1
|
Yu H, Wirth CL. Direct measurement of surface interactions experienced by sticky microcapsules made from environmentally benign materials. J Colloid Interface Sci 2025; 683:1028-1039. [PMID: 39721075 DOI: 10.1016/j.jcis.2024.12.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
We present a study combining experimental measurements, theoretical analysis, and simulations to investigate core-shell microcapsules interacting with a solid boundary, with a particular focus on understanding the short-range potential energy well arising from the tethered force. The microcapsules, fabricated using a Pickering emulsion template with a cinnamon oil core and calcium alginate shell, were characterized for size (∼5-6μm in diameter) and surface charge (∼-20mV). We employed total internal reflection microscopy and particle tracking to measure the microcapsule-boundary interactions and diffusion, from which potential energy and diffusivity profiles were derived. The potential energy profile characterizing the normal interaction was analyzed and simulated by considering electrostatic, gravitational, van der Waals, and tethered forces, while the lateral diffusivity was compared to that of a solid particle-boundary interaction, inclusive of hydrodynamic forces. The diffusivity was represented as a normalized diffusion coefficient to eliminate the impact of fluid viscosity. The normalized diffusion coefficient of polymer-shell microcapsules (∼0.02) was found to be an order of magnitude smaller than that of solid polystyrene particles (∼0.2). The microcapsule sampled a potential well consisting of two distinct minima, as observed experimentally and supported by analytical expressions and Brownian dynamics simulations. A critical tethered height hct=46.3nm and the alginate radius of rg=32.1nm were obtained from fitting our model to experimental data. This work concludes that these benign core-shell microcapsules interact with a nearby boundary via a transient tethering interaction, overall producing a mild 'sticky' interaction that would likely be beneficial for applications in consumer products.
Collapse
Affiliation(s)
- Hairou Yu
- Department of Chemical and Biomolecular Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, United States.
| | - Christopher L Wirth
- Department of Chemical and Biomolecular Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| |
Collapse
|
2
|
Chopra J, Sahoo P, Sow PK, Rangarajan V. Investigating the wettability of neem oil nanoemulsion as a green pesticide on leaf surfaces - optimizing formulation, assessing stability, and enhancing wettability. RSC Adv 2025; 15:8645-8656. [PMID: 40114719 PMCID: PMC11923737 DOI: 10.1039/d5ra00556f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
The present study focuses on formulating a stable green oil-in-water nanoemulsion (NE) formulation for pesticide application, thereby addressing the primary challenges of botanical pesticides by improving the stability, efficacy, and wettability of leaf surfaces. Neem oil and rhamnolipid biosurfactant were utilized as the base oil and surfactant, respectively for the NE formulation. Initial screening studies with varying oil-to-surfactant ratios identified an optimal ratio of 7.13 (w/w), corresponding to 15% oil (v/v) of total emulsion volume, for a stable NE. The stability of the formulation was validated in a 25 mL volume over 20 days, maintaining a mean droplet diameter of 139.1 ± 7.34 nm and a polydispersity index of 0.207. Further stability assessments under varying time, temperature, ionic strengths, and centrifugal forces revealed a relatively stable droplet diameter ranging from 141 to 245 nm. The surface tension for the optimal formulation was measured to be 35.7 ± 0.4 mN m-1. Additionally, experiments with various NE formulations on selected leaves showed that NEs with higher oil content displayed faster spreading, as indicated by a rapid reduction in contact angle. The novelty of the study lies in demonstrating the synergistic interaction between oil and rhamnolipid, which facilitated faster spreading compared to the individual spreading of either component, as revealed by the dynamic spreading studies of the NE formulation on leaf surfaces. Therefore, this research paves the way for future research and development of green pesticides that are sustainable and effective compared to their chemical counterparts.
Collapse
Affiliation(s)
- Jayita Chopra
- Department of Chemical Engineering, BITS Pilani K K Birla Goa Campus Goa India
| | - Priyanka Sahoo
- Department of Chemical Engineering, BITS Pilani K K Birla Goa Campus Goa India
| | - Pradeep Kumar Sow
- Department of Chemical Engineering, BITS Pilani K K Birla Goa Campus Goa India
| | - Vivek Rangarajan
- Department of Chemical Engineering, BITS Pilani K K Birla Goa Campus Goa India
| |
Collapse
|
3
|
Saber FR, Salehi H, Khallaf MA, Rizwan K, Gouda M, Ahmed S, Zengin G, Zhang L, Rakmai J, Secomandi E, Lucini L, Simal-Gandara J. Limonoids: Advances in Extraction, Characterization, and Applications. FOOD REVIEWS INTERNATIONAL 2025:1-62. [DOI: 10.1080/87559129.2025.2456494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
4
|
Prado JCS, de Aguiar FLL, Prado GM, Nascimento JFD, de Sousa NV, Barbosa FCB, Lima DM, Rodrigues THS, Bessa NUDC, Abreu FOMDS, Fontenelle RODS. Development and characterization of nanoemulsions containing Lippia origanoides Kunth essential oil and their antifungal potential against Candida albicans. J Appl Microbiol 2024; 135:lxae271. [PMID: 39439208 DOI: 10.1093/jambio/lxae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/15/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
AIMS Nanoemulsions based on plant essential oils have shown promise as alternatives against fungal pathogens by increasing the solubility and bioavailability of the active compounds of essential oils, which can improve their efficacy and safety. In the present study, we aimed to prepare and characterize nanoemulsions of Lippia origanoides essential oil, and analyze their antifungal activity against C. albicans in planktonic and biofilm form. Additionally, we sought to verify their cytotoxicity. METHODS AND RESULTS Alginate nanoemulsions were prepared with different concentrations of essential oil, sunflower oil, and surfactant to investigate ideal formulations regarding stability and antifungal efficiency. The results showed the nanoemulsions remained stable for longer than 60 days, with acidic pH, particle sizes ranging from 180.17 ± 6.86 nm to 497.85 ± 253.50 nm, zeta potential from -60.47 ± 2.25 to -43.63 ± 12, and polydispersity index from 0.004 to 0.622. The photomicrographs revealed that the addition of sunflower oil influenced the formation of the particles, forming nanoemulsions. The antifungal results of the essential oil and nanoemulsions showed that the MIC ranged from 0.078 to 0.312 mg ml-1. The nanoemulsions were more effective than the free essential oil in eradicating the biofilm, eliminating up to 89.7% of its mass. With regard to cytotoxicity, differences were found between the tests with VERO cells and red blood cells, and the nanoemulsions were less toxic to red blood cells than the free essential oil. CONCLUSIONS These results show that nanoemulsions have antifungal potential against strains of C. albicans in planktonic and biofilm forms.
Collapse
Affiliation(s)
- Júlio César Sousa Prado
- Master's Program in Health Sciences, Federal University of Ceará, Sobral, CE 62042280, Brazil
| | | | - Guilherme Mendes Prado
- Master's Program in Health Sciences, Federal University of Ceará, Sobral, CE 62042280, Brazil
| | - Joice Farias do Nascimento
- Natural Polymers Laboratory, Center for Science and Technology, State University of Ceará, Fortaleza, CE 60741000, Brazil
| | | | | | - Danielle Malta Lima
- Postgraduate Program in Medical Sciences, University of Fortaleza, Fortaleza, CE 60811905, Brazil
| | | | - Nathália Uchôa de Castro Bessa
- Laboratório de Embalagens-Embrapa, Post-graduated Program in Biotecnology, Federal University of Ceará, Fortaleza, CE 60511110, Brazil
| | | | - Raquel Oliveira Dos Santos Fontenelle
- Master's Program in Health Sciences, Federal University of Ceará, Sobral, CE 62042280, Brazil
- Center for Agricultural and Biological Sciences, Acaraú Valley State University, Sobral, CE 62040370, Brazil
| |
Collapse
|
5
|
Mondéjar-López M, García-Simarro MP, Navarro-Simarro P, Gómez-Gómez L, Ahrazem O, Niza E. A review on the encapsulation of "eco-friendly" compounds in natural polymer-based nanoparticles as next generation nano-agrochemicals for sustainable agriculture and crop management. Int J Biol Macromol 2024; 280:136030. [PMID: 39332563 DOI: 10.1016/j.ijbiomac.2024.136030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Crop management techniques and sustainable agriculture offer a comprehensive farming method that incorporates social, economic, and ecological factors. Sustainable agriculture places a high priority on soil health, water efficiency, and biodiversity conservation in order to develop resilient and regenerative food systems that can feed both the current and future generations. Our goal in this review is to give a thorough overview of current developments in the use of polysaccharides as raw materials for the encapsulation of natural chemicals in nanoparticles as novel crop protection products. The search for recent research articles and latest reviews has been carried out through pubmed, google scholar, BASE as search engines. Offer cutting-edge solutions for sustainable crop management that satisfy the demands of an expanding population, comply with changing legal frameworks, and address environmental issues by encasing natural compounds inside polysaccharide-based nanoparticles. A variety of natural substances, such as essential oils, plant extracts, antimicrobials compounds and miRNA, can be included in these nanoparticles. These materials have many advantages, such as biocompatibility, biodegradability and controlled release of active compounds. Thanks to their action mechanism, they are able to mediate hormone signaling and gene expression in different plant physiological aspects, as well as enhance their tolerance to abiotic stress conditions. Sustainable agriculture can be supported by this type of treatments, correctly developing food safety through the production of non-toxic nanoparticles, low-cost industrial scale-up and the use of biodegradable materials. Polysaccharide-based nanoparticles have a wide range of uses in agriculture: they improve crop yields, encourage "eco-friendly" farming methods and can decrease the concentrations of active ingredient used, providing an accurate and affective dosage without damaging further species, as well as avoiding treatment resistance risks. These nanoparticles can also reduce the negative effects of chemical fertilizers and pesticides, contributing to the environmentally friendly agricultural development. Furthermore, the application of polysaccharide-based nanoparticles is consistent with the expanding trend of green and sustainable agriculture.
Collapse
Affiliation(s)
- María Mondéjar-López
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Maria Paz García-Simarro
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Naplatec S.L, Calle Mayor 36, 02001 Albacete, Spain
| | - Pablo Navarro-Simarro
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, C/ José María Sánchez Ibáñez s/n, 02008 Albacete, Spain
| | - Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Enrique Niza
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, C/ José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| |
Collapse
|
6
|
Liu L, Liu X, Lu X, Guo X, Chen X, Li W, Yu X, Cheng Z. Characterization of Acid-Responsive-Release Matrine/ZIF-8@Sodium Alginate Microcapsules Prepared by Electrostatic Spray and Their Application in the Control of Soybean Cyst Nematode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19689-19700. [PMID: 39235286 DOI: 10.1021/acs.langmuir.4c02375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Matrine (MT) is a kind of alkaloid extracted from Sophora and is a promising substitute for chemical nematicides and botanical pesticides. The present study utilized sodium alginate (SA), zeolite imidazole salt skeleton (ZIF), and MT as raw materials to prepare a pH-response-release nematicide through the electrostatic spray technique. Zinc metal-organic framework (ZIF-8) was initially synthesized, followed by the successful loading of MT. Subsequently, the electrostatic spray process was employed to encapsulate it in SA, resulting in the formation of MT/ZIF-8@SA microcapsules. The efficiency of encapsulation and drug loadings can reach 79.93 and 26.83%, respectively. Soybean cyst nematode (SCN) is one of the important pests that harm crops; acetic acid produced by plant roots and CO2 produced by root respiration causing a decrease in the pH of the surrounding environment, which is most attractive to the SCN when the pH is between 4.5 and 5.4. MT/ZIF-8@SA releases the loaded MT in response to acetic acid produced by roots and acidic oxides produced by root respiration. The rate of release was 37.67% higher at pH 5.25 compared with pH 8.60. The control efficiency can reach 89.08% under greenhouse conditions. The above results demonstrate that the prepared MT/ZIF-8@SA not only exhibited excellent efficacy but also demonstrated a pH-responsive release of the nematicide.
Collapse
Affiliation(s)
- Longyu Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130000, China
| | - Xueqiu Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130000, China
| | - Xinyi Lu
- College of Plant Protection, Jilin Agricultural University, Changchun 130000, China
| | - Xinmiao Guo
- College of Plant Protection, Jilin Agricultural University, Changchun 130000, China
| | - Xi Chen
- College of Plant Protection, Jilin Agricultural University, Changchun 130000, China
| | - Weiping Li
- College of Information Technology, Jilin Agricultural University, Changchun 130000, China
| | - Xiaobin Yu
- College of Plant Protection, Jilin Agricultural University, Changchun 130000, China
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agricultural University, Changchun 130000, China
| |
Collapse
|
7
|
Arul Raj JS, Aliyas S, Poomany Arul Soundara Rajan YA, Murugan K, Karuppiah P, Arumugam N, Almansour AI, Karthikeyan P. Spontaneous nanoemulsification of cinnamon essential oil: Formulation, characterization, and antibacterial and antibiofilm activity against fish spoilage caused by Serratia rubidaea BFMO8. Biotechnol Appl Biochem 2024; 71:512-524. [PMID: 38253987 DOI: 10.1002/bab.2555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
The contemporary food industry's uses of nanoemulsions (NEs) include food processing, effective nutraceutical delivery, the development of functional chemicals, and the synthesis of natural preservatives, such as phytocompounds. Although cinnamon essential oil (CEO) is widely used in the cosmetic, pharmaceutical, and food industries, it is difficult to add to aqueous-based food formulations due to its weak stability and poor water solubility. This study describes the formulation of a CEO nanoemulsion (CEONE) by spontaneous emulsification and evaluates its antibacterial and antibiofilm properties against biofilm-forming Serratia rubidaea BFMO8 isolated from spoiled emperor fish (Lethrinus miniatus). Bacteria causing spoilage in emperor fish were isolated and identified as S. rubidaea using common morphological, cultural, and 16S RNA sequencing methods, and their ability to form biofilms and their susceptibility to CEONE were assessed using biofilm-specific methods. The spontaneous emulsification formulation of CEONE was accomplished using water and Tween 20 surfactant by manipulating organic and aqueous phase interface properties and controlling particle growth by capping surfactant increases. The best emulsification, with highly stable nano-size droplets, was accomplished at 750 rpm and a 1:3 ratio concentration. The stable CEONE droplet size, polydispersity index, and zeta potential values were 204.8 nm, 0.115, and -6.05 mV, respectively. FTIR and high-resolution liquid chromatography-mass spectrometry (HR-LCMS) analyses have revealed carboxyl, carbonyl, and phenol-like primary phytochemical functional groups in CEO and CEONE, which contribute to their antibacterial and antibiofilm properties.
Collapse
Affiliation(s)
- Jasmin Suriya Arul Raj
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Sheena Aliyas
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | | | - Kasi Murugan
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Ponmurugan Karuppiah
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Perumal Karthikeyan
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Rehman MFU, Khan MM. Application of nanopesticides and its toxicity evaluation through Drosophila model. Bioprocess Biosyst Eng 2024; 47:1-22. [PMID: 37993740 DOI: 10.1007/s00449-023-02932-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/08/2023] [Indexed: 11/24/2023]
Abstract
Insects feed on plants and cause the growth of plants to be restricted. Moreover, the application of traditional pesticides causes harmful effects on non-target organisms and poses serious threats to the environment. The use of conventional pesticides has negative impacts on creatures that are not the intended targets. It also presents significant risks to the surrounding ecosystem. Insects that are exposed to these chemicals eventually develop resistance to them. This review could benefit researcher for future development of nanopesticides research. This is because a holistic approach has been taken to describe the multidimensional properties of nanopesticides, health and environmental concerns and its possible harmful effects on non-target organisms and physiochemical entities. The assessment of effects of the nanopesticides is also being discussed through the drosophotoxicology. The future outlooks have been suggested to take a critical analysis before commercialization or formulation of the nanopesticides.
Collapse
Affiliation(s)
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, 1410, Brunei Darussalam.
| |
Collapse
|
9
|
MOHAPATRA PRIYADARSHINI, CHANDRASEKARAN NATARAJAN. OPTIMIZATION AND CHARACTERIZATION OF ESSENTIAL OILS FORMULATION FOR ENHANCED STABILITY AND DRUG DELIVERY SYSTEM OF MEFLOQUINE. INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICS 2023:145-154. [DOI: 10.22159/ijap.2023v15i5.48624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Objective: This work aims to choose suitable essential oil formulations to improve the bioavailability and long-term aqueous stability of mefloquine in drug delivery systems.
Methods: Oil phases of pomegranate oil, black cumin seed oil, and garlic oil. To choose the proper oil and surfactant for creating pseudo-ternary phase diagrams, cremophore EL, tween®20 and tween®80 (surfactants), and brij 35 (co-surfactants) were used in a variety of concentrations and combinations (Smix). Mefloquine was estimated to be soluble in a variety of oils, surfactants, and co-surfactants. Drug solubility, drug release research, thermodynamic stability, mean hydrodynamic size and zeta potential.
Results: Garlic with smix of cremophore EL and brij 35, Pomegranate with Tween 2.0, and Black cumin seed oil with Tween 80 showed the highest solubilization and emulsification capabilities and were further investigated using ternary phase diagrams. When combined with the co-surfactants under investigation, cremophore EL demonstrated a greater self-emulsification zone than tween® 80 and tween 20. Garlic oil, cremophore EL, and brij 35 nanoemulsion showed smaller size, greater zeta potential, less emulsification time, high transmittance, and better drug solubility than microemulsion formulations on especially those made with tween®20 and tween 80. Mefloquine loaded garlic oil nanoemulsion showed considerably low release in body fluid (32.48%) and a good release in intestinal fluid (82.78%) by 12 h in a drug release study.
Conclusion: Garlic oil as the oil phase and a mixture of cremophore EL and brij 35 as the surfactant phase are ideal surfactants and co-surfactant for mefloquine loaded garlic oil nanoemulsion with greater drug release in release kinetics investigation.
Collapse
|
10
|
Bennacef C, Desobry S, Probst L, Desobry-Banon S. Alginate Based Core-Shell Capsules Production through Coextrusion Methods: Recent Applications. Foods 2023; 12:foods12091788. [PMID: 37174326 PMCID: PMC10177967 DOI: 10.3390/foods12091788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Encapsulation is used in various industries to protect active molecules and control the release of the encapsulated materials. One of the structures that can be obtained using coextrusion encapsulation methods is the core-shell capsule. This review focuses on coextrusion encapsulation applications for the preservation of oils and essential oils, probiotics, and other bioactives. This technology isolates actives from the external environment, enhances their stability, and allows their controlled release. Coextrusion offers a valuable means of preserving active molecules by reducing oxidation processes, limiting the evaporation of volatile compounds, isolating some nutrients or drugs with undesired taste, or stabilizing probiotics to increase their shelf life. Being environmentally friendly, coextrusion offers significant application opportunities for the pharmaceutical, food, and agriculture sectors.
Collapse
Affiliation(s)
- Chanez Bennacef
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandoeuvre-lès-Nancy Cedex, France
- Cookal SAS Company, 19 Avenue de la Meurthe, 54320 Maxéville, France
| | - Stéphane Desobry
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandoeuvre-lès-Nancy Cedex, France
| | - Laurent Probst
- Cookal SAS Company, 19 Avenue de la Meurthe, 54320 Maxéville, France
| | - Sylvie Desobry-Banon
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandoeuvre-lès-Nancy Cedex, France
| |
Collapse
|
11
|
Menon PM, Chandrasekaran N, C GPD, Shanmugam S. Multi-drug loaded eugenol-based nanoemulsions for enhanced anti-mycobacterial activity. RSC Med Chem 2023; 14:433-443. [PMID: 36970149 PMCID: PMC10034140 DOI: 10.1039/d2md00320a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023] Open
Abstract
Tuberculosis is one of the oldest bacterial infections known to mankind caused by Mycobacterium tuberculosis. The aim of this research is to optimize and formulate a multi-drug loaded eugenol based nanoemulsion system and to evaluate its ability as an antimycobacterial agent and its potential to be a low cost and effective drug delivery system. All the three eugenol based drug loaded nano-emulsion systems were optimized using response surface methodology (RSM)-central composite design (CCD) and were found stable at a ratio of 1 : 5 (oil : surfactant) when ultrasonicated for 8 minutes. The minimum inhibitory concentration (MIC) values against strains of Mycobacterium tuberculosis highly proved that these essential oil-based nano-emulsions showed more promising results and an even improved anti-mycobacterium activity on the addition of a combination of drugs. The absorbance of 1st line anti-tubercular drugs from release kinetics studies showed a controlled and sustained release in body fluids. Thus, we can conclude that this is a much more efficient and desirable method in treating infections caused by Mycobacterium tuberculosis and even its MDR/XDR strains. All these nano-emulsion systems were stable for more than 3 months.
Collapse
Affiliation(s)
- Parvathy Mohan Menon
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology Vellore India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore India +91 416 2243092 +91 416 2202879
| | - George Priya Doss C
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology Vellore India
| | - Sivakumar Shanmugam
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis Chennai India
| |
Collapse
|
12
|
Elkalla E, Khizar S, Tarhini M, Lebaz N, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Core-shell micro/nanocapsules: from encapsulation to applications. J Microencapsul 2023; 40:125-156. [PMID: 36749629 DOI: 10.1080/02652048.2023.2178538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Encapsulation is the way to wrap or coat one substance as a core inside another tiny substance known as a shell at micro and nano scale for protecting the active ingredients from the exterior environment. A lot of active substances, such as flavours, enzymes, drugs, pesticides, vitamins, in addition to catalysts being effectively encapsulated within capsules consisting of different natural as well as synthetic polymers comprising poly(methacrylate), poly(ethylene glycol), cellulose, poly(lactide), poly(styrene), gelatine, poly(lactide-co-glycolide)s, and acacia. The developed capsules release the enclosed substance conveniently and in time through numerous mechanisms, reliant on the ultimate use of final products. Such technology is important for several fields counting food, pharmaceutical, cosmetics, agriculture, and textile industries. The present review focuses on the most important and high-efficiency methods for manufacturing micro/nanocapsules and their several applications in our life.
Collapse
Affiliation(s)
- Eslam Elkalla
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Sumera Khizar
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEPP UMR-5007, Villeurbanne, France
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | |
Collapse
|
13
|
Manna S, Roy S, Dolai A, Ravula AR, Perumal V, Das A. Current and future prospects of “all-organic” nanoinsecticides for agricultural insect pest management. FRONTIERS IN NANOTECHNOLOGY 2023. [DOI: 10.3389/fnano.2022.1082128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Graphical Abstract
Collapse
|
14
|
Mohapatra P, Chandrasekaran N. Effects of black cumin-based antimalarial drug loaded with nano-emulsion of bovine and human serum albumins by spectroscopic and molecular docking studies. Heliyon 2023; 9:e12677. [PMID: 36632107 PMCID: PMC9826829 DOI: 10.1016/j.heliyon.2022.e12677] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The growing understanding of nanoemulsion biomedical applications necessitates a basic understanding of protein-drug-loaded nanoemulsion interaction. In our present study, we investigated the binding interactions of Mefloquine (MEF)-loaded black cumin seed oil (Thymoquinone) nanoemulsion of different concentrations towards human and bovine serum albumin (HSA&BSA).Fluorescenceemission,three-dimensionalspectra,UV-visible spectroscopy, and FTIR-spectroscopy, techniques were used together with molecular docking studies to identify the binding effects. The ground state complex formation between Mefloquine-loaded black cumin seed oil nanoemulsion and protein fluorophores was confirmed by a decrease in fluorescence intensity and disputed hyper-chronicity found in the UV-visible spectra of albumins. According to three-dimensional fluorescence spectral analysis, the addition of MEF in thymoquinone impacted the microenvironment around aromatic amino acid (tryptophan and tyrosine) residues in HSA. The quenching mechanism is determined to be static contact by stern-volmer analysis, resulting in the formation of a stable bioconjugate. Significant modifications in the amide FTIR frequencies at around 1600 cm-1 correlate to variations in the secondary alpha-helical structures of biomolecules at the MEF-loaded nanoemulsion interface. Molecular dynamic studies have shown the binding affinity scores of the proteins BSA and HSA with the drug, MEF-loaded black cumin seed oil nanoemulsion. The determined thermodynamic parameters were found to agree with molecular docking data, indicating that vander-waals and hydrogen bonding forces were important in the interaction process. MEF prefers a highly polar binding site at the exterior area of domains in HSA than BSA, as shown in the molecular model, and the hydrogen bonds are highlighted. From our results, we have observed that drug delivery has a detrimental effect on protein frame confirmation by altering its physiological function.
Collapse
|
15
|
Carvalho APAD, Conte-Junior CA. Nanoencapsulation application to prolong postharvest shelf life. Curr Opin Biotechnol 2022; 78:102825. [PMID: 36332341 DOI: 10.1016/j.copbio.2022.102825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022]
Abstract
This review offers our opinion on current and future trends regarding nanoencapsulation interventions to extend postharvest shelf life of stored grains, fruits, and vegetables. Herein, we considered two major factors influencing postharvest shelf life for comments: aerobic food spoilage microorganisms and stored pests. Nanoemulsions, edible/active coatings, and nanopackaging loading essential oils as antimicrobial, antioxidant, or pesticide showed promising results in prolonged shelf life at room/cold storage without compromising quality, organoleptic properties, and postharvest physiology. Trends with nanoencapsulation using plant-based pesticides as agrochemical-free methods to keep produce fresh longer were commented as potential candidates for prolonging the shelf life of stored grains and fruits at the postharvest stage. Research with potential large-scale feasibility is intensive, but safety assessment is required and remains little explored.
Collapse
Affiliation(s)
- Anna Paula Azevedo de Carvalho
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941598, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941598, Brazil; Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro RJ 20020-000, Brazil.
| | - Carlos Adam Conte-Junior
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941598, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941598, Brazil; Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro RJ 20020-000, Brazil; Graduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil.
| |
Collapse
|
16
|
Iqbal H, Jahan N, Khalil-Ur-Rahman, Jamil S. Formulation and characterisation of Azadirachta indica nanobiopesticides for ecofriendly control of wheat pest Tribolium castaneum and Rhyzopertha dominica. J Microencapsul 2022; 39:638-653. [PMID: 36398734 DOI: 10.1080/02652048.2022.2149870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study aimed to formulate the green, sustainable, and ecofriendly nanobiopesticides of Azadirachta indica with enhanced pest control efficacy. Nanoprecipitation method was used for the development of nanobiopesticides. Optimisation was done by response surface methodology. Nanoformulations were characterised by zetasizer, scanning electron microscopy, energy dispersive x-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy. Pesticidal potential of nanosuspensions was evaluated by insecticide impregnated filter paper method. Optimised nanobiopesticide showed an average particle size of 275.8 ± 0.95 nm, polydispersity index (PDI) 0.351 ± 0.002, and zeta potential of -33 ± 0.90 mV. Nanobiopesticides exhibited significantly higher mortality rates of 86.81 ± 3.04 and 84.97 ± 2.83% against Tribolium castaneum and Ryzopertha dominica, respectively, as compared to their crude extract. Minor change in particle size from 275.8 ± 0.95 to 298.8 ± 1.00 nm and PDI from 0.351 ± 0.002 to 0.445 ± 0.02 were observed after 3 months of storage at 4 °C. Pesticidal efficacy of A. indica was significantly enhanced by the formulation of its nanobiopesticides.
Collapse
Affiliation(s)
- Humaira Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Nazish Jahan
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Khalil-Ur-Rahman
- Department of Biochemistry, Riphah International University, Faisalabad Campus, Pakistan
| | - Saba Jamil
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
17
|
Janani S, Dhanabal S, Sureshkumar R, Nikitha Upadhyayula SS. PEGylation of Nanoemulsion Using Spontaneous Emulsification Method. Assay Drug Dev Technol 2022; 20:274-285. [DOI: 10.1089/adt.2022.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- S.K. Janani
- Department of Pharmaceutics, and JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| | - S.P. Dhanabal
- Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| | - R. Sureshkumar
- Department of Pharmaceutics, and JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Sai Surya Nikitha Upadhyayula
- Department of Pharmaceutics, and JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
18
|
Bae M, Lewis A, Liu S, Arcot Y, Lin YT, Bernal JS, Cisneros-Zevallos L, Akbulut M. Novel Biopesticides Based on Nanoencapsulation of Azadirachtin with Whey Protein to Control Fall Armyworm. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7900-7910. [PMID: 35727694 DOI: 10.1021/acs.jafc.2c01558] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biopesticides have become a global trend in order to minimize the hazards derived from synthetic chemical pesticides and improve the safety, efficacy, and environmental friendliness of agricultural pest management. Herein, we report a novel biopesticide composite encapsulating azadirachtin with the size of 260.9 ± 6.8 nm and its effects on the insect pest Spodoptera frugiperda (fall armyworm). The nanocomposite biopesticide was produced via nano emulsification and freeze-drying process using whey protein isolate as a nanocarrier matrix to encapsulate azadirachtin, a natural insect-killing compound obtained from neem seed. We found that the nanocomposite biopesticide acted quicker and with greater efficacy than bulk azadirachtin treatment with corresponding LC50 values within 11 days of S. frugiperda larvae survival. Through confocal microscopy, we found the enhanced biodistribution of the nanocomposite to all parts of the insect body. Photodegradation assays revealed an enhanced UV stability facilitated by light-scattering stemming from the intrinsic nanostructure and UV scavenging vitamin-E component.
Collapse
Affiliation(s)
- Michael Bae
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Amanda Lewis
- Department of Horticultural Science, Texas A&M University, College Station, Texas 77843, United States
| | - Shuhao Liu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Yashwanth Arcot
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Yu-Ting Lin
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Julio S Bernal
- Department of Entomology, Texas A&M University, College Station, Texas 77843, United States
| | - Luis Cisneros-Zevallos
- Department of Horticultural Science, Texas A&M University, College Station, Texas 77843, United States
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843, United States
| | - Mustafa Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
19
|
Wang L, Hu Q, Huang Y, Xiong Q, Chen Y, Gan C, Zhang Y, Cui G, Cui J. Study on the preparation of sustained-release thiamethoxam microspheres by blending microcrystalline wax with tapioca starch ester or dehydroabietic acid ester as the matrix. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:576-587. [PMID: 35611791 DOI: 10.1080/03601234.2022.2079908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The controlled release formulations (CRFs) are considered an effective way to solve damage to the environment caused by traditional pesticide formulations. To change the defects of traditional neonicotinoid formulations that dissolve quickly in soil, three types of thiamethoxam (TM) CRFs microspheres with content of 20% TM were prepared using microcrystalline wax (MK) as the matrix, laurate acid tapioca starch ester (MSK) and stearyl dehydroabietic acid ester (MDK) as the regulators of ingredient release. The release behavior of CRFs microspheres in water and soil showed that the microspheres had superior stability and different TM sustained-release periods, and TM release of the microspheres in soil was faster than that in water. The release rate is TM/MDK > TM/MSK > TM/MK. In water, the release of thiamethoxam technical was finished after 38 hours. However, for TM/MK, the release rate was 94% after 240 hours, and the release time was extended by 6 times. Meanwhile, TM/MDK has a particular pH-responsive release. Research shows that using microcrystalline wax as the matrix, by adding MSK or MDK to adjust the release of ingredients, pesticide CRFs microspheres with different release periods can be prepared to achieve the purpose of controlling the release of pesticides.
Collapse
Affiliation(s)
- Linlin Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Qiang Hu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Qipeng Xiong
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Yong Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Yuanfei Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Guoqin Cui
- Guangxi Tianyuan Biochemical Co. Ltd, Nanning, PR China
| | - Jianguo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
- Guangxi Tianyuan Biochemical Co. Ltd, Nanning, PR China
| |
Collapse
|
20
|
Huang Y, Chen Y, Xiong Q, Hu Y, Li X, Gan C, Zhang Y, Cui J. Fabrication and evaluation of indoxacarb nano‐formulation based on corn starch esters with systemic translocation. STARCH-STARKE 2022. [DOI: 10.1002/star.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics Nanning Normal University Nanning PR 530001 China
| | - Yong Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics Nanning Normal University Nanning PR 530001 China
| | - Qipeng Xiong
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics Nanning Normal University Nanning PR 530001 China
| | - Yanhong Hu
- Guangxi Tianyuan Biochemical Co. Ltd. Nanning PR 530001 China
| | - Xiangying Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics Nanning Normal University Nanning PR 530001 China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics Nanning Normal University Nanning PR 530001 China
| | - Yuanfei Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics Nanning Normal University Nanning PR 530001 China
| | - Jianguo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics Nanning Normal University Nanning PR 530001 China
- Guangxi Tianyuan Biochemical Co. Ltd. Nanning PR 530001 China
| |
Collapse
|
21
|
E Marouf A. Efficacy of Mandarin Crust Oil, Marigold Extract and Their Nanoemulsions, on Spodoptera littoralis (Boisd.) Larvae. Pak J Biol Sci 2022; 25:688-697. [PMID: 36098194 DOI: 10.3923/pjbs.2022.688.697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
<b>Background and Objective:</b> In recent years, nanoemulsions have been used to target pest toxicity due to the dangers of chemical pesticides. The current study investigated the insecticidal activity of the mandarin crust oil (<i>Citrus reticulata</i>) and marigold extract (<i>Calendula officinalis </i>L.) in the form of nanoemulsions formulations and plant oil against 2nd instars larvae of <i>Spodoptera littoralis</i>. (Boisduval). <b>Materials and Methods:</b> To assess the toxicity of treatments to 2nd instar larvae, the leaf-dipping technique was used. The toxicity was recorded after one, three, five and seven days post-treatment and LC<sub>50</sub> values were calculated. <b>Results:</b> The results indicated that nanoemulsion of plant oil extracts has the highest insecticidal activity against <i>S. littoralis</i>, followed by plant oil extracts. The major constituents identified by GC-MS analysis in marigold extract and mandarin crust oil were, 6-epi-shyobunol (Longiborneol) and D-Limonene, respectively. Furthermore, at LC<sub>50</sub>, all treatments decreased AST/GOT and ALT/GPT activity, showing a significant reduction in creatinine activity when compared to control. <b>Conclusion:</b> According to the current study, the use of the nanoemulsion formulation could be useful in integrated pest management programs.
Collapse
|
22
|
Risangud N, de Jongh PA, Wilson P, Haddleton DM. Synthesis of biodegradable liquid-core microcapsules composed of isocyanate functionalized poly(ε-caprolactone)-containing copolymers. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Nisha Raj S, Anooj E, Rajendran K, Vallinayagam S. A comprehensive review on regulatory invention of nano pesticides in Agricultural nano formulation and food system. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130517] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Gaydhane MK, Pudke SP, Sharma CS. Neem oil encapsulated electrospun polyurethane nanofibrous bags for seed storage: A step toward sustainable agriculture. J Appl Polym Sci 2020. [DOI: 10.1002/app.50003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mrunalini K. Gaydhane
- Creative and Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering Indian Institute of Technology Hyderabad Telangana India
| | - Sampada P. Pudke
- Creative and Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering Indian Institute of Technology Hyderabad Telangana India
| | - Chandra Shekhar Sharma
- Creative and Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering Indian Institute of Technology Hyderabad Telangana India
| |
Collapse
|
25
|
Zhang Y, Liu B, Huang K, Wang S, Quirino RL, Zhang ZX, Zhang C. Eco-Friendly Castor Oil-Based Delivery System with Sustained Pesticide Release and Enhanced Retention. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37607-37618. [PMID: 32814393 DOI: 10.1021/acsami.0c10620] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The deposition of pesticides and their retention on plant surfaces are critical challenges for modern precision agriculture, which directly affect phytosanitary treatment, bioavailability, efficacy, and the loss of pesticides. Herein, a novel and eco-friendly waterborne polyurethane delivery system was developed to enhance the spray deposition and pesticide retention on plant surfaces. More specifically, biobased cationic and anionic waterborne polyurethane dispersions were synthesized from castor oil. Both cationic and anionic polyurethane dispersions exhibited remarkable microstructural, amphiphilic, and nanoparticle morphologies with a core-shell structure that served to encapsulate a biopesticide (azadirachtin) in their hydrophobic cores (WPU-ACT). The results indicated that the cationic WPU-ACT carriers exhibited a better sustained release behavior and a better protective effect from light and heat for azadirachtin. In addition, the simultaneous spray of anionic and cationic WPU-ACT significantly enhanced the spray deposition and prolonged the retention of pesticides due to the reduced surface tension and surface precipitation induced by the electrostatic interaction when two droplets with opposite charges come into contact with each other. A field efficacy assessment also indicated that the simultaneous spray of anionic and cationic WPU-ACT could control the infestation of brown planthopper in rice crops. Castor oil-based waterborne polyurethanes in this study work as an efficient pesticide delivery system by exhibiting enhanced deposition, rainfastness, retention ability, protection, and sustained release behavior, holding great promise for spraying pesticide formulations in modern and environmentally friendly agricultural applications.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, 483 Wushan Road, Guangzhou 510642, China
| | - Boyang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, 483 Wushan Road, Guangzhou 510642, China
| | - Kaixi Huang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, 483 Wushan Road, Guangzhou 510642, China
| | - Shiying Wang
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Rafael Lopes Quirino
- Chemistry Department, Georgia Southern University, Statesboro, Georgia 30460, United States
| | - Zhi-Xiang Zhang
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Chaoqun Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, 483 Wushan Road, Guangzhou 510642, China
| |
Collapse
|
26
|
Oxidative stability of linseed oil nano-emulsions filled in calcium alginate hydrogels. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
27
|
Singh A, Dhiman N, Kar AK, Singh D, Purohit MP, Ghosh D, Patnaik S. Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121525. [PMID: 31740313 DOI: 10.1016/j.jhazmat.2019.121525] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 05/26/2023]
Abstract
As the world is striving hard towards sustainable agricultural practices for a better tomorrow, one of the primary focuses is on effective pest management for enhanced crop productivity. Despite newer and potent chemicals as pesticides, there are still substantial crop losses, and if by any means this loss can be tackled; it will alleviate unwanted excessive use of chemical pesticides. Scientific surveys have already established that pesticides are not being utilized by the crops completely rather a significant amount remains unused due to various limiting factors such as leaching and bioconversion, etc., resulting in an adverse effect on human health and ecosystems. Concerted efforts from scientific diaspora toward newer and innovative strategies are already showing promise, and one such viable approach is controlled release systems (CRS) of pesticides. Moreover, to bring these smart formulations within the domain of current pesticide regulatory framework is still under debate. It is thus, paramount to discuss the pros and cons of this new technology vis-à-vis the conventional agrarian methods. This review deliberates on the developmental updates in this innovative field from the past decades and also appraises the challenges encumbered. Additionally, critical information and the foreseeable research gaps in this emerging area are highlighted.
Collapse
Affiliation(s)
- Amrita Singh
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India
| | - Nitesh Dhiman
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India
| | - Aditya Kumar Kar
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India
| | - Divya Singh
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Mahaveer Prasad Purohit
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India
| | - Debabrata Ghosh
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India; Immunotoxicolgy Laboratory, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Satyakam Patnaik
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
28
|
Riyajan SA, Chantawee K. Cassava starch composite based films for encapsulated neem: Effect of carboxylated styrene-butadiene rubber coating. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2019.100438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Porous starch citrate biopolymer for controlled release of carbofuran in the management of root knot nematode Meloidogyne incognita. ACTA ACUST UNITED AC 2020; 25:e00428. [PMID: 32071894 PMCID: PMC7016262 DOI: 10.1016/j.btre.2020.e00428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 11/23/2022]
Abstract
Starch bio-polymer is a promising material in controlled release formulations for Meloidogyne incognita management. The porous starch and starch citrate bio-polymer was prepared and characterised with FTIR, SEM and TGA. The SEM revealed highly stabilized biopolymers and the TGA showed increased thermal stability of the materials, while the FTIR confirmed successful synthesis of the bio-polymer. Effective control was achieved with porous starch citrate.
The undesirable environmental impacts of inappropriate application of pesticides have brought about research into new matrices for controlled release of pesticides. Porous starch citrate biopolymer was designed for the release of carbofuran in this experiment and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Thermo-Gravimetric Analysis (TGA) for functional group, surface morphology and thermal stability properties respectively. The SEM revealed highly stabilized porous starch citrate biopolymers with porous structures and gradients suitable for controlled release studies. The transmittance bands at 3347, 1714 and 1073 cm−1 for OH, CO and COC—
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>—— stretching vibrations further confirms the successful synthesis of the biopolymer. TGA showed an increase in the thermal stability after citric acid modification with one-step decomposition from 290 ᵒC to 500 ᵒC. From Korsemeyer-Peppas model, the carbofuran-porous starch citrate (CBFN/PRS/STH/CTRT) followed a lower diffusion release model with gradual increment in all the quantity of carbofuran loaded. An accelerated rate of diffusion percentage was seen in direct application of carbofuran. Egg hatch and mortality of juveniles were recorded on daily basis for seven days. Direct application of carbofuran (CBFN/DRT) and carbofuran-porous starch citrate biopolymer gave the best results with significant (p < 0.05) reduction in egg hatch and higher percentage mortality. The rate of release of carbofuran from the starch citrate bio polymer matrix was significantly lower than the direct application, and in spite of the slow rate of release, higher juvenile mortality and reduction in egg hatch was achieved.
Collapse
|
30
|
Plant-derived nanopesticides for agricultural pest control: challenges and prospects. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s41204-020-0066-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Mendonça FMR, Polloni AE, Junges A, da Silva RS, Rubira AF, Borges GR, Dariva C, Franceschi E. Encapsulation of neem (Azadirachta indica) seed oil in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by SFEE technique. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Revathi T, Thambidurai S. Cytotoxic, antioxidant and antibacterial activities of copper oxide incorporated chitosan-neem seed biocomposites. Int J Biol Macromol 2019; 139:867-878. [PMID: 31376446 DOI: 10.1016/j.ijbiomac.2019.07.214] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/15/2019] [Accepted: 07/30/2019] [Indexed: 02/08/2023]
Abstract
In this study biopolymer-inorganic material of chitosan‑copper oxide-neem seed (CS-CuO-NS) biocomposite was successfully synthesized by simple precipitation method and characterized by FT-IR, XRD, HR-SEM, TEM and TGA analyses. From HR-SEM and TEM analysis, CS-CuO-NS biocomposite shows flower and needle like structure respectively. The size of the as prepared CS-CuO-NS biocomposite is found to be 20-100 nm. All the synthesized materials were tested for antibacterial activity against both gram positive like Staphylococcus aureus (S. aureus) and Streptococcus pyogenes (S. pyogenes) and gram negative like Escherichia coli (E. coli) and Klebsiella aerogenes (K. aerogenes) bacterial strains. The maximum zone of inhibition is obtained for CS-CuO-NS biocomposite against S. aureus (23 mm), S. pyogenes (21 mm), E. coli (22 mm) and K. aerogenes (20 mm). The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined. The antioxidant activity was determined by free radicals scavenging such as 1, 1-Diphenyl-2-picryhydrazyl (DPPH) and 2, 2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Furthermore, the cytotoxicity effect was investigated against human breast cancer (MCF-7) cell line and the highest cytotoxicity (IC50:16.33 μg/mL) is found to be in biocomposite. From the results of antibacterial, antioxidant and cytotoxic activities, it is concluded that CS-CuO-NS biocomposite may be suitable for biomedical applications.
Collapse
Affiliation(s)
- T Revathi
- Bio-nanomaterials Research Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - S Thambidurai
- Bio-nanomaterials Research Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| |
Collapse
|
33
|
de Castro e Silva P, Pereira LAS, Lago AMT, Valquíria M, de Rezende ÉM, Carvalho GR, Oliveira JE, Marconcini JM. Physical-Mechanical and Antifungal Properties of Pectin Nanocomposites / Neem Oil Nanoemulsion for Seed Coating. FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-019-09592-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Abulateefeh SR, Al-Adhami GK, Alkawareek MY, Alkilany AM. Controlling the internal morphology of aqueous core-PLGA shell microcapsules: promoting the internal phase separation via alcohol addition. Pharm Dev Technol 2019; 24:671-679. [DOI: 10.1080/10837450.2018.1558238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Zeng L, Liu Y, Pan J, Liu X. Formulation and evaluation of norcanthridin nanoemulsions against the Plutella xylostella (Lepidotera: Plutellidae). BMC Biotechnol 2019; 19:16. [PMID: 30871528 PMCID: PMC6419361 DOI: 10.1186/s12896-019-0508-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background Norcantharidin (NCTD), a demethylated derivative of cantharidin (defensive toxin of blister beetles), has been reported to exhibit insecticidal activity against various types of agricultural pests. However, NCTD applications are limited by its poor water solubility and high dosage requirement. Nanoemulsions have attracted much attentions due to the transparent or translucence appearance, physical stability, high bioavailability and non-irritant in nature. In general, nanoemulsions with small droplet size can enhance the bioavailability of drugs, whereas this phenomenon is likely system dependent. In present study, NCTD nanoemulsions were developed and optimized to evaluate and improve the insecticidal activity of NCTD against Plutella xylostella (Lepidotera: Plutellidae) by a spontaneous emulsification method. Results Triacetin, Cremophor EL and butanol were selected as the constituents of NCTD nanoemulsions via solubility determination, emulsification efficiency and ternary phase diagram construction. Insecticidal activity of NCTD nanoemulsion was associated with the content of surfactant and cosurfactant: (1) Higher effective toxicity exhibited at Smix (surfactant to cosurfactant mass ratio) = 3:1 that may be associated with the changes in interfacial tension; (2) NCTD nanoemulsion at 3:7 < SOR (surfactant to oil mass ratio) < 6:4 was more effective at lower surfactant level, which was attributed to the relatively slow diffusion rate of NCTD hindering by excess surfactant. Interestingly, nanoemulsions with smaller droplets were not found to be more effective in our study. Conclusions The optimized NCTD nanoemulsion (triacetin/Cremophor EL/butanol (60/20/20, w/w)) exhibited effective insecticidal activity (LC50 60.414 mg/l, LC90 185.530 mg/l, 48 h) than the NCTD acetone solution (LC50 175.602 mg/L, LC90 303.050 mg/L, 48 h). Spontaneous emulsifying nanoemulsion employed to formulate this poor water-soluble pesticide is a potential system for agriculture application. Electronic supplementary material The online version of this article (10.1186/s12896-019-0508-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liya Zeng
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Yongchang Liu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Jun Pan
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Xiaowen Liu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China.
| |
Collapse
|
36
|
Chhipa H. Applications of nanotechnology in agriculture. J Microbiol Methods 2019. [DOI: 10.1016/bs.mim.2019.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Humbert P, Vemmer M, Mävers F, Schumann M, Vidal S, Patel AV. Development of an attract-and-kill co-formulation containing Saccharomyces cerevisiae and neem extract attractive towards wireworms. PEST MANAGEMENT SCIENCE 2018; 74:1575-1585. [PMID: 29281183 DOI: 10.1002/ps.4842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Wireworms (Coleoptera: Elateridae) are major insect pests of worldwide relevance. Owing to the progressive phasing-out of chemical insecticides, there is great demand for innovative control options. This study reports on the development of an attract-and-kill co-formulation based on Ca-alginate beads, which release CO2 and contain neem extract as a bioinsecticidal compound. The objectives of this study were to discover: (1) whether neem extract can be immobilized efficiently, (2) whether CO2 -releasing Saccharomyces cerevisiae and neem extract are suitable for co-encapsulation, and (3) whether co-encapsulated neem extract affects the attractiveness of CO2 -releasing beads towards wireworms. RESULTS Neem extract was co-encapsulated together with S. cerevisiae, starch and amyloglucosidase with a high encapsulation efficiency of 98.6% (based on measurement of azadirachtin A as the main active ingredient). Even at enhanced concentrations, neem extract allowed growth of S. cerevisiae, and beads containing neem extract exhibited CO2 -emission comparable with beads without neem extract. When applied to the soil, the beads established a CO2 gradient of >15 cm. The co-formulation containing neem extract showed no repellent effects and was attractive for wireworms within the first 24 h after exposure. CONCLUSION Co-encapsulation of S. cerevisiae and neem extract is a promising approach for the development of attract-and-kill formulations for the control of wireworms. This study offers new options for the application of neem extracts in soil. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pascal Humbert
- Faculty of Engineering Sciences and Mathematics, Fermentation and Formulation of Biologicals and Chemicals, University of Applied Sciences Bielefeld, Bielefeld, Germany
| | - Marina Vemmer
- Faculty of Engineering Sciences and Mathematics, Fermentation and Formulation of Biologicals and Chemicals, University of Applied Sciences Bielefeld, Bielefeld, Germany
| | - Frauke Mävers
- Department for Crop Sciences, Agricultural Entomology, University of Göttingen, Göttingen, Germany
| | - Mario Schumann
- Department for Crop Sciences, Agricultural Entomology, University of Göttingen, Göttingen, Germany
| | - Stefan Vidal
- Department for Crop Sciences, Agricultural Entomology, University of Göttingen, Göttingen, Germany
| | - Anant V Patel
- Faculty of Engineering Sciences and Mathematics, Fermentation and Formulation of Biologicals and Chemicals, University of Applied Sciences Bielefeld, Bielefeld, Germany
| |
Collapse
|
38
|
Nanoparticle-Based Plant Disease Management: Tools for Sustainable Agriculture. NANOTECHNOLOGY IN THE LIFE SCIENCES 2018. [DOI: 10.1007/978-3-319-91161-8_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Martins E, Poncelet D, Rodrigues RC, Renard D. Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks. J Microencapsul 2017; 34:754-771. [DOI: 10.1080/02652048.2017.1403495] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Denis Poncelet
- Process Engineering for Environment and Food Laboratory, ONIRIS, Nantes, France
| | | | - Denis Renard
- INRA UR 1268 Biopolymères Interactions Assemblages, France, Nantes
| |
Collapse
|
40
|
Martins E, Poncelet D, Rodrigues RC, Renard D. Oil encapsulation in core-shell alginate capsules by inverse gelation II: comparison between dripping techniques using W/O or O/W emulsions. J Microencapsul 2017; 34:522-534. [PMID: 28792267 DOI: 10.1080/02652048.2017.1365963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the first part of this article, it was described an innovative method of oil encapsulation from dripping-inverse gelation using water-in-oil (W/O) emulsions. It was noticed that the method of oil encapsulation was quite different depending on the emulsion type (W/O or oil-in-water (O/W)) used and that the emulsion structure (W/O or O/W) had a high impact on the dripping technique and the capsules characteristics. The objective of this article was to elucidate the differences between the dripping techniques using both emulsions and compare the capsule properties (mechanical resistance and release of actives). The oil encapsulation using O/W emulsions was easier to perform and did not require the use of emulsion destabilisers. However, capsules produced from W/O emulsions were more resistant to compression and showed the slower release of actives over time. The findings detailed here widened the knowledge of the inverse gelation and gave opportunities to develop new techniques of oil encapsulation.
Collapse
Affiliation(s)
| | - Denis Poncelet
- b Process Engineering for Environment and Food Laboratory , ONIRIS , Nantes , France
| | | | - Denis Renard
- c INRA UR 1268 Biopolymères Interactions Assemblages , Nantes , France
| |
Collapse
|
41
|
Controlled release for crop and wood protection: Recent progress toward sustainable and safe nanostructured biocidal systems. J Control Release 2017; 262:139-150. [PMID: 28739450 DOI: 10.1016/j.jconrel.2017.07.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Abstract
We review biocide delivery systems (BDS), which are designed to deter or control harmful organisms that damage agricultural crops, forests and forest products. This is a timely topic, given the growing socio-economical concerns that have motivated major developments in sustainable BDS. Associated designs aim at improving or replacing traditional systems, which often consist of biocides with extreme behavior as far as their solubility in water. This includes those that compromise or pollute soil and water (highly soluble or volatile biocides) or those that present low bioavailability (poorly soluble biocides). Major breakthroughs are sought to mitigate or eliminate consequential environmental and health impacts in agriculture and silviculture. Here, we consider the most important BDS vehicles or carriers, their synthesis, the environmental impact of their constituents and interactions with the active components together with the factors that affect their rates of release such as environmental factors and interaction of BDS with the crops or forest products. We put in perspective the state-of-the-art nanostructured carriers for controlled release, which need to address many of the challenges that exist in the application of BDS.
Collapse
|
42
|
Prasad R, Bhattacharyya A, Nguyen QD. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Front Microbiol 2017; 8:1014. [PMID: 28676790 PMCID: PMC5476687 DOI: 10.3389/fmicb.2017.01014] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/22/2017] [Indexed: 11/29/2022] Open
Abstract
Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture.
Collapse
Affiliation(s)
- Ram Prasad
- Amity Institute of Microbial Technology, Amity UniversityNoida, India
| | - Atanu Bhattacharyya
- Department of Entomology, University of Agricultural Sciences, Gandhi Krishi Vigyan KendraBengaluru, India
| | - Quang D. Nguyen
- Research Centre of Bioengineering and Process Engineering, Faculty of Food Science, Szent István UniversityBudapest, Hungary
| |
Collapse
|
43
|
Muema JM, Bargul JL, Njeru SN, Onyango JO, Imbahale SS. Prospects for malaria control through manipulation of mosquito larval habitats and olfactory-mediated behavioural responses using plant-derived compounds. Parasit Vectors 2017; 10:184. [PMID: 28412962 PMCID: PMC5392979 DOI: 10.1186/s13071-017-2122-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/29/2017] [Indexed: 11/14/2022] Open
Abstract
Malaria presents an overwhelming public health challenge, particularly in sub-Saharan Africa where vector favourable conditions and poverty prevail, potentiating the disease burden. Behavioural variability of malaria vectors poses a great challenge to existing vector control programmes with insecticide resistance already acquired to nearly all available chemical compounds. Thus, approaches incorporating plant-derived compounds to manipulate semiochemical-mediated behaviours through disruption of mosquito olfactory sensory system have considerably gained interests to interrupt malaria transmission cycle. The combination of push-pull methods and larval control have the potential to reduce malaria vector populations, thus minimising the risk of contracting malaria especially in resource-constrained communities where access to synthetic insecticides is a challenge. In this review, we have compiled information regarding the current status of knowledge on manipulation of larval ecology and chemical-mediated behaviour of adult mosquitoes with plant-derived compounds for controlling mosquito populations. Further, an update on the current advancements in technologies to improve longevity and efficiency of these compounds for field applications has been provided.
Collapse
Affiliation(s)
- Jackson M Muema
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.,Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Sospeter N Njeru
- Department of Medicine, Faculty of Health Sciences, Kisii University, P.O. Box 408-40200, Kisii, Kenya.,Present Address: Fritz Lipmann Institute (FLI) - Leibniz Institute of Aging Research, D-07745, Jena, Germany
| | - Joab O Onyango
- Department of Chemical Science and Technology, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| | - Susan S Imbahale
- Department of Applied and Technical Biology, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| |
Collapse
|
44
|
Khandelwal N, Barbole RS, Banerjee SS, Chate GP, Biradar AV, Khandare JJ, Giri AP. Budding trends in integrated pest management using advanced micro- and nano-materials: Challenges and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 184:157-169. [PMID: 27697374 DOI: 10.1016/j.jenvman.2016.09.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
One of the most vital supports to sustain human life on the planet earth is the agriculture system that has been constantly challenged in terms of yield. Crop losses due to insect pest attack even after excessive use of chemical pesticides, are major concerns for humanity and environment protection. By the virtue of unique properties possessed by micro and nano-structures, their implementation in Agri-biotechnology is largely anticipated. Hence, traditional pest management strategies are now forestalling the potential of micro and nanotechnology as an effective and viable approach to alleviate problems pertaining to pest control. These technological innovations hold promise to contribute enhanced productivity by providing novel agrochemical agents and delivery systems. Application of these systems engages to achieve: i) control release of agrochemicals, ii) site-targeted delivery of active ingredients to manage specific pests, iii) reduced pesticide use, iv) detection of chemical residues, v) pesticide degradation, vi) nucleic acid delivery and vii) to mitigate post-harvest damage. Applications of micro and nano-technology are still marginal owing to the perception of low economic returns, stringent regulatory issues involving safety assessment and public awareness over their uses. In this review, we highlight the potential application of micro and nano-materials with a major focus on effective pest management strategies including safe handling of pesticides.
Collapse
Affiliation(s)
- Neha Khandelwal
- Plant Molecular Biology, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Ranjit S Barbole
- Plant Molecular Biology, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Shashwat S Banerjee
- Maharashtra Institute of Medical Education and Research (MIMER) Medical College, Talegaon Dabhade, Dist Pune 410507, India
| | - Govind P Chate
- Maharashtra Institute of Medical Education and Research (MIMER) Medical College, Talegaon Dabhade, Dist Pune 410507, India
| | - Ankush V Biradar
- Inorganic Material and Catalysis Division, CSIR-Central Salt and Marine Chemical Research Institute, Bhavnagar 364002, Gujarat, India
| | - Jayant J Khandare
- Maharashtra Institute of Medical Education and Research (MIMER) Medical College, Talegaon Dabhade, Dist Pune 410507, India; Maharashtra Institute of Pharmacy, MIT Campus, Pune 411038, Maharashtra, India.
| | - Ashok P Giri
- Plant Molecular Biology, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.
| |
Collapse
|
45
|
Noruzi M. Electrospun nanofibres in agriculture and the food industry: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4663-4678. [PMID: 27029997 DOI: 10.1002/jsfa.7737] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/05/2016] [Accepted: 03/24/2016] [Indexed: 05/27/2023]
Abstract
The interesting characteristics of electrospun nanofibres, such as high surface-to-volume ratio, nanoporosity, and high safety, make them suitable candidates for use in a variety of applications. In the recent decade, electrospun nanofibres have been applied to different potential fields such as filtration, wound dressing, drug delivery, etc. and a significant number of review papers have been published in these fields. However, the use of electrospun nanofibres in agriculture is comparatively novel and is still in its infancy. In this paper, the specific applications of electrospun nanofibres in agriculture and food science, including plant protection using pheromone-loaded nanofibres, plant protection using encapsulation of biocontrol agents, preparation of protective clothes for farm workers, encapsulation of agrochemical materials, deoxyribonucleic acid extraction in agricultural research studies, pre-concentration and measurement of pesticides in crops and environmental samples, preparation of nanobiosensors for pesticide detection, encapsulation of food materials, fabrication of food packaging materials, and filtration of beverage products are reviewed and discussed. This paper may help researchers develop the use of electrospun nanofibres in agriculture and food science to address some serious problems such as the intensive use of pesticides. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Masumeh Noruzi
- Nanotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. ,
| |
Collapse
|
46
|
Sundaramoorthy R, Velusamy Y, Balaji APB, Mukherjee A, Chandrasekaran N. Comparative cytotoxic and genotoxic effects of permethrin and its nanometric form on human erythrocytes and lymphocytes in vitro. Chem Biol Interact 2016; 257:119-124. [PMID: 27502151 DOI: 10.1016/j.cbi.2016.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/18/2016] [Accepted: 08/04/2016] [Indexed: 11/22/2022]
Abstract
The research on the novel pesticides such as nanopesticides has become inevitable to control the mosquito population. Nanopermethrin (NP), one of such kind was formulated in pesticide loaded oil-in-water (o/w) microemulsion by rapid evaporation. Even though NP possess improved efficacy against the target pests, the toxicological investigation on the human or mammalian system remains unexplored. So, the present study focused on a comparative investigation of the cytotoxic and genotoxic effects of NP in vitro and its commercial parental bulk form of permethrin (BP) on human peripheral erythrocyte/lymphocyte by erythrocyte morphology analysis, cell viability assay, and cytokinesis-block micronucleus (CBMN) assay. The NP and BP concentrations (10, 25, 50 and 100 μg/ml) interacted with human blood cells, and the morphological changes were observed using a phase contrast microscope. The drastic increase of echinocyte was observed at 24, 48 and 72 h treatment as compared with the control. The cell viability studies have shown the significant decrease with increase in NP and BP concentration. CBMN study showed a series correlation in the number of micronuclei, bridge, bud, trinucleated and tetranucleated when interacted with different levels of NP and BP, as comparative to control *p < 0.05, **p < 0.001, ***p < 0.0001.
Collapse
Affiliation(s)
| | - Yuvaraj Velusamy
- Centre for Nanobiotechnology, VIT University, Vellore 632014, India
| | - A P B Balaji
- Centre for Nanobiotechnology, VIT University, Vellore 632014, India
| | | | | |
Collapse
|
47
|
Rajiv S, Jerobin J, Saranya V, Nainawat M, Sharma A, Makwana P, Gayathri C, Bharath L, Singh M, Kumar M, Mukherjee A, Chandrasekaran N. Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Hum Exp Toxicol 2016; 35:170-183. [PMID: 25829403 DOI: 10.1177/0960327115579208] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Despite the extensive use of nanoparticles (NPs) in various fields, adequate knowledge of human health risk and potential toxicity is still lacking. The human lymphocytes play a major role in the immune system, and it can alter the antioxidant level when exposed to NPs. Identification of the hazardous NPs was done using in vitro toxicity tests and this study mainly focuses on the comparative in vitro cytotoxicity and genotoxicity of four different NPs including cobalt (II, III) oxide (Co3O4), iron (III) oxide (Fe2O3), silicon dioxide (SiO2), and aluminum oxide (Al2O3) on human lymphocytes. The Co3O4 NPs showed decrease in cellular viability and increase in cell membrane damage followed by Fe2O3, SiO2, and Al2O3 NPs in a dose-dependent manner after 24 h of exposure to human lymphocytes. The oxidative stress was evidenced in human lymphocytes by the induction of reactive oxygen species, lipid peroxidation, and depletion of catalase, reduced glutathione, and superoxide dismutase. The Al2O3 NPs showed the least DNA damage when compared with all the other NPs. Chromosomal aberration was observed at 100 µg/ml when exposed to Co3O4 NPs and Fe2O3 NPs. The alteration in the level of antioxidant caused DNA damage and chromosomal aberration in human lymphocytes.
Collapse
Affiliation(s)
- S Rajiv
- Centre for Nanobiotechnology, VIT University, Katpadi, Vellore, Tamil Nadu, India
| | - J Jerobin
- Centre for Nanobiotechnology, VIT University, Katpadi, Vellore, Tamil Nadu, India
| | - V Saranya
- Centre for Nanobiotechnology, VIT University, Katpadi, Vellore, Tamil Nadu, India
| | - M Nainawat
- Centre for Nanobiotechnology, VIT University, Katpadi, Vellore, Tamil Nadu, India
| | - A Sharma
- Centre for Nanobiotechnology, VIT University, Katpadi, Vellore, Tamil Nadu, India
| | - P Makwana
- Centre for Nanobiotechnology, VIT University, Katpadi, Vellore, Tamil Nadu, India
| | - C Gayathri
- Centre for Nanobiotechnology, VIT University, Katpadi, Vellore, Tamil Nadu, India
| | - L Bharath
- Centre for Nanobiotechnology, VIT University, Katpadi, Vellore, Tamil Nadu, India
| | - M Singh
- Centre for Nanobiotechnology, VIT University, Katpadi, Vellore, Tamil Nadu, India
| | - M Kumar
- Centre for Nanobiotechnology, VIT University, Katpadi, Vellore, Tamil Nadu, India
| | - A Mukherjee
- Centre for Nanobiotechnology, VIT University, Katpadi, Vellore, Tamil Nadu, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, VIT University, Katpadi, Vellore, Tamil Nadu, India
| |
Collapse
|
48
|
Vishwakarma GS, Gautam N, Babu JN, Mittal S, Jaitak V. Polymeric Encapsulates of Essential Oils and Their Constituents: A Review of Preparation Techniques, Characterization, and Sustainable Release Mechanisms. POLYM REV 2016. [DOI: 10.1080/15583724.2015.1123725] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
49
|
Jerobin J, Makwana P, Suresh Kumar RS, Sundaramoorthy R, Mukherjee A, Chandrasekaran N. Antibacterial activity of neem nanoemulsion and its toxicity assessment on human lymphocytes in vitro. Int J Nanomedicine 2015; 10 Suppl 1:77-86. [PMID: 26491309 PMCID: PMC4599620 DOI: 10.2147/ijn.s79983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neem (Azadirachta indica) is recognized as a medicinal plant well known for its antibacterial, antimalarial, antiviral, and antifungal properties. Neem nanoemulsion (NE) (O/W) is formulated using neem oil, Tween 20, and water by high-energy ultrasonication. The formulated neem NE showed antibacterial activity against the bacterial pathogen Vibrio vulnificus by disrupting the integrity of the bacterial cell membrane. Despite the use of neem NE in various biomedical applications, the toxicity studies on human cells are still lacking. The neem NE showed a decrease in cellular viability in human lymphocytes after 24 hours of exposure. The neem NE at lower concentration (0.7-1 mg/mL) is found to be nontoxic while it is toxic at higher concentrations (1.2-2 mg/mL). The oxidative stress induced by the neem NE is evidenced by the depletion of catalase, SOD, and GSH levels in human lymphocytes. Neem NE showed a significant increase in DNA damage when compared to control in human lymphocytes (P<0.05). The NE is an effective antibacterial agent against the bacterial pathogen V. vulnificus, and it was found to be nontoxic at lower concentrations to human lymphocytes.
Collapse
Affiliation(s)
- Jayakumar Jerobin
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India
| | - Pooja Makwana
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India
| | - RS Suresh Kumar
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India
| | | |
Collapse
|
50
|
Rashidzadeh A, Olad A, Hejazi MJ. Controlled Release Systems Based on Intercalated Paraquat onto Montmorillonite and Clinoptilolite Clays Encapsulated with Sodium Alginate. ADVANCES IN POLYMER TECHNOLOGY 2015. [DOI: 10.1002/adv.21597] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Azam Rashidzadeh
- Polymer Composite Research Laboratory; Department of Applied Chemistry; Faculty of Chemistry; University of Tabriz; Tabriz Iran
| | - Ali Olad
- Polymer Composite Research Laboratory; Department of Applied Chemistry; Faculty of Chemistry; University of Tabriz; Tabriz Iran
| | - Mir Jalil Hejazi
- Department of Plant Protection; Faculty of Agriculture; University of Tabriz; Tabriz Iran
| |
Collapse
|