1
|
Li Z, Fu R, Wen X, Zhang L. Network analysis reveals miRNA crosstalk between periodontitis and oral squamous cell carcinoma. BMC Oral Health 2023; 23:19. [PMID: 36639776 PMCID: PMC9840318 DOI: 10.1186/s12903-022-02704-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the malignant tumors with a poor prognosis. Periodontitis (PD is considered a high-risk factor for OSCC, but the genetic mechanism is rarely studied. This study aims to link OSCC and PD by identifying common differentially expressed miRNAs (Co-DEmiRNAs), their related genes (Hub genes), transcription factors (TFs), signaling pathways, enrichment functions, and compounds, and searching for genetic commonalities. METHODS The miRNAs expression datasets of OSCC and PD were searched from the GEO database. The miRNA and related crosstalk mechanism between OSCC and PD was obtained through a series of analyses. RESULTS hsa-mir-497, hsa-mir-224, hsa-mir-210, hsa-mir-29c, hsa-mir-486-5p, and hsa-mir-31are the top miRNA nodes in Co-DEmiRNA-Target networks. The most significant candidate miRNA dysregulation genes are ZNF460, FBN1, CDK6, BTG2, and CBX6, while the most important dysregulation TF includes HIF1A, TP53, E2F1, MYCN, and JUN. 5-fluorouracil, Ginsenoside, Rh2, and Formaldehyde are the most correlated compounds. Enrichment analysis revealed cancer-related pathways and so on. CONCLUSIONS The comprehensive analysis reveals the interacting genetic and molecular mechanism between OSCC and PD, linking both and providing a foundation for future basic and clinical research.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Rao Fu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xutao Wen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
2
|
Nascente EDP, Amorim RL, Fonseca-Alves CE, de Moura VMBD. Comparative Pathobiology of Canine and Human Prostate Cancer: State of the Art and Future Directions. Cancers (Basel) 2022; 14:2727. [PMID: 35681707 PMCID: PMC9179314 DOI: 10.3390/cancers14112727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
First described in 1817, prostate cancer is considered a complex neoplastic entity, and one of the main causes of death in men in the western world. In dogs, prostatic carcinoma (PC) exhibits undifferentiated morphology with different phenotypes, is hormonally independent of aggressive character, and has high rates of metastasis to different organs. Although in humans, the risk factors for tumor development are known, in dogs, this scenario is still unclear, especially regarding castration. Therefore, with the advent of molecular biology, studies were and are carried out with the aim of identifying the main molecular mechanisms and signaling pathways involved in the carcinogenesis and progression of canine PC, aiming to identify potential biomarkers for diagnosis, prognosis, and targeted treatment. However, there are extensive gaps to be filled, especially when considering the dog as experimental model for the study of this neoplasm in humans. Thus, due to the complexity of the subject, the objective of this review is to present the main pathobiological aspects of canine PC from a comparative point of view to the same neoplasm in the human species, addressing the historical context and current understanding in the scientific field.
Collapse
Affiliation(s)
- Eduardo de Paula Nascente
- School of Veterinary Medicine and Animal Science, Federal University of Goiás, Goiânia 74001-970, Brazil;
| | - Renée Laufer Amorim
- Veterinary Clinic Department, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-970, Brazil;
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-970, Brazil;
| | | |
Collapse
|
3
|
Li L, Yu J, Cheng S, Peng Z, Ben-David Y, Luo H. Transcription factor Fli-1 as a new target for antitumor drug development. Int J Biol Macromol 2022; 209:1155-1168. [PMID: 35447268 DOI: 10.1016/j.ijbiomac.2022.04.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023]
Abstract
The transcription factor Friend leukemia virus integration 1 (Fli-1) belonging to the E26 Transformation-Specific (ETS) transcription factor family is not only expressed in normal cells such as hematopoietic stem cells and vascular endothelial cells, but also abnormally expressed in various malignant tumors including Ewing sarcoma, Merkel cell sarcoma, small cell lung carcinoma, benign or malignant hemangioma, squamous cell carcinoma, adenocarcinoma, bladder cancer, leukemia, and lymphoma. Fli-1 binds to the promoter or enhancer of the target genes and participates in a variety of physiological and pathological processes of tumor cells, including cell growth, proliferation, differentiation, and apoptosis. The expression of Fli-1 gene is related to the specific biological functions and characteristics of the tissue in which it is located. In tumor research, Fli-1 gene is used as a specific marker for the occurrence, metastasis, efficacy, and prognosis of tumors, thus, a potential new target for tumor diagnosis and treatment. These studies indicated that Fli-1 may be a specific candidate for antitumor drug development. Recent studies identified small molecules regulating Fli-1 thanks to our screened strategy of natural products and their derivatives. Therefore, in this review, the advanced research on Fli-1 as a target for antitumor drug development is analyzed in different cancers. The inhibitors and agonists of Fli-1 that regulate its expression are introduced and their clinical applications in the treatment of cancer, thus providing new therapeutic strategies.
Collapse
Affiliation(s)
- Lanlan Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; College of Pharmacy, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Jia Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Sha Cheng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Zhilin Peng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Heng Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China.
| |
Collapse
|
4
|
Application of Proteogenomics to Urine Analysis towards the Identification of Novel Biomarkers of Prostate Cancer: An Exploratory Study. Cancers (Basel) 2022; 14:cancers14082001. [PMID: 35454907 PMCID: PMC9031064 DOI: 10.3390/cancers14082001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is one of the most common cancers. Due to the limited and invasive approaches for PCa diagnosis, it is crucial to identify more accurate and non-invasive biomarkers for its detection. The aim of our study was to non-invasively uncover new protein targets for detecting PCa using a proteomics and proteogenomics approach. This work identified several dysregulated mutant protein isoforms in urine from PCa patients, some of them predicted to have a protective or an adverse role in these patients. These results are promising given urine’s non-invasive nature and offers an auspicious opportunity for research and development of PCa biomarkers. Abstract To identify new protein targets for PCa detection, first, a shotgun discovery experiment was performed to characterize the urinary proteome of PCa patients. This revealed 18 differentially abundant urinary proteins in PCa patients. Second, selected targets were clinically tested by immunoblot, and the soluble E-cadherin fragment was detected for the first time in the urine of PCa patients. Third, the proteogenome landscape of these PCa patients was characterized, revealing 1665 mutant protein isoforms. Statistical analysis revealed 6 differentially abundant mutant protein isoforms in PCa patients. Analysis of the likely effects of mutations on protein function and PPIs involving the dysregulated mutant protein isoforms suggests a protective role of mutations HSPG2*Q1062H and VASN*R161Q and an adverse role of AMBP*A286G and CD55*S162L in PCa patients. This work originally characterized the urinary proteome, focusing on the proteogenome profile of PCa patients, which is usually overlooked in the analysis of PCa and body fluids. Combined analysis of mass spectrometry data using two different software packages was performed for the first time in the context of PCa, which increased the robustness of the data analysis. The application of proteogenomics to urine proteomic analysis can be very enriching in mutation-related diseases such as cancer.
Collapse
|
5
|
Wang KX, Du GH, Qin XM, Gao L. Compound Kushen Injection intervenes metabolic reprogramming and epithelial-mesenchymal transition of HCC via regulating β-catenin/c-Myc signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153781. [PMID: 34649212 DOI: 10.1016/j.phymed.2021.153781] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most extensive and most deadly cancers worldwide. The invasion and metastasis characteristics of HCC dramatically affect the prognosis and survival of HCC patients. Compound Kushen Injection (CKI) is a GMP produced, proverbially applied traditional Chinese medicine formula in China to treat cancer-associated pains, and used as an adjunctive therapy for HCC. Until so far, whether CKI could suppress the metastasis of HCC through regulation of epithelial-mesenchymal transition or metabolic reprogramming is still ambiguous. PURPOSE In this study, the anti-metastasis effects of CKI were clarified and its pharmacological mechanisms were systematically explored. METHODS Cell invasion and cell adhesion assay were performed in SMMC-7721 cells to assess the anti-metastasis role of CKI, and the histopathological evaluation and biochemical detection were utilized in DEN-induced HCC rats to verify the anti-HCC effect of CKI. Serum and liver samples were analyzed with 1H NMR metabolomics approach to screen the differential metabolites and further target quantification the content of key metabolites. Finally, western blotting and immunofluorescence assay were applied to verify the crucial signaling pathway involved in metabolites. RESULTS CKI markedly repressed the invasion and adhesion in SMMC-7721 cells and significantly improved the liver function of DEN-induced HCC rats. CKI significantly regulated the expression of epithelial-mesenchymal transition (EMT) markers (Vimentin and E-cadherin). Metabolomics results showed that CKI regulated the metabolic reprogramming of HCC by inhibiting the key metabolites (citrate and lactate) and enzymes (HK and PK) in glycolysis process. Importantly, we found that c-Myc mediates the inhibitory effect of CKI on glycolysis. We further demonstrated that CKI inhibits c-Myc expression through modulating Wnt/β-catenin pathway in SMMC-7721 cells and DEN-induced HCC rats. Furthermore, through activating Wnt/β-catenin pathway with LiCl, the inhibitory effects of CKI on HCC were diminished. CONCLUSION Together, this study reveals that CKI intervenes metabolic reprogramming and epithelial-mesenchymal transition of HCC via regulating β-catenin/c-Myc signaling pathway. Our research provides a new understanding of the mechanism of CKI against invasion and metastasis of HCC from the perspective of metabolic reprogramming.
Collapse
Affiliation(s)
- Ke-Xin Wang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| |
Collapse
|
6
|
Hou CP, Tsui KH, Chang KS, Sung HC, Hsu SY, Lin YH, Yang PS, Chen CL, Feng TH, Juang HH. Caffeic acid phenethyl ester inhibits the growth of bladder carcinoma cells by upregulating growth differentiation factor 15. Biomed J 2021; 45:763-775. [PMID: 34662721 DOI: 10.1016/j.bj.2021.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Caffeic acid phenethyl ester (CAPE), a bioactive component of propolis, has beneficial effects on cancer prevention. Growth differentiation factor 15 (GDF15) is an antitumor gene of bladder cancer. Therefore, this study investigated the anti-cancer effect of CAPE on bladder carcinoma cells and related mechanisms. METHODS The expressions of GDF15, N-myc downstream-regulated gene 1 (NDRG1), and maspin, and the activations of ERK, JNK, p38, and AMPKα1/2 in human bladder cells after gene transfection or knockdown were determined by immunoblot, RT-qPCR, and reporter assays. The assays of 5-ethynyl-2'-deoxyuridine (EdU), CyQUANT cell proliferation, and Matrigel invasion, and the xenograft animal study were used to assess the cell proliferation, invasion, and tumorigenesis. RESULTS GDF15 expression in epithelial cells was negatively correlated with neoplasia in vitro. Also, GDF15 exhibits in bladder fibroblasts and smooth muscle cells. CAPE-induced expressions of NDRG1 and maspin decreased cell proliferation and invasion of bladder carcinoma cells in a GDF15-dependent manner in vitro. The xenograft animal study suggesting CAPE attenuated tumor growth in vivo. CAPE increased phosphorylation of ERK, JNK, p38, and AMPKα1/2 to modulate the GDF15 expressions. Pretreatments with ERK, JNK, or p38 inhibitors partially inhibited the CAPE effects on the inductions of GDF15, NDRG1, or maspin. Knockdown of AMPKα1/2 attenuated the CAPE-induced GDF15 expression and cell proliferation in bladder carcinoma cells. CONCLUSIONS Our findings indicate that CAPE is a promising agent for anti-tumor growth in human bladder carcinoma cells via the upregulation of GDF15.
Collapse
Affiliation(s)
- Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Shuang Ho Hospital, New Taipei City, Taiwan; Department of Medicine; TMU Research Center of Urology and Kindey, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Pei-Shan Yang
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chien-Lun Chen
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsui-Hsia Feng
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; School of Nursing, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Luteolin and cancer metastasis suppression: focus on the role of epithelial to mesenchymal transition. Med Oncol 2021; 38:66. [PMID: 33950369 DOI: 10.1007/s12032-021-01508-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a physiological process that assumes a primary role in the induction of cancer metastasis. This results in increased cell renewal, and resistance to cell death and therapies. EMT, therefore, represents an effective strategy for regulating cancerous cell activity. A need for efficacy and low cytotoxicity epithelial to mesenchymal transition modifying drugs has led to the investigational testing of the efficacy of plethora of different groups of phytonutrients. Luteolin is a natural flavonoid inhibits the growth of cancer cells by various mechanisms, such as the stimulation of cancer cell apoptosis, cell cycle arrest, inhibition of cell replication, tumor growth, improvement of drug resistance, prevention of cancer cell intrusiveness and metastasis. This review article focuses on the anti-cancer and anti-metastatic potential of luteolin targeting various transcription factors, markers and signaling pathways associated with the repression of epithelial to mesenchymal transition.
Collapse
|
8
|
Wang N, Chang LL. Maspin suppresses cell invasion and migration in gastric cancer through inhibiting EMT and angiogenesis via ITGB1/FAK pathway. Hum Cell 2020; 33:663-675. [PMID: 32409959 DOI: 10.1007/s13577-020-00345-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
This study aims to investigate how Maspin affects the EMT and angiogenesis of gastric cancer (GC) cells via ITGB1/FAK pathway. Immunohistochemistry was used to evaluate the expressions of Maspin, ITGB1, FAK, E-cadherin, Vimentin, D2-40, and CD34 in GC and adjacent normal tissues from 160 patients. Then, the human GC cells with different degree of differentiation were transfected with Maspin CRISPR activation plasmid, ITGB1 siRNA and/or Maspin siRNA, followed by the following experiments, including qRT-PCR, western blotting, tube formation assay, Transwell assay and wound healing. GC tumor tissues manifested decreased Maspin with the activated ITGB1/FAK pathway. In tumor tissues, Maspin was negatively correlated with the expressions of ITGB1 and FAK, as well as Lauren's classification, differentiation degree, and TNM stage. Besides, Maspin was negatively related with lymphatic vessel density (LVD) and microvessel density (MVD), Vimentin and VEGF, but was positive correlated with E-cadherin. Maspin expression decreased, but ITGB1 and p-FAK expressions increased gradually in MKN-28 (well differentiated), SGC-7901 (moderate differentiated), and MKN-45 (poorly differentiated). Maspin CRISPR and ITGB1 siRNA increased E-cadherin with the decreased Vimentin, VEGF and bFGF, and the reductions of tube length. In comparison with the ITGB1 siRNA group, cells in the Maspin siRNA + ITGB1 siRNA group presented the more evident EMT and angiogenesis. Furthermore, ITGB1 siRNA reduced the malignancies of GC cells, which could be restored by Maspin siRNA. Maspin was downregulated in GC tissues, which could inhibit the EMT and angiogenesis by blocking the ITGB1/FAK pathway, thereby decreasing cell invasion and migration of GC.
Collapse
Affiliation(s)
- Ning Wang
- Department of Gastroenterology, No. 1 Ward, ShiJiaZhuang No. 1 Hospital, No. 36, Fanxi Road, Chang'an District, Shijiazhuang, 050011, China
| | - Li-Li Chang
- Department of Gastroenterology, No. 1 Ward, ShiJiaZhuang No. 1 Hospital, No. 36, Fanxi Road, Chang'an District, Shijiazhuang, 050011, China.
| |
Collapse
|
9
|
Lin YH, Tsui KH, Chang KS, Hou CP, Feng TH, Juang HH. Maspin is a PTEN-Upregulated and p53-Upregulated Tumor Suppressor Gene and Acts as an HDAC1 Inhibitor in Human Bladder Cancer. Cancers (Basel) 2019; 12:cancers12010010. [PMID: 31861435 PMCID: PMC7016534 DOI: 10.3390/cancers12010010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Maspin is a member of the clade B serine protease inhibitor superfamily and exhibits diverse regulatory effects in various types of solid tumors. We compared the expressions of maspin and determined its potential biological functions and regulatory mechanisms in bladder carcinoma cells in vitro and in vivo. The results of RT-qPCR indicated that maspin expressed significantly lower levels in the bladder cancer tissues than in the paired normal tissues. The immunohistochemical assays of human bladder tissue arrays revealed similar results. Maspin-knockdown enhanced cell invasion whereas the overexpression of maspin resulted in the opposite process taking place. Knockdown of maspin also enhanced tumorigenesis in vivo and downregulated protein levels of acetyl-histone H3. Moreover, in bladder carcinoma cells, maspin modulated HDAC1 target genes, including cyclin D1, p21, MMP9, and vimentin. Treatment with MK2206, which is an Akt inhibitor, upregulated maspin expression, whereas PTEN-knockdown or PTEN activity inhibitor (VO-OHpic) treatments demonstrated reverse results. The ectopic overexpression of p53 or camptothecin treatment induced maspin expression. Our study indicated that maspin is a PTEN-upregulated and p53-upregulated gene that blocks cell growth in vitro and in vivo, and may act as an HDAC1 inhibitor in bladder carcinoma cells. We consider that maspin is a potential tumor suppressor gene in bladder cancer.
Collapse
Affiliation(s)
- Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (Y.-H.L.); (K.-H.T.); (C.-P.H.)
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (Y.-H.L.); (K.-H.T.); (C.-P.H.)
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (Y.-H.L.); (K.-H.T.); (C.-P.H.)
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan;
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (Y.-H.L.); (K.-H.T.); (C.-P.H.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118112
| |
Collapse
|
10
|
Antioxidation and Antiapoptosis Characteristics of Heme Oxygenase-1 Enhance Tumorigenesis of Human Prostate Carcinoma Cells. Transl Oncol 2019; 13:102-112. [PMID: 31810001 PMCID: PMC6909070 DOI: 10.1016/j.tranon.2019.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Heme oxygenase-1 (HO-1) has antiinflammatory and antioxidant properties and is deemed as a tissue protector. However, effects of HO-1 in prostate cancer remain in controversy. We evaluated the role of HO-1 in prostate carcinoma in vitro and in vivo. Overexpression of HO-1 did not affect prostate cell proliferation in the normal condition but enhanced cell proliferation under serum starvation. HO-1 overexpression enhanced cell invasion of PC-3 cells through epithelial–mesenchymal transition (EMT) induction, which was supported by increased Slug, N-cadherin, and vimentin expressions. In the xenograft animal study, HO-1 overexpression enhanced PC-3 cell tumor growth in vivo. HO-1 attenuated reactive oxygen species induced by H2O2 or pyocyanin treatment in PC-3 and DU145 cells. HO-1 further reduced PC-3 and DU145 cell apoptosis induced by H2O2 or serum starvation. Our results suggested that HO-1 was able to increase prostate carcinoma cell invasion in vitro and tumor growth in vivo. The EMT induction and antioxidant and antiapoptotic effects of HO-1 in the prostate carcinoma cells may be responsible for these findings.
Collapse
|
11
|
Fonseca-Alves CE, Kobayashi PE, Leis-Filho AF, Lainetti PDF, Grieco V, Kuasne H, Rogatto SR, Laufer-Amorim R. E-Cadherin Downregulation is Mediated by Promoter Methylation in Canine Prostate Cancer. Front Genet 2019; 10:1242. [PMID: 31850082 PMCID: PMC6895247 DOI: 10.3389/fgene.2019.01242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
E-cadherin is a transmembrane glycoprotein responsible for cell-to-cell adhesion, and its loss has been associated with metastasis development. Although E-cadherin downregulation was previously reported in canine prostate cancer (PC), the mechanism involved in this process is unclear. It is well established that dogs, besides humans, spontaneously develop PC with high frequency; therefore, canine PC is an interesting model to study human PC. In human PC, CDH1 methylation has been associated with E-cadherin downregulation. However, no previous studies have described the methylation pattern of CDH1 promoter in canine PC. Herein, we evaluated the E-cadherin protein and gene expression in canine PC compared to normal tissues. DNA methylation pattern was investigated as a regulatory mechanism of CDH1 silencing. Our cohort is composed of 20 normal prostates, 20 proliferative inflammatory atrophy (PIA) lesions, 20 PC, and 11 metastases from 60 dogs. The E-cadherin protein expression was assessed by immunohistochemistry and western blotting and gene expression by qPCR. Bisulfite- pyrosequencing assay was performed to investigate the CDH1 promoter methylation pattern. Membranous E-cadherin expression was observed in all prostatic tissues. A higher number of E-cadherin negative cells was detected more frequently in PC compared to normal and PIA samples. High-grade PC showed a diffuse membranous positive immunostaining. Furthermore, PC patients with a higher number of E-cadherin negative cells presented shorter survival time and higher Gleason scores. Western blotting and qPCR assays confirmed the immunohistochemical results, showing lower E-cadherin protein and gene expression levels in PC compared to normal samples. We identified CDH1 promoter hypermethylation in PIA and PC samples. An in vitro assay with two canine prostate cancer cells (PC1 and PC2 cell lines) was performed to confirm the methylation as a regulatory mechanism of E-cadherin expression. PC1 cell line presented CDH1 hypermethylation and after 5-Aza-dC treatment, a decreased CDH1 methylation and increased gene expression levels were observed. Positive E-cadherin cells were massively found in metastases (mean of 90.6%). In conclusion, low levels of E-cadherin protein, gene downregulation and CDH1 hypermethylation was detected in canine PC. However, in metastatic foci occur E-cadherin re-expression confirming its relevance in these processes.
Collapse
Affiliation(s)
- Carlos Eduardo Fonseca-Alves
- Institute of Health Sciences, Paulista University—UNIP, Bauru, Brazil
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| | - Priscila Emiko Kobayashi
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| | - Antonio Fernando Leis-Filho
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| | - Patricia de Faria Lainetti
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| | - Valeria Grieco
- Department of Veterinary Medicine, Università degli studi di Milano, Milan, Italy
| | - Hellen Kuasne
- International Center for Research (CIPE), AC Camargo Cancer Center, Sao Paulo, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | - Renee Laufer-Amorim
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| |
Collapse
|
12
|
Transgelin, a p53 and PTEN-Upregulated Gene, Inhibits the Cell Proliferation and Invasion of Human Bladder Carcinoma Cells in Vitro and in Vivo. Int J Mol Sci 2019; 20:ijms20194946. [PMID: 31591355 PMCID: PMC6801752 DOI: 10.3390/ijms20194946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/14/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022] Open
Abstract
Transgelin (TAGLN/SM22-α) is a regulator of the actin cytoskeleton, affecting the survival, migration, and apoptosis of various cancer cells divergently; however, the roles of TAGLN in bladder carcinoma cells remain inconclusive. We compared expressions of TAGLN in human bladder carcinoma cells to the normal human bladder tissues to determine the potential biological functions and regulatory mechanisms of TAGLN in bladder carcinoma cells. Results of RT-qPCR and immunoblot assays indicated that TAGLN expressions were higher in bladder smooth muscle cells, fibroblast cells, and normal epithelial cells than in carcinoma cells (RT-4, HT1376, TSGH-8301, and T24) in vitro. Besides, the results of RT-qPCR revealed that TAGLN expressions were higher in normal tissues than the paired tumor tissues. In vitro, TAGLN knockdown enhanced cell proliferation and invasion, while overexpression of TAGLN had the inverse effects in bladder carcinoma cells. Meanwhile, ectopic overexpression of TAGLN attenuated tumorigenesis in vivo. Immunofluorescence and immunoblot assays showed that TAGLN was predominantly in the cytosol and colocalized with F-actin. Ectopic overexpression of either p53 or PTEN induced TAGLN expression, while p53 knockdown downregulated TAGLN expression in bladder carcinoma cells. Our results indicate that TAGLN is a p53 and PTEN-upregulated gene, expressing higher levels in normal bladder epithelial cells than carcinoma cells. Further, TAGLN inhibited cell proliferation and invasion in vitro and blocked tumorigenesis in vivo. Collectively, it can be concluded that TAGLN is an antitumor gene in the human bladder.
Collapse
|
13
|
Migration and Invasion Enhancer 1 Is an NF-ĸB-Inducing Gene Enhancing the Cell Proliferation and Invasion Ability of Human Prostate Carcinoma Cells In Vitro and In Vivo. Cancers (Basel) 2019; 11:cancers11101486. [PMID: 31581708 PMCID: PMC6826896 DOI: 10.3390/cancers11101486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
Migration and invasion enhancer 1 (MIEN1) is a membrane-anchored protein and exists in various cancerous tissues. However, the roles of MIEN1 in prostate cancer have not yet been clearly addressed. We determined the expression, biological functions, and regulatory mechanisms of MIEN1 in the prostate. The results of immunohistochemical analysis indicated that MIEN1 was expressed specifically in epithelial cells and significantly higher in adenocarcinoma as compared to in normal tissues. MIEN1 enhanced in vitro cell proliferation, invasion, and in vivo tumorigenesis. Meanwhile, MIEN1 attenuated cisplatin-induced apoptosis in PC-3 cells. Overexpression of NF-ĸB-inducing kinase (NIK) enhanced MIEN1 expression, while overexpression of NF-ĸB inhibitor α (IĸBα) blocked MIEN1 expression in PC-3 cells. In prostate carcinoma cells, MIEN1 provoked Akt phosphorylation; moreover, MIEN1 downregulated N-myc downstream regulated 1 (NDRG1) but upregulated interleukin-6 (IL-6) gene expression. MK2206, an Akt inhibitor, impeded the modulation of MIEN1 on NDRG1 and IL-6 expressions. Our studies suggest that MIEN1 is an NF-ĸB downstream oncogene in the human prostate. Accordingly, the modulation of Akt signaling in the gene expressions of NDRG1 and IL-6 may account for the functions of MIEN1 in cell proliferation, invasion, and tumorigenesis in prostate carcinoma cells.
Collapse
|
14
|
Meiners J, Schulz K, Möller K, Höflmayer D, Burdelski C, Hube-Magg C, Simon R, Göbel C, Hinsch A, Reiswich V, Weidemann S, Izbicki JR, Sauter G, Jacobsen F, Möller-Koop C, Mandelkow T, Blessin NC, Lutz F, Viehweger F, Lennartz M, Fraune C, Heinzer H, Minner S, Bonk S, Huland H, Graefen M, Schlomm T, Büscheck F. Upregulation of SPDEF is associated with poor prognosis in prostate cancer. Oncol Lett 2019; 18:5107-5118. [PMID: 31612022 PMCID: PMC6781494 DOI: 10.3892/ol.2019.10885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
SAM pointed domain-containing Ets transcription factor (SPDEF), a member of the ETS transcription factor family, has been associated with prostate cancer development; however, its role in tumour development and progression is controversial. In the present study, SPDEF expression was analysed on a tissue microarray with >12,000 prostate cancer samples. SPDEF expression levels were higher in most prostate cancer samples than in normal prostate epithelium, suggesting SPDEF was upregulated in cancer. Nuclear SPDEF expression was identified in 80% of prostate cancer samples, and considered weak in 26.4%, moderate in 40.1% and strong in 13.5% of cases. SPDEF positivity was significantly associated with tumour stage, Gleason grade, lymph node metastasis and PSA recurrence (all P<0.0001). SPDEF overexpression was more common in ERG positive (94%) than in ERG negative cancer (69%; P<0.0001). Elevated SPDEF expression predicted poor prognosis independent from established prognostic parameters, including Gleason grade, pT, pN, serum PSA level and nodal status (P<0.01). In summary, SPDEF overexpression was associated with aggressive behaviour, particularly in ERG negative prostate cancer, and may have potential for clinical application.
Collapse
Affiliation(s)
- Jan Meiners
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.,General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Katharina Schulz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Katharina Möller
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Doris Höflmayer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christoph Burdelski
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Cosima Göbel
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Andrea Hinsch
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Viktor Reiswich
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sören Weidemann
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Jacob R Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Frank Jacobsen
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christina Möller-Koop
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Tim Mandelkow
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Niclas C Blessin
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Florian Lutz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Florian Viehweger
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Maximillian Lennartz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christoph Fraune
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Hans Heinzer
- Prostate Cancer Center, Martini-Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sarah Minner
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sarah Bonk
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Hartwig Huland
- Prostate Cancer Center, Martini-Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Markus Graefen
- Prostate Cancer Center, Martini-Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.,Department of Urology, Charité, Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | - Franziska Büscheck
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
15
|
Xiao B, Kuang Z, Zhang W, Hang J, Chen L, Lei T, He Y, Deng C, Li W, Lu J, Qu J, Zhou Q, Hao W, Sun Z, Li L. Glutamate Ionotropic Receptor Kainate Type Subunit 3 (GRIK3) promotes epithelial-mesenchymal transition in breast cancer cells by regulating SPDEF/CDH1 signaling. Mol Carcinog 2019; 58:1314-1323. [PMID: 30977227 PMCID: PMC6618265 DOI: 10.1002/mc.23014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
Abstract
Glutamate Ionotropic Receptor Kainate Type Subunit 3 (GRIK3) is an important excitatory neurotransmitter receptor that plays a significant role in various neurodegenerative diseases. However, the biological functions of GRIK3 in malignancies are largely unknown because of limited related studies. Here, we primarily reported that the expression of GRIK3 was higher in breast cancer tissues than in adjacent noncancerous tissues. GRIK3 expression was also positively correlated with the prognosis of patients with breast cancer. GRIK3 promoted the proliferation and migration abilities of breast cancer cells and enhanced the growth of orthotopically implanted tumors. Mechanically, GRIK3 influenced a range of signaling pathways and key signal transducers, including two epithelial-mesenchymal transition regulators, SPDEF and CDH1. Heterogenous expression of SPDEF and CDH1 counteracted the migration and invasion abilities, respectively, of breast cancer cells induced by GRIK3. Moreover, overexpression of GRIK3 increased the expression of mesenchymal markers and decreased the expression of epithelial markers, resulting in the translocation of β-catenin into the nucleus and the increased β-catenin transcriptional activity. In conclusion, the present study reported a novel oncogenic role of GRIK3. Meanwhile, GRIK3, as a membrane receptor, may also serve as a potential therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Zhenzhan Kuang
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Weiyun Zhang
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Jianfeng Hang
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Lidan Chen
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Ting Lei
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Yongyin He
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Chun Deng
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory ScienceGuizhou Medical UniversityGuiyangChina
| | - Weiwei Li
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory ScienceGuizhou Medical UniversityGuiyangChina
| | - Jingrun Lu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory ScienceGuizhou Medical UniversityGuiyangChina
| | - Jing Qu
- Department of Laboratory MedicineNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Quan Zhou
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Wenbo Hao
- Institute of Antibody Engineering, School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Zhaohui Sun
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Linhai Li
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| |
Collapse
|
16
|
Banias L, Jung I, Gurzu S. Subcellular expression of maspin – from normal tissue to tumor cells. World J Meta-Anal 2019; 7:142-155. [DOI: 10.13105/wjma.v7.i4.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Maspin or SerpinB5, a member of the serine protease inhibitor family, was shown to function as a tumor suppressor, especially in carcinomas. It seems to inhibit invasion, tumor cells motility and angiogenesis, and promotes apoptosis. Maspin can also induce epigenetic changes such as cytosine methylation, de-acetylation, chromatin condensation, and histone modulation. In this review, a comprehensive synthesis of the literature was done to present maspin function from normal tissues to pathologic conditions. Data was sourced from MEDLINE and PubMed. Study eligibility criteria included: Published in English, between 1994 and 2019, specific to humans, and with full-text availability. Most of the 118 studies included in the present review focused on maspin immunostaining and mRNA levels. It was shown that maspin function is organ-related and depends on its subcellular localization. In malignant tumors, it might be downregulated or negative (e.g., carcinoma of prostate, stomach, and breast) or upregulated (e.g., colorectal and pancreatic tumors). Its subcellular localization (nuclear vs cytoplasm), which can be proved using immunohistochemical methods, was shown to influence both tumor behavior and response to chemotherapy. Although the number of maspin-related papers increased, the exact role of this protein remains unknown, and its interpretation should be done with extremely high caution.
Collapse
Affiliation(s)
- Laura Banias
- Department of Pathology, University of Medicine, Pharmacy, Sciences and Technology of Tirgu-Mures, Tirgu Mures 540139, Romania
- Department of Pathology, Clinical County Emergency Hospital, Tirgu Mures 540139, Romania
| | - Ioan Jung
- Department of Pathology, University of Medicine, Pharmacy, Sciences and Technology of Tirgu-Mures, Tirgu Mures 540139, Romania
| | - Simona Gurzu
- Department of Pathology, University of Medicine, Pharmacy, Sciences and Technology of Tirgu-Mures, Tirgu Mures 540139, Romania
- Department of Pathology, Clinical County Emergency Hospital, Tirgu Mures 540139, Romania
| |
Collapse
|
17
|
Zhang YQ, Pei JH, Shi SS, Guo XS, Cui GY, Li YF, Zhang HP, Hu WQ. CRISPR/Cas9-mediated knockout of the PDEF gene inhibits migration and invasion of human gastric cancer AGS cells. Biomed Pharmacother 2019; 111:76-85. [DOI: 10.1016/j.biopha.2018.12.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022] Open
|
18
|
Chiang KC, Huang ST, Wu RC, Huang SC, Yeh TS, Chen MH, Hsu JT, Chen LW, Kuo SF, Chueh HY, Juang HH, Hung SI, Yeh CN, Pang JHS. Interferon α-inducible protein 27 is an oncogene and highly expressed in cholangiocarcinoma patients with poor survival. Cancer Manag Res 2019; 11:1893-1905. [PMID: 30881116 PMCID: PMC6400119 DOI: 10.2147/cmar.s196485] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Cholangiocarcinoma (CCA) is a devastating disease. Interferon α-inducible protein 27 (IFI27), originally known to involve in innate immunity, is later found to intervene in cell proliferation, leading to inventive studies regarding the role of IFI27 in cancer treatment. We aimed to investigate the role of IFI27 in CCA. MATERIALS AND METHODS Cell proliferation, migration, and invasion assays, Western blot, gene transfection and knockdown, immunofluorescent and immunohistochemical stains, and xenograft animal model were applied. RESULTS IFI27 knockdown in CCA cells induced cell cycle arrest in S phase, resulting in lower cell proliferative rate in vitro and in vivo. IFI27 knockdown attenuated CCA cell migration and invasion through inhibition of epithelial-mesenchymal transition, which was supported by increased E-cadherin and decreased N-cadherin and fibronectin. Filamentous actin level was also reduced. IFI27 knockdown further repressed expression and secretion of vascular endothelial growth factor (VEGF-A), a strong stimulator of angiogenesis, through downregulation of c-jun and c-fos, which was supported in vitro by the finding that human vascular endothelial cells grew more slowly in conditioned medium of IFI27 knockdown on CCA cells and in vivo by the lower erythropoietin concentration found in the xenografted tumors derived from IFI27 knockdown on CCA cells. In addition, anti-VEGF-A antibody treatment was able to repress CCA cell growth. To the contrary, IFI27 overexpression could increase CCA cell proliferation, migration, and invasion. Clinically, higher IFI27 expression was linked to inferior overall survival of CCA patients. CONCLUSION Our data strongly suggest that IFI27 could be deemed as a potential target for CCA treatment.
Collapse
Affiliation(s)
- Kun-Chun Chiang
- General Surgery Department, Chang Gung, Memorial Hospital, Chang Gung University, Keelung, Taiwan, ROC
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Ren-Chin Wu
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Kwei-Shan, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Shih-Chiang Huang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Kwei-Shan, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Ta-Sen Yeh
- General Surgery Department, Chang Gung Memorial Hospital, Kwei-Shan, Chang Gung University, Taoyuan, Taiwan, ROC,
| | - Ming-Huang Chen
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Jun-Te Hsu
- General Surgery Department, Chang Gung Memorial Hospital, Kwei-Shan, Chang Gung University, Taoyuan, Taiwan, ROC,
| | - Li-Wei Chen
- Department of Gastroenterology, Chang Gung Memorial Hospital, Chang Gung University, Keelung, Taiwan, ROC
| | - Sheng-Fong Kuo
- Department of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chang Gung University, Keelung, Taiwan, ROC
| | - Ho-Yen Chueh
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Shuen-Iu Hung
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chun-Nan Yeh
- General Surgery Department, Chang Gung Memorial Hospital, Kwei-Shan, Chang Gung University, Taoyuan, Taiwan, ROC,
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan, ROC,
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkow, Taoyuan City, Taiwan, ROC,
| |
Collapse
|
19
|
Tsui KH, Hou CP, Chang KS, Lin YH, Feng TH, Chen CC, Shin YS, Juang HH. Metallothionein 3 Is a Hypoxia-Upregulated Oncogene Enhancing Cell Invasion and Tumorigenesis in Human Bladder Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20040980. [PMID: 30813460 PMCID: PMC6413184 DOI: 10.3390/ijms20040980] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022] Open
Abstract
Metallothioneins have been viewed as modulators in a number of biological regulations regarding cancerous development; however, the function of metallothionein 3 (MT3) in bladder cancer is unexplored. We determined the regulatory mechanisms and potential function of MT3 in bladder carcinoma cells. Real-Time Reverse Transcriptase-Polymerase Chain Reaction (RT-qPCR) assays revealed that TSGH-8301 cells expressed more MT3 levels than RT-4, HT1376, and T24 cells. Immunoblot and RT-qPCR assays showed that arsenic (AS₂O₃) treatments enhanced the gene expression of MT3. Hypoxia induced HIF-1α, HIF-2α, and MT3 expression; furthermore, HIF-2α-knockdown attenuated hypoxic activation on MT3 expression. Ectopic overexpression of MT3 increased cell proliferation, invasion, and tumorigenesis significantly in T24 and HT1376 cells in vitro and in vivo; however, MT3-knockdown in TSGH-8301 cells had the reverse effect. Moreover, knockdown of MT3 enhanced arsenic-induced apoptosis determined by the Annexin V-FITC apoptosis assay. MT3-overexpression downregulated the gene expressions of N-myc downstream regulated gene 1 (NDRG1), N-myc downstream regulated gene 2 (NDRG2), and the mammary serine protease inhibitor (MASPIN) in HT1376 and T24 cells, whereas MT3-knockdown in TSGH-8301 cells had the opposite effect. The experiments indicated that MT3 is an arsenic- and hypoxia-upregulated oncogene that promotes cell growth and invasion of bladder carcinoma cells via downregulation of NDRG1, NDRG2, and MASPIN expressions.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan.
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan.
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan.
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan.
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan.
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan.
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan.
| | - Chiu-Chun Chen
- Department of Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan.
| | - Yi-Syuan Shin
- Department of Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan.
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan.
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan.
| |
Collapse
|
20
|
Puca L, Vlachostergios PJ, Beltran H. Neuroendocrine Differentiation in Prostate Cancer: Emerging Biology, Models, and Therapies. Cold Spring Harb Perspect Med 2019; 9:a030593. [PMID: 29844220 PMCID: PMC6360865 DOI: 10.1101/cshperspect.a030593] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although a de novo clinical presentation of small cell neuroendocrine carcinoma of the prostate is rare, a subset of patients previously diagnosed with prostate adenocarcinoma may develop neuroendocrine features in later stages of castration-resistant prostate cancer (CRPC) progression as a result of treatment resistance. Despite sharing clinical, histologic, and some molecular features with other neuroendocrine carcinomas, including small cell lung cancer, castration-resistant neuroendocrine prostate cancer (CRPC-NE) is clonally derived from prostate adenocarcinoma. CRPC-NE therefore retains early prostate cancer genomic alterations and acquires new molecular changes making them resistant to traditional CRPC therapies. This review focuses on recent advances in our understanding of CRPC-NE biology, the transdifferentiation/plasticity process, and development and characterization of relevant CRPC-NE preclinical models.
Collapse
Affiliation(s)
- Loredana Puca
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, New York 10021
- Division of Medical Oncology, Weill Cornell Medicine, New York, New York 10021
| | | | - Himisha Beltran
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, New York 10021
- Division of Medical Oncology, Weill Cornell Medicine, New York, New York 10021
| |
Collapse
|
21
|
Luk IY, Reehorst CM, Mariadason JM. ELF3, ELF5, EHF and SPDEF Transcription Factors in Tissue Homeostasis and Cancer. Molecules 2018; 23:molecules23092191. [PMID: 30200227 PMCID: PMC6225137 DOI: 10.3390/molecules23092191] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
Abstract
The epithelium-specific ETS (ESE) transcription factors (ELF3, ELF5, EHF and SPDEF) are defined by their highly conserved ETS DNA binding domain and predominant epithelial-specific expression profile. ESE transcription factors maintain normal cell homeostasis and differentiation of a number of epithelial tissues, and their genetic alteration and deregulated expression has been linked to the progression of several epithelial cancers. Herein we review the normal function of the ESE transcription factors, the mechanisms by which they are dysregulated in cancers, and the current evidence for their role in cancer progression. Finally, we discuss potential therapeutic strategies for targeting or reactivating these factors as a novel means of cancer treatment.
Collapse
Affiliation(s)
- Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - Camilla M Reehorst
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| |
Collapse
|
22
|
Chiang KC, Yang SW, Chang KP, Feng TH, Chang KS, Tsui KH, Shin YS, Chen CC, Chao M, Juang HH. Caffeic Acid Phenethyl Ester Induces N-myc Downstream Regulated Gene 1 to Inhibit Cell Proliferation and Invasion of Human Nasopharyngeal Cancer Cells. Int J Mol Sci 2018; 19:ijms19051397. [PMID: 29738439 PMCID: PMC5983775 DOI: 10.3390/ijms19051397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/27/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE), a bioactive component extracted from propolis, is widely studied due to its anti-cancer effect. Nasopharyngeal carcinoma (NPC) is distinct from other head and neck carcinomas and has a high risk of distant metastases. N-myc downstream regulated gene 1 (NDRG1) is demonstrated as a tumor suppressor gene in several cancers. Our result showed that CAPE treatment could repress NPC cell growth, through induction of S phase cell cycle arrest, and invasion. CAPE treatment stimulated NDRG1 expression in NPC cells. NDRG1 knockdown increased NPC cell proliferation and invasion and rendered NPC cells less responsive to CAPE growth-inhibiting effect, indicating CAPE repressed NPC cell growth partly through NDRG1indcution. CAPE treatment increased phosphorylation of ERK, JNK, and p38 in a dose- and time-dependent manner. Pre-treatments by inhibitors of ERK (PD0325901), JNK (SP600125), or p38 (SB201290), respectively, all could partly inhibit the CAPE effect on NDRG1 induction in NPC cells. Further, STAT3 activity was also repressed by CAPE in NPC cells. In summary, CAPE attenuates NPC cell proliferation and invasion by upregulating NDRG1 expression via MAPK pathway and by inhibiting phosphorylation of STAT3. Considering the poor prognosis of NPC patients with metastasis, CAPE could be a promising agent against NPC.
Collapse
Affiliation(s)
- Kun-Chun Chiang
- Zebrafish Center, Department of General Surgery, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
| | - Shih-Wei Yang
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
| | - Kai-Ping Chang
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital Lin-Kou, Kwei-Shan, Tao-Yuan 204, Taiwan;
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 244, Taiwan;
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 244, Taiwan;
| | - Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 244, Taiwan;
| | - Yi-Syuan Shin
- Department of Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 244, Taiwan; (Y.-S.S.); (C.-C.C.)
| | - Chiu-Chun Chen
- Department of Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 244, Taiwan; (Y.-S.S.); (C.-C.C.)
| | - Mei Chao
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 244, Taiwan;
- Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital Lin-Kou, Kwei-Shan, Tao-Yuan 244, Taiwan
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 244, Taiwan;
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 244, Taiwan;
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118112
| |
Collapse
|
23
|
Jiang H, Zhu Y, Zhou Z, Xu J, Jin S, Xu K, Zhang H, Sun Q, Wang J, Xu J. PRMT5 promotes cell proliferation by inhibiting BTG2 expression via the ERK signaling pathway in hepatocellular carcinoma. Cancer Med 2018; 7:869-882. [PMID: 29441724 PMCID: PMC5852340 DOI: 10.1002/cam4.1360] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/23/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that PRMT5, a protein arginine methyltransferase, has roles in cell growth regulation and cancer development. However, the role of PRMT5 in hepatocellular carcinoma (HCC) progression remains unclear. Here, we showed that PRMT5 expression was frequently upregulated in HCC tissues, and its expression was inversely correlated with overall survival in HCC patients. PRMT5 knockdown markedly inhibited in vitro HCC proliferation and in vivo tumorigenesis. We revealed that the mechanism of PRMT5‐induced proliferation was partially mediated by BTG downregulation, leading to cell cycle arrest during the G1 phase in HCC cells. Ectopic BTG2 overexpression decreased HCC growth, caused cell cycle arrest at the G1 phase, and downregulated Cyclin D1 and Cyclin E1 protein expression. Furthermore, we found that PRMT5‐induced ERK phosphorylation regulated BTG2 expression in HCC cells, whereas pretreatment with a selective ERK1/2 inhibitor (PD184352) significantly reversed the effect of PRMT5 on BTG2 expression. Our results indicated that PRMT5 promotes HCC proliferation by downregulating BTG2 expression via the ERK pathway.
Collapse
Affiliation(s)
- Hai Jiang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Zhu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Vascular and Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhenyu Zhou
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Junyang Xu
- Department of Neurology, Forth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510000, China
| | - Shaowen Jin
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kang Xu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Heyun Zhang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qing Sun
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jie Wang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Junyao Xu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
24
|
Zhou S, Sun X, Yu L, Zhou R, Li A, Li M, Yang W. Differential expression and clinical significance of epithelial-mesenchymal transition markers among different histological types of triple-negative breast cancer. J Cancer 2018; 9:604-613. [PMID: 29483966 PMCID: PMC5820928 DOI: 10.7150/jca.19190] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 08/20/2017] [Indexed: 01/08/2023] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is a heterogeneous disease closely associated with epithelial-to-mesenchymal transition (EMT). This study aimed to investigate the role of EMT in metaplastic carcinoma. Methods: E-cadherin, Slug, Twist and Vimentin levels were detected by immunohistochemistry in 167 TNBC tumors, including 145 invasive carcinomas of no special type (ICONSTs), 14 spindle cell carcinomas (SpCCs) and 8 matrix-producing carcinomas (MPCs). Results: Nuclear Slug and Twist were more frequently detected in SpCC and MPC tumors than that in ICONST tumors (p<0.001). The rate of E-cadherin loss was much lower in the ICONST tumors than that in the SpCC and MPC tumors (p<0.001). Vimentin was expressed in all SpCC and MPC tumors. Furthermore, nuclear expression of Slug and Twist was positively associated with the cytoplasmic localization of Vimentin (p<0.001) and was inversely associated with membranous staining of E-cadherin (p<0.001). These trends were more apparent in the SpCC and MPC tumors than in the ICONST tumors. Follow-up data were available for 151 patients. The follow-up times ranged from 1 month to 11 years (mean: 74 m; median: 21 m). The median progression-free survival and overall survival times were 24 months (mean: 32 months) and 22 months (mean: 35 months), respectively. Tumor size, TNM stage and E-cadherin were found to be independent prognostic factors of TNBC. Conclusions: EMT may play an important role in TNBC, especially in MPC and SpCC. Further researches are needed to confirm this finding. The results of this study may facilitate the future development of targeted therapies based on alterations in the EMT and stem cell markers.
Collapse
Affiliation(s)
- Shuling Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Xiangjie Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Lin Yu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Ruoji Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Anqi Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Ming Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Wentao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
25
|
Tsui KH, Chang YL, Yang PS, Hou CP, Lin YH, Lin BW, Feng TH, Juang HH. The inhibitory effects of capillarisin on cell proliferation and invasion of prostate carcinoma cells. Cell Prolif 2017; 51:e12429. [PMID: 29271007 DOI: 10.1111/cpr.12429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/01/2017] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Capillarisin (Cap), an active component of Artemisia capillaris root extracts, is characterized by its anti-inflammatory, anti-oxidant and anti-cancer properties. Nevertheless, the functions of Cap in prostate cancer have not been fully explored. We evaluated the potential actions of Cap on the cell proliferation, migration and invasion of prostate carcinoma cells. MATERIALS AND METHODS Cell proliferation and cell cycle distribution were measured by water-soluble tetrazolium-1 and flow cytometry assays. The expression of cyclins, p21, p27, survivin, matrix metallopeptidase (MMP2 and MMP9) were assessed by immunoblotting assays. Effects of Cap on invasion and migration were determined by wound closure and matrigel transmigration assays. The constitutive and interlukin-6 (IL-6)-inducible STAT3 activation of prostate carcinoma cells were determined by immunoblotting and reporter assays. RESULTS Capillarisin inhibited androgen-independent DU145 and androgen-dependent LNCaP cell growth through the induction of cell cycle arrest at the G0/G1 phase by upregulating p21 and p27 while downregulating expression of cyclin D1, cyclin A and cyclin B. Cap decreased protein expression of survivin, MMP-2, and MMP-9 and therefore blocked the migration and invasion of DU145 cells. Cap suppressed constitutive and IL-6-inducible STAT3 activation in DU145 and LNCaP cells. CONCLUSIONS Our data indicate that Cap blocked cell growth by modulation of p21, p27 and cyclins. The inhibitory effects of Cap on survivin, MMP-2, MMP-9 and STAT3 activation may account for the suppression of invasion in prostate carcinoma cells. Our data suggest that Cap might be a therapeutic agent in treating advanced prostate cancer with constitutive STAT3 or IL-6-inducible STAT3 activation.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Ying-Ling Chang
- Department of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Graduate Institute of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Pei-Shan Yang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan.,Graduate Institute of Clinical Medicine Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Bing-Wei Lin
- Graduate Institute of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| |
Collapse
|
26
|
Tsui KH, Chiang KC, Lin YH, Chang KS, Feng TH, Juang HH. BTG2 is a tumor suppressor gene upregulated by p53 and PTEN in human bladder carcinoma cells. Cancer Med 2017; 7:184-195. [PMID: 29239139 PMCID: PMC5773943 DOI: 10.1002/cam4.1263] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/30/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022] Open
Abstract
Although widely deemed as a tumor suppressor gene, the role of B-cell translocation gene 2 (BTG2) in bladder cancer is still inconclusive. We investigated the role and regulatory mechanism of BTG2 in bladder cancer. BTG2 expression in human bladder tissues was determined by RT-qPCR and immunoblotting assays. Expressions of BTG2 and PTEN in bladder carcinoma cells were determined by immunoblotting, RT-qPCR, or reporter assays. The 3 H-thymidine incorporation assay, flow cytometry, and the xenograft animal model were used to determine the cell growth. BTG2 expression was lower in human bladder cancer tissues than normal bladder tissues. Highly differentiated bladder cancer cells, RT4, expressed higher BTG2 than the less-differentiated bladder cancer cells, HT1376 and T24. Overexpression of BTG2 in T24 cells inhibited cell growth in vitro and in vivo. Camptothecin and doxorubicin treatments in RT-4 cells or transient overexpression of p53 into p53-mutant HT1376 cells induced p53 and BTG2 expression. Further reporter assays with site-mutation of p53 response element from GGGAAAGTCC to GGAGTCC within BTG2 promoter area showed that p53-induced BTG2 gene expression was dependent on the p53 response element. Ectopic PTEN overexpression in T24 cells blocked the Akt signal pathway which attenuated cell growth via upregualtion of BTG2 gene expression, while reverse effect was found in PTEN-knockdown RT-4 cells. PTEN activity inhibitor (VO-OHpic) treatment decreased BTG2 expression in RT-4 and PTEN-overexpressed T24 cells. Our results suggested that BTG2 functioned as a bladder cancer tumor suppressor gene, and was induced by p53 and PTEN. Modulation of BTG2 expression seems a promising way to treat human bladder cancer.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan
| | - Kun-Chun Chiang
- Zebrafish center, Department of General Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan.,Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| |
Collapse
|
27
|
Chiang KC, Yeh TS, Huang CC, Chang YC, Juang HH, Cheng CT, Pang JHS, Hsu JT, Takano M, Chen TC, Kittaka A, Hsiao M, Yeh CN. MART-10 represses cholangiocarcinoma cell growth and high vitamin D receptor expression indicates better prognosis for cholangiocarcinoma. Sci Rep 2017; 7:43773. [PMID: 28256614 PMCID: PMC5335655 DOI: 10.1038/srep43773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/30/2017] [Indexed: 12/14/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a devastating disease due to no effective treatments available. Since the non-mineral functions of vitamin D emerges, 1α,25(OH)2D3, the active form of vitamin D, has been applied in anti-cancer researches. In this study, we demonstrated that both the 1α,25(OH)2D3 analog, MART-10, and 1α,25(OH)2D3 possessed anti-growth effect on human CCA cells with MART-10 much more potent than 1α,25(OH)2D3. The growth inhibition of both drugs were mediated by induction of G0/G1 cell cycle arrest through upregulation of p27 and downregulation of CDK4, CDK6, and cyclin D3. Human neutrophil gelatinase associated lipocalin (NGAL) was found to be involved in 1α,25(OH)2D3 and MART-10 meditated growth inhibition for CCA as knockdown of NGAL decreased Ki-67 expression in SNU308 cells and rendered SNU308 cells less responsive to 1α,25(OH)2D3 and MART-10 treatment. Vitamin D receptor (VDR) knockdown partly abolished MART-10-induced inhibition of NGAL and cell growth in SNU308 cells. The xenograft animal study demonstrated MART-10 could effectively repressed CCA growth in vivo without inducing obvious side effects. The IHC examination of human CCA specimen for VDR revealed that higher VDR expression was linked with better prognosis. Collectively, our results suggest that MART-10 could be a promising regimen for CCA treatment.
Collapse
Affiliation(s)
- Kun-Chun Chiang
- General Surgery Department, Chang Gung Memorial Hospital, Chang Gung University, Keelung, R.O.C, Taiwan
- Director of Zebrafish center of Keelung Chang Gung Memorial Hospital, R.O.C, Taiwan
| | - Ta-Sen Yeh
- General Surgery Department and Liver research center, Chang Gung Memorial Hospital, Chang Gung University, Kwei-Shan, Taoyuan, R.O.C, Taiwan
| | - Cheng-Cheng Huang
- Department of Pathology, Chang Gung Memorial Hospital, 222, Mai-Chin Road, Keelung, R.O.C, Taiwan
| | - Yu-Chan Chang
- Genomics Research Center, Academia Sinica, Taipei, R.O.C, Taiwan
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, 333, R.O.C, Taiwan
| | - Chi-Tung Cheng
- General Surgery Department and Liver research center, Chang Gung Memorial Hospital, Chang Gung University, Kwei-Shan, Taoyuan, R.O.C, Taiwan
| | - Jong-Hwei S. Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, R.O.C, Taiwan
| | - Jun-Te Hsu
- General Surgery Department and Liver research center, Chang Gung Memorial Hospital, Chang Gung University, Kwei-Shan, Taoyuan, R.O.C, Taiwan
| | - Masashi Takano
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa, 252-5195, Japan
| | - Tai C. Chen
- Boston University School of Medicine, M-1022, 715 Albany Street, Boston, MA 02118, USA
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa, 252-5195, Japan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, R.O.C, Taiwan
| | - Chun-Nan Yeh
- General Surgery Department and Liver research center, Chang Gung Memorial Hospital, Chang Gung University, Kwei-Shan, Taoyuan, R.O.C, Taiwan
| |
Collapse
|
28
|
Wang E, Wang D, Li B, Ma H, Wang C, Guan L, Zhang H, Yi L, Li S. Capn4 promotes epithelial-mesenchymal transition in human melanoma cells through activation of the Wnt/β-catenin pathway. Oncol Rep 2016; 37:379-387. [PMID: 27878263 DOI: 10.3892/or.2016.5247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/01/2016] [Indexed: 11/06/2022] Open
Abstract
Melanoma, as one of the most highly metastatic types of cancer, is resistant to current treatment methods, including popular targeted molecular therapy. Consequently, it is essential to develop a deeper understanding of the mechanisms involved in melanoma progression so that alternative treatments may be identified. To date, accumulating evidence supports the use of calpains, including calpain small subunit 1 (also known as Capn4 or CAPNS1), which affect cancer progression through many pathways, such as epithelial‑mesenchymal transition (EMT), the Wnt/β-catenin (β-catenin) and the nuclear factor κB (NF-κB) signaling pathways. The EMT pathway is well known as one of the most important events in tumor metastasis. The present study observed cross-talk among the EMT, β-catenin and NF-κB pathways. To identify the underlying mechanisms of Capn4 activity in melanoma cells, we determined Capn4 expression by gene chip and immunohistochemistral analyses in melanoma tissues and cells in vitro. The extent of apoptosis as determined by TUNEL assay, DAPI staining, and cleaved-caspase-3 assay was increased in human melanoma cells in which Capn4 expression had been knocked down when compared with untreated cells. Transwell assays and xenograft tumorigenicity studies were also performed to assess the effects of Capn4 on migration and invasion in vitro and tumor growth in vivo, respectively. The levels of β-catenin, vimentin, E-cadherin and N-cadherin were altered in human melanoma cells as determined by western blot analysis assay. Our study demonstrated that Capn4 is an underlying target for melanoma treatment.
Collapse
Affiliation(s)
- Enwen Wang
- Department of Radiology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Donglin Wang
- Department of Medical Oncology, Chongqing Cancer Hospital and Institute and Cancer Center, Chongqing 400030, P.R. China
| | - Bing Li
- Department of Ear-Nose-Throat, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Huiwen Ma
- Department of Medical Oncology, Chongqing Cancer Hospital and Institute and Cancer Center, Chongqing 400030, P.R. China
| | - Chunmei Wang
- Department of Medical Oncology, Chongqing Cancer Hospital and Institute and Cancer Center, Chongqing 400030, P.R. China
| | - Lili Guan
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haiwei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Hospital and Institute and Cancer Center, Chongqing 400030, P.R. China
| | - Lin Yi
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Hospital and Institute and Cancer Center, Chongqing 400030, P.R. China
| | - Shaolin Li
- Department of Radiology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
29
|
Lee JC, Chiang KC, Feng TH, Chen YJ, Chuang ST, Tsui KH, Chung LC, Juang HH. The Iron Chelator, Dp44mT, Effectively Inhibits Human Oral Squamous Cell Carcinoma Cell Growth in Vitro and in Vivo. Int J Mol Sci 2016; 17:ijms17091435. [PMID: 27589737 PMCID: PMC5037714 DOI: 10.3390/ijms17091435] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 07/16/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignancy with a growing worldwide incidence and prevalence. The N-myc downstream regulated gene (NDRG) family of NDRG1, 2, 3, and mammary serine protease inhibitor (Maspin) gene are well-known modulators in the neoplasia process. Current research has considered iron chelators as new anti-cancer agents; however, the anticancer activities of iron chelators and their target genes in OSCC have not been well investigated. We showed that iron chelators (Dp44mT, desferrioxamine (DFO), and deferasirox) all significantly inhibit SAS cell growth. Flow cytometry further indicated that Dp44mT inhibition of SAS cells growth was partly due to induction of G1 cell cycle arrest. Iron chelators enhanced expressions of NDRG1 and NDRG3 while repressing cyclin D1 expression in OSCC cells. The in vivo antitumor effect on OSCC and safety of Dp44mT were further confirmed through a xenograft animal model. The Dp44mT treatment also increased Maspin protein levels in SAS and OECM-1 cells. NDRG3 knockdown enhanced the growth of OECM-1 cells in vitro and in vivo. Our results indicated that NDRG3 is a tumor suppressor gene in OSCC cells, and Dp44mT could be a promising therapeutic agent for OSCC treatment.
Collapse
Affiliation(s)
- Jehn-Chuan Lee
- Department of Otolaryngology, Mackay Memorial Hospital, Taipei 105, Taiwan.
- School of Medicine, Mackay Medical College, New Taipei City 207, Taiwan.
| | - Kun-Chun Chiang
- Zebrafish Center, Department of General Surgery, Chang Gung Memorial Hospital and University, Keelung 204, Taiwan.
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | - Yu-Jen Chen
- Department of Radiation On Cology, Mackay Memorial Hospital, Taipei 105, Taiwan.
| | - Sung-Ting Chuang
- Department of Anatomy, College of Medicine, Chang Gung University, 259 Wen-Hua 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | - Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 244, Taiwan.
| | - Li-Chuan Chung
- Department of General Education Center, Mackay Medicine, Nursing and Management College, New Taipei City 207, Taiwan.
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, 259 Wen-Hua 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan.
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 244, Taiwan.
| |
Collapse
|
30
|
Garg M. Epithelial plasticity in urothelial carcinoma: Current advancements and future challenges. World J Stem Cells 2016. [PMID: 27621760 DOI: 10.4252/wjsc.v8.i8.00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Urothelial carcinoma (UC) of the bladder is characterized by high recurrence rate where a subset of these cells undergoes transition to deadly muscle invasive disease and later metastasizes. Urothelial cancer stem cells (UroCSCs), a tumor subpopulation derived from transformation of urothelial stem cells, are responsible for heterogeneous tumor formation and resistance to systemic treatment in UC of the bladder. Although the precise reason for pathophysiologic spread of tumor is not clear, transcriptome analysis of microdissected cancer cells expressing multiple progenitor/stem cell markers validates the upregulation of genes that derive epithelial-to-mesenchymal transition. Experimental studies on human bladder cancer xenografts describe the mechanistic functions and regulation of epithelial plasticity for its cancer-restraining effects. It has been further examined to be associated with the recruitment of a pool of UroCSCs into cell division in response to damages induced by adjuvant therapies. This paper also discusses the various probable therapeutic approaches to attenuate the progressive manifestation of chemoresistance by co-administration of inhibitors of epithelial plasticity and chemotherapeutic drugs by abrogating the early tumor repopulation as well as killing differentiated cancer cells.
Collapse
Affiliation(s)
- Minal Garg
- Minal Garg, Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
31
|
Garg M. Epithelial plasticity in urothelial carcinoma: Current advancements and future challenges. World J Stem Cells 2016; 8:260-267. [PMID: 27621760 PMCID: PMC4999653 DOI: 10.4252/wjsc.v8.i8.260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/25/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023] Open
Abstract
Urothelial carcinoma (UC) of the bladder is characterized by high recurrence rate where a subset of these cells undergoes transition to deadly muscle invasive disease and later metastasizes. Urothelial cancer stem cells (UroCSCs), a tumor subpopulation derived from transformation of urothelial stem cells, are responsible for heterogeneous tumor formation and resistance to systemic treatment in UC of the bladder. Although the precise reason for pathophysiologic spread of tumor is not clear, transcriptome analysis of microdissected cancer cells expressing multiple progenitor/stem cell markers validates the upregulation of genes that derive epithelial-to-mesenchymal transition. Experimental studies on human bladder cancer xenografts describe the mechanistic functions and regulation of epithelial plasticity for its cancer-restraining effects. It has been further examined to be associated with the recruitment of a pool of UroCSCs into cell division in response to damages induced by adjuvant therapies. This paper also discusses the various probable therapeutic approaches to attenuate the progressive manifestation of chemoresistance by co-administration of inhibitors of epithelial plasticity and chemotherapeutic drugs by abrogating the early tumor repopulation as well as killing differentiated cancer cells.
Collapse
Affiliation(s)
- Minal Garg
- Minal Garg, Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|