of metabotropic glutamate receptors on neuronal gap junctions is not restricted to adulthood but is also of critical relevance during brain development and contributes to the pathological mechanisms that follow brain injury.
Collapse
Affiliation(s)
- Roger Cachope
- CHDI Foundation, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
10
|
Jordan J, Helias M, Diesmann M, Kunkel S. Efficient Communication in Distributed Simulations of Spiking Neuronal Networks With Gap Junctions. Front Neuroinform 2020; 14:12. [PMID: 32431602 PMCID: PMC7214808 DOI: 10.3389/fninf.2020.00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 12/01/2022] Open
Abstract
Investigating the dynamics and function of large-scale spiking neuronal networks with realistic numbers of synapses is made possible today by state-of-the-art simulation code that scales to the largest contemporary supercomputers. However, simulations that involve electrical interactions, also called gap junctions, besides chemical synapses scale only poorly due to a communication scheme that collects global data on each compute node. In comparison to chemical synapses, gap junctions are far less abundant. To improve scalability we exploit this sparsity by integrating an existing framework for continuous interactions with a recently proposed directed communication scheme for spikes. Using a reference implementation in the NEST simulator we demonstrate excellent scalability of the integrated framework, accelerating large-scale simulations with gap junctions by more than an order of magnitude. This allows, for the first time, the efficient exploration of the interactions of chemical and electrical coupling in large-scale neuronal networks models with natural synapse density distributed across thousands of compute nodes.
Collapse
Affiliation(s)
- Jakob Jordan
- Department of Physiology, University of Bern, Bern, Switzerland.,Institute of Neuroscience and Medicine (INM-6), Jülich Research Centre, Jülich, Germany.,Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany.,JARA Institute Brain Structure Function Relationship (INM-10), Jülich Research Centre, Jülich, Germany
| | - Moritz Helias
- Institute of Neuroscience and Medicine (INM-6), Jülich Research Centre, Jülich, Germany.,Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany.,JARA Institute Brain Structure Function Relationship (INM-10), Jülich Research Centre, Jülich, Germany.,Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
| | - Markus Diesmann
- Institute of Neuroscience and Medicine (INM-6), Jülich Research Centre, Jülich, Germany.,Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany.,JARA Institute Brain Structure Function Relationship (INM-10), Jülich Research Centre, Jülich, Germany.,Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Susanne Kunkel
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
11
|
Abstract
Why did I choose this particular topic for my lecture rather than the history of neuroscience or the history of the neuron? Simply because I believe that every disciple has the obligation to pay homage to their mentors once in their lifetime. My formation as a neuroscientist involved three such mentors spanned across three countries. The first was Spain, where I was born, completed my medical studies, and had my first glimpse of neuroscience at the Cajal Institute with Fernando de Castro. It was him who, in 1961, advised me to spend some time abroad, and to that purpose he obtained me a scholarship from the French government, that allowed me to settle in Paris. Once in France I had the good fortune to meet Prof. René Couteaux, another generous mentor, who took care of my stay in the country. Two years later, he made me a proposition to which I could only answer in the affirmative by offering me a research position in France. I got married (the best thing that happened in my life), and spent the next 57 years working on the cerebellum. The third person I want to honor and remember in this presentation is Sanford Louis Palay who was my postdoc professor during the 2 years I worked at Harvard Medical School in Boston. And as it turns out, all three of my mentors have made positive contributions to the history of the synapse. So, without further delay, let us dive in. Anat Rec, 303:1252-1279, 2020. © 2020 American Association for Anatomy.
Collapse
Affiliation(s)
- Constantino Sotelo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Miguel Hernández (UMH), San Juan de Alicante, Spain
| |
Collapse
|
12
|
Lybrand ZR, Martinez-Acosta VG, Zoran MJ. Coupled sensory interneurons mediate escape neural circuit processing in an aquatic annelid worm, Lumbriculus variegatus. J Comp Neurol 2020; 528:468-480. [PMID: 31502251 DOI: 10.1002/cne.24769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/25/2019] [Accepted: 08/30/2019] [Indexed: 11/08/2022]
Abstract
The interneurons associated with rapid escape circuits are adapted for fast pathway activation and rapid conduction. An essential aspect of fast activation is the processing of sensory information with limited delays. Although aquatic annelid worms have some of the fastest escape responses in nature, the sensory networks that mediate their escape behavior are not well defined. Here, we demonstrate that the escape circuit of the mud worm, Lumbriculus variegatus, is a segmentally arranged network of sensory interneurons electrically coupled to the central medial giant fiber (MGF), the command-like interneuron for head withdrawal. Electrical stimulation of the body wall evoked fast, short-duration spikelets in the MGF, which we suggest are the product of intermediate giant fiber activation coupled to MGF collateral dendrites. Since these contact sites have immunoreactivity with a glutamate receptor antibody, and the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dion abolishes evoked MGF responses, we conclude that the afferent pathway for MGF-mediated escape is glutamatergic. This electrically coupled sensory network may facilitate rapid escape activation by enhancing the amplitude of giant axon depolarization.
Collapse
Affiliation(s)
- Zane R Lybrand
- Department of Biology, University of Texas, San Antonio, Texas
| | | | - Mark J Zoran
- Department of Biology, Texas A&M University, College Station, Texas
| |
Collapse
|
13
|
Alcamí P, Pereda AE. Beyond plasticity: the dynamic impact of electrical synapses on neural circuits. Nat Rev Neurosci 2019; 20:253-271. [PMID: 30824857 DOI: 10.1038/s41583-019-0133-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electrical synapses are found in vertebrate and invertebrate nervous systems. The cellular basis of these synapses is the gap junction, a group of intercellular channels that mediate direct communication between adjacent neurons. Similar to chemical synapses, electrical connections are modifiable and their variations in strength provide a mechanism for reconfiguring neural circuits. In addition, electrical synapses dynamically regulate neural circuits through properties without equivalence in chemical transmission. Because of their continuous nature and bidirectionality, electrical synapses allow electrical currents underlying changes in membrane potential to leak to 'coupled' partners, dampening neuronal excitability and altering their integrative properties. Remarkably, this effect can be transiently alleviated when comparable changes in membrane potential simultaneously occur in each of the coupled neurons, a phenomenon that is dynamically dictated by the timing of arriving signals such as synaptic potentials. By way of this mechanism, electrical synapses influence synaptic integration and action potential generation, imparting an additional layer of dynamic complexity to neural circuits.
Collapse
Affiliation(s)
- Pepe Alcamí
- Max Planck Institute for Ornithology, Seewiesen, Germany
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universitaet Munich, Martinsried, Germany
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Alberto E Pereda
- Marine Biological Laboratory, Woods Hole, MA, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
14
|
Nagy JI, Pereda AE, Rash JE. On the occurrence and enigmatic functions of mixed (chemical plus electrical) synapses in the mammalian CNS. Neurosci Lett 2019; 695:53-64. [PMID: 28911821 PMCID: PMC5845811 DOI: 10.1016/j.neulet.2017.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/28/2017] [Accepted: 09/10/2017] [Indexed: 12/31/2022]
Abstract
Electrical synapses with diverse configurations and functions occur at a variety of interneuronal appositions, thereby significantly expanding the physiological complexity of neuronal circuitry over that provided solely by chemical synapses. Gap junctions between apposed dendritic and somatic plasma membranes form "purely electrical" synapses that allow for electrical communication between coupled neurons. In addition, gap junctions at axon terminals synapsing on dendrites and somata allow for "mixed" (dual chemical+electrical) synaptic transmission. "Dual transmission" was first documented in the autonomic nervous system of birds, followed by its detection in the central nervous systems of fish, amphibia, and reptiles. Subsequently, mixed synapses have been detected in several locations in the mammalian CNS, where their properties and functional roles remain undetermined. Here, we review available evidence for the presence, complex structural composition, and emerging functional properties of mixed synapses in the mammalian CNS.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology and Pathophysiology, Faculty of Medicine, 745 Bannatyne Ave, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada.
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - John E Rash
- Department of Biomedical Sciences, and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
15
|
Nagy JI, Pereda AE, Rash JE. Electrical synapses in mammalian CNS: Past eras, present focus and future directions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:102-123. [PMID: 28577972 PMCID: PMC5705454 DOI: 10.1016/j.bbamem.2017.05.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 12/19/2022]
Abstract
Gap junctions provide the basis for electrical synapses between neurons. Early studies in well-defined circuits in lower vertebrates laid the foundation for understanding various properties conferred by electrical synaptic transmission. Knowledge surrounding electrical synapses in mammalian systems unfolded first with evidence indicating the presence of gap junctions between neurons in various brain regions, but with little appreciation of their functional roles. Beginning at about the turn of this century, new approaches were applied to scrutinize electrical synapses, revealing the prevalence of neuronal gap junctions, the connexin protein composition of many of those junctions, and the myriad diverse neural systems in which they occur in the mammalian CNS. Subsequent progress indicated that electrical synapses constitute key elements in synaptic circuitry, govern the collective activity of ensembles of electrically coupled neurons, and in part orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie fundamental integrative processes. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - John E Rash
- Department of Biomedical Sciences, and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
16
|
Medan V, Mäki-Marttunen T, Sztarker J, Preuss T. Differential processing in modality-specific Mauthner cell dendrites. J Physiol 2017; 596:667-689. [PMID: 29148564 DOI: 10.1113/jp274861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/11/2017] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS The present study examines dendritic integrative processes that occur in many central neurons but have been challenging to study in vivo in the vertebrate brain. The Mauthner cell of goldfish receives auditory and visual information via two separate dendrites, providing a privileged scenario for in vivo examination of dendritic integration. The results show differential attenuation properties in the Mauthner cell dendrites arising at least partly from differences in cable properties and the nonlinear behaviour of the respective dendritic membranes. In addition to distinct modality-dependent membrane specialization in neighbouring dendrites of the Mauthner cell, we report cross-modal dendritic interactions via backpropagating postsynaptic potentials. Broadly, the results of the present study provide an exceptional example for the processing power of single neurons. ABSTRACT Animals process multimodal information for adaptive behavioural decisions. In fish, evasion of a diving bird that breaks the water surface depends on integrating visual and auditory stimuli with very different characteristics. How do neurons process such differential sensory inputs at the dendritic level? For that, we studied the Mauthner cells (M-cells) in the goldfish startle circuit, which receive visual and auditory inputs via two separate dendrites, both accessible for in vivo recordings. We investigated whether electrophysiological membrane properties and dendrite morphology, studied in vivo, play a role in selective sensory processing in the M-cell. The results obtained show that anatomical and electrophysiological differences between the dendrites combine to produce stronger attenuation of visually evoked postsynaptic potentials (PSPs) than to auditory evoked PSPs. Interestingly, our recordings showed also cross-modal dendritic interaction because auditory evoked PSPs invade the ventral dendrite (VD), as well as the opposite where visual PSPs invade the lateral dendrite (LD). However, these interactions were asymmetrical, with auditory PSPs being more prominent in the VD than visual PSPs in the LD. Modelling experiments imply that this asymmetry is caused by active conductances expressed in the proximal segments of the VD. The results obtained in the present study suggest modality-dependent membrane specialization in M-cell dendrites suited for processing stimuli of different time domains and, more broadly, provide a compelling example of information processing in single neurons.
Collapse
Affiliation(s)
- Violeta Medan
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA.,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Tuomo Mäki-Marttunen
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland.,Institute of Clinical Medicine, University of Oslo, OUS, Nydalen, Oslo, Norway.,Simula Research Laboratory, Lysaker, Norway
| | - Julieta Sztarker
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Thomas Preuss
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA
| |
Collapse
|
17
|
Pereda AE, Macagno E. Electrical transmission: Two structures, same functions? Dev Neurobiol 2017; 77:517-521. [PMID: 28188695 DOI: 10.1002/dneu.22488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 11/11/2022]
Abstract
Electrical synapses are finding increasing representation and importance in our understanding of signaling in the nervous system. In contrast to chemical synapses, at which molecules are evolutionary conserved, vertebrate and invertebrate electrical synapses represent molecularly different structures that share a common communicating strategy that allows them to serve very similar functions. A better understanding of differences and commonalities regarding the structure, function and regulation of vertebrate and invertebrate electrical synapses will lead to a better understanding of the properties and functional diversity of this modality of synaptic communication. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 517-521, 2017.
Collapse
Affiliation(s)
- Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Eduardo Macagno
- Division of Biological Sciences, University of California San Diego, La Jolla, California
| |
Collapse
|
18
|
Otopalik AG, Lane B, Schulz DJ, Marder E. Innexin expression in electrically coupled motor circuits. Neurosci Lett 2017; 695:19-24. [PMID: 28711343 PMCID: PMC5767152 DOI: 10.1016/j.neulet.2017.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/22/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022]
Abstract
The many roles of innexins, the molecules that form gap junctions in invertebrates, have been explored in numerous species. Here, we present a summary of innexin expression and function in two small, central pattern generating circuits found in crustaceans: the stomatogastric ganglion and the cardiac ganglion. The two ganglia express multiple innexin genes, exhibit varying combinations of symmetrical and rectifying gap junctions, as well as gap junctions within and across different cell types. Past studies have revealed correlations in ion channel and innexin expression in coupled neurons, as well as intriguing functional relationships between ion channel conductances and electrical coupling. Together, these studies suggest a putative role for innexins in correlating activity between coupled neurons at the levels of gene expression and physiological activity during development and in the adult animal.
Collapse
Affiliation(s)
- Adriane G Otopalik
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA.
| | - Brian Lane
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - David J Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
19
|
Miller AC, Whitebirch AC, Shah AN, Marsden KC, Granato M, O'Brien J, Moens CB. A genetic basis for molecular asymmetry at vertebrate electrical synapses. eLife 2017; 6. [PMID: 28530549 PMCID: PMC5462537 DOI: 10.7554/elife.25364] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/20/2017] [Indexed: 01/18/2023] Open
Abstract
Neural network function is based upon the patterns and types of connections made between neurons. Neuronal synapses are adhesions specialized for communication and they come in two types, chemical and electrical. Communication at chemical synapses occurs via neurotransmitter release whereas electrical synapses utilize gap junctions for direct ionic and metabolic coupling. Electrical synapses are often viewed as symmetrical structures, with the same components making both sides of the gap junction. By contrast, we show that a broad set of electrical synapses in zebrafish, Danio rerio, require two gap-junction-forming Connexins for formation and function. We find that one Connexin functions presynaptically while the other functions postsynaptically in forming the channels. We also show that these synapses are required for the speed and coordination of escape responses. Our data identify a genetic basis for molecular asymmetry at vertebrate electrical synapses and show they are required for appropriate behavioral performance. DOI:http://dx.doi.org/10.7554/eLife.25364.001
Collapse
Affiliation(s)
- Adam C Miller
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Alex C Whitebirch
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Arish N Shah
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Kurt C Marsden
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - John O'Brien
- Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, United States
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
20
|
Liu P, Chen B, Mailler R, Wang ZW. Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses. Nat Commun 2017; 8:14818. [PMID: 28317880 PMCID: PMC5364397 DOI: 10.1038/ncomms14818] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/06/2017] [Indexed: 11/09/2022] Open
Abstract
Neurons communicate through chemical synapses and electrical synapses (gap junctions). Although these two types of synapses often coexist between neurons, little is known about whether they interact, and whether any interactions between them are important to controlling synaptic strength and circuit functions. By studying chemical and electrical synapses between premotor interneurons (AVA) and downstream motor neurons (A-MNs) in the Caenorhabditis elegans escape circuit, we found that disrupting either the chemical or electrical synapses causes defective escape response. Gap junctions between AVA and A-MNs only allow antidromic current, but, curiously, disrupting them inhibits chemical transmission. In contrast, disrupting chemical synapses has no effect on the electrical coupling. These results demonstrate that gap junctions may serve as an amplifier of chemical transmission between neurons with both electrical and chemical synapses. The use of antidromic-rectifying gap junctions to amplify chemical transmission is potentially a conserved mechanism in circuit functions.
Collapse
Affiliation(s)
- Ping Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Bojun Chen
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Roger Mailler
- Department of Computer Science, University of Tulsa, Tulsa, Oklahoma 74104, USA
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| |
Collapse
|
21
|
Connors BW. Synchrony and so much more: Diverse roles for electrical synapses in neural circuits. Dev Neurobiol 2017; 77:610-624. [PMID: 28245529 DOI: 10.1002/dneu.22493] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/05/2017] [Accepted: 02/14/2017] [Indexed: 11/09/2022]
Abstract
Electrical synapses are neuronal gap junctions that are ubiquitous across brain regions and species. The biophysical properties of most electrical synapses are relatively simple-transcellular channels allow nearly ohmic, bidirectional flow of ionic current. Yet these connections can play remarkably diverse roles in different neural circuit contexts. Recent findings illustrate how electrical synapses may excite or inhibit, synchronize or desynchronize, augment or diminish rhythms, phase-shift, detect coincidences, enhance signals relative to noise, adapt, and interact with nonlinear membrane and transmitter-release mechanisms. Most of these functions are likely to be widespread in central nervous systems. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 610-624, 2017.
Collapse
Affiliation(s)
- Barry W Connors
- Department of Neuroscience, Brown University, Providence, Rhode Island
| |
Collapse
|
22
|
Siu RCF, Smirnova E, Brown CA, Zoidl C, Spray DC, Donaldson LW, Zoidl G. Structural and Functional Consequences of Connexin 36 (Cx36) Interaction with Calmodulin. Front Mol Neurosci 2016; 9:120. [PMID: 27917108 PMCID: PMC5114276 DOI: 10.3389/fnmol.2016.00120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/26/2016] [Indexed: 11/26/2022] Open
Abstract
Functional plasticity of neuronal gap junctions involves the interaction of the neuronal connexin36 with calcium/calmodulin-dependent kinase II (CaMKII). The important relationship between Cx36 and CaMKII must also be considered in the context of another protein partner, Ca2+ loaded calmodulin, binding an overlapping site in the carboxy-terminus of Cx36. We demonstrate that CaM and CaMKII binding to Cx36 is calcium-dependent, with Cx36 able to engage with CaM outside of the gap junction plaque. Furthermore, Ca2+ loaded calmodulin activates Cx36 channels, which is different to other connexins. The NMR solution structure demonstrates that CaM binds Cx36 in its characteristic compact state with major hydrophobic contributions arising from W277 at anchor position 1 and V284 at position 8 of Cx36. Our results establish Cx36 as a hub binding Ca2+ loaded CaM and they identify this interaction as a critical step with implications for functions preceding the initiation of CaMKII mediated plasticity at electrical synapses.
Collapse
Affiliation(s)
| | | | | | - Christiane Zoidl
- Biology Program, York University, TorontoON, Canada
- Psychology Program, York University, TorontoON, Canada
| | - David C. Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New YorkNY, USA
| | | | - Georg Zoidl
- Biology Program, York University, TorontoON, Canada
- Psychology Program, York University, TorontoON, Canada
| |
Collapse
|
23
|
Abstract
Electrical synapses are an omnipresent feature of nervous systems, from the simple nerve nets of cnidarians to complex brains of mammals. Formed by gap junction channels between neurons, electrical synapses allow direct transmission of voltage signals between coupled cells. The relative simplicity of this arrangement belies the sophistication of these synapses. Coupling via electrical synapses can be regulated by a variety of mechanisms on times scales ranging from milliseconds to days, and active properties of the coupled neurons can impart emergent properties such as signal amplification, phase shifts and frequency-selective transmission. This article reviews the biophysical characteristics of electrical synapses and some of the core mechanisms that control their plasticity in the vertebrate central nervous system.
Collapse
Affiliation(s)
- Sebastian Curti
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - John O'Brien
- Department of Ophthalmology & Visual Science, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
24
|
Pharmacological modulation of HDAC1 and HDAC6 in vivo in a zebrafish model: Therapeutic implications for Parkinson’s disease. Pharmacol Res 2016; 103:328-39. [DOI: 10.1016/j.phrs.2015.11.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/27/2015] [Accepted: 11/29/2015] [Indexed: 11/22/2022]
|
25
|
Rubio ME, Nagy JI. Connexin36 expression in major centers of the auditory system in the CNS of mouse and rat: Evidence for neurons forming purely electrical synapses and morphologically mixed synapses. Neuroscience 2015; 303:604-29. [PMID: 26188286 PMCID: PMC4576740 DOI: 10.1016/j.neuroscience.2015.07.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
Abstract
Electrical synapses formed by gap junctions composed of connexin36 (Cx36) are widely distributed in the mammalian central nervous system (CNS). Here, we used immunofluorescence methods to document the expression of Cx36 in the cochlear nucleus and in various structures of the auditory pathway of rat and mouse. Labeling of Cx36 visualized exclusively as Cx36-puncta was densely distributed primarily on the somata and initial dendrites of neuronal populations in the ventral cochlear nucleus, and was abundant in superficial layers of the dorsal cochlear nucleus. Other auditory centers displaying Cx36-puncta included the medial nucleus of the trapezoid body (MNTB), regions surrounding the lateral superior olivary nucleus, the dorsal nucleus of the medial lemniscus, the nucleus sagulum, all subnuclei of the inferior colliculus, and the auditory cerebral cortex. In EGFP-Cx36 transgenic mice, EGFP reporter was detected in neurons located in each of auditory centers that harbored Cx36-puncta. In the ventral cochlear nuclei and the MNTB, many neuronal somata were heavily innervated by nerve terminals containing vesicular glutamate transporter-1 (vglut1) and Cx36 was frequently localized at these terminals. Cochlear ablation caused a near total depletion of vglut1-positive terminals in the ventral cochlear nuclei, with a commensurate loss of labeling for Cx36 around most neuronal somata, but preserved Cx36-puncta at somatic neuronal appositions. The results suggest that electrical synapses formed by Cx36-containing gap junctions occur in most of the widely distributed centers of the auditory system. Further, it appears that morphologically mixed chemical/electrical synapses formed by nerve terminals are abundant in the ventral cochlear nucleus, including those at endbulbs of Held formed by cochlear primary afferent fibers, and those at calyx of Held synapses on MNTB neurons.
Collapse
Affiliation(s)
- M E Rubio
- Departments of Otolaryngology and Neurobiology, University of Pittsburgh Medical School, Pittsburgh, USA
| | - J I Nagy
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
26
|
Cachope R, Pereda AE. Opioids potentiate electrical transmission at mixed synapses on the Mauthner cell. J Neurophysiol 2015; 114:689-97. [PMID: 26019311 DOI: 10.1152/jn.00165.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/20/2015] [Indexed: 11/22/2022] Open
Abstract
Opioid receptors were shown to modulate a variety of cellular processes in the vertebrate central nervous system, including synaptic transmission. While the effects of opioid receptors on chemically mediated transmission have been extensively investigated, little is known of their actions on gap junction-mediated electrical synapses. Here we report that pharmacological activation of mu-opioid receptors led to a long-term enhancement of electrical (and glutamatergic) transmission at identifiable mixed synapses on the goldfish Mauthner cells. The effect also required activation of both dopamine D1/5 receptors and postsynaptic cAMP-dependent protein kinase A, suggesting that opioid-evoked actions are mediated indirectly via the release of dopamine from varicosities known to be located in the vicinity of the synaptic contacts. Moreover, inhibitory inputs situated in the immediate vicinity of these excitatory synapses on the lateral dendrite of the Mauthner cell were not affected by activation of mu-opioid receptors, indicating that their actions are restricted to electrical and glutamatergic transmissions co-existing at mixed contacts. Thus, as their chemical counterparts, electrical synapses can be a target for the modulatory actions of the opioid system. Because gap junctions at these mixed synapses are formed by fish homologs of the neuronal connexin 36, which is widespread in mammalian brain, it is likely that this regulatory property applies to electrical synapses elsewhere as well.
Collapse
Affiliation(s)
- Roger Cachope
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; and
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; and Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
27
|
Heterotypic gap junctions at glutamatergic mixed synapses are abundant in goldfish brain. Neuroscience 2014; 285:166-93. [PMID: 25451276 DOI: 10.1016/j.neuroscience.2014.10.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 11/22/2022]
Abstract
Gap junctions provide for direct intercellular electrical and metabolic coupling. The abundance of gap junctions at "large myelinated club ending (LMCE)" synapses on Mauthner cells (M-cells) of the teleost brain provided a convenient model to correlate anatomical and physiological properties of electrical synapses. There, presynaptic action potentials were found to evoke short-latency electrical "pre-potentials" immediately preceding their accompanying glutamate-induced depolarizations, making these the first unambiguously identified "mixed" (i.e., chemical plus electrical) synapses in the vertebrate CNS. We recently showed that gap junctions at these synapses exhibit asymmetric electrical resistance (i.e., electrical rectification), which we correlated with total molecular asymmetry of connexin composition in their apposing gap junction hemiplaques, with connexin35 (Cx35) restricted to axon terminal hemiplaques and connexin34.7 (Cx34.7) restricted to apposing M-cell plasma membranes. We now show that similarly heterotypic neuronal gap junctions are abundant throughout goldfish brain, with labeling exclusively for Cx35 in presynaptic hemiplaques and exclusively for Cx34.7 in postsynaptic hemiplaques. Moreover, the vast majority of these asymmetric gap junctions occur at glutamatergic axon terminals. The widespread distribution of heterotypic gap junctions at glutamatergic mixed synapses throughout goldfish brain and spinal cord implies that pre- vs. postsynaptic asymmetry at electrical synapses evolved early in the chordate lineage. We propose that the advantages of the molecular and functional asymmetry of connexins at electrical synapses that are so prominently expressed in the teleost CNS are unlikely to have been abandoned in higher vertebrates. However, to create asymmetric coupling in mammals, where most gap junctions are composed of connexin36 (Cx36) on both sides, would require some other mechanism, such as differential phosphorylation of connexins on opposite sides of the same gap junction or on asymmetric differences in the complement of their scaffolding and regulatory proteins.
Collapse
|
28
|
Yao C, Vanderpool KG, Delfiner M, Eddy V, Lucaci AG, Soto-Riveros C, Yasumura T, Rash JE, Pereda AE. Electrical synaptic transmission in developing zebrafish: properties and molecular composition of gap junctions at a central auditory synapse. J Neurophysiol 2014; 112:2102-13. [PMID: 25080573 PMCID: PMC4274921 DOI: 10.1152/jn.00397.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/29/2014] [Indexed: 11/22/2022] Open
Abstract
In contrast to the knowledge of chemical synapses, little is known regarding the properties of gap junction-mediated electrical synapses in developing zebrafish, which provide a valuable model to study neural function at the systems level. Identifiable "mixed" (electrical and chemical) auditory synaptic contacts known as "club endings" on Mauthner cells (2 large reticulospinal neurons involved in tail-flip escape responses) allow exploration of electrical transmission in fish. Here, we show that paralleling the development of auditory responses, electrical synapses at these contacts become anatomically identifiable at day 3 postfertilization, reaching a number of ∼6 between days 4 and 9. Furthermore, each terminal contains ∼18 gap junctions, representing between 2,000 and 3,000 connexon channels formed by the teleost homologs of mammalian connexin 36. Electrophysiological recordings revealed that gap junctions at each of these contacts are functional and that synaptic transmission has properties that are comparable with those of adult fish. Thus a surprisingly small number of mixed synapses are responsible for the acquisition of auditory responses by the Mauthner cells, and these are likely sufficient to support escape behaviors at early developmental stages.
Collapse
Affiliation(s)
- Cong Yao
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Kimberly G Vanderpool
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; and
| | - Matthew Delfiner
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Vanessa Eddy
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Alexander G Lucaci
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Carolina Soto-Riveros
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas Yasumura
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; and
| | - John E Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York;
| |
Collapse
|
29
|
Palacios-Prado N, Huetteroth W, Pereda AE. Hemichannel composition and electrical synaptic transmission: molecular diversity and its implications for electrical rectification. Front Cell Neurosci 2014; 8:324. [PMID: 25360082 PMCID: PMC4197764 DOI: 10.3389/fncel.2014.00324] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/26/2014] [Indexed: 11/29/2022] Open
Abstract
Unapposed hemichannels (HCs) formed by hexamers of gap junction proteins are now known to be involved in various cellular processes under both physiological and pathological conditions. On the other hand, less is known regarding how differences in the molecular composition of HCs impact electrical synaptic transmission between neurons when they form intercellular heterotypic gap junctions (GJs). Here we review data indicating that molecular differences between apposed HCs at electrical synapses are generally associated with rectification of electrical transmission. Furthermore, this association has been observed at both innexin and connexin (Cx) based electrical synapses. We discuss the possible molecular mechanisms underlying electrical rectification, as well as the potential contribution of intracellular soluble factors to this phenomenon. We conclude that asymmetries in molecular composition and sensitivity to cellular factors of each contributing hemichannel can profoundly influence the transmission of electrical signals, endowing electrical synapses with more complex functional properties.
Collapse
Affiliation(s)
- Nicolás Palacios-Prado
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine Bronx, NY, USA ; Marine Biological Laboratory, Woods Hole Massachusetts, MA, USA
| | - Wolf Huetteroth
- Marine Biological Laboratory, Woods Hole Massachusetts, MA, USA ; Department of Neurobiology, University of Konstanz Konstanz, Germany
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine Bronx, NY, USA ; Marine Biological Laboratory, Woods Hole Massachusetts, MA, USA
| |
Collapse
|
30
|
Medan V, Preuss T. The Mauthner-cell circuit of fish as a model system for startle plasticity. ACTA ACUST UNITED AC 2014; 108:129-40. [PMID: 25106811 DOI: 10.1016/j.jphysparis.2014.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022]
Abstract
The Mauthner-cell (M-cell) system of teleost fish has a long history as an experimental model for addressing a wide range of neurobiological questions. Principles derived from studies on this system have contributed significantly to our understanding at multiple levels, from mechanisms of synaptic transmission and synaptic plasticity to the concepts of a decision neuron that initiates key aspects of the startle behavior. Here we will review recent work that focuses on the neurophysiological and neuropharmacological basis for modifications in the M-cell circuit. After summarizing the main excitatory and inhibitory inputs to the M-cell, we review experiments showing startle response modulation by temperature, social status, and sensory filtering. Although very different in nature, actions of these three sources of modulation converge in the M-cell network. Mechanisms of modulation include altering the excitability of the M-cell itself as well as changes in excitatory and inhibitor drive, highlighting the role of balanced excitation and inhibition for escape decisions. One of the most extensively studied forms of startle plasticity in vertebrates is prepulse inhibition (PPI), a sensorimotor gating phenomenon, which is impaired in several information processing disorders. Finally, we review recent work in the M-cell system which focuses on the cellular mechanisms of PPI and its modulation by serotonin and dopamine.
Collapse
Affiliation(s)
- Violeta Medan
- Dept. de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, Buenos Aires 1428, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Argentina.
| | - Thomas Preuss
- Psychology Dept. Hunter College, City University of New York, 695 Park Ave., New York, NY 10065, USA.
| |
Collapse
|
31
|
A new mutation in GJC2 associated with subclinical leukodystrophy. J Neurol 2014; 261:1929-38. [PMID: 25059390 DOI: 10.1007/s00415-014-7429-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 12/13/2022]
Abstract
Recessive mutations in GJC2, the gene-encoding connexin 47 (Cx47), cause Pelizaeus-Merzbacher-like disease type 1, a severe dysmyelinating disorder. One recessive mutation (p.Ile33Met) has been associated with a much milder phenotype--hereditary spastic paraplegia type 44. Here, we present evidence that a novel Arg98Leu mutation causes an even milder phenotype--a subclinical leukodystrophy. The Arg98Leu mutant forms gap junction plaques in HeLa cells comparable to wild-type Cx47, but electrical coupling was 20-fold lower in cell pairs expressing Arg98Leu than for cell pairs expressing wild-type Cx47. On the other hand, coupling between Cx47Arg98Leu and Cx43WT expressing cells did not show such reductions. Single channel conductance and normalized steady-state junctional conductance-junctional voltage (G(j)-V(j)) relations differed only slightly from those for wild-type Cx47. Our data suggest that the minimal phenotype in this patient results from a reduced efficiency of opening of Cx47 channels between oligodendrocyte and oligodendrocyte with preserved coupling between oligodendrocyte and astrocyte, and support a partial loss of function model for the mild Cx47 associated disease phenotypes.
Collapse
|
32
|
Electrical synapses and their functional interactions with chemical synapses. Nat Rev Neurosci 2014; 15:250-63. [PMID: 24619342 DOI: 10.1038/nrn3708] [Citation(s) in RCA: 349] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brain function relies on the ability of neurons to communicate with each other. Interneuronal communication primarily takes place at synapses, where information from one neuron is rapidly conveyed to a second neuron. There are two main modalities of synaptic transmission: chemical and electrical. Far from functioning independently and serving unrelated functions, mounting evidence indicates that these two modalities of synaptic transmission closely interact, both during development and in the adult brain. Rather than conceiving synaptic transmission as either chemical or electrical, this article emphasizes the notion that synaptic transmission is both chemical and electrical, and that interactions between these two forms of interneuronal communication might be required for normal brain development and function.
Collapse
|
33
|
Nagy JI, Bautista W, Blakley B, Rash JE. Morphologically mixed chemical-electrical synapses formed by primary afferents in rodent vestibular nuclei as revealed by immunofluorescence detection of connexin36 and vesicular glutamate transporter-1. Neuroscience 2013; 252:468-88. [PMID: 23912039 PMCID: PMC3795837 DOI: 10.1016/j.neuroscience.2013.07.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 11/23/2022]
Abstract
Axon terminals forming mixed chemical/electrical synapses in the lateral vestibular nucleus of rat were described over 40 years ago. Because gap junctions formed by connexins are the morphological correlate of electrical synapses, and with demonstrations of widespread expression of the gap junction protein connexin36 (Cx36) in neurons, we investigated the distribution and cellular localization of electrical synapses in the adult and developing rodent vestibular nuclear complex, using immunofluorescence detection of Cx36 as a marker for these synapses. In addition, we examined Cx36 localization in relation to that of the nerve terminal marker vesicular glutamate transporter-1 (vglut-1). An abundance of immunolabeling for Cx36 in the form of Cx36-puncta was found in each of the four major vestibular nuclei of adult rat and mouse. Immunolabeling was associated with somata and initial dendrites of medium and large neurons, and was absent in vestibular nuclei of Cx36 knockout mice. Cx36-puncta were seen either dispersed or aggregated into clusters on the surface of neurons, and were never found to occur intracellularly. Nearly all Cx36-puncta were localized to large nerve terminals immunolabeled for vglut-1. These terminals and their associated Cx36-puncta were substantially depleted after labyrinthectomy. Developmentally, labeling for Cx36 was already present in the vestibular nuclei at postnatal day 5, where it was only partially co-localized with vglut-1, and did not become fully associated with vglut-1-positive terminals until postnatal day 20-25. The results show that vglut-1-positive primary afferent nerve terminals form mixed synapses throughout the vestibular nuclear complex, that the gap junction component of these synapses contains Cx36, that multiple Cx36-containing gap junctions are associated with individual vglut-1 terminals and that the development of these mixed synapses is protracted over several postnatal weeks.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
34
|
Rash JR, Curti S, Vanderpool KGV, Kamasawa N, Nannapaneni S, Palacios-Prado N, Flores CE, Yasumura T, O’Brien J, Lynn BD, Bukauskas F, Nagy JI, Pereda AE. Molecular and functional asymmetry at a vertebrate electrical synapse. Neuron 2013; 79:957-69. [PMID: 24012008 PMCID: PMC4020187 DOI: 10.1016/j.neuron.2013.06.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2013] [Indexed: 12/20/2022]
Abstract
Electrical synapses are abundant in the vertebrate brain, but their functional and molecular complexities are still poorly understood. We report here that electrical synapses between auditory afferents and goldfish Mauthner cells are constructed by apposition of hemichannels formed by two homologs of mammalian connexin 36 (Cx36) and that, while Cx35 is restricted to presynaptic hemiplaques, Cx34.7 is restricted to postsynaptic hemiplaques, forming heterotypic junctions. This molecular asymmetry is associated with rectification of electrical transmission that may act to promote cooperativity between auditory afferents. Our data suggest that, in similarity to pre- and postsynaptic sites at chemical synapses, one side in electrical synapses should not necessarily be considered the mirror image of the other. While asymmetry based on the presence of two Cx36 homologs is restricted to teleost fish, it might also be based on differences in posttranslational modifications of individual connexins or in the complement of gap junction-associated proteins.
Collapse
Affiliation(s)
- John R. Rash
- Department of Biomedical Sciences and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado
| | - Sebastian Curti
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Laboratorio de Neurofisiología Celular, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Kimberly G. V. Vanderpool
- Department of Biomedical Sciences and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado
| | | | - Srikant Nannapaneni
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Nicolas Palacios-Prado
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Carmen E. Flores
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas Yasumura
- Department of Biomedical Sciences and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado
| | - John O’Brien
- University of Texas Health Science Center, Houston, Texas, USA
| | - Bruce D. Lynn
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Feliksas Bukauskas
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - James I. Nagy
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alberto E. Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
35
|
Nagy JI. Evidence for connexin36 localization at hippocampal mossy fiber terminals suggesting mixed chemical/electrical transmission by granule cells. Brain Res 2012; 1487:107-22. [PMID: 22771400 PMCID: PMC3501615 DOI: 10.1016/j.brainres.2012.05.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 11/25/2022]
Abstract
Electrical synaptic transmission via gap junctions has become an accepted feature of neuronal communication in the mammalian brain, and occurs often between dendrites of interneurons in major brain structures, including the hippocampus. Electrical and dye-coupling has also been reported to occur between pyramidal cells in the hippocampus, but ultrastructurally-identified gap junctions between these cells have so far eluded detection. Gap junctions can be formed by nerve terminals, where they contribute the electrical component of mixed chemical/electrical synaptic transmission, but mixed synapses have only rarely been described in mammalian CNS. Here, we used immunofluorescence localization of the major gap junction forming protein connexin36 to examine its possible association with hippocampal pyramidal cells. In addition to labeling associated with gap junctions between dendrites of parvalbumin-positive interneurons, a high density of fine, punctate immunolabeling for Cx36, non-overlapping with parvalbumin, was found in subregions of the stratum lucidum in the ventral hippocampus of rat brain. A high percentage of Cx36-positive puncta in the stratum lucidum was localized to mossy fiber terminals, as indicated by co-localization of Cx36-puncta with the mossy terminal marker vesicular glutamate transporter-1, as well as with other proteins that are highly concentrated in, and diagnostic markers of, these terminals. These results suggest that mossy fiber terminals abundantly form mixed chemical/electrical synapses with pyramidal cells, where they may serve as intermediaries for the reported electrical and dye-coupling between ensembles of these principal cells. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba, Canada R3E 0J9.
| |
Collapse
|
36
|
del Corsso C, Iglesias R, Zoidl G, Dermietzel R, Spray DC. Calmodulin dependent protein kinase increases conductance at gap junctions formed by the neuronal gap junction protein connexin36. Brain Res 2012; 1487:69-77. [PMID: 22796294 PMCID: PMC4355912 DOI: 10.1016/j.brainres.2012.06.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/26/2012] [Accepted: 06/30/2012] [Indexed: 11/27/2022]
Abstract
The major neuronal gap junction protein connexin36 (Cx36) exhibits the remarkable property of "run-up", in which junctional conductance typically increases by 10-fold or more within 5-10min following cell break-in with patch pipettes. Such conductance "run-up" is a unique property of Cx36, as it has not been seen in cell pairs expressing other connexins. Because of the recent observation describing CaMKII binding and phosphorylation sites in Cx36 and evidence that calmodulin dependent protein kinase II (CaMKII) may potentiate electrical coupling in neurons of teleosts, we have explored whether CaMKII activates mammalian Cx36. Consistent with this hypothesis, certain Cx36 mutants lacking the CaMKII binding and phosphorylation sites or wild type Cx36 treated with certain cognate peptides corresponding to binding or phosphorylation sites blocked or strongly attenuated run-up of junctional conductance. Likewise, KN-93, an inhibitor of CaMKII, blocked run-up, as did a membrane permeable peptide corresponding to the CaMKII autoinhibitory domain. Furthermore, run-up was blocked by phosphatase delivered within the pipette and not affected by treatment with the phosphatase inhibitor okadaic acid. These results imply that phosphorylation by CaMKII strengthens junctional currents of Cx36 channels, thereby conferring functional plasticity on electrical synapses formed of this protein.
Collapse
Affiliation(s)
- Cristiane del Corsso
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY,10461, USA
| | - Rodolfo Iglesias
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY,10461, USA
| | | | | | - David C. Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY,10461, USA
| |
Collapse
|
37
|
Huntingford FA. The physiology of fish behaviour: a selective review of developments over the past 40 years(§). JOURNAL OF FISH BIOLOGY 2012; 81:2103-2126. [PMID: 23252730 DOI: 10.1111/j.1095-8649.2012.03480.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
During the past 40 years many new techniques have emerged that have been pivotal in furthering understanding of the physiology of fish behaviour. Behavioural studies have been enhanced by video recording systems and software for computerized event recording analysis, fine scale anatomical studies by fluorescence confocal microscopy, neurophysiological studies by visualisation and neuroendocrinology with techniques for identifying, localizing and quantifying many neurochemicals within the central nervous system. This array of approaches has been complemented by developments in molecular biology that include the ability to monitor expression profiles for known genes in specific neural structures and within the whole transcriptome. This article explores how the deployment of new techniques during the last four decades has advanced the understanding of two extensively studied systems. The first of these is the fast-start escape response, concentrating on work on goldfish Carassius auratus and zebrafish Danio rerio. The second is the link between social experience and neuroendocrinology and how this relates to life-history traits in the cichlid Burton's mouthbrooder Astatotilapia burtoni. These two case studies are then used to explore the extent to which the behaviour of animals can be explained in terms of underlying physiological mechanisms.
Collapse
Affiliation(s)
- F A Huntingford
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
38
|
Hartveit E, Veruki ML. Electrical synapses between AII amacrine cells in the retina: Function and modulation. Brain Res 2012; 1487:160-72. [PMID: 22776293 DOI: 10.1016/j.brainres.2012.05.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/09/2012] [Indexed: 12/24/2022]
Abstract
Adaptation enables the visual system to operate across a large range of background light intensities. There is evidence that one component of this adaptation is mediated by modulation of gap junctions functioning as electrical synapses, thereby tuning and functionally optimizing specific retinal microcircuits and pathways. The AII amacrine cell is an interneuron found in most mammalian retinas and plays a crucial role for processing visual signals in starlight, twilight and daylight. AII amacrine cells are connected to each other by gap junctions, potentially serving as a substrate for signal averaging and noise reduction, and there is evidence that the strength of electrical coupling is modulated by the level of background light. Whereas there is extensive knowledge concerning the retinal microcircuits that involve the AII amacrine cell, it is less clear which signaling pathways and intracellular transduction mechanisms are involved in modulating the junctional conductance between electrically coupled AII amacrine cells. Here we review the current state of knowledge, with a focus on the recent evidence that suggests that the modulatory control involves activity-dependent changes in the phosphorylation of the gap junction channels between AII amacrine cells, potentially linked to their intracellular Ca(2+) dynamics. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Espen Hartveit
- University of Bergen, Department of Biomedicine, Bergen, Norway.
| | | |
Collapse
|
39
|
Cachope R, Pereda AE. Two independent forms of activity-dependent potentiation regulate electrical transmission at mixed synapses on the Mauthner cell. Brain Res 2012; 1487:173-82. [PMID: 22771708 DOI: 10.1016/j.brainres.2012.05.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/24/2012] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
Abstract
Mixed (electrical and chemical) synaptic contacts on the Mauthner cells, known as Club endings, constitute a valuable model for the study of vertebrate electrical transmission. While electrical synapses are still perceived by many as passive intercellular channels that lack modifiability, a wealth of experimental evidence shows that gap junctions at Club endings are subject to dynamic regulatory control by two independent activity-dependent mechanisms that lead to potentiation of electrical transmission. One of those mechanisms relies on activation of NMDA receptors and postsynaptic CaMKII. A second mechanism relies on mGluR activation and endocannabinoid production and is indirectly mediated via the release of dopamine from nearby varicosities, which in turn leads to potentiation of the synaptic response via a PKA-mediated postsynaptic mechanism. We review here these two forms of potentiation and their signaling mechanisms, which include the activation of two kinases with well-established roles as regulators of synaptic strength, as well as the functional implications of these two forms of potentiation. Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Roger Cachope
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | |
Collapse
|
40
|
Curti S, Hoge G, Nagy JI, Pereda AE. Electrical transmission between mammalian neurons is supported by a small fraction of gap junction channels. J Membr Biol 2012; 245:283-90. [PMID: 22729690 DOI: 10.1007/s00232-012-9449-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/01/2012] [Indexed: 12/19/2022]
Abstract
Electrical synapses formed by gap junctions between neurons create networks of electrically coupled neurons in the mammalian brain, where these networks have been found to play important functional roles. In most cases, interneuronal gap junctions occur at remote dendro-dendritic contacts, making difficult accurate characterization of their physiological properties and correlation of these properties with their anatomical and morphological features of the gap junctions. In the mesencephalic trigeminal (MesV) nucleus where neurons are readily accessible for paired electrophysiological recordings in brain stem slices, our recent data indicate that electrical transmission between MesV neurons is mediated by connexin36 (Cx36)-containing gap junctions located at somato-somatic contacts. We here review evidence indicating that electrical transmission between these neurons is supported by a very small fraction of the gap junction channels present at cell-cell contacts. Acquisition of this evidence was enabled by the unprecedented experimental access of electrical synapses between MesV neurons, which allowed estimation of the average number of open channels mediating electrical coupling in relation to the average number of gap junction channels present at these contacts. Our results indicate that only a small proportion of channels (~0.1 %) appear to be conductive. On the basis of similarities with other preparations, we postulate that this phenomenon might constitute a general property of vertebrate electrical synapses, reflecting essential aspects of gap junction function and maintenance.
Collapse
Affiliation(s)
- Sebastian Curti
- Facultad de Medicina, Departamento de Fisiología, Laboratorio de Neurofisiología Celular, Universidad de la República, Montevideo 11800, Uruguay.
| | | | | | | |
Collapse
|
41
|
Pereda AE, Curti S, Hoge G, Cachope R, Flores CE, Rash JE. Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:134-46. [PMID: 22659675 DOI: 10.1016/j.bbamem.2012.05.026] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/16/2012] [Accepted: 05/23/2012] [Indexed: 02/08/2023]
Abstract
The term synapse applies to cellular specializations that articulate the processing of information within neural circuits by providing a mechanism for the transfer of information between two different neurons. There are two main modalities of synaptic transmission: chemical and electrical. While most efforts have been dedicated to the understanding of the properties and modifiability of chemical transmission, less is still known regarding the plastic properties of electrical synapses, whose structural correlate is the gap junction. A wealth of data indicates that, rather than passive intercellular channels, electrical synapses are more dynamic and modifiable than was generally perceived. This article will discuss the factors determining the strength of electrical transmission and review current evidence demonstrating its dynamic properties. Like their chemical counterparts, electrical synapses can also be plastic and modifiable. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.
Collapse
Affiliation(s)
- Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Hamzei-Sichani F, Davidson KGV, Yasumura T, Janssen WGM, Wearne SL, Hof PR, Traub RD, Gutiérrez R, Ottersen OP, Rash JE. Mixed Electrical-Chemical Synapses in Adult Rat Hippocampus are Primarily Glutamatergic and Coupled by Connexin-36. Front Neuroanat 2012; 6:13. [PMID: 22615687 PMCID: PMC3351785 DOI: 10.3389/fnana.2012.00013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 04/19/2012] [Indexed: 01/08/2023] Open
Abstract
Dendrodendritic electrical signaling via gap junctions is now an accepted feature of neuronal communication in mammalian brain, whereas axodendritic and axosomatic gap junctions have rarely been described. We present ultrastructural, immunocytochemical, and dye-coupling evidence for “mixed” (electrical/chemical) synapses on both principal cells and interneurons in adult rat hippocampus. Thin-section electron microscopic images of small gap junction-like appositions were found at mossy fiber (MF) terminals on thorny excrescences of CA3 pyramidal neurons (CA3pyr), apparently forming glutamatergic mixed synapses. Lucifer Yellow injected into weakly fixed CA3pyr was detected in MF axons that contacted four injected CA3pyr, supporting gap junction-mediated coupling between those two types of principal cells. Freeze-fracture replica immunogold labeling revealed diverse sizes and morphologies of connexin-36-containing gap junctions throughout hippocampus. Of 20 immunogold-labeled gap junctions, seven were large (328–1140 connexons), three of which were consistent with electrical synapses between interneurons; but nine were at axon terminal synapses, three of which were immediately adjacent to distinctive glutamate receptor-containing postsynaptic densities, forming mixed glutamatergic synapses. Four others were adjacent to small clusters of immunogold-labeled 10-nm E-face intramembrane particles, apparently representing extrasynaptic glutamate receptor particles. Gap junctions also were on spines in stratum lucidum, stratum oriens, dentate gyrus, and hilus, on both interneurons and unidentified neurons. In addition, one putative GABAergic mixed synapse was found in thin-section images of a CA3pyr, but none were found by immunogold labeling, suggesting the rarity of GABAergic mixed synapses. Cx36-containing gap junctions throughout hippocampus suggest the possibility of reciprocal modulation of electrical and chemical signals in diverse hippocampal neurons.
Collapse
|
43
|
Scemes E, Spray DC. Extracellular K⁺ and astrocyte signaling via connexin and pannexin channels. Neurochem Res 2012; 37:2310-6. [PMID: 22481627 DOI: 10.1007/s11064-012-0759-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
Abstract
Astrocytes utilize two major pathways to achieve long distance intercellular communication. One pathway involves direct gap junction mediated signal transmission and the other consists of release of ATP through pannexin channels and excitation of purinergic receptors on nearby cells. Elevated extracellular potassium to levels occurring around hyperactive neurons affects both gap junction and pannexin1 channels. The action on Cx43 gap junctions is to increase intercellular coupling for a period that long outlasts the stimulus. This long term increase in coupling, termed "LINC", is mediated through calcium and calmodulin dependent activation of calmodulin dependent kinase (CaMK). Pannexin1 can be activated by elevations in extracellular potassium through a mechanism that is quite different. In this case, potassium shifts activation potentials to more physiological range, thereby allowing channel opening at resting or slightly depolarized potentials. Enhanced activity of both these channel types by elevations in extracellular potassium of the magnitude occurring during periods of high neuronal activity likely has profound effects on intercellular signaling among astrocytes in the nervous system.
Collapse
Affiliation(s)
- Eliana Scemes
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
44
|
Flores CE, Nannapaneni S, Davidson KGV, Yasumura T, Bennett MVL, Rash JE, Pereda AE. Trafficking of gap junction channels at a vertebrate electrical synapse in vivo. Proc Natl Acad Sci U S A 2012; 109:E573-82. [PMID: 22323580 PMCID: PMC3295297 DOI: 10.1073/pnas.1121557109] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Trafficking and turnover of transmitter receptors required to maintain and modify the strength of chemical synapses have been characterized extensively. In contrast, little is known regarding trafficking of gap junction components at electrical synapses. By combining ultrastructural and in vivo physiological analysis at identified mixed (electrical and chemical) synapses on the goldfish Mauthner cell, we show here that gap junction hemichannels are added at the edges of GJ plaques where they dock with hemichannels in the apposed membrane to form cell-cell channels and, simultaneously, that intact junctional regions are removed from centers of these plaques into either presynaptic axon or postsynaptic dendrite. Moreover, electrical coupling is readily modified by intradendritic application of peptides that interfere with endocytosis or exocytosis, suggesting that the strength of electrical synapses at these terminals is sustained, at least in part, by fast (in minutes) turnover of gap junction channels. A peptide corresponding to a region of the carboxy terminus that is conserved in Cx36 and its two teleost homologs appears to interfere with formation of new gap junction channels, presumably by reducing insertion of hemichannels on the dendritic side. Thus, our data indicate that electrical synapses are dynamic structures and that their channels are turned over actively, suggesting that regulated trafficking of connexons may contribute to the modification of gap junctional conductance.
Collapse
Affiliation(s)
- Carmen E. Flores
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Srikant Nannapaneni
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Thomas Yasumura
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Michael V. L. Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - John E. Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Alberto E. Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
45
|
Li X, Lynn BD, Nagy JI. The effector and scaffolding proteins AF6 and MUPP1 interact with connexin36 and localize at gap junctions that form electrical synapses in rodent brain. Eur J Neurosci 2012; 35:166-81. [PMID: 22211808 DOI: 10.1111/j.1460-9568.2011.07947.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36) occur in most major structures in the mammalian central nervous system. These synapses link ensembles of neurons and influence their network properties. Little is known about the macromolecular constituents of neuronal gap junctions or how transmission through electrical synapses is regulated at the level of channel conductance or gap junction assembly/disassembly. Such knowledge is a prerequisite to understanding the roles of gap junctions in neuronal circuitry. Gap junctions share similarities with tight and adhesion junctions in that all three reside at close plasma membrane appositions, and therefore may associate with similar structural and regulatory proteins. Previously, we reported that the tight junction-associated protein zonula occludens-1 (ZO-1) interacts with Cx36 and is localized at gap junctions. Here, we demonstrate that two proteins known to be associated with tight and adherens junctions, namely AF6 and MUPP1, are components of neuronal gap junctions in rodent brain. By immunofluorescence, AF6 and MUPP1 were co-localized with Cx36 in many brain areas. Co-immunoprecipitation and pull-down approaches revealed an association of Cx36 with AF6 and MUPP1, which required the C-terminus PDZ domain interaction motif of Cx36 for interaction with the single PDZ domain of AF6 and with the 10th PDZ domain of MUPP1. As AF6 is a target of the cAMP/Epac/Rap1 signalling pathway and MUPP1 is a scaffolding protein that interacts with CaMKII, the present results suggest that AF6 may be a target for cAMP/Epac/Rap1 signalling at electrical synapses, and that MUPP1 may contribute to anchoring CaMKII at these synapses.
Collapse
Affiliation(s)
- X Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Ave., Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
46
|
Regulation of Intercellular Calcium Signaling Through Calcium Interactions with Connexin-Based Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:777-94. [DOI: 10.1007/978-94-007-2888-2_34] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Bennett MVL. Not what you thought: how H+ ions combine with taurine or other aminosulfonates to close Cx26 channels. ACTA ACUST UNITED AC 2011; 138:377-80. [PMID: 21896917 PMCID: PMC3182444 DOI: 10.1085/jgp.201110711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Michael V L Bennett
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
48
|
Dere E, Zlomuzica A. The role of gap junctions in the brain in health and disease. Neurosci Biobehav Rev 2011; 36:206-17. [PMID: 21664373 DOI: 10.1016/j.neubiorev.2011.05.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 05/25/2011] [Accepted: 05/27/2011] [Indexed: 11/19/2022]
Abstract
Gap junctions connect the cytosolic compartments of adjacent cells for direct electrotonic and metabolic cell-to-cell communication. Gap junctions between glial cells or neurons are ubiquitously expressed in the brain and play a role in brain development including cell differentiation, cell migration and survival, tissue homeostasis, as well as in human diseases including hearing loss, skin disease, neuropathies, epilepsy, brain trauma, and cardiovascular disease. Furthermore, gap junctions are involved in the synchronization and rhythmic oscillation of hippocampal and neocotical neuronal ensembles which might be important for memory formation and consolidation. In this review the accumulated evidence from mouse mutant and pharmacological studies using gap junction blockers is summarized and the progress made in dissecting the physiological, pathophysiological and behavioral roles of gap junction mediated intercellular communication in the brain is discussed.
Collapse
Affiliation(s)
- Ekrem Dere
- Université Pierre et Marie Curie, Paris 6, UFR des Sciences de la Vie, UMR 7102, Neurobiologie des Processus Adaptatifs, 9 quai St Bernard, 75005 Paris, France.
| | | |
Collapse
|
49
|
|
50
|
Hoge GJ, Davidson KGV, Yasumura T, Castillo PE, Rash JE, Pereda AE. The extent and strength of electrical coupling between inferior olivary neurons is heterogeneous. J Neurophysiol 2010; 105:1089-101. [PMID: 21177999 DOI: 10.1152/jn.00789.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gap junctions constitute the only form of synaptic communication between neurons in the inferior olive (IO), which gives rise to the climbing fibers innervating the cerebellar cortex. Although its exact functional role remains undetermined, electrical coupling was shown to be necessary for the transient formation of functional compartments of IO neurons and to underlie the precise timing of climbing fibers required for cerebellar learning. So far, most functional considerations assume the existence of a network of permanently and homogeneously coupled IO neurons. Contrasting this notion, our results indicate that coupling within the IO is highly variable. By combining tracer-coupling analysis and paired electrophysiological recordings, we found that individual IO neurons could be coupled to a highly variable number of neighboring neurons. Furthermore, a given neuron could be coupled at remarkably different strengths with each of its partners. Freeze-fracture analysis of IO glomeruli revealed the close proximity of glutamatergic postsynaptic densities to connexin 36-containing gap junctions, at distances comparable to separations between chemical transmitting domains and gap junctions in goldfish mixed contacts, where electrical coupling was shown to be modulated by the activity of glutamatergic synapses. On the basis of structural and molecular similarities with goldfish mixed synapses, we speculate that, rather than being hardwired, variations in coupling could result from glomerulus-specific long-term modulation of gap junctions. This striking heterogeneity of coupling might act to finely influence the synchronization of IO neurons, adding an unexpected degree of complexity to olivary networks.
Collapse
Affiliation(s)
- Gregory J Hoge
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|