1
|
Zhou N, Zhang S, Wang C, Zheng B, Zhang A, Zhou W. Generation of human induced pluripotent stem cell lines derived from a patient carrying an intragenic deletion in the NFIA gene. Hum Cell 2025; 38:95. [PMID: 40266456 DOI: 10.1007/s13577-025-01222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
Brain malformations with or without urinary tract defects (BRMUTD) are caused by heterozygous variants in the NFIA gene. BRMUTD is a neurodevelopmental disorder characterized by hypoplasia or absence of the corpus callosum, hydrocephalus or ventriculomegaly, and developmental delay, which may or may not be accompanied by urinary tract defects. Here, we report the successful generation of induced pluripotent stem cells (hiPSCs) from a 3-year-old male BRMUTD patient using Sendai virus-based non-integrating reprogramming technology. This patient-derived cell line harbors an intragenic deletion within the NFIA gene (NC_000001.10: g.61650967_61842967del [GRCh37]), which is associated with a significant reduction in NFIA expression. This cell line maintains a normal karyotype, expresses pluripotency markers, and can differentiate into three germ layers. The established hiPSCs line will provide an in vitro model for studying pathological mechanisms and potential therapies of NFIA-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Ning Zhou
- School of Medicine, Southeast University, Nanjing, 210009, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Shengnan Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Aihua Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
2
|
Poluben L, Nouri M, Liang J, Chen S, Varkaris A, Ersoy-Fazlioglu B, Voznesensky O, Lee II, Qiu X, Cato L, Seo JH, Freedman ML, Sowalsky AG, Lack NA, Corey E, Nelson PS, Brown M, Long HW, Russo JW, Balk SP. Increased nuclear factor I-mediated chromatin access drives transition to androgen receptor splice variant dependence in prostate cancer. Cell Rep 2025; 44:115089. [PMID: 39709604 PMCID: PMC11921039 DOI: 10.1016/j.celrep.2024.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/26/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Androgen receptor (AR) splice variants, of which ARv7 is the most common, are increased in castration-resistant prostate cancer, but the extent to which they drive AR activity is unclear. We generated a subline of VCaP cells (VCaP16) that is resistant to the AR inhibitor enzalutamide (ENZ). AR activity in VCaP16 is driven by ARv7, independently of full-length AR (ARfl), and its cistrome and transcriptome mirror those of ARfl in VCaP cells. ARv7 expression increases rapidly in response to ENZ, but there is a delay in gaining chromatin binding and transcriptional activity, which is associated with increased chromatin accessibility. AR and nuclear factor I (NFI) motifs are most enriched at more accessible sites, and NFIB/X knockdown greatly diminishes ARv7 function. These findings indicate that ARv7 can drive the AR program but that its activity is dependent on adaptations that increase chromatin accessibility to enhance its intrinsically weak chromatin binding.
Collapse
Affiliation(s)
- Larysa Poluben
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Mannan Nouri
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jiaqian Liang
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Shaoyong Chen
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Andreas Varkaris
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Betul Ersoy-Fazlioglu
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Olga Voznesensky
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Irene I Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xintao Qiu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Laura Cato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA; Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Nathan A Lack
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; Department of Medical Pharmacology, School of Medicine, Koç University, Istanbul 34450, Turkey; Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Eva Corey
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joshua W Russo
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Steven P Balk
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Perumal N, Gopalakrishnan P, Burkovetskaya M, Doss D, Dukkipati SS, Kanchan RK, Mahapatra S. Nuclear factor I/B: Duality in action in cancer pathophysiology. Cancer Lett 2025; 609:217349. [PMID: 39581218 DOI: 10.1016/j.canlet.2024.217349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
The nuclear factor I (NFI) family of transcription factors plays a decisive role in organ development and maturation. Their deregulation has been linked with various diseases, most notably cancer. NFIB stands apart from the other NFI family members given its unique ability to drive both tumor suppressive and oncogenic programs. Thus, the ultimate impact of deregulated NFIB signaling is cancer-specific and strongly influenced by an intricate network of upstream regulators and downstream effectors. Deciphering the events that drive NFIB's paradoxical roles within these networks will enable us to not only understand how this critical transcription factor enacts its dual roles but also drive innovations to help us effectively target NFIB in different cancers. Here, we provide an in-depth review of NFIB. Starting with its defining role in the development of various organs, most notably the central nervous system, we highlight critical signaling pathways and the impact of deregulation on neoplastic transformation, contrasting it with the effect of silencing alone. We then provide examples of its dual roles in various cancers, identifying specific signaling networks associated with oncogenesis versus tumor suppression. We incorporate an example of a cancer type, osteosarcoma, wherein NFIB enacts its dual functions and explore which pathways influence each function. In this manner, we suggest plausible mechanisms for its role-switching from cancers sharing common triggering events in the setting of NFIB deregulation. We also review how NFIB enhances aggressiveness by driving metastasis, stemness, and chemoresistance. We conclude with a discussion on efficacious ways to target NFIB and pose some unanswered questions that may further help solidify our understanding of NFIB and facilitate clinical translation of NFIB targeting.
Collapse
Affiliation(s)
- Naveenkumar Perumal
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - Maria Burkovetskaya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Doss
- School of Medicine, Creighton University, Omaha, NE, USA
| | - S Shekar Dukkipati
- Department of Pediatrics, Columbia University Irving Medical Center, New York City, NY, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
4
|
Malaymar Pinar D, Göös H, Tan Z, Kumpula EP, Chowdhury I, Wang Z, Zhang Q, Salokas K, Keskitalo S, Wei GH, Kumbasar A, Varjosalo M. Nuclear Factor I Family Members are Key Transcription Factors Regulating Gene Expression. Mol Cell Proteomics 2025; 24:100890. [PMID: 39617063 PMCID: PMC11775196 DOI: 10.1016/j.mcpro.2024.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025] Open
Abstract
The Nuclear Factor I (NFI) family of transcription factors (TFs) plays key roles in cellular differentiation, proliferation, and homeostasis. As such, NFI family members engage in a large number of interactions with other proteins and chromatin. However, despite their well-established significance, the NFIs' interactomes, their dynamics, and their functions have not been comprehensively examined. Here, we employed complementary omics-level techniques, i.e. interactomics (affinity purification mass spectrometry (AP-MS) and proximity-dependent biotinylation (BioID)), and chromatin immunoprecipitation sequencing (ChIP-Seq), to obtain a comprehensive view of the NFI proteins and their interactions in different cell lines. Our analyses included all four NFI family members, and a less-studied short isoform of NFIB (NFIB4), which lacks the DNA binding domain. We observed that, despite exhibiting redundancy, each family member had unique high-confidence interactors and target genes, suggesting distinct roles within the transcriptional regulatory networks. The study revealed that NFIs interact with other TFs to co-regulate a broad range of regulatory networks and cellular processes. Notably, time-dependent proximity-labeling unveiled a highly dynamic nature of NFI protein-protein interaction networks and hinted at the temporal modulation of NFI interactions. Furthermore, gene ontology (GO) enrichment analysis of NFI interactome and targetome revealed the involvement of NFIs in transcriptional regulation, chromatin organization, cellular signaling pathways, and pathways related to cancer. Additionally, we observed that NFIB4 engages with proteins associated with mRNA regulation, which suggests that NFIs have roles beyond traditional DNA binding and transcriptional modulation. We propose that NFIs may function as potential pioneering TFs, given their role in regulating the DNA binding ability of other TFs and their interactions with key chromatin remodeling complexes, thereby influencing a wide range of cellular processes. These insights into NFI protein-protein interactions and their dynamic, context-dependent nature provide a deeper understanding of gene regulation mechanisms and hint at the role of NFIs as master regulators.
Collapse
Affiliation(s)
- Dicle Malaymar Pinar
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland; Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Helka Göös
- iCell, Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Zenglai Tan
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Esa-Pekka Kumpula
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Iftekhar Chowdhury
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Zixian Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School Basic Medical Sciences, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qin Zhang
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kari Salokas
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Gong-Hong Wei
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School Basic Medical Sciences, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Asli Kumbasar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Saritas Erdogan S, Yilmaz AE, Kumbasar A. PIN1 is a novel interaction partner and a negative upstream regulator of the transcription factor NFIB. FEBS Lett 2024; 598:2910-2925. [PMID: 39245791 PMCID: PMC11627009 DOI: 10.1002/1873-3468.15010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024]
Abstract
NFIB is a transcription factor of the Nuclear Factor One (NFI) family that is essential for embryonic development. Post-translational control of NFIB or its upstream regulators have not been well characterized. Here, we show that PIN1 binds NFIB in a phosphorylation-dependent manner, via its WW domain. PIN1 interacts with the well-conserved N-terminal domains of all NFIs. Moreover, PIN1 attenuates the transcriptional activity of NFIB; this attenuation requires substrate binding by PIN1 but not its isomerase activity. Paradoxically, we found stabilization of NFIB by PIN1. We propose that PIN1 represses NFIB function not by regulating its abundance but by inducing a conformational change. These results identify NFIB as a novel PIN1 target and posit a role for PIN1 in post-translational regulation of NFIB and other NFIs.
Collapse
Affiliation(s)
| | - Ahmet Erdal Yilmaz
- Department of Molecular Biology and GeneticsIstanbul Technical UniversityTurkey
| | - Asli Kumbasar
- Department of Molecular Biology and GeneticsIstanbul Technical UniversityTurkey
| |
Collapse
|
6
|
Yao M, Su Y, Xiong R, Zhang X, Zhu X, Chen YC, Ao P. Deciphering the topological landscape of glioma using a network theory framework. Sci Rep 2024; 14:26724. [PMID: 39496747 PMCID: PMC11535471 DOI: 10.1038/s41598-024-77856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Glioma stem cells have been recognized as key players in glioma recurrence and therapeutic resistance, presenting a promising target for novel treatments. However, the limited understanding of the role glioma stem cells play in the glioma hierarchy has drawn controversy and hindered research translation into therapies. Despite significant advances in our understanding of gene regulatory networks, the dynamics of these networks and their implications for glioma remain elusive. This study employs a systemic theoretical perspective to integrate experimental knowledge into a core endogenous network model for glioma, thereby elucidating its energy landscape through network dynamics computation. The model identifies two stable states corresponding to astrocytic-like and oligodendrocytic-like tumor cells, connected by a transition state with the feature of high stemness, which serves as one of the energy barriers between astrocytic-like and oligodendrocytic-like states, indicating the instability of glioma stem cells in vivo. We also obtained various stable states further supporting glioma's multicellular origins and uncovered a group of transition states that could potentially induce tumor heterogeneity and therapeutic resistance. This research proposes that the transition states linking both glioma stable states are central to glioma heterogeneity and therapy resistance. Our approach may contribute to the advancement of glioma therapy by offering a novel perspective on the complex landscape of glioma biology.
Collapse
Affiliation(s)
- Mengchao Yao
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Yang Su
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Ruiqi Xiong
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Xile Zhang
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
- Shanghai Shibei High School, Shanghai, China
| | - Xiaomei Zhu
- Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yong-Cong Chen
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China.
| | - Ping Ao
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
7
|
Mahjabeen A, Hasan MZ, Rahman MT, Islam MA, Khan RT, Kaiser MS. Genetic insights into the connection between pulmonary TB and non-communicable diseases: An integrated analysis of shared genes and potential treatment targets. PLoS One 2024; 19:e0312072. [PMID: 39432502 PMCID: PMC11493268 DOI: 10.1371/journal.pone.0312072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Pulmonary Tuberculosis (PTB) is a significant global health issue due to its high incidence, drug resistance, contagious nature, and impact on people with compromised immune systems. As mentioned by the World Health Organization (WHO), TB is responsible for more global fatalities than any other infectious illness. On the other side, WHO also claims that noncommunicable diseases (NCDs) kill 41 million people yearly worldwide. In this regard, several studies suggest that PTB and NCDs are linked in various ways and that people with PTB are more likely to acquire NCDs. At the same time, NCDs can increase susceptibility to active TB infection. Furthermore, because of potential drug interactions and therapeutic challenges, treating individuals with both PTB and NCDs can be difficult. This study focuses on seven NCDs (lung cancer (LC), diabetes mellitus (DM), Parkinson's disease (PD), silicosis (SI), chronic kidney disease (CKD), cardiovascular disease (CVD), and rheumatoid arthritis (RA)) and rigorously presents the genetic relationship with PTB regarding shared genes and outlines possible treatment plans. OBJECTIVES BlueThis study aims to identify the drug components that can regulate abnormal gene expression in NCDs. The study will reveal hub genes, potential biomarkers, and drug components associated with hub genes through statistical measures. This will contribute to targeted therapeutic interventions. METHODS Numerous investigations, including protein-protein interaction (PPI), gene regulatory network (GRN), enrichment analysis, physical interaction, and protein-chemical interaction, have been carried out to demonstrate the genetic correlation between PTB and NCDs. During the study, nine shared genes such as TNF, IL10, NLRP3, IL18, IFNG, HMGB1, CXCL8, IL17A, and NFKB1 were discovered between TB and the above-mentioned NCDs, and five hub genes (NFKB1, TNF, CXCL8, NLRP3, and IL10) were selected based on degree values. RESULTS AND CONCLUSION In this study, we found that all of the hub genes are linked with the 10 drug components, and it was observed that aspirin CTD 00005447 was mostly associated with all the other hub genes. This bio-informatics study may help researchers better understand the cause of PTB and its relationship with NCDs, and eventually, this can lead to exploring effective treatment plans.
Collapse
Affiliation(s)
- Amira Mahjabeen
- Health Informatics Research Lab, Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Md. Zahid Hasan
- Health Informatics Research Lab, Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Md. Tanvir Rahman
- Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md. Aminul Islam
- Health Informatics Research Lab, Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Risala Tasin Khan
- Institute of Information Technology, Jahangirnagar University, Dhaka, Bangladesh
| | - M. Shamim Kaiser
- Institute of Information Technology, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
8
|
Yang C, Wei W, Hu F, Zhao X, Yang H, Song X, Sun Z. Dihydroartemisinin suppresses the tumorigenesis of esophageal carcinoma by elevating DAB2IP expression in a NFIC-dependent manner. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8117-8128. [PMID: 38789636 DOI: 10.1007/s00210-024-03163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Dihydroartemisinin (DHA) has been identified to have the anticancer and anti-inflammatory activities. Disabled homolog 2 interacting protein (DAB2IP) is a well-recognized tumor suppressor. Both DHA and DAB2IP were proven to have suppressing effects on esophageal carcinoma (ESCA) tumorigenesis. However, whether DHA regulated ESCA cells via DAB2IP and its mechanism are still vague. Functional analyses were conducted using MTT, tube formation, sphere formation, and transwell assays in vitro as well as Tumor formation experiments in mice. Levels of genes and proteins were assayed by qRT-PCR and western blotting analyses. The interaction between DAB2IP and Nuclear Factor I C (NFIC) was confirmed using bioinformatics analysis and dual-luciferase reporter assay. DHA treatment suppressed ESCA cell angiogenesis, stemmess, migration, and invasion. DAB2IP level was decreased in ESCA tissues and cells, and DHA elevated DAB2IP expression in ESCA cells. Functionally, DAB2IP overexpression impaired ESCA cell angiogenesis, stemmess, migration and invasion. Mechanistically, NFIC had binding sites on the promoter region and directly targeted DAB2IP. DHA could up-regulate DAB2IP expression via NFIC. Moreover, NFIC was also decreased in ESCA tissues and cells, and its overexpression had anticancer activity in ESCA cells. In addition, DAB2IP knockdown reversed the anticancer effects of NFIC or DHA on ESCA cells. In further in vivo analysis, DHA also suppressed ESCA growth by regulating DAB2IP expression. DHA suppressed the tumorigenesis of ESCA by elevating DAB2IP expression in an NFIC-dependent manner, suggesting the potential clinical application of DHA in ESCA treatment.
Collapse
Affiliation(s)
- Chao Yang
- Department of Thoracic Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, People's Republic of China
| | - Wei Wei
- Department of Thoracic Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, People's Republic of China
| | - Fen Hu
- Department of Thoracic Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, People's Republic of China
| | - Xing Zhao
- Department of Thoracic Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, People's Republic of China
| | - Hanxue Yang
- Department of Thoracic Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, People's Republic of China
| | - Xiujun Song
- Department of Thoracic Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, People's Republic of China
| | - Zhihua Sun
- Department of Thoracic Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, People's Republic of China.
| |
Collapse
|
9
|
Ocampo D, Damon LJ, Sanford L, Holtzen SE, Jones T, Allen MA, Dowell RD, Palmer AE. Cellular zinc status alters chromatin accessibility and binding of p53 to DNA. Life Sci Alliance 2024; 7:e202402638. [PMID: 38969365 PMCID: PMC11231577 DOI: 10.26508/lsa.202402638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
Zn2+ is an essential metal required by approximately 850 human transcription factors. How these proteins acquire their essential Zn2+ cofactor and whether they are sensitive to changes in the labile Zn2+ pool in cells remain open questions. Using ATAC-seq to profile regions of accessible chromatin coupled with transcription factor enrichment analysis, we examined how increases and decreases in the labile zinc pool affect chromatin accessibility and transcription factor enrichment. We found 685 transcription factor motifs were differentially enriched, corresponding to 507 unique transcription factors. The pattern of perturbation and the types of transcription factors were notably different at promoters versus intergenic regions, with zinc-finger transcription factors strongly enriched in intergenic regions in elevated Zn2+ To test whether ATAC-seq and transcription factor enrichment analysis predictions correlate with changes in transcription factor binding, we used ChIP-qPCR to profile six p53 binding sites. We found that for five of the six targets, p53 binding correlates with the local accessibility determined by ATAC-seq. These results demonstrate that changes in labile zinc alter chromatin accessibility and transcription factor binding to DNA.
Collapse
Affiliation(s)
- Daniel Ocampo
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Leah J Damon
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Lynn Sanford
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Samuel E Holtzen
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Taylor Jones
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Mary A Allen
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Robin D Dowell
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Amy E Palmer
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
10
|
Chen CHS, Yuan TH, Lu TP, Lee HY, Chen YH, Lai LC, Tsai MH, Chuang EY, Chan CC. Exposure-associated DNA methylation among people exposed to multiple industrial pollutants. Clin Epigenetics 2024; 16:111. [PMID: 39164771 PMCID: PMC11337639 DOI: 10.1186/s13148-024-01705-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 07/08/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Current research on the epigenetic repercussions of exposure to a combination of pollutants is limited. This study aims to discern DNA methylation probes associated with exposure to multiple pollutants, serving as early effect markers, and single-nucleotide polymorphisms (SNPs) as surrogate indicators for population susceptibility. The investigation involved the analysis of urine exposure biomarkers for 11 heavy metals (vanadium, arsenic, mercury, cadmium, chromium, nickel, lead, manganese, copper, strontium, thallium), polycyclic aromatic hydrocarbon (PAHs) (1-hydroxypyrene), genome-wide DNA methylation sequencing, and SNPs array on all study participants. The data were integrated with metabolomics information and analyzed both at a community level based on proximity to home addresses relative to the complex and at an individual level based on exposure biomarker concentrations. RESULTS On a community level, 67 exposure-related CpG probes were identified, while 70 CpG probes were associated with urine arsenic concentration, 2 with mercury, and 46 with vanadium on an individual level. These probes were annotated to genes implicated in cancers and chronic kidney disease. Weighted quantile sum regression analysis revealed that vanadium, mercury, and 1-hydroxypyrene contributed the most to cg08238319 hypomethylation. cg08238319 is annotated to the aryl hydrocarbon receptor repressor (AHRR) gene, and AHRR hypomethylation was correlated with an elevated risk of lung cancer. AHRR was further linked to deregulations in phenylalanine metabolism, alanine, aspartate, and glutamate metabolism, along with heightened oxidative stress. Additionally, three SNPs (rs11085020, rs199442, and rs10947050) corresponding to exposure-related CpG probes exhibited significant interaction effects with multiple heavy metals and PAHs exposure, and have been implicated in cancer progression and respiratory diseases. CONCLUSION Our findings underscore the pivotal role of AHRR methylation in gene-environment interactions and highlight SNPs that could potentially serve as indicators of population susceptibility in regions exposed to multiple heavy metals and PAHs.
Collapse
Affiliation(s)
- Chi-Hsin Sally Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tzu-Hsuen Yuan
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hsin-Ying Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsuen Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Eric Y Chuang
- Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan.
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan.
- Research and Development Center for Medical Devices, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
11
|
Xie L, Li W, Li Y. mir-744-5p inhibits cell growth and angiogenesis in osteosarcoma by targeting NFIX. J Orthop Surg Res 2024; 19:485. [PMID: 39152460 PMCID: PMC11330078 DOI: 10.1186/s13018-024-04947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a malignant bone tumor that commonly occurs in children and adolescents under the age of 20. Dysregulation of microRNAs (miRNAs) is an important factor in the occurrence and progression of OS. MicroRNA miR-744-5p is aberrantly expressed in various tumors. However, its roles and molecular targets in OS remain unclear. METHODS Differentially expressed miRNAs in OS were analyzed using the Gene Expression Omnibus dataset GSE65071, and the potential hub miRNA was identified through weighted gene co-expression network analysis. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of miR-744-5p in OS cell lines. In vitro experiments, including CCK-8 assays, colony formation assays, flow cytometry apoptosis assays, and tube formation assays, were performed to explore the effects of miR-744-5p on OS cell biological behaviors. The downstream target genes of miR-744-5p were predicted through bioinformatics, and the binding sites were validated by a dual-luciferase reporter assay. RESULTS The lowly expressed miRNA, miR-744-5p, was identified as a hub miRNA involved in OS progression through bioinformatic analysis. Nuclear factor I X (NFIX) was confirmed as a direct target for miR-744-5p in OS. In vitro studies revealed that overexpression of miR-744-5p could restrain the growth of OS cells, whereas miR-744-5p inhibition showed the opposite effect. It was also observed that treatment with the conditioned medium from miR-744-5p-overexpressed OS cells led to poorer proliferation and angiogenesis in human umbilical vein endothelial cells (HUVECs). Furthermore, NFIX overexpression restored the suppression effects of miR-744-5p overexpression on OS cell growth and HUVECs angiogenesis. CONCLUSION Our results indicated that miR-744-5p is a potential tumor-suppressive miRNA in OS progression by targeting NFIX to restrain the growth of OS cells and angiogenesis in HUVECs.
Collapse
Affiliation(s)
- Lin Xie
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, China
| | - Wei Li
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, China
| | - Yu Li
- First Ward of Trauma Orthopaedics, Yantai Shan Hospital, Yantai, Shandong, 264003, China.
| |
Collapse
|
12
|
Zhao F, Zhang K, Ma L, Huang Y. Identification of epithelial-related artificial neural network prognostic models for the prediction of bladder cancer prognosis through comprehensive analysis of single-cell and bulk RNA sequencing. Heliyon 2024; 10:e34632. [PMID: 39157397 PMCID: PMC11328080 DOI: 10.1016/j.heliyon.2024.e34632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Background Bladder cancer (BLCA) presents as a heterogeneous epithelial malignancy. Progress in the early detection and effective treatment of BLCA relies heavily on the identification of novel biomarkers. Therefore, the primary goal of this study is to pinpoint potential biomarkers for BLCA through the fusion of single-cell RNA sequencing and RNA sequencing assessments. Furthermore, the aim is to establish practical clinical prognostic models that can facilitate accurate categorization and individualized therapy for patients. Methods In this research, training sets were acquired from the TCGA database, whereas validation sets (GSE32894) and single-cell datasets (GSE135337) were extracted from the GEO database. Single-cell analysis was utilized to obtain characteristic subpopulations along with their associated marker genes. Subsequently, a novel BLCA subtype was identified within TCGA-BLCA. Furthermore, an artificial neural network prognostic model was constructed within the TCGA-BLCA cohort and subsequently verified utilizing a validation set. Two machine learning algorithms were employed to screen hub genes. QRT-qPCR was performed to detect the gene expression levels utilized in the construction of prognostic models across various cell lines. Additionally, the cMAP database and molecular docking were utilized for searching small molecule drugs. Results The results of single-cell analysis revealed the presence of epithelial cells in multiple subpopulations, with 1579 marker genes selected for subsequent investigations. Subsequently, four epithelial cell subtypes were identified within the TCGA-BLCA cohort. Notably, cluster A exhibited a significant survival advantage. Concurrently, an artificial neural network prognostic model comprising 17 feature genes was constructed, accurately stratifying patient risk. Patients categorized in the low-risk group demonstrated a considerable survival advantage. The ROC analysis suggested that the model has strong prognostic ability. Furthermore, the findings of the validation group align consistently with those from the training group. Two types of machine learning algorithms screened NFIC as hub genes. Forskolin, a small molecule drug that binds to NFIC, was identified by employing a cMAP database and molecular docking. Conclusion The analysis results supplement the research on the role of epithelial cells in BLCA. An artificial neural network prognostic model containing 17 characteristic genes demonstrates the capability to accurately stratify patient risk, thereby potentially improving clinical decision-making and optimizing personalized therapeutic approaches.
Collapse
Affiliation(s)
- Fan Zhao
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Kun Zhang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Limin Ma
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yeqing Huang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| |
Collapse
|
13
|
Poluben L, Nouri M, Liang J, Varkaris A, Ersoy-Fazlioglu B, Voznesensky O, Lee II, Qiu X, Cato L, Seo JH, Freedman ML, Sowalsky AG, Lack NA, Corey E, Nelson PS, Brown M, Long HW, Russo JW, Balk SP. Increased chromatin accessibility mediated by nuclear factor I drives transition to androgen receptor splice variant dependence in castration-resistant prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575110. [PMID: 38260576 PMCID: PMC10802579 DOI: 10.1101/2024.01.10.575110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Androgen receptor (AR) splice variants, of which ARv7 is the most common, are increased in prostate cancer (PC) that develops resistance to androgen signaling inhibitor drugs, but the extent to which these variants drive AR activity, and whether they have novel functions or dependencies, remain to be determined. We generated a subline of VCaP PC cells (VCaP16) that is resistant to the AR inhibitor enzalutamide (ENZ) and found that AR activity was independent of the full-length AR (ARfl), despite its continued high-level expression, and was instead driven by ARv7. The ARv7 cistrome and transcriptome in VCaP16 cells mirrored that of the ARfl in VCaP cells, although ARv7 chromatin binding was weaker, and strong ARv7 binding sites correlated with higher affinity ARfl binding sites across multiple models and clinical samples. Notably, although ARv7 expression in VCaP cells increased rapidly in response to ENZ, there was a long lag before it gained chromatin binding and transcriptional activity. This lag was associated with an increase in chromatin accessibility, with the AR and nuclear factor I (NFI) motifs being most enriched at these more accessible sites. Moreover, the transcriptional effects of combined NFIB and NFIX knockdown versus ARv7 knockdown were highly correlated. These findings indicate that ARv7 can drive the AR program, but that its activity is dependent on adaptations that increase chromatin accessibility to enhance its intrinsically weak chromatin binding.
Collapse
|
14
|
Abugessaisa I, Manabe RI, Kawashima T, Tagami M, Takahashi C, Okazaki Y, Bandinelli S, Kasukawa T, Ferrucci L. OVCH1 Antisense RNA 1 is differentially expressed between non-frail and frail old adults. GeroScience 2024; 46:2063-2081. [PMID: 37817005 PMCID: PMC10828349 DOI: 10.1007/s11357-023-00961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
While some old adults stay healthy and non-frail up to late in life, others experience multimorbidity and frailty often accompanied by a pro-inflammatory state. The underlying molecular mechanisms for those differences are still obscure. Here, we used gene expression analysis to understand the molecular underpinning between non-frail and frail individuals in old age. Twenty-four adults (50% non-frail and 50% frail) from InCHIANTI study were included. Total RNA extracted from whole blood was analyzed by Cap Analysis of Gene Expression (CAGE). CAGE identified transcription start site (TSS) and active enhancer regions. We identified a set of differentially expressed (DE) TSS and enhancer between non-frail and frail and male and female participants. Several DE TSSs were annotated as lncRNA (XIST and TTTY14) and antisense RNAs (ZFX-AS1 and OVCH1 Antisense RNA 1). The promoter region chr6:366,786,54-366,787,97;+ was DE and overlapping the longevity CDKN1A gene. GWAS-LD enrichment analysis identifies overlapping LD-blocks with the DE regions with reported traits in GWAS catalog (isovolumetric relaxation time and urinary tract infection frequency). Furthermore, we used weighted gene co-expression network analysis (WGCNA) to identify changes of gene expression associated with clinical traits and identify key gene modules. We performed functional enrichment analysis of the gene modules with significant trait/module correlation. One gene module is showing a very distinct pattern in hub genes. Glycogen Phosphorylase L (PYGL) was the top ranked hub gene between non-frail and frail. We predicted transcription factor binding sites (TFBS) and motif activity. TF involved in age-related pathways (e.g., FOXO3 and MYC) shows different expression patterns between non-frail and frail participants. Expanding the study of OVCH1 Antisense RNA 1 and PYGL may help understand the mechanisms leading to loss of homeostasis that ultimately causes frailty.
Collapse
Affiliation(s)
- Imad Abugessaisa
- Laboratory for Large-Scale Biomedical Data Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan.
| | - Ri-Ichiroh Manabe
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Tsugumi Kawashima
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Michihira Tagami
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Chitose Takahashi
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Yasushi Okazaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Stefania Bandinelli
- Azienda USL Toscana Centro, InCHIANTI, Villa Margherita, Primo piano Viale Michelangelo, 41, 50125, Firenze, Italy
| | - Takeya Kasukawa
- Laboratory for Large-Scale Biomedical Data Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital 5th floor, 3001 S. Hanover Street, Baltimore, MD, 21225, USA
| |
Collapse
|
15
|
Angelini G, Capra E, Rossi F, Mura G, Saclier M, Taglietti V, Rovetta G, Epis R, Careccia G, Bonfanti C, Messina G. MEK-inhibitors decrease Nfix in muscular dystrophy but induce unexpected calcifications, partially rescued with Cyanidin diet. iScience 2024; 27:108696. [PMID: 38205246 PMCID: PMC10777118 DOI: 10.1016/j.isci.2023.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/03/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Muscular dystrophies (MDs) are incurable genetic myopathies characterized by progressive degeneration of skeletal muscles. Dystrophic mice lacking the transcription factor Nfix display morphological and functional improvements of the disease. Recently, we demonstrated that MAPK signaling pathway positively regulates Nfix in muscle development and that Cyanidin, a natural antioxidant molecule, strongly ameliorates the pathology. To explore a synergistic approach aimed at treating MDs, we administered Trametinib, a clinically approved MEK inhibitor, alone or combined with Cyanidin to adult Sgca null mice. We observed that chronic treatment with Trametinib and Cyanidin reduced Nfix in myogenic cells but, unexpectedly, caused ectopic calcifications exclusively in dystrophic muscles. The combined treatment with Cyanidin resulted in histological improvements by preventing Trametinib-induced calcifications in Diaphragm and Soleus. Collectively, this first pilot study revealed that Nfix is modulated by the MAPK pathway in MDs, and that Cyanidin partly rescued the unexpected ectopic calcifications caused by MEK inhibition.
Collapse
Affiliation(s)
| | - Emanuele Capra
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Francesca Rossi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Giada Mura
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Marielle Saclier
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | - Gabriele Rovetta
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Raffaele Epis
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Giorgia Careccia
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Chiara Bonfanti
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | |
Collapse
|
16
|
Xing YH, Dong R, Lee L, Rengarajan S, Riggi N, Boulay G, Rivera MN. DisP-seq reveals the genome-wide functional organization of DNA-associated disordered proteins. Nat Biotechnol 2024; 42:52-64. [PMID: 37037903 PMCID: PMC10791585 DOI: 10.1038/s41587-023-01737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023]
Abstract
Intrinsically disordered regions (IDRs) in DNA-associated proteins are known to influence gene regulation, but their distribution and cooperative functions in genome-wide regulatory programs remain poorly understood. Here we describe DisP-seq (disordered protein precipitation followed by DNA sequencing), an antibody-independent chemical precipitation assay that can simultaneously map endogenous DNA-associated disordered proteins genome-wide through a combination of biotinylated isoxazole precipitation and next-generation sequencing. DisP-seq profiles are composed of thousands of peaks that are associated with diverse chromatin states, are enriched for disordered transcription factors (TFs) and are often arranged in large lineage-specific clusters with high local concentrations of disordered proteins and different combinations of histone modifications linked to regulatory potential. We use DisP-seq to analyze cancer cells and reveal how disordered protein-associated islands enable IDR-dependent mechanisms that control the binding and function of disordered TFs, including oncogene-dependent sequestration of TFs through long-range interactions and the reactivation of differentiation pathways upon loss of oncogenic stimuli in Ewing sarcoma.
Collapse
Affiliation(s)
- Yu-Hang Xing
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Rui Dong
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lukuo Lee
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Shruthi Rengarajan
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Nicolò Riggi
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Gaylor Boulay
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Miguel N Rivera
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
17
|
Damon LJ, Ocampo D, Sanford L, Jones T, Allen MA, Dowell RD, Palmer AE. Cellular zinc status alters chromatin accessibility and binding of transcription factor p53 to genomic sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567954. [PMID: 38045276 PMCID: PMC10690171 DOI: 10.1101/2023.11.20.567954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Zinc (Zn2+) is an essential metal required by approximately 2500 proteins. Nearly half of these proteins act on DNA, including > 850 human transcription factors, polymerases, DNA damage response factors, and proteins involved in chromatin architecture. How these proteins acquire their essential Zn2+ cofactor and whether they are sensitive to changes in the labile Zn2+ pool in cells remain open questions. Here, we examine how changes in the labile Zn2+ pool affect chromatin accessibility and transcription factor binding to DNA. We observed both increases and decreases in accessibility in different chromatin regions via ATAC-seq upon treating MCF10A cells with elevated Zn2+ or the Zn2+-specific chelator tris(2-pyridylmethyl)amine (TPA). Transcription factor enrichment analysis was used to correlate changes in chromatin accessibility with transcription factor motifs, revealing 477 transcription factor motifs that were differentially enriched upon Zn2+ perturbation. 186 of these transcription factor motifs were enriched in Zn2+ and depleted in TPA, and the majority correspond to Zn2+ finger transcription factors. We selected TP53 as a candidate to examine how changes in motif enrichment correlate with changes in transcription factor occupancy by ChIP-qPCR. Using publicly available ChIP-seq and nascent transcription datasets, we narrowed the 50,000+ ATAC-seq peaks to 2164 TP53 targets and subsequently selected 6 high-probability TP53 binding sites for testing. ChIP-qPCR revealed that for 5 of the 6 targets, TP53 binding correlates with the local accessibility determined by ATAC-seq. These results demonstrate that changes in labile zinc directly alter chromatin accessibility and transcription factor binding to DNA.
Collapse
Affiliation(s)
- Leah J. Damon
- Department of Biochemistry, University of Colorado, Boulder, CO 80303
| | - Daniel Ocampo
- Department of Biochemistry, University of Colorado, Boulder, CO 80303
| | - Lynn Sanford
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, 80309
| | - Taylor Jones
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, 80309
| | - Mary A. Allen
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, 80309
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303
| | - Robin D. Dowell
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, 80309
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303
| | - Amy E. Palmer
- Department of Biochemistry, University of Colorado, Boulder, CO 80303
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303
| |
Collapse
|
18
|
Huang H, Zhu W, Huang Z, Zhao D, Cao L, Gao X. Adipose-derived stem cell exosome NFIC improves diabetic foot ulcers by regulating miR-204-3p/HIPK2. J Orthop Surg Res 2023; 18:687. [PMID: 37710299 PMCID: PMC10503042 DOI: 10.1186/s13018-023-04165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFU) are a serious complication of diabetes that lead to significant morbidity and mortality. Recent studies reported that exosomes secreted by human adipose tissue-derived mesenchymal stem cells (ADSCs) might alleviate DFU development. However, the molecular mechanism of ADSCs-derived exosomes in DFU is far from being addressed. METHODS Human umbilical vein endothelial cells (HUVECs) were induced by high-glucose (HG), which were treated with exosomes derived from nuclear factor I/C (NFIC)-modified ADSCs. MicroRNA-204-3p (miR-204-3p), homeodomain-interacting protein kinase 2 (HIPK2), and NFIC were determined using real-time quantitative polymerase chain reaction. Cell proliferation, apoptosis, migration, and angiogenesis were assessed using cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, wound healing, and tube formation assays. Binding between miR-204-3p and NFIC or HIPK2 was predicted using bioinformatics tools and validated using a dual-luciferase reporter assay. HIPK2, NFIC, CD81, and CD63 protein levels were measured using western blot. Exosomes were identified by a transmission electron microscope and nanoparticle tracking analysis. RESULTS miR-204-3p and NFIC were reduced, and HIPK2 was enhanced in DFU patients and HG-treated HUVECs. miR-204-3p overexpression might abolish HG-mediated HUVEC proliferation, apoptosis, migration, and angiogenesis in vitro. Furthermore, HIPK2 acted as a target of miR-204-3p. Meanwhile, NFIC was an upstream transcription factor that might bind to the miR-204-3p promoter and improve its expression. NFIC-exosome from ADSCs might regulate HG-triggered HUVEC injury through miR-204-3p-dependent inhibition of HIPK2. CONCLUSION Exosomal NFIC silencing-loaded ADSC sheet modulates miR-204-3p/HIPK2 axis to suppress HG-induced HUVEC proliferation, migration, and angiogenesis, providing a stem cell-based treatment strategy for DFU.
Collapse
Affiliation(s)
- Huimin Huang
- Burn, Plastic and Wound Surgery Department, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Wufei Zhu
- Department of Endocrinology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Zongwei Huang
- Burn, Plastic and Wound Surgery Department, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Dengze Zhao
- Burn, Plastic and Wound Surgery Department, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Lu Cao
- Burn, Plastic and Wound Surgery Department, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Xian Gao
- Burn, Plastic and Wound Surgery Department, Huanggang Central Hospital of Yangtze University, No.126, Qian Avenue, Huangzhou District, Huanggang, 438000, Hubei, China.
| |
Collapse
|
19
|
Li X, Morgan C, Nadar‐Ponniah PT, Kolanus W, Doetzlhofer A. TRIM71 reactivation enhances the mitotic and hair cell-forming potential of cochlear supporting cells. EMBO Rep 2023; 24:e56562. [PMID: 37492931 PMCID: PMC10481673 DOI: 10.15252/embr.202256562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
Cochlear hair cell loss is a leading cause of deafness in humans. Neighboring supporting cells have some capacity to regenerate hair cells. However, their regenerative potential sharply declines as supporting cells undergo maturation (postnatal day 5 in mice). We recently reported that reactivation of the RNA-binding protein LIN28B restores the hair cell-regenerative potential of P5 cochlear supporting cells. Here, we identify the LIN28B target Trim71 as a novel and equally potent enhancer of supporting cell plasticity. TRIM71 is a critical regulator of stem cell behavior and cell reprogramming; however, its role in cell regeneration is poorly understood. Employing an organoid-based assay, we show that TRIM71 re-expression increases the mitotic and hair cell-forming potential of P5 cochlear supporting cells by facilitating their de-differentiation into progenitor-like cells. Our mechanistic work indicates that TRIM71's RNA-binding activity is essential for such ability, and our transcriptomic analysis identifies gene modules that are linked to TRIM71 and LIN28B-mediated supporting cell reprogramming. Furthermore, our study uncovers that the TRIM71-LIN28B target Hmga2 is essential for supporting cell self-renewal and hair cell formation.
Collapse
Affiliation(s)
- Xiao‐Jun Li
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Present address:
Frontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'an710054China
| | - Charles Morgan
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Prathamesh T Nadar‐Ponniah
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES)University of BonnBonnGermany
| | - Angelika Doetzlhofer
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of Otolaryngology and Center for Hearing and BalanceJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
20
|
Chetverina D, Vorobyeva NE, Gyorffy B, Shtil AA, Erokhin M. Analyses of Genes Critical to Tumor Survival Reveal Potential 'Supertargets': Focus on Transcription. Cancers (Basel) 2023; 15:cancers15113042. [PMID: 37297004 DOI: 10.3390/cancers15113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The identification of mechanisms that underlie the biology of individual tumors is aimed at the development of personalized treatment strategies. Herein, we performed a comprehensive search of genes (termed Supertargets) vital for tumors of particular tissue origin. In so doing, we used the DepMap database portal that encompasses a broad panel of cell lines with individual genes knocked out by CRISPR/Cas9 technology. For each of the 27 tumor types, we revealed the top five genes whose deletion was lethal in the particular case, indicating both known and unknown Supertargets. Most importantly, the majority of Supertargets (41%) were represented by DNA-binding transcription factors. RNAseq data analysis demonstrated that a subset of Supertargets was deregulated in clinical tumor samples but not in the respective non-malignant tissues. These results point to transcriptional mechanisms as key regulators of cell survival in specific tumors. Targeted inactivation of these factors emerges as a straightforward approach to optimize therapeutic regimens.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Nadezhda E Vorobyeva
- Group of Dynamics of Transcriptional Complexes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Balazs Gyorffy
- Departments of Bioinformatics and Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- Cancer Biomarker Research Group, Research Centre for Natural Sciences, Institute of Enzymology, H-1117 Budapest, Hungary
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115522, Russia
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
21
|
de Alwis R, Schoch S, Islam M, Möller C, Ljungberg B, Axelson H. Identification and validation of NFIA as a novel prognostic marker in renal cell carcinoma. J Pathol Clin Res 2023. [PMID: 36947439 DOI: 10.1002/cjp2.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/10/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
Prognostic tools are an essential component of the clinical management of patients with renal cell carcinoma (RCC). Although tumour stage and grade can provide important information, they fail to consider patient- and tumour-specific biology. In this study, we set out to find a novel molecular marker of RCC by using hepatocyte nuclear factor 4A (HNF4A), a transcription factor implicated in RCC progression and malignancy, as a blueprint. Through transcriptomic analyses, we show that the nuclear factor I A (NFIA)-driven transcription network is active in primary RCC and that higher levels of NFIA confer a survival benefit. We validate our findings using immunohistochemical staining and analysis of a 363-patient tissue microarray (TMA), showing for the first time that NFIA can independently predict poor cancer-specific survival in clear cell RCC (ccRCC) patients (hazard ratio = 0.46, 95% CI = 0.24-0.85, p value = 0.014). Furthermore, we confirm the association of HNF4A with higher grades and stages in ccRCC in our TMA cohort. We present novel data that show HNF4A protein expression does not confer favourable prognosis in papillary RCC, confirming our survival analysis with publicly available HNF4A RNA expression data. Further work is required to elucidate the functional role of NFIA in RCC as well as the testing of these markers on patient material from diverse multi-centre cohorts, to establish their value for the prognostication of RCC.
Collapse
Affiliation(s)
- Roger de Alwis
- Division of Translational Cancer Research, Department of Laboratory Medicine Lund University, Lund, Sweden
| | - Sarah Schoch
- Division of Translational Cancer Research, Department of Laboratory Medicine Lund University, Lund, Sweden
| | - Mazharul Islam
- Division of Translational Cancer Research, Department of Laboratory Medicine Lund University, Lund, Sweden
| | - Christina Möller
- Division of Translational Cancer Research, Department of Laboratory Medicine Lund University, Lund, Sweden
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Håkan Axelson
- Division of Translational Cancer Research, Department of Laboratory Medicine Lund University, Lund, Sweden
| |
Collapse
|
22
|
Yuan H, Liu Y, Zhang J, Dong JF, Zhao Z. Transcription factors in megakaryocytes and platelets. Front Immunol 2023; 14:1140501. [PMID: 36969155 PMCID: PMC10034027 DOI: 10.3389/fimmu.2023.1140501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Transcription factors bind promoter or regulatory sequences of a gene to regulate its rate of transcription. However, they are also detected in anucleated platelets. The transcription factors RUNX1, GATA1, STAT3, NFκB, and PPAR have been widely reported to play key roles in the pathophysiology of platelet hyper-reactivity, thrombosis, and atherosclerosis. These non-transcriptional activities are independent of gene transcription or protein synthesis but their underlying mechanisms of action remain poorly defined. Genetic and acquired defects in these transcription factors are associated with the production of platelet microvesicles that are known to initiate and propagate coagulation and to promote thrombosis. In this review, we summarize recent developments in the study of transcription factors in platelet generation, reactivity, and production of microvesicles, with a focus on non-transcriptional activities of selected transcription factors.
Collapse
Affiliation(s)
- Hengjie Yuan
- Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- BloodWorks Research Institute, Seattle, WA, United States
| | - Yafan Liu
- Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-fei Dong
- BloodWorks Research Institute, Seattle, WA, United States
- Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, WA, United States
- *Correspondence: Zilong Zhao, ; Jing-fei Dong,
| | - Zilong Zhao
- Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- BloodWorks Research Institute, Seattle, WA, United States
- *Correspondence: Zilong Zhao, ; Jing-fei Dong,
| |
Collapse
|
23
|
CAI X, CAO Z, PAN J, ZHENG H. Transcription factor NFIC activates STK11 transcription to repress the proliferation, migration, and invasion of lung adenocarcinoma cells. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.23.02918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
24
|
Ribeiro V, Martins SG, Lopes AS, Thorsteinsdóttir S, Zilhão R, Carlos AR. NFIXing Cancer: The Role of NFIX in Oxidative Stress Response and Cell Fate. Int J Mol Sci 2023; 24:ijms24054293. [PMID: 36901722 PMCID: PMC10001739 DOI: 10.3390/ijms24054293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
NFIX, a member of the nuclear factor I (NFI) family of transcription factors, is known to be involved in muscle and central nervous system embryonic development. However, its expression in adults is limited. Similar to other developmental transcription factors, NFIX has been found to be altered in tumors, often promoting pro-tumorigenic functions, such as leading to proliferation, differentiation, and migration. However, some studies suggest that NFIX can also have a tumor suppressor role, indicating a complex and cancer-type dependent role of NFIX. This complexity may be linked to the multiple processes at play in regulating NFIX, which include transcriptional, post-transcriptional, and post-translational processes. Moreover, other features of NFIX, including its ability to interact with different NFI members to form homodimers or heterodimers, therefore allowing the transcription of different target genes, and its ability to sense oxidative stress, can also modulate its function. In this review, we examine different aspects of NFIX regulation, first in development and then in cancer, highlighting the important role of NFIX in oxidative stress and cell fate regulation in tumors. Moreover, we propose different mechanisms through which oxidative stress regulates NFIX transcription and function, underlining NFIX as a key factor for tumorigenesis.
Collapse
Affiliation(s)
- Vanessa Ribeiro
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Susana G. Martins
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Sofia Lopes
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Centro Hospitalar de Lisboa Ocidental (CHLO), 1449-005 Lisbon, Portugal
| | - Sólveig Thorsteinsdóttir
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Rita Zilhão
- cE3c-CHANGE, Department of Plant Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Rita Carlos
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
25
|
Marinella G, Conti E, Buchignani B, Sgherri G, Pasquariello R, Giordano F, Cristofani P, Battini R, Battaglia A. Further characterization of NFIB-associated phenotypes: Report of two new individuals. Am J Med Genet A 2023; 191:540-545. [PMID: 36321570 PMCID: PMC10091694 DOI: 10.1002/ajmg.a.63018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/13/2022] [Accepted: 10/07/2022] [Indexed: 01/11/2023]
Abstract
Nuclear Factor I B (NFIB) haploinsufficiency has recently been identified as a cause of intellectual disability (ID) and macrocephaly. Here we report on two new individuals carrying a microdeletion in the chromosomal region 9p23-p22.3 containing NFIB. The first is a 7-year 9-month old boy with developmental delays, ID, definite facial anomalies, and brain and spinal cord magnetic resonance imaging findings including periventricular nodular heterotopia, hypoplasia of the corpus callosum, arachnoid cyst in the left middle cranial fossa, syringomyelia in the thoracic spinal cord and distal tract of the conus medullaris, and a stretched appearance of the filum terminale. The second is a 32-year-old lady (the proband' mother) with dysmorphic features, and a history of learning disability, hypothyroidism, poor growth, left inguinal hernia, and panic attacks. Her brain magnetic resonance imaging findings include a dysmorphic corpus callosum, and a small cyst in the left choroidal fissure that marks the hippocampal head. Array-based comparative genomic hybridization identified, in both, a 232 Kb interstitial deletion at 9p23p22.3 including several exons of NFIB and no other known genes. Our two individuals add to the knowledge of this rare disorder through the addition of new brain and spinal cord MRI findings and dysmorphic features. We propose that NFIB haploinsufficiency causes a clinically recognizable malformation-ID syndrome.
Collapse
Affiliation(s)
- Gemma Marinella
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Eugenia Conti
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Bianca Buchignani
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Pisa, Italy
| | - Giada Sgherri
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Rosa Pasquariello
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Flavio Giordano
- Department of Neurosurgery, Children's Hospital A. Meyer-University of Florence, Firenze, Florence, Italy
| | - Paola Cristofani
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Pisa, Italy
| | - Agatino Battaglia
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| |
Collapse
|
26
|
Rastogi N, Gonzalez JBM, Srivastava VK, Alanazi B, Alanazi RN, Hughes OM, O'Neill NS, Gilkes AF, Ashley N, Deshpande S, Andrews R, Mead A, Rodrigues NP, Knapper S, Darley RL, Tonks A. Nuclear factor I-C overexpression promotes monocytic development and cell survival in acute myeloid leukemia. Leukemia 2023; 37:276-287. [PMID: 36572750 PMCID: PMC9898032 DOI: 10.1038/s41375-022-01801-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
Nuclear factor I-C (NFIC) belongs to a family of NFI transcription factors that binds to DNA through CAATT-boxes and are involved in cellular differentiation and stem cell maintenance. Here we show NFIC protein is significantly overexpressed in 69% of acute myeloid leukemia patients. Examination of the functional consequences of NFIC overexpression in HSPCs showed that this protein promoted monocytic differentiation. Single-cell RNA sequencing analysis further demonstrated that NFIC overexpressing monocytes had increased expression of growth and survival genes. In contrast, depletion of NFIC through shRNA decreased cell growth, increased cell cycle arrest and apoptosis in AML cell lines and AML patient blasts. Further, in AML cell lines (THP-1), bulk RNA sequencing of NFIC knockdown led to downregulation of genes involved in cell survival and oncogenic signaling pathways including mixed lineage leukemia-1 (MLL-1). Lastly, we show that NFIC knockdown in an ex vivo mouse MLL::AF9 pre-leukemic stem cell model, decreased their growth and colony formation and increased expression of myeloid differentiation markers Gr1 and Mac1. Collectively, our results suggest that NFIC is an important transcription factor in myeloid differentiation as well as AML cell survival and is a potential therapeutic target in AML.
Collapse
Affiliation(s)
- Namrata Rastogi
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK.
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, Wales, UK.
| | - Juan Bautista Menendez Gonzalez
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, Wales, UK
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Vikas Kumar Srivastava
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Bader Alanazi
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Prince Mohammed Medical City, AlJouf, Saudi Arabia
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Rehab N Alanazi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Northern Border University, Arar, 91431, Saudi Arabia
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Owen M Hughes
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Niamh S O'Neill
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Amanda F Gilkes
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Neil Ashley
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Sumukh Deshpande
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Robert Andrews
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Adam Mead
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, Wales, UK
| | - Steve Knapper
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Richard L Darley
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Alex Tonks
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK.
| |
Collapse
|
27
|
Li XJ, Morgan C, Nadar-Ponniah PT, Kolanus W, Doetzlhofer A. Reactivation of the progenitor gene Trim71 enhances the mitotic and hair cell-forming potential of cochlear supporting cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523802. [PMID: 36711735 PMCID: PMC9882147 DOI: 10.1101/2023.01.12.523802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cochlear hair cell loss is a leading cause of deafness in humans. Neighboring supporting cells have some capacity to regenerate hair cells. However, their regenerative potential sharply declines as supporting cells undergo maturation (postnatal day 5 in mice). We recently reported that reactivation of the RNA-binding protein LIN28B restores the hair cell-regenerative potential of P5 cochlear supporting cells. Here, we identify the LIN28B target Trim71 as a novel and equally potent enhancer of supporting cell plasticity. TRIM71 is a critical regulator of stem cell behavior and cell reprogramming, however, its role in cell regeneration is poorly understood. Employing an organoid-based assay, we show that TRIM71 reactivation increases the mitotic and hair cell-forming potential of P5 cochlear supporting cells by facilitating their de-differentiation into progenitor-like cells. Our mechanistic work indicates that TRIM71’s RNA-binding activity is essential for such ability, and our transcriptomic analysis identifies gene modules that are linked to TRIM71 and LIN28B-mediated supporting cell reprogramming. Furthermore, our study uncovers that the TRIM71-LIN28B target Hmga2 is essential for supporting cell self-renewal and hair cell formation.
Collapse
|
28
|
Zhang J, Fan M, Jin C, Wang Z, Yao Y, Shi Y, Hu X, Wan Y. NFIC1 suppresses migration and invasion of breast cancer cells through interferon-mediated Jak-STAT pathway. Arch Biochem Biophys 2022; 727:109346. [PMID: 35798053 DOI: 10.1016/j.abb.2022.109346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
NFIC1, the longest isoform of NFIC, is essential for the regulation on spatiotemporal expression of drug-metabolizing genes in liver. However, the role of NFIC1 in breast cancer is not clear. Here we showed that increased expression of NFIC1 suppressed the migration and invasion of MCF-7 cells. NFIC1 overexpression increased the expression of IFNB1, IFNL1, IFNL2 and IFNL3, and the activation of interferon-mediated Jak-STAT pathway was enhanced by NFIC1 overexpression. Treatment with Jak-STAT pathway inhibitors, Filgotinib or Ruxolitinib, reversed the suppressive effects of NFIC1 overexpression on migration and invasion of MCF-7 cells. In addition, we found that MX1 and MX2, two target genes of Jak-STAT pathway, mediated the migration and invasion of MCF-7 cells. These results demonstrated that NFIC1 inhibited the migration and invasion in MCF-7 cells through interferon-mediated activation of Jak-STAT pathway, indicating that Jak-STAT pathway might be a potential therapeutic target for preventing breast cancer metastasis.
Collapse
Affiliation(s)
- Jing Zhang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China; School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Mingyue Fan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China; School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Chanjuan Jin
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China
| | - Zhaoying Wang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China; School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Yutong Yao
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China
| | - Yueru Shi
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China
| | - Xin Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China.
| |
Collapse
|
29
|
Hu H, Huang W, Zhang H, Li J, Zhang Q, Miao YR, Hu FF, Gan L, Su Z, Yang X, Guo AY. A miR-9-5p/FOXO1/CPEB3 Feed-Forward Loop Drives the Progression of Hepatocellular Carcinoma. Cells 2022; 11:cells11132116. [PMID: 35805200 PMCID: PMC9265408 DOI: 10.3390/cells11132116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, but its regulatory mechanism remains unclear and potential clinical biomarkers are still lacking. Co-regulation of TFs and miRNAs in HCC and FFL module studies may help to identify more precise and critical driver modules in HCC development. Here, we performed a comprehensive gene expression and regulation analysis for HCC in vitro and in vivo. Transcription factor and miRNA co-regulatory networks for differentially expressed genes between tumors and adjacent tissues revealed the critical feed-forward loop (FFL) regulatory module miR-9-5p/FOXO1/CPEB3 in HCC. Gain- and loss-of-function studies demonstrated that miR-9-5p promotes HCC tumor proliferation, while FOXO1 and CPEB3 inhibit hepatocarcinoma growth. Furthermore, by luciferase reporter assay and ChIP-Seq data, CPEB3 was for the first time identified as a direct downstream target of FOXO1, negatively regulated by miR-9-5p. The miR-9-5p/FOXO1/CPEB3 FFL was associated with poor prognosis, and promoted cell growth and tumor progression of HCC in vitro and in vivo. Our study identified for the first time the existence of miR-9-5p/FOXO1/CPEB3 FFL and revealed its regulatory role in HCC progression, which may represent a new potential target for cancer therapy.
Collapse
Affiliation(s)
- Hui Hu
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
| | - Wei Huang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (J.L.); (L.G.)
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Hong Zhang
- Department of Gastroenterology, Wuhan Third Hospital, Wuhan 430060, China;
| | - Jianye Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (J.L.); (L.G.)
| | - Qiong Zhang
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
| | - Ya-Ru Miao
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
| | - Fei-Fei Hu
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (J.L.); (L.G.)
| | - Zhenhong Su
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Medical College, Hubei Polytechnic University, Huangshi 435000, China;
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (J.L.); (L.G.)
- Correspondence: (X.Y.); (A.-Y.G.)
| | - An-Yuan Guo
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (H.H.); (Q.Z.); (Y.-R.M.); (F.-F.H.)
- Correspondence: (X.Y.); (A.-Y.G.)
| |
Collapse
|
30
|
Zhao F, Wu L, Wang Q, Zhao X, Chen T, Yin C, Yan L, Yang X. Insulin-like growth factor 2 mRNA-binding protein 2-regulated alternative splicing of nuclear factor 1 C-type causes excessive granulosa cell proliferation in polycystic ovary syndrome. Cell Prolif 2022; 55:e13216. [PMID: 35293050 PMCID: PMC9055906 DOI: 10.1111/cpr.13216] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/12/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder. Insulin‐like growth factor 2 mRNA‐binding protein 2 (IGF2BP2) serves as an HMGA2 target gene to promote the proliferation of granulosa cells (GCs). However, it is still unclear whether IGF2BP2 participates in the pathogenesis of PCOS as RNA binding protein (RBP). In this study, we aimed to elucidate IGF2BP2‐interacting transcripts, global transcriptome together with alternative splicing in GCs to eventually uncover potential mechanisms of PCOS pathogenesis. Materials and Methods The expression of IGF2BP2 in GCs from PCOS patients was detected using quantitative reverse transcription PCR (RT‐qPCR) and western blot. We captured IGF2BP2‐interacting transcripts, global transcriptome together with alternative splicing by RNA immunoprecipitation sequencing (RIP‐seq) and RNA sequencing (RNA‐seq). KGN cells transfected with IGF2BP2 overexpressing plasmids and nuclear factor 1 C‐type (NFIC) siRNAs, were applied to CCK‐8, EdU and TUNEL assays. Results IGF2BP2 was highly expressed in GCs from PCOS patients. As an RBP, it preferentially bound to the 3′and 5′UTRs of mRNAs with GGAC motif and a newly found GAAG motif. The overexpression of IGF2BP2 changed the transcriptome profile of KGN cells. IGF2BP2 functioned to regulate alternative splicing events and promote cell proliferation through inhibiting exon skipping events of NFIC. Conclusion In conclusion, we demonstrated that IGF2BP2 promotes GC proliferation via regulating alternative splicing of NFIC in PCOS. The findings help to better understand the roles of IGF2BP2 in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Feiyan Zhao
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Human Reproductive Medicine, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Liang Wu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Qin Wang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Human Reproductive Medicine, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
| | - Xuehan Zhao
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Human Reproductive Medicine, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Tong Chen
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Human Reproductive Medicine, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
| | - Chenghong Yin
- Department of Human Reproductive Medicine, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China.,Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Long Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Department for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, People's Republic of China
| | - Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Human Reproductive Medicine, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
| |
Collapse
|
31
|
Davila RA, Spiller C, Harkins D, Harvey T, Jordan PW, Gronostajski RM, Piper M, Bowles J. Deletion of NFIX results in defective progression through meiosis within the mouse testis. Biol Reprod 2022; 106:1191-1205. [PMID: 35243487 PMCID: PMC9198952 DOI: 10.1093/biolre/ioac049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/17/2022] [Accepted: 02/24/2022] [Indexed: 12/05/2022] Open
Abstract
Members of the nuclear factor I (NFI) family are key regulators of stem cell biology during development, with well-documented roles for NFIA, NFIB, and NFIX in a variety of developing tissues, including brain, muscle, and lung. Given the central role these factors play in stem cell biology, we posited that they may be pivotal for spermatogonial stem cells or further developing spermatogonia during testicular development. Surprisingly, in stark contrast to other developing organ systems where NFI members are co-expressed, these NFI family members show discrete patterns of expression within the seminiferous tubules. Sertoli cells (spermatogenic supporting cells) express NFIA, spermatocytes express NFIX, round spermatids express NFIB, and peritubular myoid cells express each of these three family members. Further analysis of NFIX expression during the cycle of the seminiferous epithelium revealed expression not in spermatogonia, as we anticipated, but in spermatocytes. These data suggested a potential role for NFIX in spermatogenesis. To investigate, we analyzed mice with constitutive deletion of Nfix (Nfix-null). Assessment of germ cells in the postnatal day 20 (P20) testes of Nfix-null mice revealed that spermatocytes initiate meiosis, but zygotene stage spermatocytes display structural defects in the synaptonemal complex, and increased instances of unrepaired DNA double-strand breaks. Many developing spermatocytes in the Nfix-null testis exhibited multinucleation. As a result of these defects, spermatogenesis is blocked at early diplotene and very few round spermatids are produced. Collectively, these novel data establish the global requirement for NFIX in correct meiotic progression during the first wave of spermatogenesis.
Collapse
Affiliation(s)
- Raul Ayala Davila
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Cassy Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Danyon Harkins
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Tracey Harvey
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
32
|
Qiu C, Cao J, Martin BK, Li T, Welsh IC, Srivatsan S, Huang X, Calderon D, Noble WS, Disteche CM, Murray SA, Spielmann M, Moens CB, Trapnell C, Shendure J. Systematic reconstruction of cellular trajectories across mouse embryogenesis. Nat Genet 2022; 54:328-341. [PMID: 35288709 PMCID: PMC8920898 DOI: 10.1038/s41588-022-01018-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Mammalian embryogenesis is characterized by rapid cellular proliferation and diversification. Within a few weeks, a single-cell zygote gives rise to millions of cells expressing a panoply of molecular programs. Although intensively studied, a comprehensive delineation of the major cellular trajectories that comprise mammalian development in vivo remains elusive. Here, we set out to integrate several single-cell RNA-sequencing (scRNA-seq) datasets that collectively span mouse gastrulation and organogenesis, supplemented with new profiling of ~150,000 nuclei from approximately embryonic day 8.5 (E8.5) embryos staged in one-somite increments. Overall, we define cell states at each of 19 successive stages spanning E3.5 to E13.5 and heuristically connect them to their pseudoancestors and pseudodescendants. Although constructed through automated procedures, the resulting directed acyclic graph (TOME (trajectories of mammalian embryogenesis)) is largely consistent with our contemporary understanding of mammalian development. We leverage TOME to systematically nominate transcription factors (TFs) as candidate regulators of each cell type's specification, as well as 'cell-type homologs' across vertebrate evolution.
Collapse
Affiliation(s)
- Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Junyue Cao
- The Rockefeller University, New York, NY, USA
| | - Beth K Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tony Li
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Xingfan Huang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Diego Calderon
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Christine M Disteche
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Malte Spielmann
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
33
|
Abstract
Transcription factors (TFs) interact with several other proteins in the process of transcriptional regulation. Here, we identify 6703 and 1536 protein–protein interactions for 109 different human TFs through proximity-dependent biotinylation (BioID) and affinity purification mass spectrometry (AP-MS), respectively. The BioID analysis identifies more high-confidence interactions, highlighting the transient and dynamic nature of many of the TF interactions. By performing clustering and correlation analyses, we identify subgroups of TFs associated with specific biological functions, such as RNA splicing or chromatin remodeling. We also observe 202 TF-TF interactions, of which 118 are interactions with nuclear factor 1 (NFI) family members, indicating uncharacterized cross-talk between NFI signaling and other TF signaling pathways. Moreover, TF interactions with basal transcription machinery are mainly observed through TFIID and SAGA complexes. This study provides a rich resource of human TF interactions and also act as a starting point for future studies aimed at understanding TF-mediated transcription. Transcription factors (TFs) interact with several other proteins in the process of transcriptional regulation. Here the authors identify 6703 and 1536 protein–protein interactions for 109 different human TFs through BioID and AP-MS analyses, respectively.
Collapse
|
34
|
Zhou Z, Li Y, Xu H, Xie X, He Z, Lin S, Li R, Jin S, Cui J, Hu H, Liu F, Wu S, Ma W, Songyang Z. An inducible CRISPR/Cas9 screen identifies DTX2 as a transcriptional regulator of human telomerase. iScience 2022; 25:103813. [PMID: 35198878 PMCID: PMC8844827 DOI: 10.1016/j.isci.2022.103813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 01/12/2023] Open
Abstract
Most tumor cells reactivate telomerase to ensure unlimited proliferation, whereas the expression of human telomerase reverse transcriptase (hTERT) is tightly regulated and rate-limiting for telomerase activity maintenance. Several general transcription factors (TFs) have been found in regulating hTERT transcription; however, a systematic study is lacking. Here we performed an inducible CRISPR/Cas9 KO screen using an hTERT core promoter-driven reporter. We identified numerous positive regulators including an E3 ligase DTX2. In telomerase-positive cancer cells, DTX2 depletion downregulated hTERT transcription and telomerase activity, contributing to progressive telomere shortening, growth arrest, and increased apoptosis. Utilizing BioID, we characterized multiple TFs as DTX2 proximal proteins, among which NFIC functioned corporately with DTX2 in promoting hTERT transcription. Further analysis demonstrated that DTX2 mediated K63-linked ubiquitination of NFIC, which facilitated NFIC binding to the hTERT promoter and enhanced hTERT expression. These findings highlight a new hTERT regulatory pathway that may be exploited for potential cancer therapeutics. An inducible CRISPR/Cas9 screen identifies regulators for hTERT transcription DTX2 deficiency leads to telomere shortening and cell growth arrest DTX2 mediates ubiquitination on NFIC, stabilizing NFIC binding on hTERT promoter DTX2-NFIC functions corporately to promote hTERT transcription and tumorigenesis
Collapse
Affiliation(s)
- Zhifen Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yujing Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Huimin Xu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaowei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zibin He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Song Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ruofei Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shouheng Jin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hai Hu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Su Wu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Corresponding author
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Corresponding author
| | - Zhou Songyang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Corresponding author
| |
Collapse
|
35
|
Uluca B, Lektemur Esen C, Saritas Erdogan S, Kumbasar A. NFI transcriptionally represses CDON and is required for SH-SY5Y cell survival. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194798. [PMID: 35151899 DOI: 10.1016/j.bbagrm.2022.194798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Nuclear Factor One (NFI) family of transcription factors regulate proliferation and multiple aspects of differentiation, playing analogous roles in embryonic development and various types of cancer. While all NFI family members are expressed in the developing brain and are involved in progression of brain cancers, their role in neuroblastoma has not been studied. Here we show that NFIB is required for the survival and proliferation of SH-SY5Y neuroblastoma cells, assessed by viability and colony formation assays. Cdon, an Ig superfamily member, is a SHH dependence receptor that acts as a tumor suppressor in neuroblastoma. In the absence of NFI, Cdon is upregulated in the developing mouse brain, however the mechanisms by which its transcription is regulated remains unknown. We report CDON as a downstream target of NFIs in SH-SY5Y cells. There are three putative NFI binding sites within the one kb CDON promoter, two of which are occupied by NFIs in SH-SY5Y cells and human neural stem cells. In dual-luciferase assays, Nfib directly represses CDON proximal promoter activity. Moreover, silencing NFIB leads to upregulation of CDON in SH-SY5Y cells, however, decreased cell proliferation in NFIB silenced cells could not be rescued by concomitantly silencing CDON, suggesting other molecular players are involved. For instance, p21, an NFI target in glioblastoma and breast cancer cells, is also upregulated upon NFIB knock-down. We propose that NFIB is indispensable for SH-SY5Y cells which may involve regulation of apoptosis inducer proteins CDON and p21.
Collapse
Affiliation(s)
- Betül Uluca
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; Department of Molecular Biotechnology, Turkish-German University, Beykoz, Istanbul 34820, Turkey
| | - Cemre Lektemur Esen
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Sinem Saritas Erdogan
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Asli Kumbasar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| |
Collapse
|
36
|
Dong Q, Han Z, Tian L. Identification of Serum Exosome-Derived circRNA-miRNA-TF-mRNA Regulatory Network in Postmenopausal Osteoporosis Using Bioinformatics Analysis and Validation in Peripheral Blood-Derived Mononuclear Cells. Front Endocrinol (Lausanne) 2022; 13:899503. [PMID: 35757392 PMCID: PMC9218277 DOI: 10.3389/fendo.2022.899503] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Osteoporosis is one of the most common systemic metabolic bone diseases, especially in postmenopausal women. Circular RNA (circRNA) has been implicated in various human diseases. However, the potential role of circRNAs in postmenopausal osteoporosis (PMOP) remains largely unknown. The study aims to identify potential biomarkers and further understand the mechanism of PMOP by constructing a circRNA-associated ceRNA network. METHODS The PMOP-related datasets GSE161361, GSE64433, and GSE56116 were downloaded from the Gene Expression Omnibus (GEO) database and were used to obtain differentially expressed genes (DEGs). Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were applied to determine possible relevant functions of differentially expressed messenger RNAs (mRNAs). The TRRUST database was used to predict differential transcription factor (TF)-mRNA regulatory pairs. Afterwards, combined CircBank and miRTarBase, circRNA-miRNA as well as miRNA-TF pairs were constructed. Then, a circRNA-miRNA-TF-mRNA network was established. Next, the correlation of mRNAs, TFs, and PMOP was verified by the Comparative Toxicogenomics Database. And expression levels of key genes, including circRNAs, miRNAs, TFs, and mRNAs in the ceRNA network were further validated by quantitative real-time PCR (qRT-PCR). Furthermore, to screen out signaling pathways related to key mRNAs of the ceRNA network, Gene Set Enrichment Analysis (GSEA) was performed. RESULTS A total of 1201 DE mRNAs, 44 DE miRNAs, and 1613 DE circRNAs associated with PMOP were obtained. GO function annotation showed DE mRNAs were mainly related to inflammatory responses. KEGG analysis revealed DE mRNAs were mainly enriched in osteoclast differentiation, rheumatoid arthritis, hematopoietic cell lineage, and cytokine-cytokine receptor interaction pathways. We first identified 26 TFs and their target mRNAs. Combining DE miRNAs, miRNA-TF/mRNA pairs were obtained. Combining DE circRNAs, we constructed the ceRNA network contained 6 circRNAs, 4 miRNAs, 4 TFs, and 12 mRNAs. The expression levels of most genes detected by qRT-PCR were generally consistent with the microarray results. Combined with the qRT-PCR validation results, we eventually identified the ceRNA network that contained 4 circRNAs, 3 miRNAs, 3 TFs, and 9 mRNAs. The GSEA revealed that 9 mRNAs participate in many important signaling pathways, such as "olfactory transduction", "T cell receptor signaling pathway", and "neuroactive ligand-receptor interaction". These pathways have been reported to the occurrence and development of PMOP. To sum up, key mRNAs in the ceRNA network may participate in the development of osteoporosis by regulating related signal pathways. CONCLUSIONS A circRNA-associated ceRNA network containing TFs was established for PMOP. The study may help further explore the molecular mechanisms and may serve as potential biomarkers or therapeutic targets for PMOP.
Collapse
Affiliation(s)
- Qianqian Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
- Clinical Research Center for Metabolic Disease, Gansu Provincial Hospital, Lanzhou, China
| | - Ziqi Han
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
- Clinical Research Center for Metabolic Disease, Gansu Provincial Hospital, Lanzhou, China
| | - Limin Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
- Clinical Research Center for Metabolic Disease, Gansu Provincial Hospital, Lanzhou, China
- *Correspondence: Limin Tian,
| |
Collapse
|
37
|
Zhang H, Luo Z, Tang J, Tian J, Xiao Y, Sun C, Wang T. Transcription factor NFIC functions as a tumor suppressor in lung squamous cell carcinoma progression by modulating lncRNA CASC2. Cell Cycle 2022; 21:63-73. [PMID: 34985387 PMCID: PMC8837250 DOI: 10.1080/15384101.2021.1995130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nuclear factor I (NFI) family is emerging found playing oncogenic or tumor-suppressive potential in cancers. However, the function and underlying mechanisms of NFIC, in the progression of Lung Squamous Cell Carcinoma (LUSC) remain unclear. Therefore, this study aims to probe into the function of NFIC in the development of LUSC. In the present study, we reported that NFIC was low expressed in human LUSC tissues and cell lines. NFIC inhibited LUSC cell proliferation and promoted cell apoptosis in vitro and in vivo. Moreover, NFIC also inhibited LUSC cell migration and invasion. Furthermore, we found that there were binding sites between lncRNA cancer susceptibility candidate 2 (CASC2) and NFIC, whose relationship was confirmed by the luciferase reporter assay. The expression of CASC2 and the expression of NFIC were positively correlated, and the function of CASC2 overexpression is similar to that of NFIC overexpression, which suggested that CASC2 may play a key role in LUSC development. Our study provided a new perspective for NFIC acting as an antioncogene in LUSC tumorigenesis, and NFIC and CASC2 may serve as novel potential targets for the treatment of LUSC.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Thoracic Surgery, The Third Affitiated Hospital of Cqmu, Chongqing, China
| | - Zhilin Luo
- Department of Thoracic Surgery, The Third Affitiated Hospital of Cqmu, Chongqing, China
| | - JianMing Tang
- Department of Thoracic Surgery, The Third Affitiated Hospital of Cqmu, Chongqing, China
| | - Jie Tian
- Department of Thoracic Surgery, The Third Affitiated Hospital of Cqmu, Chongqing, China
| | - Yajie Xiao
- YuceBio Technology Co.Ltd., Shenzhen, China
| | - Chao Sun
- YuceBio Technology Co.Ltd., Shenzhen, China
| | - Tianhu Wang
- Department of Thoracic Surgery, The Third Affitiated Hospital of Cqmu, Chongqing, China,CONTACT Tianhu Wang Department of Thoracic Surgery, The Third Affiliated Hospital of Cqmu, No.1 Shuanghu Branch Road, Yubei District, Chongqing, China
| |
Collapse
|
38
|
Huang H, Jin J, Wu L, Wu H, Pi H, Dong Y, Xiang R. A de novo Non-sense Nuclear Factor I B Mutation (p.Tyr290*) Is Responsible for Brain Malformation and Lung Lobulation Defects. Front Pediatr 2022; 10:865181. [PMID: 35433561 PMCID: PMC9005976 DOI: 10.3389/fped.2022.865181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Nuclear factor I B (NFIB) plays an important role in regulating the transcription of multiple biological processes. Mutations in NFIB cause intellectual disability and macrocephaly. However, studies on abnormal brain and lung development caused by NFIB mutations are lacking. METHODS In the present study, we enrolled a fetus with brain malformation and lung lobulation defects from China. Whole-exome sequencing (WES) was performed to detect the candidate genes and Sanger sequencing was performed for mutational analysis. RESULTS After data filtering and bioinformatics prediction, a novel non-sense mutation of NFIB (NM_001190737:c.870C > A;p.Tyr290*) was identified in the fetus. This variant was predicted to produce a truncated NFIB protein because of a premature stop codon and was absent in 200 healthy controls. CONCLUSION To the best of our knowledge, this is the first case of brain malformation and lung lobulation defects caused by a NFIB variant in Asia. These findings contribute to genetic diagnosis and family counseling and expand our understanding of NFIB mutations as well as brain and lung maturation.
Collapse
Affiliation(s)
- Hao Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Jieyuan Jin
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Liping Wu
- Department of Medical Genetics and Prenatal Diagnosis, Shenzhen Longgang District Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Huifen Wu
- Obstetric Inpatient Department, Shenzhen Longgang District Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Huichun Pi
- Department of Medical Genetics and Prenatal Diagnosis, Shenzhen Longgang District Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yi Dong
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Rong Xiang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
39
|
Lv S, Liu L, Yang B, Zhao X. Association of miR-9-5p and NFIC in the progression of gastric cancer. Hum Exp Toxicol 2022; 41:9603271221084671. [PMID: 35481447 DOI: 10.1177/09603271221084671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Gastric cancer is the most common malignant neoplasm of digestive system. Herein, we aim to detect the expression of nuclear factor I C (NFIC) in gastric cancer cells, and to explore the effect and mechanism of its expression on the development of gastric cancer. METHODS qPCR and Western blot assays were carried out to detect NFIC expression. Then, BGC-823 and SGC-7901 cell lines were selected to perform the following functional experiments. The function of NFIC on gastric cancer cells was analyzed by biological experiments. The associations between miR-9-5p and NFIC were searched on the bioinformatics website and identified by dual luciferase assay. The effects of miR-9-5p and NFIC on cells were verified by co-transfection experiments. The related genes expression was examined by Western blot. RESULTS A marked augmentation of NFIC was observed in gastric cancer cells. Knockdown of NFIC significantly inhibited the viability, colony formation, invasion, and migration of gastric cancer cells. Overexpression of miR-9-5p obviously suppressed the viability, colony formation, invasion, and migration of gastric cancer cells, and this phenomenon was aggravated by si-NFIC. Additionally, the expression levels of PCNA, vimentin, and Snail were obviously decreased after miR-9-5p mimic or/and si-NFIC treatment. CONCLUSIONS These results suggested that NFIC was highly expressed in gastric cancer cells, and knockdown of NFIC suppressed the growth and mobility of gastric cancer cells; miR-9-5p was identified as an upstream regulator of NFIC and suppressed the malignant behaviors of gastric cancer cells by targeting NFIC through affecting PCNA, vimentin, and Snail expression.
Collapse
Affiliation(s)
- Shihong Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Lei Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Baijing Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Xiaohua Zhao
- Respiratory Department, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, China
| |
Collapse
|
40
|
Nuclear factor I-C disrupts cellular homeostasis between autophagy and apoptosis via miR-200b-Ambra1 in neural tube defects. Cell Death Dis 2021; 13:17. [PMID: 34930914 PMCID: PMC8688449 DOI: 10.1038/s41419-021-04473-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023]
Abstract
Impaired autophagy and excessive apoptosis disrupt cellular homeostasis and contribute to neural tube defects (NTDs), which are a group of fatal and disabling birth defects caused by the failure of neural tube closure during early embryonic development. However, the regulatory mechanisms underlying NTDs and outcomes remain elusive. Here, we report the role of the transcription factor nuclear factor I-C (NFIC) in maintaining cellular homeostasis in NTDs. We demonstrated that abnormally elevated levels of NFIC in a mouse model of NTDs can interact with the miR-200b promoter, leading to the activation of the transcription of miR-200b, which plays a critical role in NTD formation, as reported in our previous study. Furthermore, miR-200b represses autophagy and triggers apoptosis by directly targeting the autophagy-related gene Ambra1 (Autophagy/Beclin1 regulator 1). Notably, miR-200b inhibitors mitigate the unexpected effects of NFIC on autophagy and apoptosis. Collectively, these results indicate that the NFIC-miR-200b-Ambra1 axis, which integrates transcription- and epigenome-regulated miRNAs and an autophagy regulator, disrupts cellular homeostasis during the closure of the neural tube, and may provide new insight into NTD pathogenesis.
Collapse
|
41
|
CircNFIC Balances Inflammation and Apoptosis by Sponging miR-30e-3p and Regulating DENND1B Expression. Genes (Basel) 2021; 12:genes12111829. [PMID: 34828435 PMCID: PMC8622209 DOI: 10.3390/genes12111829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Disordered inflammation and apoptosis are closely related to diseases, and inflammation can also promote cell apoptosis, where growing evidence has shown that circular RNAs (circRNAs) play important roles. Lipopolysaccharide (LPS) is the main component of the cytoderm of gram-negative bacterium, which can cause inflammatory responses in macrophages. We constructed an inflammatory model by exposing chicken macrophage cell lines (also known as HD11) to LPS for in vitro experiments. In this study, we validated a novel circRNA-circNFIC-which was dramatically up-regulated in tissues infected by coccidia and cells exposed to LPS. Besides, circNFIC could significantly promote the expression levels of pro-inflammation factors, including (IL-1β, TNFα, and IFNγ) and pro-apoptosis maker genes (caspase 3 and caspase 8) in HD11 exposed to LPS or not. In terms of mechanism, circNFIC exerted notable effects on DENND1B to regulate cell inflammation and apoptosis by sponging miR-30e-3p. The molecular functions played by miR-30e-3p and DENND1B have been explored, respectively. In addition, the effects of circNFIC knockdown suppressing the expression of pro-inflammatory and pro-apoptosis functions could be reversed by a miR-30e-3p inhibitor. On the whole, circNFIC promoted cell inflammation and apoptosis via the miR-30e-3p/DENND1B axis.
Collapse
|
42
|
Moura DS, Díaz-Martín J, Bagué S, Orellana-Fernandez R, Sebio A, Mondaza-Hernandez JL, Salguero-Aranda C, Rojo F, Hindi N, Fletcher CDM, Martin-Broto J. A Novel NFIX-STAT6 Gene Fusion in Solitary Fibrous Tumor: A Case Report. Int J Mol Sci 2021; 22:ijms22147514. [PMID: 34299133 PMCID: PMC8305824 DOI: 10.3390/ijms22147514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022] Open
Abstract
Solitary fibrous tumor is a rare subtype of soft-tissue sarcoma with a wide spectrum of histopathological features and clinical behaviors, ranging from mildly to highly aggressive tumors. The defining genetic driver alteration is the gene fusion NAB2–STAT6, resulting from a paracentric inversion within chromosome 12q, and involving several different exons in each gene. STAT6 (signal transducer and activator of transcription 6) nuclear immunostaining and/or the identification of NAB2–STAT6 gene fusion is required for the diagnostic confirmation of solitary fibrous tumor. In the present study, a new gene fusion consisting of Nuclear Factor I X (NFIX), mapping to 19p13.2 and STAT6, mapping to 12q13.3 was identified by targeted RNA-Seq in a 74-year-old female patient diagnosed with a deep-seated solitary fibrous tumor in the pelvis. Histopathologically, the neoplasm did not display nuclear pleomorphism or tumor necrosis and had a low proliferative index. A total of 378 unique reads spanning the NFIXexon8–STAT6exon2 breakpoint with 55 different start sites were detected in the bioinformatic analysis, which represented 59.5% of the reads intersecting the genomic location on either side of the breakpoint. Targeted RNA-Seq results were validated by RT-PCR/ Sanger sequencing. The identification of a new gene fusion partner for STAT6 in solitary fibrous tumor opens intriguing new hypotheses to refine the role of STAT6 in the sarcomatogenesis of this entity.
Collapse
Affiliation(s)
- David S. Moura
- Institute of Biomedicine of Seville (IBiS, CSIC, HUVR, US), 41013 Seville, Spain; (D.S.M.); (J.D.-M.); (C.S.-A.)
| | - Juan Díaz-Martín
- Institute of Biomedicine of Seville (IBiS, CSIC, HUVR, US), 41013 Seville, Spain; (D.S.M.); (J.D.-M.); (C.S.-A.)
- Pathology Department, Hospital Virgen del Rocío, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red del Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Silvia Bagué
- Pathology Department–CIBERONC, Sant Pau Hospital, 08041 Barcelona, Spain; (S.B.); (R.O.-F.)
| | | | - Ana Sebio
- Medical Oncology Department, Sant Pau Hospital, 08041 Barcelona, Spain;
| | - Jose L. Mondaza-Hernandez
- Fundacion Jimenez Diaz University Hospital Health Research Institute (IIS/FJD), 28015 Madrid, Spain; (J.L.M.-H.); (N.H.)
| | - Carmen Salguero-Aranda
- Institute of Biomedicine of Seville (IBiS, CSIC, HUVR, US), 41013 Seville, Spain; (D.S.M.); (J.D.-M.); (C.S.-A.)
- Pathology Department, Hospital Virgen del Rocío, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red del Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Federico Rojo
- Pathology Department, Fundacion Jimenez Diaz University Hospital, 28040 Madrid, Spain;
| | - Nadia Hindi
- Fundacion Jimenez Diaz University Hospital Health Research Institute (IIS/FJD), 28015 Madrid, Spain; (J.L.M.-H.); (N.H.)
- Medical Oncology Department, Fundacion Jimenez Diaz University Hospital, 28040 Madrid, Spain
- General de Villalba University Hospital, 28400 Madrid, Spain
| | - Christopher D. M. Fletcher
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02215, USA;
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Javier Martin-Broto
- Fundacion Jimenez Diaz University Hospital Health Research Institute (IIS/FJD), 28015 Madrid, Spain; (J.L.M.-H.); (N.H.)
- Medical Oncology Department, Fundacion Jimenez Diaz University Hospital, 28040 Madrid, Spain
- General de Villalba University Hospital, 28400 Madrid, Spain
- Correspondence: ; Tel.: +34-95-540-2246
| |
Collapse
|
43
|
Chen KS, Lynton Z, Lim JWC, Robertson T, Gronostajski RM, Bunt J, Richards LJ. NFIA and NFIB function as tumour suppressors in high-grade glioma in mice. Carcinogenesis 2021; 42:357-368. [PMID: 33346791 DOI: 10.1093/carcin/bgaa139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/05/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor one (NFI) transcription factors are implicated in both brain development and cancer in mice and humans and play an essential role in glial differentiation. NFI expression is reduced in human astrocytoma samples, particularly those of higher grade, whereas over-expression of NFI protein can induce the differentiation of glioblastoma cells within human tumour xenografts and in glioblastoma cell lines in vitro. These data indicate that NFI proteins may act as tumour suppressors in glioma. To test this hypothesis, we generated complex mouse genetic crosses involving six alleles to target gene deletion of known tumour suppressor genes that induce endogenous high-grade glioma in mice, and overlaid this with loss of function Nfi mutant alleles, Nfia and Nfib, a reporter transgene and an inducible Cre allele. Deletion of Nfi resulted in reduced survival time of the mice, increased tumour load and a more aggressive tumour phenotype than observed in glioma mice with normal expression of NFI. Together, these data indicate that NFI genes represent a credible target for both diagnostic analyses and therapeutic strategies to combat high-grade glioma.
Collapse
Affiliation(s)
- Kok-Siong Chen
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zorana Lynton
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jonathan W C Lim
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas Robertson
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia.,Anatomical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jens Bunt
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Linda J Richards
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
44
|
Yu J, Song Y, Yang A, Zhang X, Li L. Serum nuclear factor IB as a novel and noninvasive indicator in the diagnosis of secondary hyperparathyroidism. J Clin Lab Anal 2021; 35:e23787. [PMID: 33991027 PMCID: PMC8183937 DOI: 10.1002/jcla.23787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Chronic renal failure (CRF) referred to chronic progressive renal parenchymal damage caused by various causes, with metabolite retention and imbalance of water, electrolyte, and acid-base balance as the main clinical manifestations. Secondary hyperparathyroidism (sHPT) was a common complication in maintenance hemodialysis patients with CRF. Nuclear factor IB (NFIB) was a newly found tumor suppressor gene in various cancers. The present study aimed to illustrate the role of NFIB in sHPT clinical diagnosis and treatment response. METHODS A retrospective, case-control study, including 189 patients with sHPT and 106 CRF patients without sHPT, compared with 95 controls. Serum NFIB and 1,25(OH)2 D3 levels were measured by RT-qPCR and ELISAs, respectively. ROC analysis was conducted to verify the diagnostic value of NFIB in sHPT. Spearman's correlation analysis was conducted to verify the association between NFIB and bone mineral density (BMD) scores. After 6 months of treatment, the variance of NFIB and 1,25(OH)2 D3 in different groups was recorded. RESULTS The expression of NFIB was significantly lower in serum samples from sHPT and non-sHPT CRF patients, compared to controls. Clinicopathological information verified sHPT was associated with NFIB, parathyroid hormone (PTH), serum calcium, serum phosphorus, time of dialysis, and serum 1,25(OH)2 D3 levels. Spearman's correlation analysis illustrated the positive correlation between NFIB levels and BMD scores. At receiver operator characteristic (ROC) curve analysis, the cutoff of 1.6508 for NFIB was able to identify patients with sHPT from healthy controls; meanwhile, NFIB could also discriminate sHPT among CRF patients as well (cutoff = 1.4741). Furthermore, we found that during 6 months of treatment, NFIB levels were gradually increased, while PTH and serum P levels were decreased. CONCLUSIONS Serum NFIB was a highly accurate tool to identify sHPT from healthy controls and CRF patients. Due to its simplicity, specificity, and sensitivity, this candidate can be proposed as a first-line examination in the diagnostic workup in sHPT.
Collapse
Affiliation(s)
- Jian'gen Yu
- Department of Nephrology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Yu Song
- Department of Nephrology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Aihua Yang
- Department of Nephrology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Xiaoyun Zhang
- Department of Nephrology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Lin Li
- Department of Nephrology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| |
Collapse
|
45
|
Feng X, Zheng Z, Wang Y, Song G, Wang L, Zhang Z, Zhao J, Wang Q, Lun L. Elevated RUNX1 is a prognostic biomarker for human head and neck squamous cell carcinoma. Exp Biol Med (Maywood) 2021; 246:538-546. [PMID: 33241710 PMCID: PMC7934153 DOI: 10.1177/1535370220969663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/26/2020] [Indexed: 01/25/2023] Open
Abstract
Runt-related transcription factors regulate many developmental processes such as proliferation and differentiation. In this study, the function of the runt-related transcription factor 1 (RUNX1) was investigated in head and neck squamous cell carcinoma (HNSCC). Our results show that RUNX1 expression was elevated in HNSCC patients, which was greatly correlated with the N stage, tumor size, and American Joint Committee on Cancer stage. Cox proportional hazard models showed that RUNX1 could be used as a prognostic indicator for the overall survival of HNSCC patients (hazard ratio, 5.572; 95% confidence interval, 1.860-9.963; P < 0.001). Moreover, suppression of RUNX1 inhibited HNSCC cell proliferation, migration, and invasion. Using the HNSCC xenograft nude mouse model, we found that the shRUNX1-transfected tumor (sh-RUNX1) was significantly smaller both in size and weight than the control vector-transfected tumor (sh-Control). In conclusion, our results show that the elevated RUNX1 expression was correlated with tumor growth and metastasis in HNSCC, indicating that RUNX1 could be used as a biomarker for tumor recurrence and prognosis.
Collapse
Affiliation(s)
- Xiaodong Feng
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Zhiwei Zheng
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yi Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Guanghui Song
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Lu Wang
- Department of Education and Training, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Zhijun Zhang
- Department of Clinical Laboratory, Taian City Central Hospital, Taian 271000, China
| | - Jinxia Zhao
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Qing Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Limin Lun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| |
Collapse
|
46
|
Nagel S, Pommerenke C, Meyer C, MacLeod RAF, Drexler HG. Establishment of the TALE-code reveals aberrantly activated homeobox gene PBX1 in Hodgkin lymphoma. PLoS One 2021; 16:e0246603. [PMID: 33539429 PMCID: PMC7861379 DOI: 10.1371/journal.pone.0246603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
Homeobox genes encode transcription factors which regulate basic processes in development and cell differentiation and are grouped into classes and subclasses according to sequence similarities. Here, we analyzed the activities of the 20 members strong TALE homeobox gene class in early hematopoiesis and in lymphopoiesis including developing and mature B-cells, T-cells, natural killer (NK)-cells and innate lymphoid cells (ILC). The resultant expression pattern comprised eleven genes and which we termed TALE-code enables discrimination of normal and aberrant activities of TALE homeobox genes in lymphoid malignancies. Subsequent expression analysis of TALE homeobox genes in public datasets of Hodgkin lymphoma (HL) patients revealed overexpression of IRX3, IRX4, MEIS1, MEIS3, PBX1, PBX4 and TGIF1. As paradigm we focused on PBX1 which was deregulated in about 17% HL patients. Normal PBX1 expression was restricted to hematopoietic stem cells and progenitors of T-cells and ILCs but absent in B-cells, reflecting its roles in stemness and early differentiation. HL cell line SUP-HD1 expressed enhanced PBX1 levels and served as an in vitro model to identify upstream regulators and downstream targets in this malignancy. Genomic studies of this cell line therein showed a gain of the PBX1 locus at 1q23 which may underlie its aberrant expression. Comparative expression profiling analyses of HL patients and cell lines followed by knockdown experiments revealed NFIB and TLX2 as target genes activated by PBX1. HOX proteins operate as cofactors of PBX1. Accordingly, our data showed that HOXB9 overexpressed in HL coactivated TLX2 but not NFIB while activating TNFRSF9 without PBX1. Further downstream analyses showed that TLX2 activated TBX15 which operated anti-apoptotically. Taken together, we discovered a lymphoid TALE-code and identified an aberrant network around deregulated TALE homeobox gene PBX1 which may disturb B-cell differentiation in HL by reactivation of progenitor-specific genes. These findings may provide the framework for future studies to exploit possible vulnerabilities of malignant cells in therapeutic scenarios.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A. F. MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
47
|
Cheng R, Gao S, Hu W, Liu Y, Cao Y. Nuclear factor I/B mediates epithelial-mesenchymal transition in human melanoma cells through ZEB1. Oncol Lett 2020; 21:81. [PMID: 33363618 PMCID: PMC7723069 DOI: 10.3892/ol.2020.12342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
The relationship between nuclear factor I/B (NFIB) and cancer attracts growing research interest. NFIB has diverse and specific roles in tumor progression and invasion. However, the potential effects and functions of this transcription factor in melanoma remain unclear. The present study sought to determine the distinguishing properties of NFIB in melanoma cells. Immunohistochemical examination of the tissues of 15 patients with melanoma indicated that the expression of NFIB was high in melanoma specimens, compared with the benign nevus and normal skin specimens. In addition, the relationship between high NFIB expression and low overall survival rate was assessed. Functional studies demonstrated that NFIB enhanced the malignancy of melanoma, including proliferation, migration and invasion. In addition, NFIB silencing in A375 and A875 cell lines inhibited the process of epithelial-mesenchymal transition (EMT), upregulated E-cadherin and zona occludens-1, but suppressed N-cadherin and vimentin expression. These findings may suggest a new function of NFIB in promoting the migration and invasion of melanoma cells. Therefore, the present study further evaluated the association between NFIB and zinc finger protein E-box binding homeobox-1 (ZEB1) in melanoma. Mechanistic experiments revealed that NFIB exerted its roles during EMT by regulating ZEB1. Overall, the present data indicates that NFIB promotes the malignancy of melanoma, particularly EMT, by modulating the ZEB1 axis, such as ZEB2, ATM and CHK1, which may represent a potential molecular therapeutic target in melanoma.
Collapse
Affiliation(s)
- Ruimin Cheng
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Sheng Gao
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wei Hu
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yamei Liu
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuchun Cao
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
48
|
Guo Q, Yin X, Gao J, Wang X, Zhang S, Zhou X, Wang Z, Zhang Q. MiR-381-3p redistributes between cytosol and mitochondria and aggravates endothelial cell injury induced by reactive oxygen species. Tissue Cell 2020; 67:101451. [PMID: 33137708 DOI: 10.1016/j.tice.2020.101451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) are reported to play pivotal roles in reactive oxygen species (ROS)-induced endothelial cell injury and several studies have demonstrated the miRNA distribution in the mitochondria of various cells. However, very little is known about its changes and roles in ROS-induced endothelial cell injury. In the present study, we systematically revealed the distribution changes of miRNAs in mitochondria during ROS-induced endothelial cell injury and found that H2O2 obviously reduced the mitochondrial distribution of many miRNAs without affecting their expression levels in the whole endothelial cells. Most of these miRNAs showing reduced mitochondrial distribution were potentially involved in ROS-induced endothelial cell injury. MiR-381-3p was a typical representative of these miRNAs and its redistribution between mitochondria and cytosol regulated the network consisting of downstream molecules (P53, P21, CCND1, and MYC) by inhibiting its target genes (LRP6 and NFIA) to promote apoptosis and inhibit proliferation in endothelial cells. Our findings highlight the significance of redistribution of miRNAs between mitochondria and cytosol and improve our understanding of miRNA function regulation.
Collapse
Affiliation(s)
- Qianqian Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xianlun Yin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Jing Gao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xiaowei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Shucui Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xiaoming Zhou
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, 250021, PR China
| | - Zhe Wang
- Division of Endocrinology and Metabolism, Division of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, PR China.
| | - Qunye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
49
|
Wang H, Shi X, Wu S. miR-550a-3/NFIC plays a driving role in esophageal squamous cell cancer cells proliferation and metastasis partly through EMT process. Mol Cell Biochem 2020; 472:115-123. [PMID: 32567032 DOI: 10.1007/s11010-020-03790-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
In this study, the functional role of miR-550a-3 and its direct target nuclear factor IC (NFIC) in esophageal squamous cell cancer (ESCC) cells were explored. Differential expression of miR-550a-3 in ESCC tissues was acquired from TCGA database, and Kaplan-Meier method was used to determine the relationship between miR-550a-3 expression and survival time of ESCC patients. Expression level of miR-550a-3 in several ESCC cell lines was measured by qRT-PCR. Two cell lines including Eca109 and JAR were used to perform proliferation, cloning, invasion and migration experiments. Targeted relationship between miR-550a-3 and NFIC was speculated by predication software and confirmed by dual luciferase assay. Additionally, potential relationship between miR-550a-3 and NFIC was analyzed by Spearman rank correlation analysis and western blot. Rescue assays were performed to explore the function of miR-550a-3/NFIC in ESCC cells biological behaviors. Expression levels of key proteins involved in epithelial-to-mesenchymal transition (EMT) process were determined by western blot. By consulting TCGA database, we found that high expression of miR-550a-3 was positively connected with the poor prognosis of patients with ESCC. In addition, overexpression of miR-550a-3 promoted the proliferation, colony formation and metastasis of ESCC cells. Moreover, rescue assays revealed that overexpression of NFIC attenuated the promoting effects of miR-550a-3 on ESCC cells malignant behaviors. While the promoting effects of miR-550a-3 on EMT process were inhibited by NFIC. Our results illustrate the importance of miR-550a-3/NFIC in regulation of ESCC cells growth and metastasis, which could contribute to developing novel target for early diagnosis or neoteric therapeutic target for ESCC.
Collapse
Affiliation(s)
- Huiqing Wang
- Gastroenterology, The Second Hospital of Dalian Medical University, No.467, Zhongshan Road, Dalian, Liaoning, China
| | - Xiaoyu Shi
- Thoracic Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Shanbin Wu
- Gastroenterology, The Second Hospital of Dalian Medical University, No.467, Zhongshan Road, Dalian, Liaoning, China.
| |
Collapse
|
50
|
Nanda JS, Awadallah WN, Kohrt SE, Popovics P, Cates JMM, Mirosevich J, Clark PE, Giannico GA, Grabowska MM. Increased nuclear factor I/B expression in prostate cancer correlates with AR expression. Prostate 2020; 80:1058-1070. [PMID: 32692871 PMCID: PMC7434711 DOI: 10.1002/pros.24019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Most prostate cancers express androgen receptor (AR), and our previous studies have focused on identifying transcription factors that modify AR function. We have shown that nuclear factor I/B (NFIB) regulates AR activity in androgen-dependent prostate cancer cells in vitro. However, the status of NFIB in prostate cancer was unknown. METHODS We immunostained a tissue microarray including normal, hyperplastic, prostatic intraepithelial neoplasia, primary prostatic adenocarcinoma, and castration-resistant prostate cancer tissue samples for NFIB, AR, and synaptophysin, a marker of neuroendocrine differentiation. We interrogated publically available data sets in cBioPortal to correlate NFIB expression and AR and neuroendocrine prostate cancer (NEPCa) activity scores. We analyzed prostate cancer cell lines for NFIB expression via Western blot analysis and used nuclear and cytoplasmic fractionation to assess where NFIB is localized. We performed co-immunoprecipitation studies to determine if NFIB and AR interact. RESULTS NFIB increased in the nucleus and cytoplasm of prostate cancer samples versus matched normal controls, independent of Gleason score. Similarly, cytoplasmic AR and synaptophysin increased in primary prostate cancer. We observed strong NFIB staining in primary small cell prostate cancer. The ratio of cytoplasmic-to-nuclear NFIB staining was predictive of earlier biochemical recurrence in prostate cancer, once adjusted for tumor margin status. Cytoplasmic AR was an independent predictor of biochemical recurrence. There was no statistically significant difference between NFIB and synaptophysin expression in primary and castration-resistant prostate cancer, but cytoplasmic AR expression was increased in castration-resistant samples. In primary prostate cancer, nuclear NFIB expression correlated with cytoplasmic NFIB and nuclear AR, while cytoplasmic NFIB correlated with synaptophysin, and nuclear and cytoplasmic AR. In castration-resistant prostate cancer samples, NFIB expression correlated positively with an AR activity score, and negatively with the NEPCa score. In prostate cancer cell lines, NFIB exists in several isoforms. We observed NFIB predominantly in the nuclear fraction of prostate cancer cells with increased cytoplasmic expression seen in castration-resistant cell lines. We observed an interaction between AR and NFIB through co-immunoprecipitation experiments. CONCLUSION We have described the expression pattern of NFIB in primary and castration-resistant prostate cancer and its positive correlation with AR. We have also demonstrated AR interacts with NFIB.
Collapse
Affiliation(s)
- Jagpreet S. Nanda
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | | | - Sarah E. Kohrt
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Petra Popovics
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | - Justin M. M. Cates
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Janni Mirosevich
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - Peter E. Clark
- Department of Urology, Levine Cancer Center/Atrium Health, Charlotte, NC
| | - Giovanna A. Giannico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Magdalena M. Grabowska
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Address correspondence to: Magdalena M. Grabowska, 2123 Adelbert Road, Wood Research Tower; RTG00, Cleveland, OH 44106, Phone: 216-368-5736,
| |
Collapse
|