1
|
das Neves SP, Delivanoglou N, Ren Y, Cucuzza CS, Makuch M, Almeida F, Sanchez G, Barber MJ, Rego S, Schrader R, Faroqi AH, Thomas JL, McLean PJ, Oliveira TG, Irani SR, Piehl F, Da Mesquita S. Meningeal lymphatic function promotes oligodendrocyte survival and brain myelination. Immunity 2024; 57:2328-2343.e8. [PMID: 39217987 PMCID: PMC11464205 DOI: 10.1016/j.immuni.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 04/17/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
The precise neurophysiological changes prompted by meningeal lymphatic dysfunction remain unclear. Here, we showed that inducing meningeal lymphatic vessel ablation in adult mice led to gene expression changes in glial cells, followed by reductions in mature oligodendrocyte numbers and specific lipid species in the brain. These phenomena were accompanied by altered meningeal adaptive immunity and brain myeloid cell activation. During brain remyelination, meningeal lymphatic dysfunction provoked a state of immunosuppression that contributed to delayed spontaneous oligodendrocyte replenishment and axonal loss. The deficiencies in mature oligodendrocytes and neuroinflammation due to impaired meningeal lymphatic function were solely recapitulated in immunocompetent mice. Patients diagnosed with multiple sclerosis presented reduced vascular endothelial growth factor C in the cerebrospinal fluid, particularly shortly after clinical relapses, possibly indicative of poor meningeal lymphatic function. These data demonstrate that meningeal lymphatics regulate oligodendrocyte function and brain myelination, which might have implications for human demyelinating diseases.
Collapse
Affiliation(s)
- Sofia P das Neves
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chiara Starvaggi Cucuzza
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Centre for Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Mateusz Makuch
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Francisco Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Guadalupe Sanchez
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Megan J Barber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Shanon Rego
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Post-baccalaureate Research Education Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Racquelle Schrader
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Post-baccalaureate Research Education Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ayman H Faroqi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Paris Brain Institute, Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Paris Brain Institute, Paris, France
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Department of Neuroradiology, Hospital de Braga, 4710-243 Braga, Portugal
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Clinical Neurology, John Radcliffe Hospital, Oxford, UK
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Centre for Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Sandro Da Mesquita
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
2
|
Abdelalim LR, Elnaggar YSR, Abdallah OY. Lactoferrin, chitosan double-coated oleosomes loaded with clobetasol propionate for remyelination in multiple sclerosis: Physicochemical characterization and in-vivo assessment in a cuprizone-induced demyelination model. Int J Biol Macromol 2024; 277:134144. [PMID: 39053824 DOI: 10.1016/j.ijbiomac.2024.134144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Multiple sclerosis is a chronic inflammatory demyelinating disorder of the CNS characterized by continuous myelin damage accompanied by deterioration in functions. Clobetasol propionate (CP) is the most potent topical corticosteroid with serious side effects related to systemic absorption. Previous studies introduced CP for remyelination without considering systemic toxicity. This work aimed at fabrication and optimization of double coated nano-oleosomes loaded with CP to achieve brain targeting through intranasal administration. The optimized formulation was coated with lactoferrin and chitosan for the first time. The obtained double-coated oleosomes had particle size (220.07 ± 0.77 nm), zeta potential (+30.23 ± 0.41 mV) along with antioxidant capacity 9.8 μM ascorbic acid equivalents. Double coating was well visualized by TEM and significantly decreased drug release. Three different doses of CP were assessed in-vivo using cuprizone-induced demyelination in C57Bl/6 mice. Neurobehavioral tests revealed improvement in motor and cognitive functions of mice in a dose-dependent manner. Histopathological examination of the brain showed about 2.3 folds increase in corpus callosum thickness in 0.3 mg/kg CP dose. Moreover, the measured biomarkers highlighted the significant antioxidant and anti-inflammatory capacity of the formulation. In conclusion, the elaborated biopolymer-integrating nanocarrier succeeded in remyelination with 6.6 folds reduction in CP dose compared to previous studies.
Collapse
Affiliation(s)
- Lamiaa R Abdelalim
- Department of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Abdelalim LR, Elnaggar YSR, Abdallah OY. Pectin-stabilized nanoceria double coated with lactoferrin/chitosan for management of experimental autoimmune encephalomyelitis. Colloids Surf B Biointerfaces 2024; 245:114271. [PMID: 39353349 DOI: 10.1016/j.colsurfb.2024.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Cerium oxide nanoparticles are a unique antioxidant mimicking the activity of natural antioxidant enzymes. Previous research showed its' promising effect mitigating free radical damage in neurodegenerative disorders. However, there is still unmet therapeutic needs due to poor BBB penetration, a high accumulation in liver, kidney and spleen. This study aimed to synthesize and optimize nanoceria stabilized by natural bioactive polymers suitable for intranasal administration to manage multiple sclerosis. Among the different employed biopolymers, pectin-stabilized nanoceria exhibited the ideal properties with small particles size 87.20 ± 3.43 nm, high zeta potential -56.37 ± 2.39 mV and high free radical scavenging activity 85.27 ± 0.07 %. Then coating was achieved for the first time by two biopolymers: lactoferrin and chitosan producing a double coated cationic nanoceria. Biological assessment involved using experimental autoimmune encephalomyelitis animal model treated in a dose of 1 mg/kg nanoceria for 15 days. Motor function testing in rats revealed 6- and 17-folds increase in latency time in rotating rod and hanging wire tests, respectively. Biochemical analysis revealed significant reduction in lipid peroxidation along with about 1-fold upgrading of the intrinsic antioxidant system. Moreover, histologic examination disclosed decreased degeneration of the brain and spinal cord of treated rats and much decreased liver toxicity.
Collapse
Affiliation(s)
- Lamiaa R Abdelalim
- Department of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Ashrafpour S, Nasr-Taherabadi MJ, Sabouri-Rad A, Hosseinzadeh S, Pourabdolhossein F. Arbutin intervention ameliorates memory impairment in a rat model of lysolecethin induced demyelination: Neuroprotective and anti-inflammatory effects. Behav Brain Res 2024; 469:115041. [PMID: 38723674 DOI: 10.1016/j.bbr.2024.115041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Cognitive impairment (CI) and memory deficit are prevalent manifestations of multiple sclerosis (MS). This study explores the therapeutic potential of arbutin on memory deficits using a rat hippocampal demyelination model induced by lysophosphatidylcholine (LPC). Demyelination was induced by bilateral injection of 1% LPC into the CA1 area of the hippocampus, and the treated group received daily arbutin injections (50 mg/kg, i.p) for two weeks. Arbutin significantly improved memory impairment 14 days post-demyelination as assessed by Morris water maze test. Histological and immunohistochemical analyses demonstrated that arbutin reduced demyelination suppressed pro-inflammatory markers (IL-1β, TNF-α) and increased anti-inflammatory cytokine IL-10. Arbutin also diminished astrocyte activation, decreased iNOS, enhanced anti-oxidative factors (Nrf2, HO-1), and exhibited neuroprotective effects by elevating myelin markers (MBP) and brain derived neurotrophic factor (BDNF). These findings propose arbutin as a potential therapeutic candidate for multiple sclerosis-associated memory deficits, warranting further clinical exploration.
Collapse
Affiliation(s)
- Sahand Ashrafpour
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Alie Sabouri-Rad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Soheila Hosseinzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Pourabdolhossein
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
5
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
6
|
Gharighnia S, Omidi A, Ragerdi Kashani I, Sepand MR, Pour Beiranvand S. Ameliorative effects of acetyl-L-carnitine on corpus callosum and functional recovery in demyelinated mouse model. Int J Neurosci 2024; 134:409-419. [PMID: 35912879 DOI: 10.1080/00207454.2022.2107515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
AIM Multiple sclerosis (MS) is the most common chronic inflammatory demyelinating disease of the central nervous system. Oxidative stress via distinct pathobiological pathways plays a pivotal role in the formation and persistence of MS lesions. Acetyl-L-carnitine (ALC) facilitates the uptake of acetyl coenzyme-A into the mitochondria by a fatty acid oxidation process. ALC could be a therapeutic antioxidant in the myelin repair process. This study explored the potential neuroprotective effects of ALC in cuprizone (CPZ) intoxicated mice. MATERIALS AND METHODS Thirty male C57BL/6 mice were divided into three groups. The control animals received a normal diet. The CPZ and CPZ + ALC groups were fed with a 0.2% cuprizone diet for 12 weeks. In the CPZ + ALC group, animals received ALC (300 mg/kg/day) from the 10th -12th weeks. Animals were evaluated functionally by beam walking test (BWT) weekly. Eventually, the corpus callosum (CC) was extracted for histological, biochemical, and molecular studies. RESULTS BWT data showed ALC significantly improves balance and gait in the demyelinating mouse model. Histological staining represented ALC effectively increased remyelination in the CC. Biochemical evaluations demonstrated ALC decreased the malondialdehyde level with a parallel increase in the reduced glutathione and catalase activity levels in the CC. Molecular analysis revealed that ALC significantly increased the expression of oligodendrocyte transcription-2 (Olig-2) and Poly lipoproteins (Plp) genes in the CC. CONCLUSIONS ALC improved balance and motor coordination in the demyelinated mouse model. It may be by reducing the levels of free radicals and increasing the expression of Olig-2 and Plp as myelin-related genes.
Collapse
Affiliation(s)
- Sanaz Gharighnia
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ameneh Omidi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sepand
- Toxicology and Poisoning Research Centre, Department of Toxicology and Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Pour Beiranvand
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Adamczyk B, Morawiec N, Boczek S, Dańda K, Herba M, Spyra A, Sowa A, Szczygieł J, Adamczyk-Sowa M. Headache in Multiple Sclerosis: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:572. [PMID: 38674218 PMCID: PMC11052044 DOI: 10.3390/medicina60040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Background: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disorder of the central nervous system characterized by autoimmune-mediated damage to oligodendrocytes and subsequent myelin destruction. Clinical implications: Clinically, the disease presents with many symptoms, often evolving over time. The insidious onset of MS often manifests with non-specific symptoms (prodromal phase), which may precede a clinical diagnosis by several years. Among them, headache is a prominent early indicator, affecting a significant number of MS patients (50-60%). Results: Headache manifests as migraine or tension-type headache with a clear female predilection (female-male ratio 2-3:1). Additionally, some disease-modifying therapies in MS can also induce headache. For instance, teriflunomide, interferons, ponesimod, alemtuzumab and cladribine are associated with an increased incidence of headache. Conclusions: The present review analyzed the literature data on the relationship between headache and MS to provide clinicians with valuable insights for optimized patient management and the therapeutic decision-making process.
Collapse
Affiliation(s)
- Bożena Adamczyk
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (S.B.); (K.D.); (M.H.); (A.S.); (A.S.); (J.S.); (M.A.-S.)
| | - Natalia Morawiec
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (S.B.); (K.D.); (M.H.); (A.S.); (A.S.); (J.S.); (M.A.-S.)
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Nowak-Kiczmer M, Niedziela N, Zalejska-Fiolka J, Adamczyk-Sowa M. Evaluation of antioxidant parameters of multiple sclerosis patients' serum according to the disease course. Mult Scler Relat Disord 2023; 77:104875. [PMID: 37454567 DOI: 10.1016/j.msard.2023.104875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic, demyelinating disease of the central nervous system. Its clinical courses are clinically isolated syndrome (CIS), relapsing remitting (RRMS), secondary progressive (SPMS), and primary progressive (PPMS). The differentiation of MS types is crucial for adequate treatment. OBJECTIVES To evaluate antioxidant parameters of MS patients' serum according to MS type. MATERIALS AND METHODS The study included 84 patients diagnosed with MS. The study group was divided into three subgroups corresponding to MS courses RRMS, SPMS, and PPMS. Sulfhydryl groups (SH), ceruloplasmin (CER), and superoxide dismutase (SOD) and its isoforms were identified in study participants' sera. RESULTS CuZnSOD levels were significantly higher in SPMS patients than in PPMS patients, but there was no difference between SMPS and treatment-naive PPMS patients. MnSOD activity was significantly lower in SPMS patients than in PPMS patients. Our results show that SH levels were decreased in SPMS patients compared with RRMS patients, but this difference was significant only for male participants. SH concentration was reversely correlated with age, BMI, disease duration, EDSS, and in smoking patients with pack-years. CER serum levels waere elevated in SPMS patients compared with RRMS patients, but this difference was significant only for male participants. Our results show correlation between CER and EDSS levels. CONCLUSION Oxidative stress plays a limited role in all disease stages, particularly in smokers as a confounding factor.
Collapse
Affiliation(s)
- Maria Nowak-Kiczmer
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland.
| | - Natalia Niedziela
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Jolanta Zalejska-Fiolka
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| |
Collapse
|
9
|
Bhaskaran S, Kumar G, Thadathil N, Piekarz KM, Mohammed S, Lopez SD, Qaisar R, Walton D, Brown JL, Murphy A, Smith N, Saunders D, Beckstead MJ, Plafker S, Lewis TL, Towner R, Deepa SS, Richardson A, Axtell RC, Van Remmen H. Neuronal deletion of MnSOD in mice leads to demyelination, inflammation and progressive paralysis that mimics phenotypes associated with progressive multiple sclerosis. Redox Biol 2023; 59:102550. [PMID: 36470129 PMCID: PMC9720104 DOI: 10.1016/j.redox.2022.102550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Neuronal oxidative stress has been implicated in aging and neurodegenerative disease. Here we investigated the impact of elevated oxidative stress induced in mouse spinal cord by deletion of Mn-Superoxide dismutase (MnSOD) using a neuron specific Cre recombinase in Sod2 floxed mice (i-mn-Sod2 KO). Sod2 deletion in spinal cord neurons was associated with mitochondrial alterations and peroxide generation. Phenotypically, i-mn-Sod2 KO mice experienced hindlimb paralysis and clasping behavior associated with extensive demyelination and reduced nerve conduction velocity, axonal degeneration, enhanced blood brain barrier permeability, elevated inflammatory cytokines, microglia activation, infiltration of neutrophils and necroptosis in spinal cord. In contrast, spinal cord motor neuron number, innervation of neuromuscular junctions, muscle mass, and contractile function were not altered. Overall, our findings show that loss of MnSOD in spinal cord promotes a phenotype of demyelination, inflammation and progressive paralysis that mimics phenotypes associated with progressive multiple sclerosis.
Collapse
Affiliation(s)
- Shylesh Bhaskaran
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Gaurav Kumar
- Arthritis & Clinical Immunology, Oklahoma Medical Research Foundation, OK, USA
| | - Nidheesh Thadathil
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, OK, USA
| | - Katarzyna M Piekarz
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Sabira Mohammed
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Rizwan Qaisar
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Dorothy Walton
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Jacob L Brown
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Ashley Murphy
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, OK, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, OK, USA
| | - Michael J Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Scott Plafker
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Tommy L Lewis
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Rheal Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, OK, USA
| | - Sathyaseelan S Deepa
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Arlan Richardson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Robert C Axtell
- Arthritis & Clinical Immunology, Oklahoma Medical Research Foundation, OK, USA.
| | - Holly Van Remmen
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
10
|
Zhao Y, Liu Y, Xu Y, Li K, Zhou L, Qiao H, Xu Q, Zhao J. The Role of Ferroptosis in Blood-Brain Barrier Injury. Cell Mol Neurobiol 2023; 43:223-236. [PMID: 35106665 PMCID: PMC11415168 DOI: 10.1007/s10571-022-01197-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
The blood-brain barrier (BBB) is an important barrier that maintains homeostasis within the central nervous system. Brain microvascular endothelial cells are arranged to form vessel walls and express tight junctional complexes that limit the paracellular pathways of the BBB and therefore play a crucial role in ensuring brain function. These vessel walls tightly regulate the movement of ions, molecules, and cells between the blood and the brain, which protect the neural tissue from toxins and pathogens. Primary damage caused by BBB dysfunction can disrupt the expression of tight junctions, transport proteins and leukocyte adhesion molecules, leading to brain edema, disturbances in ion homeostasis, altered signaling and immune infiltration, which can lead to neuronal cell death. Various neurological diseases are known to cause BBB dysfunction, but the mechanism that causes this disorder is not clear. Recently, ferroptosis has been found to play an important role in BBB dysfunction. Ferroptosis is a new form of regulatory cell death, which is caused by the excessive accumulation of lipid peroxides and iron-dependent reactive oxygen species. This review summarizes the role of ferroptosis in BBB dysfunction and the latest progress of ferroptosis mechanism, and further discusses the influence of various factors of ferroptosis on the severity and prognosis of BBB dysfunction, which may provide better therapeutic targets for BBB dysfunction.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China.
| | - Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Kexin Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Lin Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Haoduo Qiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
11
|
Dziedzic A, Saluk J. Probiotics and Commensal Gut Microbiota as the Effective Alternative Therapy for Multiple Sclerosis Patients Treatment. Int J Mol Sci 2022; 23:ijms232214478. [PMID: 36430954 PMCID: PMC9699268 DOI: 10.3390/ijms232214478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The gut-brain axis (GBA) refers to the multifactorial interactions between the intestine microflora and the nervous, immune, and endocrine systems, connecting brain activity and gut functions. Alterations of the GBA have been revealed in people with multiple sclerosis (MS), suggesting a potential role in disease pathogenesis and making it a promising therapeutic target. Whilst research in this field is still in its infancy, a number of studies revealed that MS patients are more likely to exhibit modified microbiota, altered levels of short-chain fatty acids, and enhanced intestinal permeability. Both clinical and preclinical trials in patients with MS and animal models revealed that the administration of probiotic bacteria might improve cognitive, motor, and mental behaviors by modulation of GBA molecular pathways. According to the newest data, supplementation with probiotics may be associated with slower disability progression, reduced depressive symptoms, and improvements in general health in patients with MS. Herein, we give an overview of how probiotics supplementation may have a beneficial effect on the course of MS and its animal model. Hence, interference with the composition of the MS patient's intestinal microbiota may, in the future, be a grip point for the development of diagnostic tools and personalized microbiota-based adjuvant therapy.
Collapse
|
12
|
Kim ES, Shin Y, Kim EH, Kim D, De Felice M, Majid A, Bae ON. Neuroprotective efficacy of N-t-butylhydroxylamine (NtBHA) in transient focal ischemia in rats. Toxicol Res 2022; 38:479-486. [PMID: 36277357 PMCID: PMC9532490 DOI: 10.1007/s43188-022-00131-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/28/2022] Open
Abstract
The pharmacological or toxicological activities of the degradation products of drug candidates have been unaddressed during the drug development process. Ischemic stroke accounts for 80% of all strokes and is responsible for considerable mortality and disability worldwide. Despite decades of research on neuroprotective agents, tissue plasminogen activators (t-PA), a thrombolytic agent, remains the only approved acute stroke pharmacological therapy. NXY-059, a free radical scavenger, exhibited striking neuroprotective properties in preclinical models and met all the criteria established by the Stroke Academic Industry Roundtable (STAIR) for a neuroprotective agent. In phase 3 clinical trials, NXY-059 exhibited significant neuroprotective effects in one trial (SAINT-I), but not in the second (SAINT-II). Some have hypothesized that N-t-butyl hydroxylamine (NtBHA), a breakdown product of NXY-059 was the actual neuroprotective agent in SAINT-I and that changes to the formulation of NXY-059 to prevent its breakdown to NtBHA in SAINT -II was the reason for the lack of efficacy. We evaluated the neuroprotective effect of NtBHA in N-methyl-D-aspartate (NMDA)-treated primary neurons and in rat focal cerebral ischemia. NtBHA significantly attenuated infarct volume in rat transient focal ischemia, and attenuated NMDA-induced cytotoxicity in primary cortical neurons. NtBHA also reduced free radical generation and exhibited mitochondrial protection.
Collapse
Affiliation(s)
- Eun-Sun Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 15588 Ansan, Korea
| | - Yusun Shin
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 15588 Ansan, Korea
| | - Eun-Hye Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 15588 Ansan, Korea
| | - Donghyun Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 15588 Ansan, Korea
| | - Milena De Felice
- Sheffield Institute for Translational Neuroscience, University of Sheffield, S10 2TN Sheffield, UK
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, S10 2TN Sheffield, UK
| | - Ok-Nam Bae
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 15588 Ansan, Korea
| |
Collapse
|
13
|
Chen Q, Kou M, He Y, Zhao Y, Chen L. Constructing hierarchical surface structure of hemodialysis membranes to intervene in oxidative stress through Michael addition reaction between tannic acid and PEtOx brushes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Alghamdi SS, Suliman RS, Aljammaz NA, Kahtani KM, Aljatli DA, Albadrani GM. Natural Products as Novel Neuroprotective Agents; Computational Predictions of the Molecular Targets, ADME Properties, and Safety Profile. PLANTS (BASEL, SWITZERLAND) 2022; 11:549. [PMID: 35214883 PMCID: PMC8878483 DOI: 10.3390/plants11040549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Neurodegenerative diseases (NDs) are one of the most challenging public health issues. Despite tremendous advances in our understanding of NDs, little progress has been made in establishing effective treatments. Natural products may have enormous potential in preventing and treating NDs by targeting microglia; yet, there have been several clinical concerns about their usage, primarily due to a lack of scientific evidence for their efficacy, molecular targets, physicochemical properties, and safety. To solve this problem, the secondary bioactive metabolites derived from neuroprotective medicinal plants were identified and selected for computational predictions for anti-inflammatory activity, possible molecular targets, physicochemical properties, and safety evaluation using PASS online, Molinspiration, SwissADME, and ProTox-II, respectively. Most of the phytochemicals were active as anti-inflammatory agents as predicted using the PASS online webserver. Moreover, the molecular target predictions for some phytochemicals were similar to the reported experimental targets. Moreover, the phytochemicals that did not violate important physicochemical properties, including blood-brain barrier penetration, GI absorption, molecular weight, and lipophilicity, were selected for further safety evaluation. After screening 54 neuroprotective phytochemicals, our findings suggest that Aromatic-turmerone, Apocynin, and Matrine are the most promising compounds that could be considered when designing novel neuroprotective agents to treat neurodegenerative diseases via modulating microglial polarization.
Collapse
Affiliation(s)
- Sahar Saleh Alghamdi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
- King Abdullah International Medical Research Centre (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Rasha Saad Suliman
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
- King Abdullah International Medical Research Centre (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Norah Abdulaziz Aljammaz
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
| | - Khawla Mohammed Kahtani
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
| | - Dimah Abdulqader Aljatli
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| |
Collapse
|
15
|
Liu L, Yuan Y, Tao J. Flavonoid-Rich Extract of Paeonia lactiflora Petals Alleviate d-Galactose-Induced Oxidative Stress and Restore Gut Microbiota in ICR Mice. Antioxidants (Basel) 2021; 10:antiox10121889. [PMID: 34942992 PMCID: PMC8698645 DOI: 10.3390/antiox10121889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
This study was aimed to investigate the antioxidant effect of Paeonia lactiflora Pall. petal flavonoids extract (PPF) on d-galactose (d-gal)-induced ICR mice. In this study, sixty male ICR mice were randomly divided into six groups during an 8 weeks experimental period, including normal control (NC) group, d-gal group, epigallocatechin gallate (EGCG) group, low, medium, and high dose PPF groups (10, 20 and 40 mg/kg/day). The results showed that intragastric administration with PPF significantly reverses the atrophy of the visceral organs of oxidative damage mice in a dose-dependent relationship. PPF indicated the antioxidant capacity to decrease the malondialdehyde (MDA) level and improve the activity of superoxide dismutase (SOD), catalase (CAT) as well as glutathione peroxidase (GSH-Px). In addition, PPF treatment reversed gut microbiota dysbiosis by increasing the relative abundance of Lactobacillaceae. Spearman correlation analysis showed that the body's oxidative stress markers were directly related to changes in gut microbiota. These findings reveal firstly that PPF could alleviate d-Gal-induced oxidative stress and modulate gut microbiota balance.
Collapse
Affiliation(s)
- Lei Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
- College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang 464000, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China;
| | - Yingdan Yuan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China;
| | - Jun Tao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
16
|
Praveen Kumar P, D. M, Siva Sankar Reddy L, Dastagiri Reddy Y, Somasekhar G, Sirisha N, Nagaraju K, Shouib M, Rizwaan A. A new cerebral ischemic injury model in rats, preventive effect of gallic acid and in silico approaches. Saudi J Biol Sci 2021; 28:5204-5213. [PMID: 34466098 PMCID: PMC8381014 DOI: 10.1016/j.sjbs.2021.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Current study was designed multiple occlusions and reperfusion of bilateral carotid arteries induced cerebral injury model and evaluated the protective effect of gallic acid on it. In silico study was involved to study gallic acid binding affinity on cerebrotonic proteins compared with standard drugs using Autodoc vina tool. Cerebral ischemia was induced by occlusion of bilateral common carotid arteries for 10 mins followed by 10 reperfusions (1 cycle), cycle was continued to 3 cycles (MO/RCA), then pathological changes were observed by estimation of brain antioxidants as superoxide dismutase, glutathione, catalase, oxidants like malonaldehyde, cerebral infarction area, histopathology, and study gallic acid treatment against cerebral injury. Gallic acid exhibited a strong binding affinity on targeted cerebrotoxic proteins. MO/RCA rat brain antioxidant levels were significantly decreased and increased MDA levels (p < 0.0001), Infarction size compared to sham rats. Gallic acid treatment rat brain MDA levels significantly decreased (p < 0.4476) and increased SOD (p < 0.0001), CAT (p < 0.0001), GSH (p < 0.0001), cerebral infarction area when compared to MO/RCA group. Developed model showed significant cerebral ischemic injury in rats, injury was ameliorated by Gallic acid treatment and in silico approaches also inhibit the cerebrotoxic protein function by targeting on active sites.
Collapse
Affiliation(s)
- P. Praveen Kumar
- Santhiram College of Pharmacy, Nandyal, Kurnool, Andhra Pradesh, India
| | - Madhuri D.
- Creative Educational Societys College of Pharmacy, Kurnool, Andhra Pradesh, India
| | | | | | - G. Somasekhar
- SKU College of Pharmaceutical Sciences, Anantapur, Andhra Pradesh, India
| | - N.V.L. Sirisha
- Nitte College of Pharmaceutical Sciences, Banglaore, Karnataka, India
| | - K. Nagaraju
- C.R Reddy College of Pharmacy, Eluru, West Godavari, Andhra Pradesh, India
| | - M.S. Shouib
- Creative Educational Societys College of Pharmacy, Kurnool, Andhra Pradesh, India
| | - A.S. Rizwaan
- Creative Educational Societys College of Pharmacy, Kurnool, Andhra Pradesh, India
| |
Collapse
|
17
|
Li M, Ke J, Deng Y, Chen C, Huang Y, Bian Y, Guo S, Wu Y, Zhang H, Liu M, Han Y. The Protective Effect of Liquiritin in Hypoxia/Reoxygenation-Induced Disruption on Blood Brain Barrier. Front Pharmacol 2021; 12:671783. [PMID: 34295249 PMCID: PMC8290897 DOI: 10.3389/fphar.2021.671783] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Stroke is the second leading cause of death in human life health, but current treatment strategies are limited to thrombolytic therapy, and because of the tight time window, many contraindications, and only a very small number of people can benefit from it, new therapeutic strategies are needed to solve this problem. As a physical barrier between the central nervous system and blood, the blood-brain barrier (BBB) maintains the homeostasis of the central nervous system. Maintaining the integrity of the BBB may emerge as a new therapeutic strategy. Liquiritin (LQ) is a flavonoid isolated from the medicinal plant Glycyrrhiza uralensis Fisch. ex DC. (Fabaceae), and this study aims to investigate the protective effects of LQ on brain microvascular endothelial cells (BMECs), to provide a new therapeutic strategy for stroke treatment, and also to provide research ideas for the development of traditional Chinese medicine (TCM). Methods: The protective effects of LQ on HBMECs under the treatment of hypoxia reoxygenation (H/R) were investigated from different aspects by establishing a model of H/R injury to mimic ischemia-reperfusion in vivo while administrating different concentrations of LQ, which includes: cell proliferation, migration, angiogenesis, mitochondrial membrane potential as well as apoptosis. Meanwhile, the mechanism of LQ to protect the integrity of BBB by antioxidation and inhibiting endoplasmic reticulum (ER) stress was also investigated. Finally, to search for possible targets of LQ, a proteomic analysis approach was employed. Results: LQ can promote cell proliferation, migration as well as angiogenesis and reduce mitochondrial membrane potential damage and apoptosis. Meanwhile, LQ can also reduce the expression of related adhesion molecules, and decrease the production of reactive oxygen species. In terms of mechanism study, we demonstrated that LQ could activate Keap1/Nrf2 antioxidant pathway, inhibit ER stress, and maintain the integrity of BBB. Through differential protein analysis, 5 disease associated proteins were found. Conclusions: Studies have shown that LQ can promote cell proliferation, migration as well as angiogenesis, and reduce cell apoptosis, which may be related to its inhibition of oxidative and ER stress, and then maintain the integrity of BBB. Given that five differential proteins were found by protein analysis, future studies will revolve around the five differential proteins.
Collapse
Affiliation(s)
- Mengting Li
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Ke
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiqing Deng
- Institute of Interdisciplinary Integrative Biomedicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunxiang Chen
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichen Huang
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuefeng Bian
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shufen Guo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Wu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Biomedicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Liao JX, Chen YW, Shih MK, Tain YL, Yeh YT, Chiu MH, Chang SKC, Hou CY. Resveratrol Butyrate Esters Inhibit BPA-Induced Liver Damage in Male Offspring Rats by Modulating Antioxidant Capacity and Gut Microbiota. Int J Mol Sci 2021; 22:5273. [PMID: 34067838 PMCID: PMC8156118 DOI: 10.3390/ijms22105273] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Resveratrol can affect the physiology or biochemistry of offspring in the maternal-fetal animal model. However, it exhibits low bioavailability in humans and animals. Fifteen-week SD pregnant female rats were orally administered bisphenol A (BPA) and/or resveratrol butyrate ester (RBE), and the male offspring rats (n = 4-8 per group) were evaluated. The results show that RBE treatment (BPA + R30) compared with the BPA group can reduce the damage caused by BPA (p < 0.05). RBE enhanced the expression of selected genes and induced extramedullary hematopoiesis and mononuclear cell infiltration. RBE increased the abundance of S24-7 and Adlercreutzia in the intestines of the male offspring rats, as well as the concentrations of short-chain fatty acids (SCFAs) in the feces. RBE also increased the antioxidant capacity of the liver by inducing Nrf2, promoting the expression of HO-1, SOD, and CAT. It also increased the concentration of intestinal SCFAs, enhancing the barrier formed by intestinal cells, thereby preventing BPA-induced metabolic disruption in the male offspring rats, and reduced liver inflammation. This study identified a potential mechanism underlying the protective effects of RBE against the liver damage caused by BPA exposure during the peri-pregnancy period, and the influence of the gut microbiota on the gut-liver axis in the offspring.
Collapse
Affiliation(s)
- Jin-Xian Liao
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Yu-Wei Chen
- Department of Medicine, Chang Gung University, Linkow 333, Taiwan;
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, 812301 No.1, Songhe Rd., Xiaogang Dist., Kaohsiung 833, Taiwan;
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan; (Y.-T.Y.); (M.-H.C.)
- Biomed Analysis Center, Fooyin University Hospital, Pingtung 92849, Taiwan
| | - Min-Hsi Chiu
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan; (Y.-T.Y.); (M.-H.C.)
- Biomed Analysis Center, Fooyin University Hospital, Pingtung 92849, Taiwan
| | - Sam K. C. Chang
- Experimental Seafood Processing Laboratory, Costal Research and Extension Center, Mississippi State University, Pascagoula, MS 39567, USA;
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| |
Collapse
|
19
|
Ghonimi NAM, Elsharkawi KA, Khyal DSM, Abdelghani AA. Serum malondialdehyde as a lipid peroxidation marker in multiple sclerosis patients and its relation to disease characteristics. Mult Scler Relat Disord 2021; 51:102941. [PMID: 33895606 DOI: 10.1016/j.msard.2021.102941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 01/18/2023]
Abstract
Introduction Oxidative stress has been suggested to play a key role in pathogenesis of multiple sclerosis (MS), but clinical data on oxidative stress markers in MS patients and their influence on clinical and radiologic characteristics of the disease are inconsistent. The aim of this study is to assess the serum levels of malondialdehyde (MDA) as a measure of lipid peroxidation in MS patients and its relation to disease characteristics. Methods This case control study included 120 patients with clinically definite relapsing remitting multiple sclerosis (RRMS) compared to 120 age and sex -matched healthy controls. MDA levels were measured using thiobarbituric acid reactive substances (TBARS) assay. Results MDA levels are significantly higher in patients with MS than those in control (P<0.001) especially during relapse, MDA levels are higher in patients taking no disease modifying therapy (DMT) than those taking interferon (IFN-β). MDA levels significantly correlate with expanded disability status scale (EDSS) (P<0.001). Conclusions The results of this study can provide evidence about the incrimination of oxidative stress in MS pathogenesis and disease disability and support the use of antioxidants as a new target of treatment that focuses on neutralizing free radicals and increases antioxidant capacity.
Collapse
Affiliation(s)
- Nesma A M Ghonimi
- Neurology Department, Faculty of Medicine, Zagazig University, Sharkia, Egypt.
| | - Khaled A Elsharkawi
- Neurology Department, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - Doaa S M Khyal
- Neurology Department, Al Ahrar teaching hospital, Sharkia, Egypt
| | - Alaa A Abdelghani
- Neurology Department, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| |
Collapse
|
20
|
Kim KJ, Jung YS, You DM, Lee SH, Lee G, Kwon KB, Kim DO. Neuroprotective effects of ethanolic extract from dry Rhodiola rosea L. rhizomes. Food Sci Biotechnol 2021; 30:287-297. [PMID: 33732519 DOI: 10.1007/s10068-020-00868-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 01/16/2023] Open
Abstract
Rhodiola rosea L. rhizome has been used as a traditional medicine to treat fatigue, depression, and cognitive dysfunction. We aimed to authenticate R. rosea L. rhizome using the DNA barcoding technique and to quantify its main compounds, total phenolics, total flavonoids, and antioxidant capacity, and then to investigate their neuroprotective effects. The sequences of internal transcribed spacer and trnH-psbA of R. rosea L. rhizomes showed a 99% identity with those of NCBI GenBank database according to BLAST searches. Analysis using reversed-phase HPLC revealed five main compounds in R. rosea L. rhizome. Rhodiola rosea L. rhizome and two bioactive compounds, salidroside and tyrosol, showed free radical scavenging activity. Rhodiola rosea L. rhizome and its identified compounds protected neuronal PC-12 cells against oxidative stress and showed moderate acetylcholinesterase inhibition. Taken together, these results suggest that R. rosea L. rhizomes with bioactives can be used as a functional ingredient with potential for neuroprotection. Supplementary information The online version of this article (doi:10.1007/s10068-020-00868-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kwan Joong Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Young Sung Jung
- Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Dong Min You
- Food R&D Center, SK Bioland Co., Ltd., Ansan, 15407 Republic of Korea
| | - Seung Hyun Lee
- Food R&D Center, SK Bioland Co., Ltd., Ansan, 15407 Republic of Korea
| | - Guemsan Lee
- Department of Herbology, College of Korean Medicine, Wonkwang University, Iksan, 54538 Republic of Korea
| | - Kang-Beom Kwon
- Department of Korean Physiology, College of Korean Medicine, Wonkwang University, Iksan, 54538 Republic of Korea
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea.,Skin Biotechnology Center, Kyung Hee University, Suwon, 16229 Republic of Korea
| |
Collapse
|
21
|
Oncel S, Ozturk M, Gozubatik-Celik R, Soysal A, Baybaş S. Investigation of oxidative stress in relapse and remission periods of patients with relapsing-Remitting multiple sclerosis. NEUROL SCI NEUROPHYS 2021. [DOI: 10.4103/nsn.nsn_142_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Mallah K, Couch C, Borucki DM, Toutonji A, Alshareef M, Tomlinson S. Anti-inflammatory and Neuroprotective Agents in Clinical Trials for CNS Disease and Injury: Where Do We Go From Here? Front Immunol 2020; 11:2021. [PMID: 33013859 PMCID: PMC7513624 DOI: 10.3389/fimmu.2020.02021] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Neurological disorders are major contributors to death and disability worldwide. The pathology of injuries and disease processes includes a cascade of events that often involve molecular and cellular components of the immune system and their interaction with cells and structures within the central nervous system. Because of this, there has been great interest in developing neuroprotective therapeutic approaches that target neuroinflammatory pathways. Several neuroprotective anti-inflammatory agents have been investigated in clinical trials for a variety of neurological diseases and injuries, but to date the results from the great majority of these trials has been disappointing. There nevertheless remains great interest in the development of neuroprotective strategies in this arena. With this in mind, the complement system is being increasingly discussed as an attractive therapeutic target for treating brain injury and neurodegenerative conditions, due to emerging data supporting a pivotal role for complement in promoting multiple downstream activities that promote neuroinflammation and degeneration. As we move forward in testing additional neuroprotective and immune-modulating agents, we believe it will be useful to review past trials and discuss potential factors that may have contributed to failure, which will assist with future agent selection and trial design, including for complement inhibitors. In this context, we also discuss inhibition of the complement system as a potential neuroprotective strategy for neuropathologies of the central nervous system.
Collapse
Affiliation(s)
- Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Christine Couch
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Davis M. Borucki
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, United States
| | - Amer Toutonji
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, United States
| | - Mohammed Alshareef
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurological Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Ralph Johnson VA Medical Center, Charleston, SC, United States
| |
Collapse
|
23
|
Zhang SY, Gui LN, Liu YY, Shi S, Cheng Y. Oxidative Stress Marker Aberrations in Multiple Sclerosis: A Meta-Analysis Study. Front Neurosci 2020; 14:823. [PMID: 32982663 PMCID: PMC7479227 DOI: 10.3389/fnins.2020.00823] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress has been suggested to play a key role in multiple sclerosis (MS), but clinical data on oxidative stress markers in MS patients were inconsistent. This study sought to quantitatively summarize the data of oxidative stress markers in the blood and cerebrospinal fluid (CSF) of patients with MS in the literature. We conducted a systematic search of PubMed and Web of Science and included studies if they provided data on the concentrations of oxidative stress markers in the peripheral blood and CSF of MS patients and healthy control (HC) subjects. The systematic search resulted in the inclusion of 31 studies with 2,001 MS patients and 2,212 HC subjects for meta-analysis. Random-effects meta-analysis demonstrated that patients with MS had significantly increased concentrations of blood oxidative stress markers compared with HC subjects for malondialdehyde (MDA; Hedges' g, 2.252; 95% CI, 1.080 to 3.424; p < 0.001) and lipid hydroperoxide by tert-butyl hydroperoxide-initiated chemiluminescence (CL-LOOH; Hedges' g, 0.383; 95% CI, 0.065 to 0.702; p = 0.018). In contrast, concentrations of albumin (Hedges' g, −1.036; CI, −1.679 to −0.394; p = 0.002) were significantly decreased in MS patients when compared with those in HC subjects. However, the other analyzed blood oxidative stress markers did not show significant differences between cases and controls. Furthermore, this meta-analysis showed significant association between CSF MDA and MS (Hedges' g, 3.275; 95% CI, 0.859 to 5.691; p = 0.008). Taken together, our results revealed increased blood and CSF MDA and decreased blood albumin levels in patients with MS, strengthening the clinical evidence of increased oxidative stress in MS.
Collapse
Affiliation(s)
- Shu-Yao Zhang
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Lue-Ning Gui
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yi-Ying Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Sha Shi
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
24
|
Hamamcı M, Göcmen AY, Say B, Alpua M, Badem ND, Ergün U, Ertuğrul İnan L. Why do multiple sclerosis and migraine coexist? Mult Scler Relat Disord 2020; 40:101946. [DOI: 10.1016/j.msard.2020.101946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/30/2019] [Accepted: 01/10/2020] [Indexed: 01/15/2023]
|
25
|
Wang D, Zhu B, Liu X, Han Q, Ge W, Zhang W, Lu Y, Wu Q, Shi L. Daphnetin Ameliorates Experimental Autoimmune Encephalomyelitis Through Regulating Heme Oxygenase-1. Neurochem Res 2020; 45:872-881. [PMID: 31950453 DOI: 10.1007/s11064-020-02960-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/14/2019] [Accepted: 01/09/2020] [Indexed: 01/17/2023]
Abstract
To assess the potential role of daphnetin, a clinically used anti-inflammatory agent, on the development of the inflammatory and neurodegenerative disease, we investigated its immune regulatory function in a murine model of experimental autoimmune encephalomyelitis (EAE). Significantly, lower levels of pro-inflammatory cytokines including interleukin (IL)-17, interferon-γ, Il6, Il12a, and Il23a were observed in brains of daphnetin-treated EAE mice, compared with those in control littermates. We also confirmed that daphnetin suppressed the production of IL-1β, IL-6, and tumor necrosis factor-α in lipopolysaccharide-stimulated mouse BV2 microglial cells. Mechanistically, heme oxygenase-1 (HO-1), a canonical anti-oxidant and anti-inflammatory factor, was found to be substantially induced by daphnetin treatment in BV2 cells. Also, a significantly higher level of HO-1, accompanied by a decreased level of malondialdehyde, was observed in daphnetin-treated EAE mice. More importantly, the deletion of HO-1 in BV2 microglia largely abrogated daphnetin-mediated inhibition of the inflammatory response. Together, our data demonstrate that daphnetin has an anti-inflammatory and neuroprotective role during the pathogenesis of EAE, which is partially at least, dependent on its regulation of HO-1.
Collapse
Affiliation(s)
- Dan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Bo Zhu
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaoyi Liu
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qin Han
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weihong Ge
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yin Lu
- College of Pharmaceutical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinan Wu
- College of Pharmaceutical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liyun Shi
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
26
|
Shalavadi MH, Chandrashekhar VM, Muchchandi IS. Neuroprotective effect of Convolvulus pluricaulis Choisy in oxidative stress model of cerebral ischemia reperfusion injury and assessment of MAP2 in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112393. [PMID: 31743764 DOI: 10.1016/j.jep.2019.112393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 07/21/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Convolvulus pluricaulis Choisy commonly known as Shankhapushpi, is traditionally prescribed for nerve debility, loss of memory, epilepsy and as nervine tonic. Plant also proved to have diverse pharmacological activity but the neuroprotection in ischemic stroke were not found. AIM OF THE STUDY To investigate the effect of Convolvulus pluricaulis against bilateral common carotid artery (BCCA) occlusion induced cerebral ischemic reperfusion injury. MATERIALS AND METHODS The neuroprotective activity of Convolvulus pluricaulis against bilateral common carotid artery (BCCA) occlusion induced cerebral ischemic reperfusion (I/S) injury. Sprague-Dawley rats of either sex (200-250 g) were divided into nine groups of 8 rats each. Sham and control group, saline treated 10 ml/kg orally. Third group treated with Quercetin 25 mg/kg orally and fourth to ninth groups treated with chloroform and ethanol extract of Convolvulus pluricaulis 100, 200, and 400 mg/kg (p.o.) respectively. Control, Quercetin and extract treated groups underwent 30 min BCCA occlusion and 24 h reperfusion on 10th day but sham underwent same surgery without BCCA occlusion and 24 h reperfusion on 10th day. The antioxidant enzymatic and non-enzymatic levels were estimated by UV spectroscopic method and cerebral infarction area, Blood brain barrier disruption, microtubule-associated protein 2 immunohistochemical and histopathological studies were carried out. RESULTS The results of the study indicate that the chloroform and ethanol extract of Convolvulus pluricaulis showed neuroprotective activity by a significant decrease in lipid peroxidation (p < 0.001) and an increase in superoxide dismutase (p < 0.01, p < 0.001), catalase (p < 0.01, p < 0.001), glutathione (p < 0.001), and total thiol (p < 0.001) levels in extract-treated groups as compared to control group. Measurement of cerebral infarction area, blood brain barrier disruption, microtubule-associated protein 2 immunohistochemical and histopathological studies further supported the protective effect of the extract. CONCLUSIONS Present study revile that Convolvulus pluricaulis has potent neuroprotection against bilateral common carotid artery (BCCA) occlusion induced cerebral ischemic reperfusion injury.
Collapse
Affiliation(s)
- Mallappa H Shalavadi
- Department of Pharmacology, Hanagal Shri Kumareshwar College of Pharmacy, B.V.V.S Campus, Bagalkot, Karnataka, India.
| | - V M Chandrashekhar
- Department of Pharmacology, Hanagal Shri Kumareshwar College of Pharmacy, B.V.V.S Campus, Bagalkot, Karnataka, India
| | - I S Muchchandi
- Department of Pharmacology, Hanagal Shri Kumareshwar College of Pharmacy, B.V.V.S Campus, Bagalkot, Karnataka, India
| |
Collapse
|
27
|
de Jong JM, Wang P, Oomkens M, Baron W. Remodeling of the interstitial extracellular matrix in white matter multiple sclerosis lesions: Implications for remyelination (failure). J Neurosci Res 2020; 98:1370-1397. [PMID: 31965607 DOI: 10.1002/jnr.24582] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) provides protection, rigidity, and structure toward cells. It consists, among others, of a wide variety of glycoproteins and proteoglycans, which act together to produce a complex and dynamic environment, most relevant in transmembrane events. In the brain, the ECM occupies a notable proportion of its volume and maintains the homeostasis of central nervous system (CNS). In addition, remodeling of the ECM, that is transient changes in ECM proteins regulated by matrix metalloproteinases (MMPs), is an important process that modulates cell behavior upon injury, thereby facilitating recovery. Failure of ECM remodeling plays an important role in the pathogenesis of multiple sclerosis (MS), a neurodegenerative demyelinating disease of the CNS with an inflammatory response against protective myelin sheaths that surround axons. Remyelination of denuded axons improves the neuropathological conditions of MS, but this regeneration process fails over time, leading to chronic disease progression. In this review, we uncover abnormal ECM remodeling in MS lesions by discussing ECM remodeling in experimental demyelination models, that is when remyelination is successful, and compare alterations in ECM components to the ECM composition and MMP expression in the parenchyma of demyelinated MS lesions, that is when remyelination fails. Inter- and intralesional differences in ECM remodeling in the distinct white matter MS lesions are discussed in terms of consequences for oligodendrocyte behavior and remyelination (failure). Hence, the review will aid to understand how abnormal ECM remodeling contributes to remyelination failure in MS lesions and assists in developing therapeutic strategies to promote remyelination.
Collapse
Affiliation(s)
- Jody M de Jong
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peng Wang
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michelle Oomkens
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
28
|
Ahmad N, Ahmad R, Alam MA, Ahmad FJ, Rub RA. Quantification and Evaluation of Glycyrrhizic Acid-loaded Surface Decorated Nanoparticles by UHPLC-MS/MS and used in the Treatment of Cerebral Ischemia. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180530073613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Glycyrrhizic Acid (GRA), a potent antioxidant triterpene saponin glycoside
and neuroprotective properties exhibits an important role in the treatment of neurological disorders i.e.
cerebral ischemia. GRA is water soluble, therefore it’s have low bioavailability in the brain.
Objective:
To enhance brain bioavailability for intranasally administered Glycyrrhizic Acidencapsulated-
chitosan-coated-PCL-Nanoparticles (CS-GRA-PCL-NPs).
Methods:
Chitosan-coated-PCL-Nanoparticles (CS-PCL-NPs) were developed through double emulsification-
solvent evaporation technique and further characterized for particle size, zeta potential, size
distribution, encapsulation efficiency as well as in vitro drug release. UPLC triple quadrupole Qtrap
MS/MS method was developed to evaluate brain-drug uptake for optimized CS-GRA-PCL-NPs and to
determine its pharmacokinetic in rat’s brain as well as plasma.
Results:
Mean particles size (231.47±7.82), polydispersity index (PDI) i.e. (0.216±0.030) and entrapment
efficiency (65.69±5.68) was determined for developed NPs. UPLC triple quadrupole Qtrap MS/MS
method study showed a significantly high mucoadhesive potential of CS-GRA-PCL-NPs and least for
conventional and homogenized nanoformulation; elution time for GRA and internal standard (IS) Hydrocortisone
as 0.37 and 1.94 min at m/z 821.49/113.41 and 363.45/121.40 were observed, respectively. Furthermore,
intra and inter-assay (%CV) of 0.49-5.48, %accuracy (90.00-99.09%) as well as a linear dynamic
range (10.00 ng/mL -2000.0 ng/mL), was observed. Pharmacokinetic studies in Wistar rat brain
exhibited a high AUC0-24 alongwith an amplified Cmax (p** < 0.01) as compared to i.v. treated group.
Conclusion:
Intranasal administration of developed CS-coated-GRA-loaded-PCL-NPs enhanced the
drug bioavailability in rat brain along with successfully UPLC-MS/MS method and thus preparation of
GRA-NPs may help treat cerebral ischemia effectively. The toxicity studies performed at the end
revealed safe nature of optimized nanoformulation.
Collapse
Affiliation(s)
- Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rizwan Ahmad
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Md Aftab Alam
- Department of Pharmaceutics, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida-201310, India
| | - Farhan Jalees Ahmad
- Nanomedicine Lab, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Rehan Abdur Rub
- Nanomedicine Lab, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| |
Collapse
|
29
|
Tobore TO. Towards a comprehensive etiopathogenetic and pathophysiological theory of multiple sclerosis. Int J Neurosci 2019; 130:279-300. [PMID: 31588832 DOI: 10.1080/00207454.2019.1677648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Multiple sclerosis (MS) is a neurodegenerative disease caused by dysfunction of the immune system that affects the central nervous system (CNS). It is characterized by demyelination, chronic inflammation, neuronal and oligodendrocyte loss and reactive astrogliosis. It can result in physical disability and acute neurological and cognitive problems. Despite the gains in knowledge of immunology, cell biology, and genetics in the last five decades, the ultimate etiology or specific elements that trigger MS remain unknown. The objective of this review is to propose a theoretical basis for MS etiopathogenesis.Methods: Search was done by accessing PubMed/Medline, EBSCO, and PsycINFO databases. The search string used was "(multiple sclerosis* OR EAE) AND (pathophysiology* OR etiopathogenesis)". The electronic databases were searched for titles or abstracts containing these terms in all published articles between January 1, 1960, and June 30, 2019. The search was filtered down to 362 articles which were included in this review.Results: A framework to better understand the etiopathogenesis and pathophysiology of MS can be derived from four essential factors; mitochondria dysfunction (MtD) & oxidative stress (OS), vitamin D (VD), sex hormones and thyroid hormones. These factors play a direct role in MS etiopathogenesis and have a modulatory effect on many other factors involved in the disease.Conclusions: For better MS prevention and treatment outcomes, efforts should be geared towards treating thyroid problems, sex hormone alterations, VD deficiency, sleep problems and melatonin alterations. MS patients should be encouraged to engage in activities that boost total antioxidant capacity (TAC) including diet and regular exercise and discouraged from activities that promote OS including smoking and alcohol consumption.
Collapse
|
30
|
Hydrogen-Rich Saline Ameliorates Experimental Autoimmune Encephalomyelitis in C57BL/6 Mice Via the Nrf2-ARE Signaling Pathway. Inflammation 2019; 42:586-597. [PMID: 30343391 DOI: 10.1007/s10753-018-0915-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic and inflammatory disease of the central nervous system that is associated with demyelination, neurodegeneration, and sensitivity to oxidative stress. Hydrogen-rich saline (HRS) is efficacious in preventive and therapeutic applications for many disorders because of its antioxidant and anti-inflammatory properties. Here, we determined the effect of HRS in experimental autoimmune encephalomyelitis (EAE), which is a generally accepted model of the immuno-pathogenic mechanisms underlying MS. We found that HRS reduced the severity of EAE in mice and alleviated inflammation and demyelination. Furthermore, treatment with HRS attenuated oxidative stress in EAE mice. Finally, the results of our study suggest that activation of the Nrf2-ARE pathway plays a critical role in the protective effects of HRS in EAE mice.
Collapse
|
31
|
Moderating effects of crocin on some stress oxidative markers in rat brain following demyelination with ethidium bromide. Heliyon 2019; 5:e01213. [PMID: 30815598 PMCID: PMC6378371 DOI: 10.1016/j.heliyon.2019.e01213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/22/2018] [Accepted: 02/01/2019] [Indexed: 12/27/2022] Open
Abstract
Background The purpose of this study was to investigate the effects of Crocin on oxidative markers (GPx, SOD, MDA) in animal model of demyelination with Ethidium bromide (EB). Methods Female Wistar rats were assigned in to 4 groups; Sham, with no receiving any agent (Sham), Sham Operated group with injection of EB into the brain received no agent (SO), Sham Treatment group with injection of EB and receiving PBS as vehicle and Treatment group with injection of EB and receiving Crocin (100 mg/kg). Demyelination was induced by single dose injection of 10 μl of EB 0.1% into the Cisterna magna of the brain. Crocin was diluted and applied to each animal for 21 days, once per day gavage. The levels of oxidative markers (GPx, SOD and MDA) were measured by related standard kits. Data were analyzed by paired t-test and ANOVA with post hoc test. Results The results showed that crocin decreases the levels of GPx and SOD significantly as well as MDA level after 21 days (α ≤ 0.05). In addition, results showed that there were significant differences in the GPx, SOD and MDA levels between all groups at post treatment phase (α ≤ 0.05). Conclusion It can be concluded that crocin can moderate the level of oxidative markers after demyelination of the brain cells in MS cases. Due to this effect, crocin can be considered as an effective anti-oxidant in management of degenerative nervous system diseases.
Collapse
|
32
|
Morris G, Fernandes BS, Puri BK, Walker AJ, Carvalho AF, Berk M. Leaky brain in neurological and psychiatric disorders: Drivers and consequences. Aust N Z J Psychiatry 2018; 52:924-948. [PMID: 30231628 DOI: 10.1177/0004867418796955] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The blood-brain barrier acts as a highly regulated interface; its dysfunction may exacerbate, and perhaps initiate, neurological and neuropsychiatric disorders. METHODS In this narrative review, focussing on redox, inflammatory and mitochondrial pathways and their effects on the blood-brain barrier, a model is proposed detailing mechanisms which might explain how increases in blood-brain barrier permeability occur and can be maintained with increasing inflammatory and oxidative and nitrosative stress being the initial drivers. RESULTS Peripheral inflammation, which is causatively implicated in the pathogenesis of major psychiatric disorders, is associated with elevated peripheral pro-inflammatory cytokines, which in turn cause increased blood-brain barrier permeability. Reactive oxygen species, such as superoxide radicals and hydrogen peroxide, and reactive nitrogen species, such as nitric oxide and peroxynitrite, play essential roles in normal brain capillary endothelial cell functioning; however, chronically elevated oxidative and nitrosative stress can lead to mitochondrial dysfunction and damage to the blood-brain barrier. Activated microglia, redox control of which is mediated by nitric oxide synthases and nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, secrete neurotoxic molecules such as reactive oxygen species, nitric oxide, prostaglandin, cyclooxygenase-2, quinolinic acid, several chemokines (including monocyte chemoattractant protein-1 [MCP-1], C-X-C motif chemokine ligand 1 [CXCL-1] and macrophage inflammatory protein 1α [MIP-1α]) and the pro-inflammatory cytokines interleukin-6, tumour necrosis factor-α and interleukin-1β, which can exert a detrimental effect on blood-brain barrier integrity and function. Similarly, reactive astrocytes produce neurotoxic molecules such as prostaglandin E2 and pro-inflammatory cytokines, which can cause a 'leaky brain'. CONCLUSION Chronic inflammatory and oxidative and nitrosative stress is associated with the development of a 'leaky gut'. The following evidence-based approaches, which address the leaky gut and blood-brain barrier dysfunction, are suggested as potential therapeutic interventions for neurological and neuropsychiatric disorders: melatonin, statins, probiotics containing Bifidobacteria and Lactobacilli, N-acetylcysteine, and prebiotics containing fructo-oligosaccharides and galacto-oligosaccharides.
Collapse
Affiliation(s)
- Gerwyn Morris
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia
| | - Brisa S Fernandes
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia.,2 Centre for Addiction and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Basant K Puri
- 3 Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Walker
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia
| | - Andre F Carvalho
- 2 Centre for Addiction and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Berk
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia.,4 Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
33
|
Morris G, Reiche EMV, Murru A, Carvalho AF, Maes M, Berk M, Puri BK. Multiple Immune-Inflammatory and Oxidative and Nitrosative Stress Pathways Explain the Frequent Presence of Depression in Multiple Sclerosis. Mol Neurobiol 2018; 55:6282-6306. [PMID: 29294244 PMCID: PMC6061180 DOI: 10.1007/s12035-017-0843-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Abstract
Patients with a diagnosis of multiple sclerosis (MS) or major depressive disorder (MDD) share a wide array of biological abnormalities which are increasingly considered to play a contributory role in the pathogenesis and pathophysiology of both illnesses. Shared abnormalities include peripheral inflammation, neuroinflammation, chronic oxidative and nitrosative stress, mitochondrial dysfunction, gut dysbiosis, increased intestinal barrier permeability with bacterial translocation into the systemic circulation, neuroendocrine abnormalities and microglial pathology. Patients with MS and MDD also display a wide range of neuroimaging abnormalities and patients with MS who display symptoms of depression present with different neuroimaging profiles compared with MS patients who are depression-free. The precise details of such pathology are markedly different however. The recruitment of activated encephalitogenic Th17 T cells and subsequent bidirectional interaction leading to classically activated microglia is now considered to lie at the core of MS-specific pathology. The presence of activated microglia is common to both illnesses although the pattern of such action throughout the brain appears to be different. Upregulation of miRNAs also appears to be involved in microglial neurotoxicity and indeed T cell pathology in MS but does not appear to play a major role in MDD. It is suggested that the antidepressant lofepramine, and in particular its active metabolite desipramine, may be beneficial not only for depressive symptomatology but also for the neurological symptoms of MS. One clinical trial has been carried out thus far with, in particular, promising MRI findings.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
| | - Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis, and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Andrea Murru
- Bipolar Disorders Program, Hospital Clínic Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
- Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil
- Revitalis, Waalre, The Netherlands
- Orygen - The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
34
|
Aggarwal A, Singh I, Sandhir R. Protective effect of S-nitrosoglutathione administration against hyperglycemia induced disruption of blood brain barrier is mediated by modulation of tight junction proteins and cell adhesion molecules. Neurochem Int 2018; 118:205-216. [PMID: 29792953 DOI: 10.1016/j.neuint.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/26/2018] [Accepted: 05/18/2018] [Indexed: 11/30/2022]
Abstract
Diabetes is associated with increased blood brain barrier (BBB) permeability resulting in neurological deficits. The present study investigated the role of S-nitrosoglutathione (GSNO) on tight junction proteins and cell adhesion molecules in streptozotocin-induced diabetic mice. Diabetes was induced by intraperitoneal injection of streptozotocin (40 mg/kg body weight) for 5 days in mice. GSNO was administered daily (100 μg/kg body weight, orally) for 8 weeks after the induction of diabetes. A significant decline was observed in the cognitive ability of diabetic animals assessed using radial arm maze test. A significant increase was observed in nitrotyrosine levels in cortex and hippocampus of diabetic mice. Relative mRNA and protein expression of tight junction proteins viz; zona occludens-1 (ZO-1) and occludin were significantly lower in the microvessels isolated from cortex and hippocampus of diabetic animals, whereas expression of claudin-5 was unaltered. Immunofluorescence of tight junction proteins confirmed loss of ZO-1 and occludin in the diabetic brain. Furthermore, significant increase in interstitial cell adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 mRNA and protein levels was observed in diabetic animals. Ultrastructure of microvessels from diabetic brain was also altered thereby confirming BBB disruption. GSNO administration to diabetic animals, on the other hand, was able to ameliorate loss of ZO-1 and occludin as well as normalize ICAM-1 and VCAM-1 expression, restore BBB integrity, and improve cognitive deficits. The findings clearly suggest that GSNO is a therapeutic molecule with potential to protect BBB and prevent diabetes induced neurological deficits.
Collapse
Affiliation(s)
- Aanchal Aggarwal
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, India
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, India.
| |
Collapse
|
35
|
Wang L, Li B, Quan MY, Li L, Chen Y, Tan GJ, Zhang J, Liu XP, Guo L. Mechanism of oxidative stress p38MAPK-SGK1 signaling axis in experimental autoimmune encephalomyelitis (EAE). Oncotarget 2018; 8:42808-42816. [PMID: 28467798 PMCID: PMC5522107 DOI: 10.18632/oncotarget.17057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/16/2017] [Indexed: 12/05/2022] Open
Abstract
Background Multiple sclerosis (MS), a complex disease associated with multifocal demyelination of the central nervous system and poorly understood etiology. It has been previously indicated that many factors, including oxidative stress and p38MAPK-SGK1 pathway, contribute to the pathogenesis of MS. Methods This study, using an experimental autoimmune encephalomyelitis (EAE) model system, was aimed at investigating the molecular mechanisms determining interaction p38MAPK-SGK1 pathway and oxidative stress in MS pathogenesis. C57BL/6 mice was immunized with MOG35-55 peptide for EAE induction, which was followed by determination of the effect of treatment with classic p38 inhibitor SB203580 and antioxidant tempol on the development and progression of EAE. Results Our experiments showed a dynamic change of immune inflammation, oxidative stress and p38MAPK-SGK1 pathway involvement in EAE demonstrating that p38MAPK-SGK1 pathway and oxidative stress contribute to the demyelination in central nerve system caused by Th17 inflammatory responses in a synergistic way. The administration of SB203580 and Tempol both markedly suppressed the progression of EAE. Furthermore, tempol showed a strong inhibiting effect to the p38MAPK-SGK1 pathway similar to SB203580 suggesting that oxidative stress exacerbates EAE via the activation of p38MAPK-SGK1 pathway. Conclusion Cumulatively, our results show that oxidative stress p38MAPK-SGK1 signaling pathway may be a central player in EAE and even in MS.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Mo-Yuan Quan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Lin Li
- Department of Neurology, Tongren Hospital of Capital Medical University, Beijing, Hebei 100088, China
| | - Yuan Chen
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Guo-Jun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Jing Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Xiao-Peng Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
36
|
Wang L, Li L, Quan MY, Wang D, Jia Z, Li ZF, Li B, Guo L, Tan GJ. Nordihydroguaiaretic acid can suppress progression of experimental autoimmune encephalomyelitis. IUBMB Life 2018; 70:432-436. [PMID: 29637686 DOI: 10.1002/iub.1739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/11/2018] [Accepted: 02/02/2018] [Indexed: 11/08/2022]
Abstract
Multiple sclerosis (MS) is a poorly understood disease mechanistically. MOG35-55 peptide induced experimental autoimmune encephalomyelitis (EAE) is a broadly used model to study MS. Using this model we have earlier shown that the antioxidant tempol or the small molecule inhibitor of p38 SB203580 can effectively prevent EAE progression. This effect was mediated by means of regulating immune inflammation, signaling by the p38MAPK-SGK1 pathway, and oxidative stress. However, there is a need to test drugs that can be used in pharmacological intervention of EAE. Given that nordihydroguaiaretic Acid (NDGA) has been shown to possess anti-oxidant activity and capacity of antagonizing autoimmune inflammation, we tested the effect of NDGA in ameliorating EAE in the current study. NDGA showed significant beneficial effect against EAE with both anti-inflammation and antioxidant activity. NDGA could weaken the immune inflammation at least partly by inhibiting the oxidant stress-p38MAPK-SGK1 pathway representing a target for putative pharmacological intervention. © 2018 IUBMB Life, 70(5):432-436, 2018.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei, 050000, China
| | - Lin Li
- Department of Neurology, TongRen Hospital of Capital medical University, Beijing, 100088, China
| | - Mo-Yuan Quan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei, 050000, China
| | - Dong Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei, 050000, China
| | - Zhen Jia
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei, 050000, China
| | - Zhen-Fei Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei, 050000, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei, 050000, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei, 050000, China
| | - Guo-Jun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei, 050000, China
| |
Collapse
|
37
|
Wang J, Tang H, Zhang X, Xue X, Zhu X, Chen Y, Yang Z. Mitigation of nitrite toxicity by increased salinity is associated with multiple physiological responses: A case study using an economically important model species, the juvenile obscure puffer (Takifugu obscurus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:137-145. [PMID: 28917815 DOI: 10.1016/j.envpol.2017.09.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
Nitrite is a common pollutant in water and is highly toxic to aquatic animals. To reveal the mechanism of salinity in attenuating nitrite toxicity to fish, we measured the physiological responses of juvenile Takifugu obscurus exposed to nitrite concentrations (0, 10, 20, 50, and 100 mg/L) under different salinity levels (0, 10, and 20 ppt) for 96 h. Salinity increased the survival rates of juvenile T. obscurus exposed to nitrite. Changes in key hematological parameters, antioxidant system, malondialdehyde, Na+/K+-ATPase, and HSP70 indicated that nitrite induced considerable damage to juveniles; salinity mitigated the harmful effects. This finding reflects similar changing trends in both antioxidants and their gene expressions among different tissues. We applied an overall index, an integrated biomarker response (IBR), that increased under high-nitrite condition but recovered to the normal levels under salinity treatment. Analysis of the selected detection indices and IBR values showed that the overall mitigating effect of salinity on nitrite toxicity seems to be at sub-cellular level and associated with complicated physiological responses.
Collapse
Affiliation(s)
- Jun Wang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Hengxing Tang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xingxing Zhang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xiaofeng Xue
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xuexia Zhu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yafen Chen
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China.
| | - Zhou Yang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
38
|
Adiele RC, Adiele CA. Metabolic defects in multiple sclerosis. Mitochondrion 2017; 44:7-14. [PMID: 29246870 DOI: 10.1016/j.mito.2017.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/12/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Brain injuries in multiple sclerosis (MS) involve immunopathological, structural and metabolic defects on myelin sheath, oligodendrocytes (OLs), axons and neurons suggesting that different cellular mechanisms ultimately result in the formation of MS plaques, demyelination, inflammation and brain damage. Bioenergetics, oxygen and ion metabolism dominate the metabolic and biochemical pathways that maintain neuronal viability and impulse transmission which directly or indirectly point to mitochondrial integrity and adenosine triphosphate (ATP) availability indicating the involvement of mitochondria in the pathogenesis of MS. Loss of myelin proteins including myelin basic protein (MBP), proteolipid protein (PLP), myelin associated glycoprotein (MAG), myelin oligodendrocyte glycoproetin (MOG), 2, 3,-cyclic nucleotide phosphodiestarase (CNPase); microglia and microphage activation, oligodendrocyte apoptosis as well as expression of inducible nitric oxide synthase (i-NOS) and myeloperoxidase activities have been implicated in a subset of Balo's type and relapsing remitting MS (RRMS) lesions indicating the involvement of metabolic defects and oxidative stress in MS. Here, we provide an insighting review of defects in cellular metabolism including energy, oxygen and metal metabolism in MS as well as the relevance of animal models of MS in understanding the molecular, biochemical and cellular mechanisms of MS pathogenesis. Additionally, we also discussed the potential for mitochondrial targets and antioxidant protection for therapeutic benefits in MS.
Collapse
Affiliation(s)
- Reginald C Adiele
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Cameco MS Neuroscience Research Center, Saskatoon City Hospital, Saskatoon, SK, Canada; Department of Public Health, Concordia University of Edmonton, Edmonton, AB, Canada.
| | - Chiedukam A Adiele
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
39
|
Abstract
Increasing evidence suggests a key role for tissue energy failure in the pathophysiology of multiple sclerosis (MS). Studies in experimental autoimmune encephalomyelitis (EAE), a commonly used model of MS, have been instrumental in illuminating the mechanisms that may be involved in compromising energy production. In this article, we review recent advances in EAE research focussing on factors that conspire to impair tissue energy metabolism, such as tissue hypoxia, mitochondrial dysfunction, production of reactive oxygen/nitrogen species, and sodium dysregulation, which are directly affected by energy insufficiency, and promote cellular damage. A greater understanding of how inflammation affects tissue energy balance may lead to novel and effective therapeutic strategies that ultimately will benefit not only people affected by MS but also people affected by the wide range of other neurological disorders in which neuroinflammation plays an important role.
Collapse
Affiliation(s)
- Roshni A Desai
- Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| |
Collapse
|
40
|
Hüseyin Ö, Sevgi İ, Engin D, Fırat A, Gülsüm P, Şenay D. Ganoderma Lucidum Protects Rat Brain Tissue Against Trauma-Induced Oxidative Stress. Korean J Neurotrauma 2017; 13:76-84. [PMID: 29201838 PMCID: PMC5702762 DOI: 10.13004/kjnt.2017.13.2.76] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 10/07/2017] [Accepted: 10/08/2017] [Indexed: 01/20/2023] Open
Abstract
Objective Traumatic brain injury causes tissue damage, breakdown of cerebral blood flow and metabolic regulation. This study aims to investigate the protective influence of antioxidant Ganoderma lucidum (G. lucidum) polysaccharides (GLPs) on brain injury in brain-traumatized rats. Methods Sprague-Dawley conducted a head-traumatized method on rats by dropping off 300 g weight from 1 m height. Groups were categorized as control, G. lucidum, trauma, trauma+ G. lucidum (20 mL/kg per day via gastric gavage). Brain tissues were dissected from anesthetized rats 7 days after injury. For biochemical analysis, malondialdehyde, glutathione and myeloperoxidase values were measured. Results In histopathological examination, neuronal damage in brain cortex and changes in blood brain barrier were observed. In the analysis of immunohistochemical and western blot, p38 mitogen-activated protein kinase, vascular endothelial growth factor and cluster of differentiation 68 expression levels were shown. These analyzes demonstrated the beneficial effects of GLPs on brain injury. Conclusion We propose that GLPs treatment after brain injury could be an alternative treatment to decraseing inflammation and edema, preventing neuronal and glial cells degeneration if given in appropriate dosage and in particular time intervals.
Collapse
Affiliation(s)
- Özevren Hüseyin
- Department of Neurosurgery, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - İrtegün Sevgi
- Department of Medical Biology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Deveci Engin
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Aşır Fırat
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Pektanç Gülsüm
- Department of Medical Biology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Deveci Şenay
- Ataturk Health Hıgh School, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
41
|
Bystrická Z, Laubertová L, Ďurfinová M, Paduchová Z. Methionine metabolism and multiple sclerosis. Biomarkers 2017; 22:747-754. [DOI: 10.1080/1354750x.2017.1334153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zuzana Bystrická
- Institute of Medical Chemistry, Biochemistry, and Clinical Chemistry, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Lucia Laubertová
- Institute of Medical Chemistry, Biochemistry, and Clinical Chemistry, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Monika Ďurfinová
- Institute of Medical Chemistry, Biochemistry, and Clinical Chemistry, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Zuzana Paduchová
- Institute of Medical Chemistry, Biochemistry, and Clinical Chemistry, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
42
|
Yong H, Chartier G, Quandt J. Modulating inflammation and neuroprotection in multiple sclerosis. J Neurosci Res 2017; 96:927-950. [PMID: 28580582 DOI: 10.1002/jnr.24090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/17/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a neurological disorder of the central nervous system with a presentation and disease course that is largely unpredictable. MS can cause loss of balance, impaired vision or speech, weakness and paralysis, fatigue, depression, and cognitive impairment. Immunomodulation is a major target given the appearance of focal demyelinating lesions in myelin-rich white matter, yet progression and an increasing appreciation for gray matter involvement, even during the earliest phases of the disease, highlights the need to afford neuroprotection and limit neurodegenerative processes that correlate with disability. This review summarizes key aspects of MS pathophysiology and histopathology with a focus on neuroimmune interactions in MS, which may facilitate neurodegeneration through both direct and indirect mechanisms. There is a focus on processes thought to influence disease progression and the role of oxidative stress and mitochondrial dysfunction in MS. The goals and efficacy of current disease-modifying therapies and those in the pipeline are discussed, highlighting recent advances in our understanding of pathways mediating disease progression to identify and translate both immunomodulatory and neuroprotective therapeutics from the bench to the clinic.
Collapse
Affiliation(s)
- Heather Yong
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gabrielle Chartier
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacqueline Quandt
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
43
|
Choi IY, Lee P, Adany P, Hughes AJ, Belliston S, Denney DR, Lynch SG. In vivo evidence of oxidative stress in brains of patients with progressive multiple sclerosis. Mult Scler 2017; 24:1029-1038. [PMID: 28569645 DOI: 10.1177/1352458517711568] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The oxidative stress hypothesis links neurodegeneration in the later, progressive stages of multiple sclerosis (MS) to the loss of a major brain antioxidant, glutathione (GSH). OBJECTIVE We measured GSH concentrations among major MS subtypes and examined the relationships with other indices of disease status including physical disability and magnetic resonance imaging (MRI) measures. METHODS GSH mapping was performed on the fronto-parietal region of patients with relapsing-remitting multiple sclerosis (RRMS, n = 21), primary progressive multiple sclerosis (PPMS, n = 20), secondary progressive multiple sclerosis (SPMS, n = 20), and controls ( n = 28) using GSH chemical shift imaging. Between-group comparisons were performed on all variables (GSH, T2-lesion, atrophy, Expanded Disability Status Scale (EDSS)). RESULTS Patients with MS had substantially lower GSH concentrations than controls, and GSH was lower in progressive MS (PPMS and SPMS) compared with RRMS. GSH concentrations were not significantly different between PPMS and SPMS, or between RRMS and controls. Brain atrophy was significant in both RRMS and progressive MS compared with controls. CONCLUSION Markedly lower GSH in progressive MS than RRMS indicates more prominent involvement of oxidative stress in the progressive stage of MS than the inflammatory stage. The association between GSH and brain atrophy suggests the important role of oxidative stress contributing to neurodegeneration in progressive MS, as suggested in other neurodegenerative diseases.
Collapse
Affiliation(s)
- In-Young Choi
- Hoglund Brain Imaging Center, Department of Neurology, Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Phil Lee
- Hoglund Brain Imaging Center, Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Peter Adany
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Abbey J Hughes
- Department of Psychology, University of Kansas, Lawrence, KS, USA
| | - Scott Belliston
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Douglas R Denney
- Department of Psychology, University of Kansas, Lawrence, KS, USA
| | - Sharon G Lynch
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
44
|
N-Adamantyl-4-Methylthiazol-2-Amine Attenuates Glutamate-Induced Oxidative Stress and Inflammation in the Brain. Neurotox Res 2017; 32:107-120. [PMID: 28285348 DOI: 10.1007/s12640-017-9717-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 12/15/2022]
Abstract
In this study, we explored the possible mechanisms underlying the neuroprotective and anti-oxidative effects of N-adamantyl-4-methylthiazol-2-amine (KHG26693) against in vivo glutamate-induced toxicity in the rat cerebral cortex. Our results showed that pretreatment with KHG26693 significantly attenuated glutamate-induced elevation of lipid peroxidation, tumor necrosis factor-α, interferon gamma, IFN-γ, interleukin-1β, nitric oxide, reactive oxygen species, NADPH oxidase, caspase-3, calpain activity, and Bax. Furthermore, KHG26693 pretreatment attenuated key antioxidant parameters such as levels of superoxide dismutase, catalase, glutathione, and glutathione reductase. KHG26693 also attenuated the protein levels of inducible nitric oxide synthase, neuronal nitric oxide synthase, nuclear factor erythroid 2-related factor 2, heme oxygenase-1, and glutamate cysteine ligase catalytic subunit caused by glutamate toxicity. Finally, KHG26693 mitigated glutamate-induced changes in mitochondrial ATP level and cytochrome oxidase c. Thus, KHG26693 functions as neuroprotective and anti-oxidative agent against glutamate-induced toxicity through its antioxidant and anti-inflammatory activities in rat brain at least in part.
Collapse
|
45
|
Sex Difference in Oxidative Stress Parameters in Spinal Cord of Rats with Experimental Autoimmune Encephalomyelitis: Relation to Neurological Deficit. Neurochem Res 2016; 42:481-492. [PMID: 27812760 DOI: 10.1007/s11064-016-2094-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/26/2016] [Accepted: 10/27/2016] [Indexed: 01/02/2023]
Abstract
The study examined (a) whether there is sex difference in spinal cord and plasma oxidative stress profiles in Dark Agouti rats immunised for experimental autoimmune encephalomyelitis (EAE), the principal experimental model of multiple sclerosis, and (b) whether there is correlation between the oxidative stress in spinal cord and neurological deficit. Regardless of rat sex, with the disease development xanthine oxidase (XO) activity and inducible nitric oxide synthase (iNOS) mRNA expression increased in spinal cord, whereas glutathione levels decreased. This was accompanied by the rise in spinal cord malondialdehyde level. On the other hand, with EAE development superoxide dismutase (SOD) activity decreased, while O2- concentration increased only in spinal cord of male rats. Consequently, SOD activity was lower, whereas O2- concentration was higher in spinal cord of male rats with clinically manifested EAE. XO activity and iNOS mRNA expression were also elevated in their spinal cord. Consistently, in the effector phase of EAE the concentration of advanced oxidation protein product (AOPP) was higher in spinal cord of male rats, which exhibit more severe neurological deficit than their female counterparts. In as much as data obtained in the experimental models could be translated to humans, the findings may be relevant for designing sex-specific antioxidant therapeutic strategies. Furthermore, the study indicated that the increased pro-oxidant-antioxidant balance in plasma may be an early indicator of EAE development. Moreover, it showed that plasma AOPP level may indicate not only actual activity of the disease, but also serve to predict severity of its course.
Collapse
|
46
|
Lim JL, van der Pol SMA, Baron W, McCord JM, de Vries HE, van Horssen J. Protandim Protects Oligodendrocytes against an Oxidative Insult. Antioxidants (Basel) 2016; 5:antiox5030030. [PMID: 27618111 PMCID: PMC5039579 DOI: 10.3390/antiox5030030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/02/2016] [Indexed: 01/23/2023] Open
Abstract
Oligodendrocyte damage and loss are key features of multiple sclerosis (MS) pathology. Oligodendrocytes appear to be particularly vulnerable to reactive oxygen species (ROS) and cytokines, such as tumor necrosis factor-α (TNF), which induce cell death and prevent the differentiation of oligodendrocyte progenitor cells (OPCs). Here, we investigated the efficacy of sulforaphane (SFN), monomethyl fumarate (MMF) and Protandim to induce Nrf2-regulated antioxidant enzyme expression, and protect oligodendrocytes against ROS-induced cell death and ROS-and TNF-mediated inhibition of OPC differentiation. OLN-93 cells and primary rat oligodendrocytes were treated with SFN, MMF or Protandim resulting in significant induction of Nrf2-driven (antioxidant) proteins heme oygenase-1, nicotinamide adenine dinucleotide phosphate (NADPH): quinone oxidoreductase-1 and p62/SQSTM1, as analysed by Western blotting. After incubation with the compounds, oligodendrocytes were exposed to hydrogen peroxide. Protandim most potently promoted oligodendrocyte cell survival as measured by live/death viability assay. Moreover, OPCs were treated with Protandim or vehicle control prior to exposing them to TNF or hydrogen peroxide for five days, which inhibited OPC differentiation. Protandim significantly promoted OPC differentiation under influence of ROS, but not TNF. Protandim, a combination of five herbal ingredients, potently induces antioxidants in oligodendrocytes and is able to protect oligodendrocytes against oxidative stress by preventing ROS-induced cell death and promoting OPC differentiation.
Collapse
Affiliation(s)
- Jamie L Lim
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Neuroscience Campus Amsterdam, 1081 HZ Amsterdam, the Netherlands.
| | - Susanne M A van der Pol
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Neuroscience Campus Amsterdam, 1081 HZ Amsterdam, the Netherlands.
| | - Wia Baron
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, the Netherlands.
| | - Joe M McCord
- Department of Medicine, Division of Pulmonary Science and Critical Care Medicine, University of Colorado at Denver, Aurora, CO 80045, USA.
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Neuroscience Campus Amsterdam, 1081 HZ Amsterdam, the Netherlands.
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Neuroscience Campus Amsterdam, 1081 HZ Amsterdam, the Netherlands.
| |
Collapse
|
47
|
Alizadeh A, Mehrpour O, Nikkhah K, Bayat G, Espandani M, Golzari A, Jarahi L, Foroughipour M. Comparison of serum Concentration of Se, Pb, Mg, Cu, Zn, between MS patients and healthy controls. Electron Physician 2016; 8:2759-2764. [PMID: 27757186 PMCID: PMC5053457 DOI: 10.19082/2759] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/25/2016] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Multiple Sclerosis (MS) is defined as one of the inflammatory autoimmune disorders and is common. Its exact etiology is unclear. There are some evidences on the role of environmental factors in susceptible genetics. The aim of this study is to evaluate the possible role of Selenium, Zinc, Copper, Lead and Magnesium metals in Multiple Sclerosis patients. METHODS In the present analytical cross-sectional study, 56 individuals including 26 patients and 30 healthy controls were enrolled in the evaluation. The serum level of Se, Zn, Cu, Pb were quantified in graphite furnace conditions and flame conditions by utilizing an atomic absorption Perkin Elmer spectrophotometer 3030. The serum levels of Mg were measured by auto analyzer 1500 BT. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls by using independent-samples t-test for normal distribution and Mann-Whitney U test as a non-parametric test. All statistical analyses were carried out using SPSS 11.0. RESULTS As well as the Zn, Cu, and Se, there was no significant difference between MS patients and healthy individuals in Pb concentrations (p-value = 0.11, 0.14, 0.32, 0.20 respectively) but the level of Mg was significantly different (p= 0.001). CONCLUSION All serum concentrations of Zn, Pb, Se, Cu in both groups were in normal ranges and there was no difference in MS patients compared with the healthy group who were matched in genetics. Blood level of Mg was significantly lower in MS patients. But it should be noted that even with the low level of serum magnesium in MS patients, this value is still in the normal range.
Collapse
Affiliation(s)
- Anahita Alizadeh
- MD, Pediatrician, Fellowship of Toxicology, Assistant Professor, Department of Clinical Toxicology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Mehrpour
- Fellowship of Clinical Toxicology, Associate Professor, Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Moallem Avenue, Birjand, Iran
| | - Karim Nikkhah
- Associate Professor of Neurology, Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Golnaz Bayat
- Medical Student, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Espandani
- Neurologist, Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Golzari
- Medical Student, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Lida Jarahi
- MD, MPH, Associate Professor in Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Foroughipour
- Professor of Neurology, Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Moccia M, Lanzillo R, Palladino R, Russo C, Carotenuto A, Massarelli M, Vacca G, Vacchiano V, Nardone A, Triassi M, Morra VB. Uric acid: a potential biomarker of multiple sclerosis and of its disability. Clin Chem Lab Med 2016; 53:753-9. [PMID: 25241733 DOI: 10.1515/cclm-2014-0744] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/28/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Uric acid (UA) is a strong natural scavenger of reactive oxygen and nitrogen species, with evidence of possible use in the treatment of animal models of multiple sclerosis (MS). Consequently, serum UA has gained much attention as a possible biomarker of MS. We aim to investigate differences in serum UA levels between MS subjects and controls and evaluate possible relationships of UA with MS clinical features. METHODS We recruited relapsing-remitting and secondary progressive MS subjects and healthy controls and measured their serum UA levels. We excluded subjects presenting concomitant conditions affecting UA levels. RESULTS MS subjects (n=362) and controls (n=181) were recruited by propensity score matching (PSM). Statistical analyses were corrected for age, gender, and renal function. MS subjects presented significantly lower serum UA levels than controls (analysis of variance, p=0.014, adjusted r2=0.3036). Linear regression analysis showed a relationship between UA levels and disease duration (p<0.001, adjusted r2=0.3158, coefficient -0.00039), time from diagnosis (p<0.001, adjusted r2=0.3100, coefficient -0.0012), and Expanded Disability Status Scale (EDSS) (p<0.001, adjusted r2=0.3230, coefficient -0.1). CONCLUSIONS Our findings support the importance of serum UA as a biomarker of MS disability and progression. Further studies with longitudinal design should be specifically designed to evaluate the importance of UA in the different stages of MS and in relation to distinct therapeutic strategies.
Collapse
|
49
|
Emamgholipour S, Hossein-nezhad A, Sahraian MA, Askarisadr F, Ansari M. Evidence for possible role of melatonin in reducing oxidative stress in multiple sclerosis through its effect on SIRT1 and antioxidant enzymes. Life Sci 2016; 145:34-41. [DOI: 10.1016/j.lfs.2015.12.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/15/2015] [Accepted: 12/05/2015] [Indexed: 11/25/2022]
|
50
|
Carmona-Aparicio L, Pérez-Cruz C, Zavala-Tecuapetla C, Granados-Rojas L, Rivera-Espinosa L, Montesinos-Correa H, Hernández-Damián J, Pedraza-Chaverri J, Sampieri AIII, Coballase-Urrutia E, Cárdenas-Rodríguez N. Overview of Nrf2 as Therapeutic Target in Epilepsy. Int J Mol Sci 2015; 16:18348-67. [PMID: 26262608 PMCID: PMC4581249 DOI: 10.3390/ijms160818348] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a biochemical state of imbalance in the production of reactive oxygen and nitrogen species and antioxidant defenses. It is involved in the physiopathology of degenerative and chronic neuronal disorders, such as epilepsy. Experimental evidence in humans and animals support the involvement of oxidative stress before and after seizures. In the past few years, research has increasingly focused on the molecular pathways of this process, such as that involving transcription factor nuclear factor E2-related factor 2 (Nrf2), which plays a central role in the regulation of antioxidant response elements (ARE) and modulates cellular redox status. The aim of this review is to present experimental evidence on the role of Nrf2 in this neurological disorder and to further determine the therapeutic impact of Nrf2 in epilepsy.
Collapse
Affiliation(s)
- Liliana Carmona-Aparicio
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| | - Claudia Pérez-Cruz
- Laboratory of Neuroplasticity and Neurodegeneration, Cinvestav, D.F. 07360, Mexico; E-Mail:
| | - Cecilia Zavala-Tecuapetla
- Laboratory of Physiology of the Reticular Formation, National Institute of Neurology and Neurosurgery-MVS, D.F. 14269, Mexico; E-Mail:
| | - Leticia Granados-Rojas
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| | | | | | - Jacqueline Hernández-Damián
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, D.F. 04150, Mexico; E-Mails: (J.H.-D.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, D.F. 04150, Mexico; E-Mails: (J.H.-D.); (J.P.-C.)
| | - Aristides III Sampieri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, D.F. 04150, Mexico; E-Mails: (J.H.-D.); (J.P.-C.)
| | - Elvia Coballase-Urrutia
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| | - Noemí Cárdenas-Rodríguez
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| |
Collapse
|